1
|
Yin G, Qin M, Liu X, Suo J, Suo X. Interferon-γ enzyme-linked immunosorbent spot assay as a tool to study T cell responses to Eimeria tenella infection in chickens. Poult Sci 2013; 92:1758-63. [PMID: 23776262 DOI: 10.3382/ps.2012-02998] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enzyme-linked immunosorbent spot (ELISPOT) assay is a sensitive and easy-to-use tool to quantify the number of interferon (IFN)-γ-producing cells and offers a viable alternative for the quantitative measurement of T cell functions in chickens. To study the development of cell-mediated immunity in Eimeria-infected chickens, we measured the number of IFN-γ-producing cells in peripheral blood mononuclear cells by ELISPOT after 3 oral inoculations of Eimeria tenella oocysts at 2-wk intervals. We found that the number of IFN-γ-producing cells was significantly increased at 2 wk after the primary infection compared with the control group. The IFN-γ-producing cells were further increased after repeated infections, and there was a statistically significant increase in the number of IFN-γ-producing cells after the third infection than after the first infection. Our results indicated that the ELISPOT assay can be used to quantitatively measure antigen-specific T cell responses to coccidia or other avian pathogens.
Collapse
|
2
|
Kobayashi S, Sato R, Aoki T, Omoe K, Inanami O, Hankanga C, Yamada Y, Tomizawa N, Yasuda J, Sasaki J. Effect of bovine lactoferrin on functions of activated feline peripheral blood mononuclear cells during chronic feline immunodeficiency virus infection. J Vet Med Sci 2008; 70:429-35. [PMID: 18525162 DOI: 10.1292/jvms.70.429] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Feline immunodeficiency virus (FIV) infection is characterized by chronic overactivation of immune and inflammatory system, resulting in anergic state and dysfunction of immune cells. Lactoferrin (LF), a glycoprotein present in exocrine secretions and neutrophils, plays an important role in host defense system. Our previous study showed that oral administration of bovine LF (bLF) suppressed oral inflammation, improved the clinical symptoms and decreased serum gamma-globulin as a marker of inflammation in FIV-infected cats with intractable stomatitis. The anti-inflammatory effect was partly involved in regulation of neutrophil function by bLF. In this study, to clarify the relationship between anti-inflammatory effects of bLF and peripheral blood mononuclear cells (PBMC), we examined the effect of bLF on proliferation, cell cycle progression and cytokine expression in mitogen-activated PBMC. MTT [3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyl tetrazolium bromide] assay showed that bLF inhibited the concanavalin A (ConA)-induced cell proliferation in FIV-infected cats with the asymptomatic carrier and AIDS-related complex (ARC) phase. Bovine LF restored ConA-induced cell cycle progression and resulted in suppression of the induced apoptosis in feline PBMC. Real-time RT-PCR showed that bLF suppressed ConA-induced expression of interferon-gamma and interleukin-2 in cells of the ARC group regardless of the time of its addition to the medium. These results suggest the hypothesis that therapy with bLF may have the potential to improve and protect functions of overactivated lymphocytes by modulating the cell proliferation, cell cycle and cytokines expression in cats in terminal stage of FIV infection.
Collapse
Affiliation(s)
- Saori Kobayashi
- Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Ariaans MP, van de Haar PM, Lowenthal JW, van Eden W, Hensen EJ, Vervelde L. ELISPOT and intracellular cytokine staining: novel assays for quantifying T cell responses in the chicken. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:1398-1404. [PMID: 18579202 DOI: 10.1016/j.dci.2008.05.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 05/15/2008] [Accepted: 05/15/2008] [Indexed: 05/26/2023]
Abstract
The measurement of T cell responses in chickens, not only for quantitative aspects but also for the qualitative nature of the responses, becomes increasingly important. However, there are very few assays available to measure T cell function. Therefore, we have developed enzyme-linked immunosorbent spot assay (ELISPOT) and an intracellular cytokine staining (ICCS) assay. ELISPOT assay for the detection of chicken interferon-gamma (ChIFN-gamma) production was set up and shown to be reproducible for both polyclonal and antigen-specific stimuli such as Newcastle disease virus (NDV). However, the ELISPOT assay lacks the ability to identify individual cytokine-producing cells. Separation of CD4+ and CD8+ T cell populations gave additional information, but appeared to have the disadvantage of a loss of cell interactions during stimulation. In a further refinement, individual cells were identifiable by ICCS, which gives the possibility to characterize for multiple characteristics, such as cytokine production and phenotype of the cell. Using ICCS, ChIFN-gamma production was evaluated. Although cells were detected at only low frequencies, polyclonal stimulation of peripheral blood mononuclear cell (PBMC) or spleen cells resulted in a significant increase in ChIFN-gamma production by CD4+ and CD8+ cells.
Collapse
Affiliation(s)
- M P Ariaans
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
4
|
Abstract
Advances in vaccine technology are occurring in the molecular techniques used to develop vaccines and in the assessment of vaccine efficacy, allowing more complete characterization of vaccine-induced immunity correlating to protection. FIV vaccine development has closely mirrored and occasionally surpassed the development of HIV-1 vaccine, leading to first licensed technology. This review will discuss technological advances in vaccine designs, challenge infection assessment, and characterization of vaccine immunity in the context of the protection detected with prototype and commercial dual-subtype FIV vaccines and in relation to HIV-1.
Collapse
Affiliation(s)
- Elizabeth W. Uhl
- Department of Veterinary Pathology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602-7388, USA
| | - Marcus Martin
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| | - James K. Coleman
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| | - Janet K. Yamamoto
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| |
Collapse
|
5
|
Pistello M. Should accessory proteins be structural components of lentiviral vaccines? Lessons learned from the accessory ORF-A protein of FIV. Vet Immunol Immunopathol 2008; 123:144-9. [PMID: 18304653 DOI: 10.1016/j.vetimm.2008.01.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The FIV regulatory protein Rev and accessory proteins Vif and ORF-A are essential for efficient viral replication and full-blown pathogenesis. Expressed at very low level during viral replication, they are nevertheless processed for recognition by cytotoxic T-lymphocytes (CTLs) and trigger cellular immune responses in FIV-infected cats. The observation that the accessory ORF-A protein of FIV is continuously expressed during viral replication and targeted by cellular immune responses in natural FIV infection, prompted us to investigate the protective potential of this protein. To this aim cats were immunized with three different strategies (protein alone in alum adjuvant, DNA alone, or DNA prime-protein boost) and generated clearly detectable immune responses. Upon challenge with ex vivo homologous FIV, ORF-A immunized cats showed distinct enhancement of acute-phase infection possibly due to an increased expression of the FIV receptor CD134. However, at subsequent sampling points plasma viremia was reduced and CD4+ T-lymphocytes in the circulation declined more slowly in ORF-A immunized than in control animals. These findings support the contention that a multicomponent vaccine, with the inclusion of both accessory and structural proteins, can not only improve the host's ability to control lentivirus replication and slow down disease progression but also draw attention to the fact that even simple immunogens that eventually contribute to protective activity can transiently exacerbate subsequent lentiviral infections.
Collapse
Affiliation(s)
- Mauro Pistello
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa I-56127, Italy.
| |
Collapse
|
6
|
Abstract
Animal models for human immunodeficiency virus (HIV) infection play a key role in understanding the pathogenesis of AIDS and the development of therapeutic agents and vaccines. As the only lentivirus that causes an immunodeficiency resembling that of HIV infection, in its natural host, feline immunodeficiency virus (FIV) has been a unique and powerful model for AIDS research. FIV was first described in 1987 by Niels Pedersen and co-workers as the causative agent for a fatal immunodeficiency syndrome observed in cats housed in a cattery in Petaluma, California. Since this landmark observation, multiple studies have shown that natural and experimental infection of cats with biological isolates of FIV produces an AIDS syndrome very similar in pathogenesis to that observed for human AIDS. FIV infection induces an acute viremia associated with Tcell alterations including depressed CD4 :CD8 T-cell ratios and CD4 T-cell depletion, peripheral lymphadenopathy, and neutropenia. In later stages of FIV infection, the host suffers from chronic persistent infections that are typically self-limiting in an immunocompetent host, as well as opportunistic infections, chronic diarrhea and wasting, blood dyscracias, significant CD4 T-cell depletion, neurologic disorders, and B-cell lymphomas. Importantly, chronic FIV infection induces a progressive lymphoid and CD4 T-cell depletion in the infected cat. The primary mode of natural FIV transmission appears to be blood-borne facilitated by fighting and biting. However, experimental infection through transmucosal routes (rectal and vaginal mucosa and perinatal) have been well documented for specific FIV isolates. Accordingly, FIV disease pathogenesis exhibits striking similarities to that described for HIV-1 infection.
Collapse
|
7
|
Dunham SP, Bruce J, Klein D, Flynn JN, Golder MC, MacDonald S, Jarrett O, Neil JC. Prime-boost vaccination using DNA and whole inactivated virus vaccines provides limited protection against virulent feline immunodeficiency virus. Vaccine 2006; 24:7095-108. [PMID: 17049683 DOI: 10.1016/j.vaccine.2006.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 04/03/2006] [Accepted: 07/03/2006] [Indexed: 10/24/2022]
Abstract
Protection against feline immunodeficiency virus (FIV) has been achieved using a variety of vaccines notably whole inactivated virus (WIV) and DNA. However protection against more virulent isolates, typical of those encountered in natural infections, has been difficult to achieve. In an attempt to improve protection against virulent FIV(GL8), we combined both DNA and WIV vaccines in a "prime-boost" approach. Thirty cats were divided into four groups receiving vaccinations and one unvaccinated control group. Following viral challenge, two vaccinated animals, one receiving DNA alone and one the prime-boost vaccine remained free of viraemia, whilst all controls became viraemic. Animals vaccinated with WIV showed apparent early enhancement of infection at 2 weeks post challenge (pc) with higher plasma viral RNA loads than control animals or cats immunised with DNA alone. Despite this, animals vaccinated with WIV or DNA alone showed significantly lower proviral loads in peripheral blood mononuclear cells and mesenteric lymph node cells, whilst those receiving the DNA-WIV prime-boost vaccine showed significantly lower proviral loads in PBMC, than control animals, at 35 weeks pc. Therefore both DNA and WIV vaccines conferred limited protection against viral challenge but the combination of WIV and DNA in a prime-boost approach appeared to offer no significant advantage over either vaccine alone.
Collapse
Affiliation(s)
- Stephen P Dunham
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The understanding and importance of antigen-specific immune responses after vaccination has completely changed in recent years. In the past, the focus for monitoring a vaccine-specific immune reaction was principally on the humoral branch of the immune system. The efficacy of vaccines, as assessed by the induction of protective immunity was mainly correlated with antibodies and antibody-titers. However, this correlation often failed and other parts of the immune system had also to be considered: namely, the innate immune system and the cellular branch of the antigen-specific immune system. With regard to vaccines, the innate immune system plays its main role in the effective activation of the antigen-specific immune response, in antigen-uptake and antigen-presentation. The dendritic cells (DCs) are the most important antigen presenting cells which present processed protein antigens (peptides) through MHC-molecules: MHC-class I, for the presentation of endogenous synthesised antigen; MHC-class II for exogenous antigen. Activation of DC leads to an enhanced production of cytokines and chemokines, to an up-regulation of co-stimulatory and activation molecules and also molecules for cell-cell interactions, e.g. interactions with cells of the antigen-specific immune system. T lymphocytes are the effector cells of the cellular branch of the antigen-specific immune system. They act either as MHC-class I-restricted cytolytic T lymphocytes (CTL) or as MHC-class II-restricted T-helper cells providing support for B lymphocytes (T(H)2) and the cellular part of the antigen-specific immune system (T(H)1). In order to achieve effective vaccination, the activation of all T-cell subpopulations is of advantage, but more important is the generation of antigen-specific memory T and B lymphocytes. In addition to these 'generic' immunological factors which are essential for the design of more efficacious vaccines, our detailed knowledge about feline and canine immune reactions after vaccination, which is still poor, has to be improved.
Collapse
Affiliation(s)
- Armin Saalmüller
- Clinical Immunology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| |
Collapse
|
9
|
Coats KS. The Feline Immunodeficiency Virus-Infected Cat: A Model for Lentivirus-induced Placental Immunopathology and Reproductive Failure (Mini-Review). Am J Reprod Immunol 2005; 54:169-85. [PMID: 16135008 DOI: 10.1111/j.1600-0897.2005.00296.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
PROBLEM Pediatric human immunodeficiency virus (HIV) infection is largely a result of transplacental transmission, and pregnancy perturbation is more frequent in HIV-infected women. Dysregulation of placental immunology may occur during HIV infection, possibly facilitating HIV vertical transfer and miscarriage. The (FIV)-infected cat is a useful small-animal model for HIV pathogenesis because the viruses share common biological and clinical features. Transplacental transmission is readily achieved experimentally, resulting in a high proportion of infected offspring and frequent reproductive failure. METHOD OF STUDY We are using this model to examine lentivirus-induced placental immunopathology to determine the role aberrant immunology plays in intrauterine transmission and pregnancy perturbation. RESULTS Kittens were cesarean delivered from FIV-B-2542-infected and control queens at week 8 gestation (1 week short of term), and placental and fetal specimens were collected. On average, control queens delivered 3.8 kittens/litter, and 1 of 31 kittens (3.2%) was non-viable. FIV-infected queens produced 2.7 kittens/litter with 15 of 25 fetuses (60%) non-viable. The virus was detected in 14 of 15 placentas (93%) and 21 of 22 fetuses (95%) using polymerase chain reaction (PCR). Using a one-step, real time reverse transcriptase (RT)-PCR, we measured expression of representative placental T helper 1 (Th1) cytokines, interleukin (IL)-1beta and interferon (IFN)-gamma, a Th2 cytokine, IL-10, and chemokine receptor CXCR4. A comparison of placental cytokine expression between infected and control queens did not reveal differences between the two groups. However, elevated expression of Th1 cytokines and increased Th1/Th2 ratios (IL-1beta/IL-10) occurred in placentas from resorptions, indicating that increased placental Th1 cytokine expression was associated with pregnancy failure in the FIV-infected cat. CONCLUSION The potential to establish efficient FIV in utero transmission, coupled with the parallels in immunopathology between FIV-infected cats and HIV-infected humans, suggests the usefulness of the FIV-infected cat as a cost-effective, small-animal model to study lentivirus-induced immunopathology, transplacental infection, and reproductive failure.
Collapse
Affiliation(s)
- Karen S Coats
- Department of Biological Sciences and College of Veterinary Medicine, Mississippi State University, PO Box GY, MS 39762, USA.
| |
Collapse
|