1
|
Cusack P. Alternatives to conventional antibiotics for the prevention and treatment of commonly occurring diseases in feedlot cattle. Aust Vet J 2024; 102:229-241. [PMID: 38267062 DOI: 10.1111/avj.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024]
Abstract
Antibiotic-resistant bacteria are a problem in human medicine. The development of antibiotic resistance in bacteria in feedlot cattle could have negative effects on their health and welfare and there is a theoretical possibility of transmission of antibiotic-resistant bacteria from food animals to humans. Alternatives to conventional antibiotics in feedlot health management could reduce the selective pressure for the development of antibiotic resistance. This review assesses the evidence supporting potential alternatives to conventional antibiotics in the prevention and treatment of diseases in feedlot cattle, including nitric oxide, plant extracts, supplemental yeast or yeast products, bacterial probiotics, organic acids, bacteriophages and non-specific immunostimulants. Further research is warranted with lactate utilising bacteria, the organic acid malate, bacteriophages and the non-specific immunostimulants β-1,3 glucan and those based on pox viruses. However, none of the alternatives to conventional antibiotics investigated in this review have sufficient supporting evidence to date to justify their use with feedlot cattle. Frequently, statistically weak results and studies without negative controls are cited as support for similar studies. The health and welfare of feedlot cattle are dependent on the use of products that have robust supporting data to ensure efficacy and to avoid adverse outcomes.
Collapse
Affiliation(s)
- Pmv Cusack
- Australian Livestock Production Services, Cowra, New South Wales, 2794, Australia
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, 2678, Australia
| |
Collapse
|
2
|
Prokopová A, Mokrejš P, Gál R, Pavlačková J, Hurajová A. Characterization of Poultry Gelatins Prepared by a Biotechnological Method for Targeted Changes at the Molecular Level. Int J Mol Sci 2024; 25:916. [PMID: 38255989 PMCID: PMC10815914 DOI: 10.3390/ijms25020916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Chicken collagen is a promising raw material source for the production gelatins and hydrolysates. These can be prepared biotechnologically using proteolytic enzymes. By choosing the appropriate process conditions, such changes can be achieved at the molecular level of collagen, making it possible to prepare gelatins with targeted properties for advanced cosmetic, pharmaceutical, medical, or food applications. The present research aims to investigate model samples of chicken gelatins, focusing on: (i) antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis-3-etylbenzotiazolin-6-sulfonic acid (ABTS); (ii) the distribution of molecular weights via gel permeation chromatography with refractometric detection (GPC-RID); (iii) functional groups and the configuration of polypeptide chains related to molecular-level properties using Fourier transform infrared spectroscopy (FTIR); (iv) the microbiological populations on sabouraud dextrose agar (SDA), plate count agar (PCA), tryptic soy agar (TSA), and violet red bile lactose (VRBL) using the matrix-assisted laser desorption ionization (MALDI) method. Antioxidant activity towards ABTS radicals was more than 80%; activity towards DPPH radicals was more than 69%. The molecular weights of all gelatin samples showed typical α-, β-, and γ-chains. FTIR analysis confirmed that chicken gelatins all contain typical vibrational regions for collagen cleavage products, Amides A and B, and Amides I, II, and III, at characteristic wavenumbers. A microbiological analysis of the prepared samples showed no undesirable bacteria that would limit advanced applications of the prepared products. Chicken gelatins represent a promising alternative to products made from standard collagen tissues of terrestrial animals.
Collapse
Affiliation(s)
- Aneta Prokopová
- Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic;
| | - Pavel Mokrejš
- Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic;
| | - Robert Gál
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic;
| | - Jana Pavlačková
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic;
| | - Anna Hurajová
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic;
| |
Collapse
|
3
|
Sarrami Z, Sedghi M, Mohammadi I, Bedford M, Miranzadeh H, Ghasemi R. Effects of bacteriophage on Salmonella Enteritidis infection in broilers. Sci Rep 2023; 13:12198. [PMID: 37500690 PMCID: PMC10374914 DOI: 10.1038/s41598-023-38791-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Bacteriophages (BP) are viruses that can infect bacteria. The present study evaluated the effect of BP on Salmonella infected broilers. A number of 150 day-old broilers were used in a completely randomized design with five treatments that included: (1) basal diet from day 0 to 28; (2) basal diet + 0.3 g/kg of colistin from day 0 to 28; (3) basal diet from day 1 to 13, and basal diet + 0.4 g/kg of colistin from day 14 to 28; (4) basal diet + 1 g/kg of BP from day 0 to 28; (5) basal diet + 1.5 g/kg of BP from day 0 to 28. On day 13, 15 chickens from each treatment were challenged by Salmonella Enteritidis (SE), while fifteen from each treatment were not; instead, they were kept in the same cage with the challenged chickens (exposed chickens). At 7 and 14 days post-challenge, the number of SE and coliform bacteria in the cecum and liver of colistin and BP-fed birds was lower than the control treatment. In exposed and challenged chickens, the height and surface area of villus were greater in the BP and colistin-supplemented groups. Serum concentrations of aspartate aminotransferase and alanine transaminase were greater, while serum albumin and triglycerides concentrations were lower in the control treatment. The liver of the challenged chickens had more pathological lesions than exposed birds. BP significantly decreased PPARγ gene expression in exposed chickens. In the challenged and exposed chickens, TLR4 gene expression was lower in BP and colistin-treated birds as compared to the control. In conclusion, adding BP to the diet from the day of age prevents the spread of Salmonella.
Collapse
Affiliation(s)
- Zahra Sarrami
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad Sedghi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Ishmael Mohammadi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | | | - Hadi Miranzadeh
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Razie Ghasemi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
4
|
Cappellozza BI, Copani G, Boll EJ, Queiroz O. Supplementation of direct-fed microbial Enterococcus faecium 669 affects performance of preweaning dairy calves. JDS COMMUNICATIONS 2023; 4:284-287. [PMID: 37521053 PMCID: PMC10382813 DOI: 10.3168/jdsc.2022-0344] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/21/2022] [Indexed: 08/01/2023]
Abstract
Optimization and support of health and performance of preweaning dairy calves is paramount to any dairy operation, and natural solutions, such as probiotics, may help to achieve such a goal. Two experiments were designed to evaluate the effects of direct-fed microbial (DFM) Enterococcus faecium 669 on performance of preweaning dairy calves. In experiment 1, twenty 4-d-old Holstein calves [initial body weight (BW) 41 ± 2.1 kg] were randomly assigned to either (1) no probiotic supplementation (CON; n = 10) or (2) supplementation with probiotic strain E. faecium 669 during the preweaning period (DFM; n = 10) at 2.0 × 1010 cfu/kg of whole milk. Full individual BW was analyzed every 20 d for average daily gain (ADG) and feed efficiency (FE) determination. In experiment 2, thirty 4-d-old Holstein calves (initial BW 40 ± 1.9 kg) were assigned to the same treatments as in experiment 1 (CON and DFM). The DFM supplementation period was divided into period I (from d 0 to 21) and II (from d 22 to 63), with weaning occurring when animals were 67 d of age. During the entire experimental period, DFM was mixed into the whole milk at a rate of 1.5 × 1010 and 2.5 × 109 cfu/kg of whole milk/calf per day for periods I and II, respectively (6-time reduction). Full individual BW was taken every 21 d. As a routine of the experiment, calves were monitored daily, and diarrhea cases were evaluated using a daily 3-point fecal score. For both experiments, all data were analyzed using calf as the experimental unit. In experiment 1, DFM-supplemented calves were heavier on d 40 (+ 4.5 kg) and 60 (+ 6.5 kg) and had a greater ADG (+ 118 g) versus CON. In experiment 2, supplementation with DFM significantly tended to reduce diarrhea occurrence. Treatment × day and treatment × week interactions were observed for BW, ADG, and gain-to-feed ratio. Dairy calves supplemented with DFM were 1.8 and 3.5 kg heavier on d 42 and at weaning, respectively, and had a greater ADG from d 21 to 42 (+ 52 g) and 42 to 63 (+ 77 g) and gain-to-feed ratio from d 42 to 63 (+ 8.6%). In summary, supplementation of E. faecium 669 to dairy calves improved preweaning performance, even when the dose of the DFM was reduced by 6- to 8-times. Additionally, initial promising results were observed on diarrhea occurrence, but further studies are warranted.
Collapse
|
5
|
Shao Y, Zhen W, Guo F, Hu Z, Zhang K, Kong L, Guo Y, Wang Z. Pretreatment with probiotics Enterococcus faecium NCIMB 11181 attenuated Salmonella Typhimurium-induced gut injury through modulating intestinal microbiome and immune responses with barrier function in broiler chickens. J Anim Sci Biotechnol 2022; 13:130. [PMID: 36221113 PMCID: PMC9555120 DOI: 10.1186/s40104-022-00765-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
Background Preventing Salmonella infection and colonization in young birds is key to improving poultry gut health and reducing Salmonella contamination of poultry products and decreasing salmonellosis for human consumption (poultry meat and eggs). Probiotics can improve poultry health. The present study was conducted to investigate the impact of a probiotics, Enterococcus faecium NCIMB 11181 (E. faecium NCIMB 11181) on the intestinal mucosal immune responses, microbiome and barrier function in the presence or absence of Salmonella Typhimurium (S. Typhimurium, ST) infection. Methods Two hundred and forty 1-day-old Salmonella-free male broiler chickens (Arbor Acres AA+) were randomly allocated to four groups with 6 replicate cages of 10 birds each. The four experimental groups were follows: (1) negative control (NC), (2) S. Typhimurium, challenged positive control (PC), (3) the E. faecium NCIMB 11181-treated group (EF), (4) the E. faecium NCIMB 11181-treated and S. Typhimurium-challenged group (PEF). Results Results indicated that, although continuous feeding E. faecium NCIMB 11181 did not obviously alleviate growth depression caused by S. Typhimurium challenge (P > 0.05), E. faecium NCIMB 11181 addition significantly blocked Salmonella intestinal colonization and translocation (P < 0.05). Moreover, supplemental E. faecium NCIMB 11181 to the infected chickens remarkably attenuated gut morphological structure damage and intestinal cell apoptosis induced by S. Typhimurium infection, as evidenced by increasing gut villous height and reducing intestinal TUNEL-positive cell numbers (P < 0.05). Also, E. faecium NCIMB 11181 administration notably promoting the production of anti-Salmonella antibodies in intestinal mucosa and serum of the infected birds (P < 0.05). Additionally, 16S rRNA sequencing analysis revealed that E. faecium NCIMB 11181 supplementation ameliorated S. Typhimurium infection-induced gut microbial dysbiosis by enriching Lachnospiracease and Alistipes levels, and suppressing Barnesiella abundance. Predicted function analysis indicated that the functional genes of cecal microbiome involved in C5-branched dibasic acid metabolism; valine, leucine and isoleucine biosynthesis; glycerolipid metabolism and lysine biosynthesis were enriched in the infected chickens given E. faecium NCIMB 11181. While alanine, asparate and glutamate metabolism; MAPK signal pathway-yeast; ubiquine and other terpenoid-quinore biosynthesis, protein processing in endoplasmic reticulum; as well as glutathione metabolism were suppressed by E. faecium NCIMB 11181 addition. Conclusion Collectively, our data suggested that dietary E. faecium NCIBM 11181 supplementation could ameliorate S. Typhimurium infection-induced gut injury in broiler chickens. Our findings also suggest that E. faecium NCIMB 11181 may serve as an effective non-antibiotic feed additive for improving gut health and controlling Salmonella infection in broiler chickens.
Collapse
Affiliation(s)
- Yujing Shao
- College of Biology, China Agricultural University, Beijing, China
| | - Wenrui Zhen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Henan University of Science and Technology, Province of Henan, Luoyang, China
| | - Fangshen Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zeqiong Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kaichen Zhang
- Tengzhou Heyi Food Co. Ltd, Zaozhuang, Shandong Province, China
| | - Linhua Kong
- Tengzhou Heyi Food Co. Ltd, Zaozhuang, Shandong Province, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
6
|
Sureshkumar S, Park JH, Kim I. Effects of Enterococcus faecium SLB 130 probiotic on the performance of weaning pigs. VET MED-CZECH 2022; 67:562-568. [PMID: 38623479 PMCID: PMC11016298 DOI: 10.17221/41/2022-vetmed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/14/2022] [Indexed: 04/17/2024] Open
Abstract
This study aims to analyse the effect of an Enterococcus faecium SLB 130 probiotic on the growth performance, nutrient digestibility, and blood profile in weaning pigs. A total of 200 weaning pigs were taken and assigned to 1 of 5 dietary treatments according to their average initial body weight and sex in a complete randomised block design. The experimental diets were as follows: CON - basal diet, and the basal diet supplemented with 2.5 × 105 cfu/g (TRT1), 1.29 × 106 cfu/g (TRT2), 1.15 × 107 cfu/g (TRT3), and 1.1 × 108 cfu/g (TRT4) of E. faecium for 6 weeks. Pigs fed a diet containing an E. faecium SLB 130 probiotic supplement significantly increased (P < 0.05) the body weight, average daily gain, and average daily feed intake at weeks 1, 3, 6, and the overall period. In addition, the E. faecium SLB 130 (P < 0.05) supplement group pigs showed an increased gain to feed ratio at week 6 and the overall experimental period. Moreover, the dietary inclusion of the E. faecium SLB 130 probiotic supplement linearly increased (P < 0.05) the nutrient digestibility of the dry matter and nitrogen, however, there were no improvements observed on weanling pigs' blood profile. In summary, the inclusion of an E. faecium SLB 130 probiotic additive in the weanling pigs' diet would be beneficial to enhance their growth performance and nutrient digestibility.
Collapse
Affiliation(s)
- Shanmugam Sureshkumar
- Department of Animal Resource and Science, Dankook University, Cheonan, Republic of Korea
| | - Jae-Hong Park
- Department of Animal Resource and Science, Dankook University, Cheonan, Republic of Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
7
|
Hansen L, Lauridsen C, Nielsen B, Jørgensen L, Canibe N N. Impact of early inoculation of probiotics to suckling piglets on post-weaning diarrhea – a challenge study with Enterotoxigenic E. coli F18. Animal 2022; 16:100667. [DOI: 10.1016/j.animal.2022.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/01/2022] Open
|
8
|
Ghazisaeedi F, Meens J, Hansche B, Maurischat S, Schwerk P, Goethe R, Wieler LH, Fulde M, Tedin K. A virulence factor as a therapeutic: the probiotic Enterococcus faecium SF68 arginine deiminase inhibits innate immune signaling pathways. Gut Microbes 2022; 14:2106105. [PMID: 35921516 PMCID: PMC9351580 DOI: 10.1080/19490976.2022.2106105] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The probiotic bacterial strain Enterococcus faecium SF68 has been shown to alleviate symptoms of intestinal inflammation in human clinical trials and animal feed supplementation studies. To identify factors involved in immunomodulatory effects on host cells, E. faecium SF68 and other commensal and clinical Enterococcus isolates were screened using intestinal epithelial cell lines harboring reporter fusions for NF-κB and JNK(AP-1) activation to determine the responses of host cell innate immune signaling pathways when challenged with bacterial protein and cell components. Cell-free, whole-cell lysates of E. faecium SF68 showed a reversible, inhibitory effect on both NF-κB and JNK(AP-1) signaling pathway activation in intestinal epithelial cells and abrogated the response to bacterial and other Toll-like receptor (TLR) ligands. The inhibitory effect was species-specific, and was not observed for E. avium, E. gallinarum, or E. casseliflavus. Screening of protein fractions of E. faecium SF68 lysates yielded an active fraction containing a prominent protein identified as arginine deiminase (ADI). The E. faecium SF68 arcA gene encoding arginine deiminase was cloned and introduced into E. avium where it conferred the same NF-κB inhibitory effects on intestinal epithelial cells as seen for E. faecium SF68. Our results indicate that the arginine deiminase of E. faecium SF68 is responsible for inhibition of host cell NF-κB and JNK(AP-1) pathway activation, and is likely to be responsible for the anti-inflammatory and immunomodulatory effects observed in prior clinical human and animal trials. The implications for the use of this probiotic strain for preventive and therapeutic purposes are discussed.
Collapse
Affiliation(s)
- Fereshteh Ghazisaeedi
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Free University of Berlin, Berlin, Germany
| | - Jochen Meens
- Institute for Microbiology, University of Veterinary Medicine, Hannover, Germany
| | - Bianca Hansche
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Free University of Berlin, Berlin, Germany,Sanofi-AventisGmbH, Berlin, Germany
| | - Sven Maurischat
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Free University of Berlin, Berlin, Germany,German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Peter Schwerk
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Free University of Berlin, Berlin, Germany
| | - Ralph Goethe
- Institute for Microbiology, University of Veterinary Medicine, Hannover, Germany
| | - Lothar H. Wieler
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Free University of Berlin, Berlin, Germany,Robert Koch Institute, Berlin, Germany
| | - Marcus Fulde
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Free University of Berlin, Berlin, Germany
| | - Karsten Tedin
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Free University of Berlin, Berlin, Germany,CONTACT Karsten Tedin Institute of Microbiology and Epizootics, Centre for Infection Medicine, Free University of Berlin, Robert-von-Ostertag-Strasse7, Berlin14163Germany
| |
Collapse
|
9
|
Zommiti M, Chikindas ML, Ferchichi M. Probiotics-Live Biotherapeutics: a Story of Success, Limitations, and Future Prospects-Not Only for Humans. Probiotics Antimicrob Proteins 2021; 12:1266-1289. [PMID: 31376026 DOI: 10.1007/s12602-019-09570-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In livestock production, lactic acid bacteria (LAB) represent the most widespread microorganisms used as probiotics. For such critical use, these bacteria must be correctly identified and characterized to ensure their safety and efficiency. Recently, probiotics have become highly recognized as supplements for humans and in particular for animals because of their beneficial outcome on health improvement and well-being maintenance. Various factors, encompassing dietary and management constraints, have been demonstrated to tremendously influence the structure, composition, and activities of gut microbial communities in farm animals. Previous investigations reported the potential of probiotics in animal diets and nutrition. But a high rate of inconsistency in the efficiency of probiotics has been reported. This may be due, in a major part, to the dynamics of the gastrointestinal microbial communities. Under stressing surroundings, the direct-fed microbials may play a key role as the salient limiting factor of the severity of the dysbiosis caused by disruption of the normal intestinal balance. Probiotics are live microorganisms, which confer health benefits on the host by positively modifying the intestinal microflora. Thus, the aim of this review is to summarize and to highlight the positive influence of probiotics and potential probiotic microbe supplementation in animal feed with mention of several limitations.
Collapse
Affiliation(s)
- Mohamed Zommiti
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El-Manar, 1006, Tunis, Tunisia
| | - Michael L Chikindas
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA.,Center for Digestive Health, New Jersey Institute for Food, Nutrition, and Health, New Brunswick, NJ, USA
| | - Mounir Ferchichi
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El-Manar, 1006, Tunis, Tunisia.
| |
Collapse
|
10
|
Kim K, Park S, Kim H, Min S, Ku S, Seo J, Roh S. Enterococcus faecium L-15 Extract Enhances the Self-Renewal and Proliferation of Mouse Skin-Derived Precursor Cells. Probiotics Antimicrob Proteins 2021; 12:1492-1501. [PMID: 32162154 DOI: 10.1007/s12602-020-09635-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Lactic acid bacteria (LAB) in the gastrointestinal tract have beneficial health effects. LAB activate the proliferation of intestinal stem cells and speed the recovery of damaged intestinal cells, but little is known about effect of LAB on other adult stem cells. In this study, a cell-free extract of Enterococcus faecium L-15 (L15) was exposed to mouse skin-derived precursor cells (SKPs), and the changes in characteristics associated with proliferation and self-renewal capacity were investigated. L15 increased the size of the spheres and the proliferation rate of SKPs. Cell cycle analysis revealed that cells in the S-phase increased after treatment with L15. In the L15-treated group, the total number of spheres significantly increased. The expression level of pluripotency marker genes also increased, while the mesenchymal lineage-related differentiation marker genes significantly decreased in the L15-treated group. The PI3K/Akt signaling pathway was activated by L15 in SKPs. These results indicate that L15 enhances proliferation and self-renewal of SKPs and may be used as a supplement for stem cell maintenance or application of stem cell therapy. This is the first report to investigate the functional effects of E. faecium on the proliferation and self-renewal capacity of SKPs.
Collapse
Affiliation(s)
- Kichul Kim
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, BK21, Seoul National University School of Dentistry, Seoul, 08826, South Korea
| | - Sangkyu Park
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, BK21, Seoul National University School of Dentistry, Seoul, 08826, South Korea.,Biomedical Research Institute, Neoregen Biotech Co., Ltd., Gyeonggi-do, 16614, South Korea
| | - Hyewon Kim
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, BK21, Seoul National University School of Dentistry, Seoul, 08826, South Korea
| | - Sol Min
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, BK21, Seoul National University School of Dentistry, Seoul, 08826, South Korea
| | - Seockmo Ku
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Jeongmin Seo
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, BK21, Seoul National University School of Dentistry, Seoul, 08826, South Korea. .,Biomedical Research Institute, Neoregen Biotech Co., Ltd., Gyeonggi-do, 16614, South Korea.
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, BK21, Seoul National University School of Dentistry, Seoul, 08826, South Korea.
| |
Collapse
|
11
|
Davoodvandi A, Marzban H, Goleij P, Sahebkar A, Morshedi K, Rezaei S, Mahjoubin-Tehran M, Tarrahimofrad H, Hamblin MR, Mirzaei H. Effects of therapeutic probiotics on modulation of microRNAs. Cell Commun Signal 2021; 19:4. [PMID: 33430873 PMCID: PMC7798223 DOI: 10.1186/s12964-020-00668-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Probiotics are beneficial bacteria that exist within the human gut, and which are also present in different food products and supplements. They have been investigated for some decades, due to their potential beneficial impact on human health. Probiotics compete with pathogenic microorganisms for adhesion sites within the gut, to antagonize them or to regulate the host immune response resulting in preventive and therapeutic effects. Therefore, dysbiosis, defined as an impairment in the gut microbiota, could play a role in various pathological conditions, such as lactose intolerance, gastrointestinal and urogenital infections, various cancers, cystic fibrosis, allergies, inflammatory bowel disease, and can also be caused by antibiotic side effects. MicroRNAs (miRNAs) are short non-coding RNAs that can regulate gene expression in a post-transcriptional manner. miRNAs are biochemical biomarkers that play an important role in almost all cellular signaling pathways in many healthy and disease states. For the first time, the present review summarizes current evidence suggesting that the beneficial properties of probiotics could be explained based on the pivotal role of miRNAs. Video Abstract.
Collapse
Affiliation(s)
| | - Havva Marzban
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology,Sana Institute of Higher Education, Sari, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Korosh Morshedi
- Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Samaneh Rezaei
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Tarrahimofrad
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA 02114 USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
12
|
Abstract
The pig is an omnivorous, monogastric species with many advantages to serve as an animal model for human diseases. There are very high similarities to humans in anatomy and functions of the immune system, e g., the presence of tonsils, which are absent in rodents. The porcine immune system resembles man for more than 80% of analyzed parameters in contrast to the mouse with only about 10%. The pig can easily be bred, and there are less emotional problems to use them as experimental animals than dogs or monkeys. Indwelling cannulas in a vein or lymphatic vessel enable repetitive stress-free sampling. Meanwhile, there are many markers available to characterize immune cells. Lymphoid organs, their function, and their role in lymphocyte kinetics (proliferation and migration) are reviewed. For long-term experiments, minipigs (e.g., Göttingen minipig) are available. Pigs can be kept under gnotobiotic (germfree) conditions for some time after birth to study the effects of microbiota. The effects of probiotics can be tested on the gut immune system. The lung has been used for extracorporeal preservation and immune engineering. After genetic modifications are established, the pig is the best animal model for future xenotransplantation to reduce the problem of organ shortage for organ transplantation. Autotransplantation of particles of lymphnodes regenerates in the subcutaneous tissue. This is a model to treat secondary lymphedema patients. There are pigs with cystic fibrosis and severe combined immune deficiency available.
Collapse
Affiliation(s)
- Reinhard Pabst
- Institute of Immunomorphology, Centre of Anatomy, Medical School Hannover, Hanover, Germany.
| |
Collapse
|
13
|
Effects of the Dietary Probiotic, Enterococcus faecium NCIMB11181, on the Intestinal Barrier and System Immune Status in Escherichia coli O78-Challenged Broiler Chickens. Probiotics Antimicrob Proteins 2020; 11:946-956. [PMID: 29948799 PMCID: PMC6695369 DOI: 10.1007/s12602-018-9434-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The effects of Enterococcus faecium on growth, intestinal barrier function, and immune response in Escherichia coli O78-challenged broiler chickens were investigated. Three hundred eight 1-day-old Ross male chickens were randomly assigned into three treatment groups: negative control (C), E. coli O78-infected positive (EP), and E. coli O78-infected with 200 mg/kg E. faecium dietary supplementation (EF). E. faecium significantly increased the body weight on day 10 (P < 0.05) and day 15. Furthermore, these birds had a greater average daily gain compared with the other groups during days 1–10 (P < 0.05). The death rate of the EF chickens dramatically declined. E. faecium supplementation improved the jejunal villus height and the ratio of villus height to crypt depth (P < 0.05) 3 and 7 days post-infection. The mRNA expression of claudin-1 significantly increased by E. faecium (P < 0.05) 3 and 7 days post-infection, and Mucin2 was markedly enhanced (P < 0.05) 3 days post-infection. E. faecium upregulated the mRNA expression of PPAR-γ and IL-10 (P < 0.05) and downregulated that of NF-κB, TLR4, and IL-1β (P < 0.05) in the spleen 3 and 7 days post-infection. Lipopolysaccharide stimulation index was markedly enhanced in the EF group (P < 0.05) 3 days post-infection. The increased liver E. coli number caused by the E. coli O78 challenge was significantly reversed by E. faecium (P < 0.05). E. faecium improved growth and reduced the death rate by regulating the immune response and maintaining the intestinal integrity in E. coli O78-challenged broiler chickens.
Collapse
|
14
|
Barba-Vidal E, Martín-Orúe SM, Castillejos L. Practical aspects of the use of probiotics in pig production: A review. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Hu C, Xing W, Liu X, Zhang X, Li K, Liu J, Deng B, Deng J, Li Y, Tan C. Effects of dietary supplementation of probiotic Enterococcus faecium on growth performance and gut microbiota in weaned piglets. AMB Express 2019; 9:33. [PMID: 30825022 PMCID: PMC6397275 DOI: 10.1186/s13568-019-0755-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
The adverse effects of antibiotics have attracted widespread attention, thus reducing the use of antibiotics in animal feed has become a very important issue in improving of the health of livestock. The effects of Enterococcus faecium (E. faecium) on growth performance and gut microbiota in weaned piglets were investigated in the present study. Piglets were randomly assigned to four treatments: a control group fed with a diet containing 75 mg/kg aureomycin (Diet 1 group) and three experimental groups fed with diets of 50 mg/kg aureomycin (Diet 2 group), 50 mg/kg aureomycin + 9 × 105 CFU/g E. faecium (Diet 3 group), or 50 mg/kg aureomycin + 1.2 × 106 CFU/g E. faecium (Diet 4 group). Their gut microbial communities were analyzed by sequencing the V3–V4 region of the 16SrRNA gene. The results showed that the final body weights and the average daily gain of the weaned piglets in the Diet 2 group were higher (P = 0.05) than those in the Diet 1 or Diet 3 group. Decreasing trends (P = 0.08) was observed in mortality rate in the Diet 3 and 4 group when compared with that in the Diet 1 group. Increases in the Sobs, Chao1, ACE, and Shannon indexes and a decrease in the Simpson index were observed at intervals from day 1 to 14 (P < 0.05). The Sobs, Chao1, and ACE indexes in the Diet 3 group were the lowest on day 14 (P < 0.05). The abundance of Bacteroidetes was increased and that of Proteobacteria was decreased from day 1 to 7, but both of them kept stable from day 7 to 14. Besides, the lowest abundance of Fusobacteria, Lentisphaerae, and Planctomycetes was observed on day 1 and the lowest abundance of Actinobacteria was observed on day 14 in the Diet 3 group (P < 0.05). Overall, these results suggest that the antibiotics and E. faecium interventions result in different changes in the gut microbiota, and a reduced antibiotics diet supplemented with 1.2 × 106 CFU/g E. faecium does not affect the growth performance in weaned piglets.
Collapse
|
16
|
Wu Y, Zhen W, Geng Y, Wang Z, Guo Y. Effects of dietary Enterococcus faecium NCIMB 11181 supplementation on growth performance and cellular and humoral immune responses in broiler chickens. Poult Sci 2019; 98:150-163. [PMID: 30137622 DOI: 10.3382/ps/pey368] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/18/2018] [Indexed: 12/26/2022] Open
Abstract
This study evaluated the effects of dietary Enterococcus faecium NCIMB 11181 on growth performance and immune response in broiler chickens. A total of 360 1-day-old Arbor Acres male birds were randomly assigned to 4 treatments that administered different dosages of E. faecium (0, 5 × 107, 1 × 108, and 2 × 108 CFU E. faecium/kg diet). The results revealed that average daily gain (ADG) changed quadratically, while feed conversion rate (FCR) increased linearly from day 22 to 35 and day 1 to 35 (P < 0.05). Supplementation of E. faecium at 5 × 107CFU/kg diet resulted in increased ADG (P < 0.05) compared with the other groups. Birds fed with 2 × 108 CFU/kg E. faecium exhibited increased peripheral blood lymphocyte proliferation in response to concanavalin A (Con A) (P < 0.05) at day 35 and enhanced skin responses following phytohemagglutinin (PHA) injection (P < 0.05) at 12 h. Serum lysozyme activity at day 21 increased linearly with dietary E. faecium concentration (P < 0.05), the highest activity was observed in the 1 × 108 and the 2 × 108 CFU E. faecium groups (P < 0.01). Serum levels of proinflammatory cytokines IL-1β, IL-2, IL-6, IFN-γ, and anti-inflammatory IL-4, IL-10 changed linearly or quadratically both at the initial and final phases (P < 0.05). In addition, BSA antibody titers were significantly increased following both primary and secondary inoculation when birds were fed with 1 × 108 or 2 × 108 CFU/kg E. faecium (P < 0.05). In comparison with other groups, birds received 5 × 107 CFU E. faecium exhibited the highest levels of serum IgG (P < 0.05) at day 35. Together, our results revealed that broiler diet supplemented with 5 × 107 CFU/kg E. faecium NCIMB 11181 was appropriate in relation to growth performance under normal conditions. Upon administration with higher dosages of E. faecium NCIMB 11181, obvious immune-stimulatory effects were observed following both cell-mediated and humoral immunity.
Collapse
Affiliation(s)
- Yuanyuan Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100093 Beijing, China
| | - Wenrui Zhen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100093 Beijing, China
| | - Yanqiang Geng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100093 Beijing, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100093 Beijing, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100093 Beijing, China
| |
Collapse
|
17
|
Gao X, Guo D, Kou M, Xing G, Zha A, Yang X, Wang X, Di S, Cai J, Niu B. Identification of porcine CTLA4 gene polymorphism and their association with piglet diarrhea and performance traits. Mol Biol Rep 2018; 46:813-822. [PMID: 30515696 DOI: 10.1007/s11033-018-4536-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/28/2018] [Indexed: 11/29/2022]
Abstract
The objective of this study was to evaluate the association between the cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) gene and piglet diarrhea. In this study, the mRNA expression of the CTLA4 gene increased significantly in IPEC-J2 cells after Escherichia coli K88 infection. Single nucleotide polymorphisms (SNPs) located in the 5' flanking region (SNPs g.107281989C>T) and 3'-untranslated region (3'-UTR; SNPs g.107288753C>A) were identified, and they were in linkage disequilibrium in both Min pigs and the Landrace population. Association analysis showed that Landrace piglets with a TT or AA genotype had a lower diarrhea index, and AA animals had higher average daily gain when compared to CC pigs, respectively (p < 0.05). However, the relationship between SNPs and diarrhea and performance traits in the Min population was not significant. Haplotype analysis indicated that the TC haplotype had the lowest diarrhea index. The 5' flanking deletion assay suggested that SNP g.107281989C>T was a molecular marker instead of the functional marker. This research demonstrated that genetic variances in the CTLA4 gene had significant effects on Landrace piglet diarrhea resistance.
Collapse
Affiliation(s)
- Xiaowen Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Dongchun Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150001, China
| | - Mingxing Kou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Guiling Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Andong Zha
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Xibiao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Shengwei Di
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | | | - Buyue Niu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
18
|
Abstract
Intensive farming may involve the use of diets, environments or management practices that impose physiological and psychological stressors on the animals. In particular, early weaning is nowadays a common practice to increase the productive yield of pig farms. Still, it is considered one of the most critical periods in swine production, where piglet performance can be seriously affected and where they are predisposed to the overgrowth of opportunistic pathogens. Pig producers nowadays face the challenge to overcome this situation in a context of increasing restrictions on the use of antibiotics in animal production. Great efforts are being made to find strategies to help piglets overcome the challenges of early weaning. Among them, a nutritional strategy that has received increasing attention in the last few years is the use of probiotics. It has been extensively documented that probiotics can reduce digestive disorders and improve productive parameters. Still, research in probiotics so far has also been characterized as being inconsistent and with low reproducibility from farm to farm. Scientific literature related to probiotic effects against gastrointestinal pathogens will be critically examined in this review. Moreover, the actual practical approach when using probiotics in these animals, and potential strategies to increase consistency in probiotic effects, will be discussed. Thus, considering the boost in probiotic research observed in recent years, this paper aims to provide a much-needed, in-depth review of the scientific data published to-date. Furthermore, it aims to be useful to swine nutritionists, researchers and the additive industry to critically consider their approach when developing or using probiotic strategies in weaning piglets.
Collapse
|
19
|
Xie Y, Zhang C, Wang L, Shang Q, Zhang G, Yang W. Effects of dietary supplementation of Enterococcus faecium on growth performance, intestinal morphology, and selected microbial populations of piglets. Livest Sci 2018. [DOI: 10.1016/j.livsci.2018.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Liu P, Zhao J, Guo P, Lu W, Geng Z, Levesque CL, Johnston LJ, Wang C, Liu L, Zhang J, Ma N, Qiao S, Ma X. Dietary Corn Bran Fermented by Bacillus subtilis MA139 Decreased Gut Cellulolytic Bacteria and Microbiota Diversity in Finishing Pigs. Front Cell Infect Microbiol 2017; 7:526. [PMID: 29312900 PMCID: PMC5744180 DOI: 10.3389/fcimb.2017.00526] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/12/2017] [Indexed: 01/29/2023] Open
Abstract
Solid-state fermentation of feedstuffs by Bacillus subtilis MA139 can reduce insoluble dietary fiber content in vitro and improve growth performance in pigs. This study was conducted to investigate the effects of dietary corn bran (CB) fermented by B. subtilis on growth performance and gut microbiota composition in finishing pigs. A total of 60 finishing pigs were allocated to 3 dietary treatments consisting of a control (CON) diet, a 10% CB diet, and a 10% fermented CB (FCB) diet in a 21 d feeding trial. Growth performance and nutrient digestibility were evaluated. Fecal samples were determined for bacterial community diversity by 16S rRNA gene amplicon sequencing. The dietary CB and FCB did not affect growth performance of finishing pigs. The digestibility of organic matter was decreased in both CB and FCB treatments compared with CON group (P < 0.05). The α-diversity for bacterial community analysis of Chao 1 in FCB treatment was lower than CON treatment (P < 0.05). The Fibrobacteres phylum belongs to cellulolytic bacteria was isolated, and their relative abundance in CB group showed no difference between CON and FCB treatments. The abundance of Lachnospiraceae_NK4A136_group in CB treatment was higher than CON and FCB groups (P < 0.05), whereas the population of norank_f_Prevotellaceae was higher in FCB group compared to CON and CB groups (P < 0.05). In conclusion, dietary FCB decreased the abundance of bacterial communities, particularly the population of bacteria related to cellulolytic degradation.
Collapse
Affiliation(s)
- Ping Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Pingting Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenqing Lu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhengying Geng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Crystal L Levesque
- Department of Animal Sciences, South Dakota State University, Brookings, SD, United States
| | - Lee J Johnston
- Swine Nutrition and Production, West Central Research and Outreach Center, University of Minnesota, Morris, MN, United States
| | - Chunlin Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ling Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jie Zhang
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing, China
| | - Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Department of Internal Medicine, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
21
|
Roselli M, Pieper R, Rogel-Gaillard C, de Vries H, Bailey M, Smidt H, Lauridsen C. Immunomodulating effects of probiotics for microbiota modulation, gut health and disease resistance in pigs. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.07.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Yadav R, Shukla P. An overview of advanced technologies for selection of probiotics and their expediency: A review. Crit Rev Food Sci Nutr 2017; 57:3233-3242. [DOI: 10.1080/10408398.2015.1108957] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ruby Yadav
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
23
|
Zhong JF, Wu WG, Zhang XQ, Tu W, Liu ZX, Fang RJ. Effects of dietary addition of heat-killed Mycobacterium phlei on growth performance, immune status and anti-oxidative capacity in early weaned piglets. Arch Anim Nutr 2017; 70:249-62. [PMID: 27216553 DOI: 10.1080/1745039x.2016.1183365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The contradiction between high susceptibility of early weaned piglets to enteric pathogens and rigid restriction of antibiotic use in the diet is still prominent in the livestock production industry. To address this issue, the study was designed to replace dietary antibiotics partly or completely by an immunostimulant, namely heat-killed Mycobacterium phlei (M. phlei). Piglets (n = 192) were randomly assigned to one of the four groups: (1) basal diet (Group A), (2) basal diet + a mixture of antibiotics (80 mg/kg diet, Group B), (3) basal diet + a mixture of antibiotics (same as in Group B, but 40 mg/kg diet) + heat-killed M. phlei (1.5 g/kg diet) (Group C) and (4) basal diet + heat-killed M. phlei (3 g/kg diet) (Group D). All piglets received the respective diets from days 21 to 51 of age and were weaned at the age of 28 d. Compared with the Control (Group A), in all other groups the average daily gain, average daily feed intake, small intestinal villus height:crypt depth ratio and protein levels of occludin and ZO-1 in the jejunal mucosa were increased. A decreased incidence of diarrhoea in conjunction with an increased sIgA concentration in the intestinal mucosa and serum IL-12 and IFN-γ concentrations was found in groups supplemented with heat-killed M. phlei (Groups C and D), but not in Group B. Groups C and D also showed decreased IL-2 concentrations in the intestinal mucosa with lower TLR4 and phosphor-IκB protein levels. The antioxidant capacity was reinforced in Groups C and D, as evidenced by the reduction in malondialdehyde and enhanced activities of antioxidant enzymes in serum. These data indicate that heat-killed M. phlei is a promising alternative to antibiotic use for early weaned piglets via induction of protective immune responses.
Collapse
Affiliation(s)
- Jin-Feng Zhong
- a College of Animal Science and Technology , Hunan Agricultural University , Changsha , China.,b Hunan Co-Innovation Center of Animal Production Safety , Changsha , China.,c Hunan Polytechnic of Environment and Biology , Hengyang , China
| | - Wei-Gao Wu
- c Hunan Polytechnic of Environment and Biology , Hengyang , China
| | - Xiao-Qing Zhang
- d Grassland Research Institute , Chinese Academy of Agricultural Sciences , Hohhot , China
| | - Wei Tu
- a College of Animal Science and Technology , Hunan Agricultural University , Changsha , China.,b Hunan Co-Innovation Center of Animal Production Safety , Changsha , China
| | - Zhen-Xiang Liu
- c Hunan Polytechnic of Environment and Biology , Hengyang , China
| | - Re-Jun Fang
- a College of Animal Science and Technology , Hunan Agricultural University , Changsha , China.,b Hunan Co-Innovation Center of Animal Production Safety , Changsha , China
| |
Collapse
|
24
|
Feeding of Enterococcus faecium NCIMB 10415 Leads to Intestinal miRNA-423-5p-Induced Regulation of Immune-Relevant Genes. Appl Environ Microbiol 2016; 82:2263-2269. [PMID: 26826223 DOI: 10.1128/aem.04044-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/20/2016] [Indexed: 11/20/2022] Open
Abstract
Probiotics are widely used in human and animal health, but little is known about the mode of action of probiotics. One possible mechanism at the molecular level could be an influence on microRNAs (miRNAs) and the related immune-relevant target genes. Here, we analyzed differential expression of miRNA and potential target genes of ileal and jejunal lymphatic tissues from Enterococcus faeciumNCIMB 10415-fed piglets versus untreated controls by using next-generation sequencing. We identified miR-423-5p as being greatly affected by the treatment group (2.32-fold;P= 0.014). Validation by reverse transcription-quantitative PCR (RT-qPCR) confirmed a significant upregulation of miR-423-5p (2.11-fold;P= 0.03) and, additionally, downregulation of the important immune-relevant immunoglobulin lambda light C region (IGLC) (0.61-fold;P= 0.03) and immunoglobulin kappa constant (IGKC) (0.69-fold;P= 0.04) target genes. Expression analysis of miR-423-5p and IGLC at different age points shows a clear anti correlated relationship. Luciferase reporter assays with a HeLa cell line verified IGLC as a target of miR-423-5p. The results provided evidence for an effect of feeding of E. faeciumon the expression of miR-423-5p and on the regulation of the IGLC gene through miR-423-5p. This might be a possible mode of action of E. faeciumon immune cell regulation in the small intestine.
Collapse
|
25
|
Enterococcus faecium NCIMB 10415 modulates epithelial integrity, heat shock protein, and proinflammatory cytokine response in intestinal cells. Mediators Inflamm 2015; 2015:304149. [PMID: 25948884 PMCID: PMC4408629 DOI: 10.1155/2015/304149] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 12/23/2022] Open
Abstract
Probiotics have shown positive effects on gastrointestinal diseases; they have barrier-modulating effects and change the inflammatory response towards pathogens in studies in vitro. The aim of this investigation has been to examine the response of intestinal epithelial cells to Enterococcus faecium NCIMB 10415 (E. faecium), a probiotic positively affecting diarrhea incidence in piglets, and two pathogenic Escherichia coli (E. coli) strains, with specific focus on the probiotic modulation of the response to the pathogenic challenge. Porcine (IPEC-J2) and human (Caco-2) intestinal cells were incubated without bacteria (control), with E. faecium, with enteropathogenic (EPEC) or enterotoxigenic E. coli (ETEC) each alone or in combination with E. faecium. The ETEC strain decreased transepithelial resistance (TER) and increased IL-8 mRNA and protein expression in both cell lines compared with control cells, an effect that could be prevented by pre- and coincubation with E. faecium. Similar effects were observed for the increased expression of heat shock protein 70 in Caco-2 cells. When the cells were challenged by the EPEC strain, no such pattern of changes could be observed. The reduced decrease in TER and the reduction of the proinflammatory and stress response of enterocytes following pathogenic challenge indicate the protective effect of the probiotic.
Collapse
|
26
|
Scharek-Tedin L, Kreuzer-Redmer S, Twardziok SO, Siepert B, Klopfleisch R, Tedin K, Zentek J, Pieper R. Probiotic Treatment Decreases the Number of CD14-Expressing Cells in Porcine Milk Which Correlates with Several Intestinal Immune Parameters in the Piglets. Front Immunol 2015; 6:108. [PMID: 25806034 PMCID: PMC4354412 DOI: 10.3389/fimmu.2015.00108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/25/2015] [Indexed: 11/13/2022] Open
Abstract
Modulating the mucosal immune system of neonates by probiotic treatment of their mothers is a promising approach which can only be investigated through the use of animal models. Here, we used sows and their piglets to investigate the impact of a bacterial treatment on the sow's milk and on the neonate piglet intestinal immune system. In previous experiments, feed supplementation of sows with the probiotic Enterococcus faecium NCIMB 10415 during pregnancy and lactation had been shown to affect intestinal microbiota and cytokine expression of the offspring during the suckling and weaning periods. We therefore investigated the composition of the milk from treated sows in comparison to samples from a control group. In treated sows, the amount of lactose increased, and the somatic cell numbers were reduced. In all milk samples, the percentage of cells expressing membranous CD14 (mCD14) was greater than the fractions of immune cells, indicating expression of mCD14 on mammary epithelial cells. However, in the milk of E. faecium-treated sows, mCD14(+) cells were reduced. Furthermore, the number of CD14(+) milk cells was positively correlated with the percentages of B cells and activated T cells in the ileal MLN of the piglets. This study provides evidence for the expression of mCD14 by the porcine mammary epithelium, and suggests an immunological effect of mCD14(+) milk cells on the piglets' intestinal immune system. Our study further suggests that mCD14(+) mammary epithelial cell populations can be modulated by probiotic feed supplementation of the sow.
Collapse
Affiliation(s)
| | - Susanne Kreuzer-Redmer
- Breeding Biology and Molecular Genetics, Humboldt-Universität zu Berlin , Berlin , Germany
| | - Sven Olaf Twardziok
- Institute of Molecular Biology and Bioinformatics, Charité-Universitätsmedizin Berlin , Berlin , Germany
| | - Bianca Siepert
- Institute of Microbiology and Epizootics, Freie Universität Berlin , Berlin , Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin , Berlin , Germany
| | - Karsten Tedin
- Institute of Microbiology and Epizootics, Freie Universität Berlin , Berlin , Germany
| | - Jürgen Zentek
- Institute of Animal Nutrition, Freie Universität Berlin , Berlin , Germany
| | - Robert Pieper
- Institute of Animal Nutrition, Freie Universität Berlin , Berlin , Germany
| |
Collapse
|
27
|
Rieger J, Janczyk P, Hünigen H, Neumann K, Plendl J. Intraepithelial lymphocyte numbers and histomorphological parameters in the porcine gut after Enterococcus faecium NCIMB 10415 feeding in a Salmonella Typhimurium challenge. Vet Immunol Immunopathol 2015; 164:40-50. [DOI: 10.1016/j.vetimm.2014.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 12/07/2014] [Accepted: 12/31/2014] [Indexed: 02/08/2023]
|
28
|
Twardziok SO, Pieper R, Aschenbach JR, Bednorz C, Brockmann GA, Fromm M, Klingspor S, Kreuzer S, Lodemann U, Martens H, Martin L, Richter JF, Scharek-Tedin L, Siepert BF, Starke IC, Tedin K, Vahjen W, Wieler LH, Zakrzewski SS, Zentek J, Wrede P. Cross-talk Between Host, Microbiome and Probiotics: A Systems Biology Approach for Analyzing the Effects of Probiotic Enterococcus faecium NCIMB 10415 in Piglets. Mol Inform 2014; 33:171-82. [PMID: 27485687 DOI: 10.1002/minf.201300147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/06/2014] [Indexed: 02/05/2023]
Abstract
A comprehensive data-set from a multidisciplinary feeding experiment with the probiotic Enterococcus faecium was analyzed to elucidate effects of the probiotic on growing piglets. Sixty-two piglets were randomly assigned to a control (no probiotic treatment) and a treatment group (E. faecium supplementation). Piglets were weaned at 26 d. Age-matched piglets were sacrificed for the collection of tissue samples at 12, 26, 34 and 54 d. In addition to zootechnical data, the composition and activity of intestinal microbiota, immune cell types, and intestinal responses were determined. Our systems analysis revealed clear effects on several measured variables in 26 and 34 days old animals, while response patterns varied between piglets from different age groups. Correlation analyses identified reduced associations between intestinal microbial communities and immune system reactions in the probiotic group. In conclusion, the developed model is useful for comparative analyses to unravel systems effects of dietary components and their time resolution. The model identified that effects of E. faecium supplementation most prominently affected the interplay between intestinal microbiota and the intestinal immune system. These effects, as well as effects in other subsystems, clustered around weaning, which is the age where piglets are most prone to diarrhea.
Collapse
Affiliation(s)
- S O Twardziok
- Molekularbiologie und Bioinformatik, Charité - Universitätsmedizin Berlin, Arnimallee 22, 14195 Berlin, Germany.
| | - R Pieper
- Institut für Tierernährung, Freie Universität Berlin, Berlin, Germany
| | - J R Aschenbach
- Institut für Veterinär-Physiologie, Freie Universität Berlin, Berlin, Germany
| | - C Bednorz
- Institut für Mikrobiologie und Tierseuchen, Freie Universität Berlin, Berlin, Germany
| | - G A Brockmann
- Züchtungsbiologie und molekulare Tierzüchtung,Humboldt Universität Berlin, Berlin, Germany
| | - M Fromm
- Institut für Klinische Physiologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - S Klingspor
- Institut für Veterinär-Physiologie, Freie Universität Berlin, Berlin, Germany
| | - S Kreuzer
- Züchtungsbiologie und molekulare Tierzüchtung,Humboldt Universität Berlin, Berlin, Germany
| | - U Lodemann
- Institut für Veterinär-Physiologie, Freie Universität Berlin, Berlin, Germany
| | - H Martens
- Institut für Veterinär-Physiologie, Freie Universität Berlin, Berlin, Germany
| | - L Martin
- Institut für Tierernährung, Freie Universität Berlin, Berlin, Germany
| | - J F Richter
- Institut für Klinische Physiologie, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institut für Anatomie II, Universitätsklinikum Jena, Jena, Germany
| | - L Scharek-Tedin
- Institut für Tierernährung, Freie Universität Berlin, Berlin, Germany
| | - B F Siepert
- Institut für Mikrobiologie und Tierseuchen, Freie Universität Berlin, Berlin, Germany
| | - I C Starke
- Institut für Tierernährung, Freie Universität Berlin, Berlin, Germany
| | - K Tedin
- Institut für Mikrobiologie und Tierseuchen, Freie Universität Berlin, Berlin, Germany
| | - W Vahjen
- Institut für Tierernährung, Freie Universität Berlin, Berlin, Germany
| | - L H Wieler
- Institut für Mikrobiologie und Tierseuchen, Freie Universität Berlin, Berlin, Germany
| | - S S Zakrzewski
- Institut für Klinische Physiologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - J Zentek
- Institut für Tierernährung, Freie Universität Berlin, Berlin, Germany
| | - P Wrede
- Molekularbiologie und Bioinformatik, Charité - Universitätsmedizin Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
29
|
Kreuzer S, Rieger J, Strucken EM, Thaben N, Hünigen H, Nöckler K, Janczyk P, Plendl J, Brockmann GA. Characterization of CD4+ subpopulations and CD25+ cells in ileal lymphatic tissue of weaned piglets infected with Salmonella Typhimurium with or without Enterococus faecium feeding. Vet Immunol Immunopathol 2014; 158:143-55. [PMID: 24485092 DOI: 10.1016/j.vetimm.2014.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 12/10/2013] [Accepted: 01/02/2014] [Indexed: 12/26/2022]
Abstract
The aim of the present study was to test the effect of Enterococcus faecium NCIMB 10415 (E. faecium) on CD4+ T helper immune cell subpopulations and CD25+ cells in ileal lymphatic tissue after challenge with Salmonella (S.) Typhimurium DT 104. German Landrace piglets treated with E. faecium (n=16) as a feed additive and untreated controls (n=16) were challenged with S. Typhimurium 10 days after weaning. The expression of lineage specific T helper cell subtype master transcription factors on mRNA level was measured in the whole tissue of the gut associated lymphoid tissues (ileocecal mesenteric lymph node, ileum with Peyer's patches and papilla ilealis) and in magnetically sorted T helper cells from blood and ileocecal mesenteric lymph nodes at two and 28 days post infection. CD25 protein expression of T helper cells was studied by flow cytometry in ileal Peyer's patches, lymph nodes and blood. Distribution and morphology of CD25+ cells was demonstrated in situ by immunohistochemistry in paraffin embedded specimens of the ileum and the ileocecal mesenteric lymph nodes. The data provide evidence for a higher T helper 2 cell driven immune response in the control group compared to the E. faecium treated group (P<0.05) in CD4+ magnetically sorted lymphocytes from the ileocecal mesenteric lymph nodes at two and 28 days post infection. We did not observe differences for CD25+ cells in immunohistochemistry and flow cytometry between E. faecium fed pigs and the control group, but provided a detailed description of the occurrence and morphology of these cells in the gut associate lymphoid tissues of piglets. In conclusion we suggest that (i) prolonged feeding with E. faecium can result in changes of the T helper cell response leading to a stronger infection with S. Typhimurium and (ii) that it is important to examine purified immune cells to be able to detect effects on T helper cell subpopulations.
Collapse
Affiliation(s)
- S Kreuzer
- Humboldt-Universität zu Berlin, Breeding Biology and Molecular Genetics, Invalidenstr. 42, D-10115 Berlin, Germany
| | - J Rieger
- Freie Universität Berlin, Department of Veterinary Medicine, Institute of Veterinary Anatomy, Koserstraße 20, 14195 Berlin, Germany
| | - E M Strucken
- Humboldt-Universität zu Berlin, Breeding Biology and Molecular Genetics, Invalidenstr. 42, D-10115 Berlin, Germany
| | - N Thaben
- Humboldt-Universität zu Berlin, Breeding Biology and Molecular Genetics, Invalidenstr. 42, D-10115 Berlin, Germany
| | - H Hünigen
- Freie Universität Berlin, Department of Veterinary Medicine, Institute of Veterinary Anatomy, Koserstraße 20, 14195 Berlin, Germany
| | - K Nöckler
- Federal Institute for Risk Assessment, Department of Biological Safety, Unit Molecular Diagnostics and Genetics, Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - P Janczyk
- Federal Institute for Risk Assessment, Department of Biological Safety, Unit Molecular Diagnostics and Genetics, Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - J Plendl
- Freie Universität Berlin, Department of Veterinary Medicine, Institute of Veterinary Anatomy, Koserstraße 20, 14195 Berlin, Germany
| | - Gudrun A Brockmann
- Humboldt-Universität zu Berlin, Breeding Biology and Molecular Genetics, Invalidenstr. 42, D-10115 Berlin, Germany.
| |
Collapse
|