1
|
Li X, Parker BM, Boughton RK, Beasley JC, Smyser TJ, Austin JD, Pepin KM, Miller RS, Vercauteren KC, Wisely SM. Torque Teno Sus Virus 1: A Potential Surrogate Pathogen to Study Pig-Transmitted Transboundary Animal Diseases. Viruses 2024; 16:1397. [PMID: 39339873 PMCID: PMC11436127 DOI: 10.3390/v16091397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Understanding the epidemiology and transmission dynamics of transboundary animal diseases (TADs) among wild pigs (Sus scrofa) will aid in preventing the introduction or containment of TADs among wild populations. Given the challenges associated with studying TADs in free-ranging populations, a surrogate pathogen system may predict how pathogens may circulate and be maintained within wild free-ranging swine populations, how they may spill over into domestic populations, and how management actions may impact transmission. We assessed the suitability of Torque teno sus virus 1 (TTSuV1) to serve as a surrogate pathogen for molecular epidemiological studies in wild pigs by investigating the prevalence, persistence, correlation with host health status and genetic variability at two study areas: Archbold's Buck Island Ranch in Florida and Savannah River Site in South Carolina. We then conducted a molecular epidemiological case study within Archbold's Buck Island Ranch site to determine how analysis of this pathogen could inform transmission dynamics of a directly transmitted virus. Prevalence was high in both study areas (40%, n = 190), and phylogenetic analyses revealed high levels of genetic variability within and between study areas. Our case study showed that pairwise host relatedness and geographic distance were highly correlated to pairwise viral genetic similarity. Molecular epidemiological analyses revealed a distinct pattern of direct transmission from pig to pig occurring within and between family groups. Our results suggest that TTSuV1 is highly suitable for molecular epidemiological analyses and will be useful for future studies of transmission dynamics in wild free-ranging pigs.
Collapse
Affiliation(s)
- Xiaolong Li
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA; (X.L.); (B.M.P.)
| | - Brandon M. Parker
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA; (X.L.); (B.M.P.)
| | - Raoul K. Boughton
- Buck Island Ranch, Archbold Biological Station, Lake Placid, FL 33960, USA;
| | - James C. Beasley
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA;
| | - Timothy J. Smyser
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO 80526, USA (K.M.P.)
| | - James D. Austin
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA; (X.L.); (B.M.P.)
| | - Kim M. Pepin
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO 80526, USA (K.M.P.)
| | - Ryan S. Miller
- Center for Epidemiology and Animal Health, United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Fort Collins, CO 80525, USA
| | - Kurt C. Vercauteren
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO 80526, USA (K.M.P.)
| | - Samantha M. Wisely
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA; (X.L.); (B.M.P.)
| |
Collapse
|
2
|
De Maio FA, Winter M, Abate S, Birochio D, Iglesias NG, Barrio DA, Bellusci CP. Torque teno sus virus k2a (TTSuVk2a) in wild boars from northeastern Patagonia, Argentina. Braz J Microbiol 2024; 55:981-989. [PMID: 38286944 PMCID: PMC10920574 DOI: 10.1007/s42770-024-01261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/14/2024] [Indexed: 01/31/2024] Open
Abstract
Torque teno sus virus k2a (TTSuVk2a) is a member of the family Anelloviridae that can establish persistent infections in both domestic pigs and wild boars. Its association with diseases has not been precisely elucidated, and it is often considered only as a commensal virus. This infectious agent has been reported in herds throughout the world. In this study, we investigated the detection rate and diversity of TTSuVk2a in free-living wild boars from northeastern Patagonia, Argentina. Total DNA was extracted from tonsil samples of 50 animals, nested PCR assays were carried out, and infection was verified in 60% of the cases. Sequence analysis of the viral non-coding region revealed distinct phylogenetic groups. These clusters showed contrasting patterns of spatial distribution, which presented statistically significant differences when evaluating spatial aggregation. In turn, the sequences were compared with those available in the database to find that the clusters were distinguished by having similarity with TTSuVk2a variants of different geographic origin. The results suggested that Patagonian wild boar populations are bearers of diverse viral strains of Asian, European, and South American provenance.
Collapse
Affiliation(s)
- Federico Andrés De Maio
- Universidad Nacional de Río Negro, Sede Atlántica, Centro de Investigaciones y Transferencia Río Negro (CONICET-UNRN), Ruta Provincial N°1 y Rotonda Cooperación, CP 8500, Viedma, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Marina Winter
- Universidad Nacional de Río Negro, Sede Atlántica, Centro de Investigaciones y Transferencia Río Negro (CONICET-UNRN), Ruta Provincial N°1 y Rotonda Cooperación, CP 8500, Viedma, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Sergio Abate
- Universidad Nacional de Río Negro, Sede Atlántica, Centro de Investigaciones y Transferencia Río Negro (CONICET-UNRN), Ruta Provincial N°1 y Rotonda Cooperación, CP 8500, Viedma, Río Negro, Argentina
| | - Diego Birochio
- Universidad Nacional de Río Negro, Sede Atlántica, Centro de Investigaciones y Transferencia Río Negro (CONICET-UNRN), Ruta Provincial N°1 y Rotonda Cooperación, CP 8500, Viedma, Río Negro, Argentina
| | - Néstor Gabriel Iglesias
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Laboratorio de Virología Molecular, Instituto de Biotecnología, Universidad Nacional de Hurlingham (UNAHUR), Buenos Aires, Argentina
| | - Daniel Alejandro Barrio
- Universidad Nacional de Río Negro, Sede Atlántica, Centro de Investigaciones y Transferencia Río Negro (CONICET-UNRN), Ruta Provincial N°1 y Rotonda Cooperación, CP 8500, Viedma, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Carolina Paula Bellusci
- Universidad Nacional de Río Negro, Sede Atlántica, Centro de Investigaciones y Transferencia Río Negro (CONICET-UNRN), Ruta Provincial N°1 y Rotonda Cooperación, CP 8500, Viedma, Río Negro, Argentina.
| |
Collapse
|
3
|
Burrai GP, Hawko S, Dei Giudici S, Polinas M, Angioi PP, Mura L, Alberti A, Hosri C, Hassoun G, Oggiano A, Antuofermo E. The Synergic Role of Emerging and Endemic Swine Virus in the Porcine Respiratory Disease Complex: Pathological and Biomolecular Analysis. Vet Sci 2023; 10:595. [PMID: 37888547 PMCID: PMC10611356 DOI: 10.3390/vetsci10100595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Porcine respiratory disease complex (PRDC) represents a significant threat to the swine industry, causing economic losses in pigs worldwide. Recently, beyond the endemic viruses PRRSV and PCV2, emerging viruses such as TTSuV, PCV3, and PPV2, have been associated with PRDC, but their role remains unclear. This study investigates the presence of PCV2 and PRRSV and emerging viruses (PCV3, TTSuV, and PPV2) in the lungs of swine belonging to different age groups by histopathology and real-time PCR. The prevalent lung lesion was interstitial pneumonia with increased severity in post-weaning pigs. PRRSV was detected in 33% of piglets' lungs and in 20% of adults and post-weaning pigs with high Ct, while PCV2 was found in 100% of adult pigs, 33% of post-weaning pigs, and 22% of piglets, with low Ct in post-weaning pigs. PCV3 was present in all categories and coexisted with other viruses. TTSuV was detected in all swine in combination with other viruses, possibly influencing the disease dynamics, while PPV2 was detected in 100% of adults' and 90% of piglets' lungs. The detection of TTSuV, PCV3, and PPV2 in affected pigs prioritizes the need for comprehensive approaches in implementing appropriate control measures and minimizing economic losses associated with PRDC.
Collapse
Affiliation(s)
- Giovanni Pietro Burrai
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.P.B.); (S.H.); (A.A.); (E.A.)
| | - Salwa Hawko
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.P.B.); (S.H.); (A.A.); (E.A.)
| | - Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (L.M.); (A.O.)
| | - Marta Polinas
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.P.B.); (S.H.); (A.A.); (E.A.)
| | - Pier Paolo Angioi
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (L.M.); (A.O.)
| | - Lorena Mura
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (L.M.); (A.O.)
| | - Alberto Alberti
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.P.B.); (S.H.); (A.A.); (E.A.)
| | - Chadi Hosri
- Department of Veterinary Medicine, Faculty of Agricultural Sciences and Veterinary Medicine, Lebanese University, Beirut 1487, Lebanon; (C.H.); (G.H.)
| | - Georges Hassoun
- Department of Veterinary Medicine, Faculty of Agricultural Sciences and Veterinary Medicine, Lebanese University, Beirut 1487, Lebanon; (C.H.); (G.H.)
| | - Annalisa Oggiano
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (L.M.); (A.O.)
| | - Elisabetta Antuofermo
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.P.B.); (S.H.); (A.A.); (E.A.)
| |
Collapse
|
4
|
de Souza AE, Cruz ACDM, Rodrigues IL, de Carvalho ECQ, Varella RB, Medina RM, Rodrigues RBR, Silveira RL, de Castro TX. Molecular detection of porcine circovirus (PCV2 and PCV3), torque teno swine virus 1 and 2 (TTSuV1 and TTSuVk2), and histopathological findings in swine organs submitted to regular slaughter in Southeast, Brazil. BRAZILIAN JOURNAL OF VETERINARY MEDICINE 2023; 45:e000623. [PMID: 37521362 PMCID: PMC10374291 DOI: 10.29374/2527-2179.bjvm000623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/06/2023] [Indexed: 08/01/2023] Open
Abstract
Porcine circovirus 2 and 3 (PCV2 and PCV3) and torque teno sus virus 1 and 2 (TTSuV1 and TTSuVk2) are important pathogens in pig associated with post-weaning mortality, different clinical syndromes in adults (PCVAD), and a decrease of average daily weight gain (PCV2-SI) but little is known about the infection on asymptomatic pigs. The aim of this study was to evaluate the presence of PCV2, PCV3, TTSuV1, and TTSuVk2 in swine organ samples from asymptomatic pigs slaughtered in Espírito Santo State, South-eastern Brazil, through molecular detection and histopathological analysis. Nested PCR showed the presence of PCV2 DNA in 10% (14/140), PCV3 in 13.6% (19/140), TTSuV1 in 12.9% (18/140), and TTSuVk2 in 30% (42/140) of the tissue samples. All four viruses were detected in the lung, kidney, lymph node, and liver. TTSuVk2 was detecded in 30% (42/140), PCV3 in 13.6% (19/140), TTSuV1 in 12.9% (18/140), and PCV2 in 10% (14/140) of the samples. Single infections were observed in 30.7% (43/140), while co-detections in the same tissue occurred in 15.7% (22/140). The most frequent combinations were TTSuV1/TTSuVk2 in 31.8% (7/22), PCV2/TTSuVk2 in 18.1% (4/22), and PCV2/PCV3/TTSuVk2 in 13.6% (3/22). Lymphocyte depletion was associated with TTSuVk2 infection (p = 0.0041) suggesting that TTSuVK2 plays an induction of PMWS-like lymphoid lesions in pigs. The data obtained in this study show that PCV2, PCV3, TTSuV1, and TTSuVk2 are related to infection in asymptomatic animals with different tissue lesions, and the molecular diagnosis for these pathogens should be considered in the sanitary monitoring of herds.
Collapse
Affiliation(s)
- Amanda Eduarda de Souza
- Veterinarian, Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas (PPGMPA), Departamento de Microbiologia e Parasitologia (MIP), Universidade Federal Fluminense (UFF). Niterói, RJ. Brazil.
| | | | - Ingrid Lyrio Rodrigues
- Veterinarian, MSc. PPGMPA, MIP, UFF. Niterói, RJ. Brazil.
- Veterinarian, DSc. Faculdade de Veterinária, Departamento de Zootecnia (MMO), UFF. Niterói, RJ. Brazil.
| | | | | | | | | | | | | |
Collapse
|
5
|
De Maio FA, Winter M, Abate S, Cifuentes S, Iglesias NG, Barrio DA, Bellusci CP. Detection of porcine circovirus 2, porcine parvovirus 1, and torque teno sus virus k2a in wild boars from northeastern Patagonia, Argentina. Arch Virol 2023; 168:208. [PMID: 37462757 DOI: 10.1007/s00705-023-05831-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/06/2023] [Indexed: 07/21/2023]
Abstract
Wild boars can act as a reservoir of pathogenic viruses that affect the pig industry. Here, we assessed the presence of porcine circovirus 2, porcine parvovirus 1, and torque teno sus virus k2a in wild boars in northeastern Patagonia (Argentina). Total DNA was extracted from the tonsils of 27 animals (collected between early 2016 and mid-2019) and used to prepare sample pools, which were subjected to viral detection through two-round PCR assays. Sequencing of the amplification products and phylogenetic analysis confirmed the occurrence of all of the aforementioned infectious agents.
Collapse
Affiliation(s)
- Federico Andrés De Maio
- Universidad Nacional de Río Negro, Sede Atlántica, Centro de Investigaciones y Transferencia Río Negro (CONICET-UNRN), Ruta provincial N°1 y Rotonda Cooperación, CP 8500, Viedma, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Marina Winter
- Universidad Nacional de Río Negro, Sede Atlántica, Centro de Investigaciones y Transferencia Río Negro (CONICET-UNRN), Ruta provincial N°1 y Rotonda Cooperación, CP 8500, Viedma, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Sergio Abate
- Universidad Nacional de Río Negro, Sede Atlántica, Centro de Investigaciones y Transferencia Río Negro (CONICET-UNRN), Ruta provincial N°1 y Rotonda Cooperación, CP 8500, Viedma, Río Negro, Argentina
| | - Sabrina Cifuentes
- Universidad Nacional de Río Negro, Sede Atlántica, Centro de Investigaciones y Transferencia Río Negro (CONICET-UNRN), Ruta provincial N°1 y Rotonda Cooperación, CP 8500, Viedma, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Néstor Gabriel Iglesias
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Universidad Nacional de Hurlingham (UNAHUR), Buenos Aires, Argentina
| | - Daniel Alejandro Barrio
- Universidad Nacional de Río Negro, Sede Atlántica, Centro de Investigaciones y Transferencia Río Negro (CONICET-UNRN), Ruta provincial N°1 y Rotonda Cooperación, CP 8500, Viedma, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Carolina Paula Bellusci
- Universidad Nacional de Río Negro, Sede Atlántica, Centro de Investigaciones y Transferencia Río Negro (CONICET-UNRN), Ruta provincial N°1 y Rotonda Cooperación, CP 8500, Viedma, Río Negro, Argentina.
| |
Collapse
|
6
|
Hawko S, Burrai GP, Polinas M, Angioi PP, Dei Giudici S, Oggiano A, Alberti A, Hosri C, Antuofermo E. A Review on Pathological and Diagnostic Aspects of Emerging Viruses—Senecavirus A, Torque teno sus virus and Linda Virus—In Swine. Vet Sci 2022; 9:vetsci9090495. [PMID: 36136710 PMCID: PMC9502770 DOI: 10.3390/vetsci9090495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Worldwide demand for food is expected to increase due to population growth and swine accounts for more than one-third of meat produced worldwide. Several factors affect the success of livestock production systems, including animal disease control. Despite the importance of infectious diseases to animal health and the productivity of the global swine industry, pathogens of swine, in particular emerging viruses, such as Senecavirus A, Torque teno sus virus, and Linda virus, have gained limited interest. We performed a systematic analysis of the literature, with a focus on the main macroscopical and histological findings related to those viruses to fill the gap and highpoint these potentially hazardous pathogens. Abstract Swine production represents a significant component in agricultural economies as it occupies over 30% of global meat demand. Infectious diseases could constrain the swine health and productivity of the global swine industry. In particular, emerging swine viral diseases are omnipresent in swine populations, but the limited knowledge of the pathogenesis and the scarce information related to associated lesions restrict the development of data-based control strategies aimed to reduce the potentially great impact on the swine industry. In this paper, we reviewed and summarized the main pathological findings related to emerging viruses, such as Senecavirus A, Torque teno sus virus, and Linda virus, suggesting a call for further multidisciplinary studies aimed to fill this lack of knowledge and better clarify the potential role of those viral diseases in swine pathology.
Collapse
Affiliation(s)
- Salwa Hawko
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Giovanni P. Burrai
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
- Correspondence: ; Tel.: +39-079-229440
| | - Marta Polinas
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Pier Paolo Angioi
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Annalisa Oggiano
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Alberto Alberti
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Chadi Hosri
- Department of Veterinary Medicine, Faculty of Agronomy and Veterinary Sciences, Lebanese University, Beirut 14/6573, Lebanon
| | | |
Collapse
|
7
|
First Report of TTSuV1 in Domestic Swiss Pigs. Viruses 2022; 14:v14050870. [PMID: 35632612 PMCID: PMC9146045 DOI: 10.3390/v14050870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/08/2022] [Accepted: 04/21/2022] [Indexed: 12/14/2022] Open
Abstract
Serum prevalence of Torque teno sus viruses (TTSuV1 and k2; family Anelloviridae) is known to be high in the porcine population worldwide but pathogenesis and associated pathomorphological lesions remain to be elucidated. In this study, quantitative real-time PCR for detection of TTSuV1 was performed in 101 porcine samples of brain tissue, with animals showing inflammatory lesions or no histological changes. Additionally, a pathomorphological and immunohistochemical characterization of possible lesions was carried out. Selected cases were screened by TTSuV1 in situ hybridization. Furthermore, TTSuV1 quantitative real-time PCR in splenic and pulmonary tissue and in situ hybridization (ISH) in spleen, lungs, mesenteric lymph node, heart, kidney, and liver were performed in 22 animals. TTSuV1 was detected by PCR not only in spleen and lung but also in brain tissue (71.3%); however, in general, spleen and lung tissue displayed lower Ct values than the brain. Positive TTSuV1 results were frequently associated with the morphological diagnosis of non-suppurative encephalitis. Single TTSuV1-positive lymphocytes were detected by ISH in the brain but also in lungs, spleen, mesenteric lymph node and in two cases of non-suppurative myocarditis. A pathogenetic role of a TTSuV1 infection as a co-factor for non-suppurative encephalitides cannot be ruled out.
Collapse
|
8
|
Righi F, Arnaboldi S, Filipello V, Ianiro G, Di Bartolo I, Calò S, Bellini S, Trogu T, Lelli D, Bianchi A, Bonardi S, Pavoni E, Bertasi B, Lavazza A. Torque Teno Sus Virus (TTSuV) Prevalence in Wild Fauna of Northern Italy. Microorganisms 2022; 10:microorganisms10020242. [PMID: 35208696 PMCID: PMC8875128 DOI: 10.3390/microorganisms10020242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
Torque teno sus virus (TTSuV) is a non-enveloped circular ssDNA virus which frequently infects swine and has been associated with hepatic, respiratory, and autoimmune disorders. TTSuV’s pathogenic role is still uncertain, and clear data in the literature on virus reservoirs are lacking. The aims of this study were to investigate the presence of potentially zoonotic TTSuV in wild animals in Northern Italy and to evaluate their role as reservoirs. Liver samples were collected between 2016 and 2020 during four hunting seasons from wild boars (Sus scrofa), red deer (Cervus elaphus), roe deer (Capreolus capreolus), and chamois (Rupicapra rupicapra). Samples originated from areas in Northern Italy characterized by different traits, i.e., mountains and flatland with, respectively low and high farm density and anthropization. Viral identification was carried out by end-point PCR with specific primers for TTSuV1a and TTSuVk2a species. TTSuV prevalence in wild boars was higher in the mountains than in the flatland (prevalence of 6.2% and 2.3%, respectively). In wild ruminants only TTSuVk2a was detected (with a prevalence of 9.4%). Our findings shed light on the occurrence and distribution of TTSuV in some wild animal species, investigating their possible role as reservoirs.
Collapse
Affiliation(s)
- Francesco Righi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; (F.R.); (V.F.); (S.C.); (S.B.); (T.T.); (D.L.); (E.P.); (B.B.); (A.L.)
- National Reference Centre for Emerging Risks in Food Safety (CRESA), Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 20133 Milan, Italy
| | - Sara Arnaboldi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; (F.R.); (V.F.); (S.C.); (S.B.); (T.T.); (D.L.); (E.P.); (B.B.); (A.L.)
- National Reference Centre for Emerging Risks in Food Safety (CRESA), Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 20133 Milan, Italy
- Correspondence: ; Tel.: +39-030-229-0781
| | - Virginia Filipello
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; (F.R.); (V.F.); (S.C.); (S.B.); (T.T.); (D.L.); (E.P.); (B.B.); (A.L.)
- National Reference Centre for Emerging Risks in Food Safety (CRESA), Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 20133 Milan, Italy
| | - Giovanni Ianiro
- Emerging Zoonoses Unit, Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.I.); (I.D.B.)
| | - Ilaria Di Bartolo
- Emerging Zoonoses Unit, Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.I.); (I.D.B.)
| | - Stefania Calò
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; (F.R.); (V.F.); (S.C.); (S.B.); (T.T.); (D.L.); (E.P.); (B.B.); (A.L.)
| | - Silvia Bellini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; (F.R.); (V.F.); (S.C.); (S.B.); (T.T.); (D.L.); (E.P.); (B.B.); (A.L.)
| | - Tiziana Trogu
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; (F.R.); (V.F.); (S.C.); (S.B.); (T.T.); (D.L.); (E.P.); (B.B.); (A.L.)
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; (F.R.); (V.F.); (S.C.); (S.B.); (T.T.); (D.L.); (E.P.); (B.B.); (A.L.)
| | - Alessandro Bianchi
- Istituto Zooprofilattico della Lombardia e dell’Emilia Romagna (IZSLER), 23100 Sondrio, Italy;
| | - Silvia Bonardi
- Veterinary Science Department, Università degli Studi di Parma, 43100 Parma, Italy;
| | - Enrico Pavoni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; (F.R.); (V.F.); (S.C.); (S.B.); (T.T.); (D.L.); (E.P.); (B.B.); (A.L.)
- National Reference Centre for Emerging Risks in Food Safety (CRESA), Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 20133 Milan, Italy
| | - Barbara Bertasi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; (F.R.); (V.F.); (S.C.); (S.B.); (T.T.); (D.L.); (E.P.); (B.B.); (A.L.)
- National Reference Centre for Emerging Risks in Food Safety (CRESA), Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 20133 Milan, Italy
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; (F.R.); (V.F.); (S.C.); (S.B.); (T.T.); (D.L.); (E.P.); (B.B.); (A.L.)
| |
Collapse
|
9
|
Exploring the Cause of Diarrhoea and Poor Growth in 8-11-Week-Old Pigs from an Australian Pig Herd Using Metagenomic Sequencing. Viruses 2021; 13:v13081608. [PMID: 34452472 PMCID: PMC8402840 DOI: 10.3390/v13081608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022] Open
Abstract
Diarrhoea and poor growth among growing pigs is responsible for significant economic losses in pig herds globally and can have a wide range of possible aetiologies. Next generation sequencing (NGS) technologies are useful for the detection and characterisation of diverse groups of viruses and bacteria and can thereby provide a better understanding of complex interactions among microorganisms potentially causing clinical disease. Here, we used a metagenomics approach to identify and characterise the possible pathogens in colon and lung samples from pigs with diarrhoea and poor growth in an Australian pig herd. We identified and characterized a wide diversity of porcine viruses including RNA viruses, in particular several picornaviruses—porcine sapelovirus (PSV), enterovirus G (EV-G), and porcine teschovirus (PTV), and a porcine astrovirus (PAstV). Single stranded DNA viruses were also detected and included parvoviruses like porcine bocavirus (PBoV) and porcine parvovirus 2 (PPV2), porcine parvovirus 7 (PPV7), porcine bufa virus (PBuV), and porcine adeno-associated virus (AAV). We also detected single stranded circular DNA viruses such as porcine circovirus type 2 (PCV2) at very low abundance and torque teno sus viruses (TTSuVk2a and TTSuVk2b). Some of the viruses detected here may have had an evolutionary past including recombination events, which may be of importance and potential involvement in clinical disease in the pigs. In addition, our metagenomics data found evidence of the presence of the bacteria Lawsonia intracellularis, Brachyspira spp., and Campylobacter spp. that may, together with these viruses, have contributed to the development of clinical disease and poor growth.
Collapse
|
10
|
Saporiti V, Huerta E, Correa-Fiz F, Grosse Liesner B, Duran O, Segalés J, Sibila M. Detection and genotyping of Porcine circovirus 2 (PCV-2) and detection of Porcine circovirus 3 (PCV-3) in sera from fattening pigs of different European countries. Transbound Emerg Dis 2020; 67:2521-2531. [PMID: 32356364 PMCID: PMC7754154 DOI: 10.1111/tbed.13596] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/21/2020] [Accepted: 04/16/2020] [Indexed: 01/19/2023]
Abstract
PCV‐2 is considered one of the most economically important viral agents in swine worldwide. Recently, PCV‐3 has been found in pigs affected by different disorders and in healthy animals. The objective of this epidemiological work was to describe the frequency of detection of PCV‐2 and PCV‐3 in pig farms of 9 European countries. Moreover, a second aim was to assess the most frequent PCV‐2 genotypes found in the studied farms. Sera from 5 to 10 pigs per farm were collected from 2 to 11 farms per studied country. A total of 624 sera of fattening pigs (10–25 week old) from 64 farms from Spain (n = 11), Belgium (n = 10), France (n = 8), Germany (n = 8), Italy (n = 7), Denmark (n = 8), the Netherlands (n = 5), Ireland (n = 5) and Sweden (n = 2) were analysed by conventional PCR. In addition, one or two PCV‐2‐positive samples per farm were genotyped by sequencing the ORF2 gene. PCV‐3 PCR‐positive samples with relatively low Ct values were also sequenced and phylogenetically analysed. PCV‐2 DNA was detected in pig sera from all European tested countries, but Sweden. A total of 132 out of 624 (21%) sera were positive for PCV‐2 PCR, corresponding to 30 out of the 64 (47%) tested farms. PCV‐3 DNA was detected in 52 out of 624 (8%) sera, corresponding also to 30 out of the 64 (47%) studied farms from all tested countries. A total of 48 PCV‐2 PCR‐positive samples were successfully sequenced and genotyped, being PCV‐2d the most frequently genotype found (n = 28), followed by PCV‐2b (n = 11) and PCV‐2a (n = 9). These results pointed out PCV‐2d as the most prevalent genotype currently in Europe. The PCV‐3 phylogenetic analysis showed high identity (>98%) among sequences from all the analysed countries. The relatively low co‐infection (3%), likely suggest an independent circulation patterns of PCV‐2 and PCV‐3.
Collapse
Affiliation(s)
- Viviane Saporiti
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain
| | - Eva Huerta
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain
| | - Florencia Correa-Fiz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain
| | | | - Oliver Duran
- Boehringer Ingelheim Vetmedica GmbH AH Swine, Ingelheim, Germany
| | - Joaquim Segalés
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Spain.,UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain
| |
Collapse
|
11
|
Li G, Zhang W, Wang R, Xing G, Wang S, Ji X, Wang N, Su S, Zhou J. Genetic Analysis and Evolutionary Changes of the Torque teno sus Virus. Int J Mol Sci 2019; 20:E2881. [PMID: 31200479 PMCID: PMC6628323 DOI: 10.3390/ijms20122881] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 01/03/2023] Open
Abstract
The torque teno sus virus (TTSuV) is an emerging virus threating the Suidae species of unclear pathogenicity, although it was previously reported as a worsening factor of other porcine diseases, in particular, porcine circovirus associated disease (PCVAD). Here, a comprehensive codon usage analysis of the open reading frame 1 (ORF1), which encodes the viral capsid protein, was undertaken for the first time to reveal its evolutionary history. We revealed independent phylogenetic processes for the two genera during TTSuV evolution, which was confirmed by principal component analysis (PCA). A low codon usage bias was observed in different genera and different species, with Kappatorquevirus a (TTSuVk2a) displaying the highest, which was mainly driven by mutation pressure and natural selection, especially natural selection. Overall, ATs were more abundant than GCs, along with more A-ended synonymous codons in relative synonymous codon usage (RSCU) analysis. To further confirm the role of natural selection and TTSuV adaptation to the Suidae species, codon adaptation index (CAI), relative codon deoptimization index (RCDI), and similarity index (SiD) analyses were performed, which showed different adaptations for different TTSuVs. Importantly, we identified a more dominant role of Sus scrofa in the evolution of Iotatorquevirus (TTSuV1), with the highest CAI values and lowest RCDI values compared to Sus scrofa domestica. However, in TTSuVk2, the roles of Sus scrofa and Sus scrofa domestica were the same, regarding codon usage, with similar CAI and RCDI values. Our study provides a new perspective of the evolution of TTSuV and valuable information to develop control measures against TTSuV.
Collapse
Affiliation(s)
- Gairu Li
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China.
| | - Wenyan Zhang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China.
| | - Ruyi Wang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China.
| | - Gang Xing
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310027, China.
| | - Shilei Wang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China.
| | - Xiang Ji
- Department of Biomathematics, University of California, Los Angeles, CA 90095, USA.
| | - Ningning Wang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China.
| | - Shuo Su
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China.
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
12
|
Vargas-Ruiz A, García-Camacho LA, Ramírez-Alvarez H, Rangel-Rodriguez IC, Alonso-Morales RA, Sánchez-Betancourt JI. Molecular characterization of the ORF2 of Torque teno sus virus 1a and Torque teno sus virus 1b detected in cases of postweaning multisystemic wasting syndrome in Mexico. Transbound Emerg Dis 2018; 65:1806-1815. [PMID: 30035377 DOI: 10.1111/tbed.12956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/28/2018] [Accepted: 06/18/2018] [Indexed: 02/05/2023]
Abstract
Worldwide Torque teno sus virus (TTSuV, genus Iotatorquevirus) species have been regarded as possible agents associated with porcine circovirus-associated disease. Iotatorquevirus species possess high genomic variability, suggesting that diverse genotypes are widely geographically distributed. In this study, we validated the genomic variability of Iotaroquevirus species in pigs with postweaned multisystemic wasting syndrome. Genomic DNA from nine TTSuV1a-positive tissues and 15 TTSuV1b-positive tissues was used to amplify the complete ORF2 of each species by nested PCR to perform a molecular characterization. It was found that Mexican TTSuV1a sequences belong to genotype B, sharing phylogenetic origin, high nucleic acid and amino acid sequence similarity and dominant epitope conformation with commercially linked countries, such as the United States, Canada and China, whereas the Mexican TTSuV1b sequences belong to genotype A, being more divergent among each other and displaying low nucleotide identity with worldwide genotype A sequences. In both Iotatorquevirus species, a PTPase-like signature motif was identified in the predicted amino acid sequence, being more conserved for Mexican TTSuV1b sequences than for Mexican TTSuV1a sequences, in which several substitutions were observed. These changes may influence the conformation of dominant epitopes as different arrays were determined among TTSuV1a genotypes. ORF2 variability may account for pathogenic differences by modifying viral replication and immune response, as depicted for human TTV.
Collapse
Affiliation(s)
- Alejandro Vargas-Ruiz
- College of Superior Studies (FESC), National University of Mexico (UNAM), Estado de México, México
| | | | - Hugo Ramírez-Alvarez
- College of Superior Studies (FESC), National University of Mexico (UNAM), Estado de México, México
| | | | | | | |
Collapse
|
13
|
Ramos N, Mirazo S, Botto G, Teixeira TF, Cibulski SP, Castro G, Cabrera K, Roehe PM, Arbiza J. High frequency and extensive genetic heterogeneity of TTSuV1 and TTSuVk2a in PCV2- infected and non-infected domestic pigs and wild boars from Uruguay. Vet Microbiol 2018; 224:78-87. [DOI: 10.1016/j.vetmic.2018.08.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 01/16/2023]
|
14
|
Ramos N, Mirazo S, Castro G, Cabrera K, Osorio F, Arbiza J. First-time detection of porcine reproductive and respiratory syndrome virus (PRRSV) infection in Uruguay. Transbound Emerg Dis 2018; 65:352-356. [PMID: 29330937 DOI: 10.1111/tbed.12813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Indexed: 11/28/2022]
Abstract
Within the last two decades, several high-impact viruses have emerged in the global swine population, including porcine reproductive and respiratory syndrome virus (PRRSV). In Uruguay, the more recent serological survey for PRRSV and other notifiable diseases such as Aujeszky's disease virus (ADV) and classical swine fever virus (CSFV) dated from year 2000. The main purpose of this study was to update our information on the infection status of PRRSV, ADV and CSFV in Uruguayan pig herds, in order to keep informed about the epidemiological situation of these notifiable infections in the country. For serological testing, a total of 524 swine serum samples collected during the period 2014-2016 were assayed by commercial ELISAs. Our results revealed the (unexpected) presence of PRRSV antibodies in Uruguayan domestic swine herds and confirmed the absence of ADV and CSFV antibodies in all of the assessed samples. Following such initial finding, PRRSV antibodies were further investigated in 23 retrospective samples collected during 2010-2014. Thirteen of these 23 samples resulted seropositive. Subsequently, a molecular detection approach in frozen serum samples was implemented to confirm PRRSV infection, and viral RNA was identified by reverse transcription-nested polymerase chain reaction (RT-nPCR). Fourteen of 86 evaluated 2014-2016 samples resulted positive for viral RNA, while molecular analysis of four retrospective samples also revealed the presence of PRRSV type 2. Viral isolation of selected samples was carried out in porcine alveolar macrophages (PAM) and MARC 145 simian kidney cells, and the virus identity was confirmed by cytopathic effect (CPE) and immunofluorescence assay (IFA) using specific monoclonal antibodies for PRRSV nucleocapsid. Data reported here evidence for the first time the circulation of PRRSV type 2 in Uruguay, and retrospective serology results suggest that the virus has been infecting pigs in this country at least since 2011.
Collapse
Affiliation(s)
- N Ramos
- Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - S Mirazo
- Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - G Castro
- Área Suinos, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - K Cabrera
- Asociación Uruguaya de productores de cerdos, Montevideo, Uruguay
| | - F Osorio
- Nebraska Center for Virology & School of Veterinary & Biomedical Sciences, University of Nebraska-Lincoln 140 MOLR, Lincoln, NE, USA
| | - J Arbiza
- Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
15
|
Ramos N, Porley D, Mirazo S, Castro G, Cabrera K, Lozano A, Arbiza J. Molecular study of Porcine Circovirus type 2 in wild boars and domestic pigs in Uruguay from 2010 to 2014: Predominance of recombinant circulating strains. Gene 2017; 637:230-238. [DOI: 10.1016/j.gene.2017.09.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 12/16/2022]
|
16
|
Liu X, Wang FX, Zhu HW, Sun N, Wu H. Phylogenetic analysis of porcine circovirus type 2 (PCV2) isolates from China with high homology to PCV2c. Arch Virol 2016; 161:1591-9. [DOI: 10.1007/s00705-016-2823-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/07/2016] [Indexed: 12/13/2022]
|
17
|
Nieto D, Martínez-Guinó L, Jiménez-Melsió A, Segalés J, Kekarainen T. Development of an indirect ELISA assay for the detection of IgG antibodies against the ORF1 of Torque teno sus viruses 1 and 2 in conventional pigs. Vet Microbiol 2015; 180:22-7. [PMID: 26358897 DOI: 10.1016/j.vetmic.2015.08.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/15/2015] [Accepted: 08/27/2015] [Indexed: 11/26/2022]
Abstract
Torque teno sus viruses (TTSuV, family Anelloviridae) cause long lasting and persistent infection in pigs under subclinical scenarios, and are potentially linked to several economically important swine diseases. Currently, little is known about swine immune response against TTSuV infections. In this study, an ELISA assay was developed based on the ORF1-A recombinant protein of two known TTSuVs, namely TTSuV1 (genus Iotatorquevirus) and TTSuV2 (genus Kappatorquevirus). The assay was used to study the development of the humoral immune response against TTSuV1 and TTSuV2 in longitudinally sampled clinically healthy pigs and their dams. Anti ORF1-A IgG was found in serum of pigs and sows for both TTSuVs. From 15 sows, 15 (100%) and 13 (83%) had anti ORF1-A IgG against TTSuV1 and TTSuV2, respectively. Pig sero-prevalences at the first sampling (4 weeks of age) were 65% (24/37) and 5% (2/37) for TTSuV1 and TTSuV2, respectively. For TTSuV1, the highest anti ORF1-A IgG prevalence was observed at weeks 21 and 25, with 68% (25/37) sero-positive pigs. Quantitative PCR (qPCR) results at week 21 revealed that 26 out of 32 (81%) pigs were positive for TTSuV1. In the case of TTSuV2, the highest anti ORF1-A IgG prevalence was observed at week 21, with 84% (31/37) pigs being sero-positive. At the same week, 92% (34/37) of pigs were qPCR positive. In summary, anti ORF1-A IgGs were detected in both sows and piglets at different ages, indicating that these animals could mount a humoral immune response against both TTSuVs. However, the high percentage of viremic pigs in presence of anti ORF1-A IgG suggests that these antibodies are not able to remove TTSuVs from circulation.
Collapse
Affiliation(s)
- David Nieto
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Laura Martínez-Guinó
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Alexandra Jiménez-Melsió
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Joaquim Segalés
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, 08193 Bellaterra, Barcelona, Spain; Deparment de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Tuija Kekarainen
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
18
|
Jiménez-Melsió A, Rodriguez F, Darji A, Segalés J, Cornelissen-Keijsers V, van den Born E, Kekarainen T. Vaccination of pigs reduces Torque teno sus virus viremia during natural infection. Vaccine 2015; 33:3497-503. [DOI: 10.1016/j.vaccine.2015.05.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/20/2015] [Accepted: 05/25/2015] [Indexed: 10/23/2022]
|
19
|
Shi C, Liu Y, Hu X, Xiong J, Zhang B, Yuan Z. A metagenomic survey of viral abundance and diversity in mosquitoes from Hubei province. PLoS One 2015; 10:e0129845. [PMID: 26030271 PMCID: PMC4452694 DOI: 10.1371/journal.pone.0129845] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/13/2015] [Indexed: 01/27/2023] Open
Abstract
Mosquitoes as one of the most common but important vectors have the potential to transmit or acquire a lot of viruses through biting, however viral flora in mosquitoes and its impact on mosquito-borne disease transmission has not been well investigated and evaluated. In this study, the metagenomic techniquehas been successfully employed in analyzing the abundance and diversity of viral community in three mosquito samples from Hubei, China. Among 92,304 reads produced through a run with 454 GS FLX system, 39% have high similarities with viral sequences belonging to identified bacterial, fungal, animal, plant and insect viruses, and 0.02% were classed into unidentified viral sequences, demonstrating high abundance and diversity of viruses in mosquitoes. Furthermore, two novel viruses in subfamily Densovirinae and family Dicistroviridae were identified, and six torque tenosus virus1 in family Anelloviridae, three porcine parvoviruses in subfamily Parvovirinae and a Culex tritaeniorhynchus rhabdovirus in Family Rhabdoviridae were preliminarily characterized. The viral metagenomic analysis offered us a deep insight into the viral population of mosquito which played an important role in viral initiative or passive transmission and evolution during the process.
Collapse
Affiliation(s)
- Chenyan Shi
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Liu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaomin Hu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jinfeng Xiong
- Hubei Disease Control and Prevention Center, Wuhan, China
| | - Bo Zhang
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhiming Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail:
| |
Collapse
|
20
|
Anoopraj R, Rajkhowa TK, Cherian S, Arya RS, Tomar N, Gupta A, Ray PK, Somvanshi R, Saikumar G. Genetic characterisation and phylogenetic analysis of PCV2 isolates from India: Indications for emergence of natural inter-genotypic recombinants. INFECTION GENETICS AND EVOLUTION 2015; 31:25-32. [DOI: 10.1016/j.meegid.2015.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 12/11/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
|
21
|
|
22
|
Blois S, Mallus F, Liciardi M, Pilo C, Camboni T, Macera L, Maggi F, Manzin A. High prevalence of co-infection with multiple Torque teno sus virus species in Italian pig herds. PLoS One 2014; 9:e113720. [PMID: 25411972 PMCID: PMC4239083 DOI: 10.1371/journal.pone.0113720] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/30/2014] [Indexed: 11/19/2022] Open
Abstract
Torque teno viruses (TTVs) are a large group of vertebrate-infecting small viruses with circular single-stranded DNA, classified in the Anelloviridae family. In swine, two genetically distinct species, Torque teno sus virus 1a (TTSuV1a) and 1b (TTSuV1b) are currently grouped into the genus Iotatorquevirus. More recently, a novel Torque teno sus virus species, named Torque teno sus virus k2b (TTSuVk2b), has been included with Torque teno sus virus k2a (TTSuVk2a) into the genus Kappatorquevirus. In the present study, TTSuV1 (TTSuV1a and TTSuV1b), TTSuVk2a and TTSuVk2b prevalence was evaluated in 721 serum samples of healthy pigs from Sardinian farms, insular Italy. This is the largest study to date on the presence of TTSuV in healthy pigs in Italy. The global prevalence of infection was 83.2% (600/721), being 62.3% (449/721), 60.6% (437/721), and 11.5% (83/721) the prevalence of TTSuV1, TTSuVk2a and TTSuVk2b, respectively. The rate of co-infection with two and/or three species was also calculated, and data show that co-infections were significantly more frequent than infections with single species, and that TTSuV1+TTSuVk2a double infection was the prevalent combination (35.4%). Quantitative results obtained using species-specific real time-qPCR evidenced the highest mean levels of viremia in the TTSuV1 subgroup, and the lowest in the TTSuVk2b subgroup. Interestingly, multiple infections with distinct TTSuV species seemed to significantly affect the DNA load and specifically, data highlighted that double infection with TTSuVk2a increased the viral titers of TTSuV1, likewise the co-infection with TTSuVk2b increased the titers of TTSuVk2a.
Collapse
Affiliation(s)
- Sylvain Blois
- Department of Biomedical Sciences, Clinical Microbiology and Virology Unit, University of Cagliari Medical School, Cagliari, Italy
| | - Francesca Mallus
- Department of Biomedical Sciences, Clinical Microbiology and Virology Unit, University of Cagliari Medical School, Cagliari, Italy
| | - Manuele Liciardi
- Istituto Zooprofilattico Sperimentale Sardegna, Department of Cagliari, Cagliari, Italy
| | - Cristian Pilo
- Istituto Zooprofilattico Sperimentale Sardegna, Department of Cagliari, Cagliari, Italy
| | - Tania Camboni
- Department of Biomedical Sciences, Clinical Microbiology and Virology Unit, University of Cagliari Medical School, Cagliari, Italy
| | - Lisa Macera
- Department of Biomedical Sciences, Clinical Microbiology and Virology Unit, University of Cagliari Medical School, Cagliari, Italy
- Virology Unit, Pisa University Hospital, Pisa, Italy
| | | | - Aldo Manzin
- Department of Biomedical Sciences, Clinical Microbiology and Virology Unit, University of Cagliari Medical School, Cagliari, Italy
| |
Collapse
|
23
|
Vlasakova M, Leskova V, Sliz I, Jackova A, Vilcek S. The presence of six potentially pathogenic viruses in pigs suffering from post-weaning multisystemic wasting syndrome. BMC Vet Res 2014; 10:221. [PMID: 25266874 PMCID: PMC4194362 DOI: 10.1186/s12917-014-0221-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 09/18/2014] [Indexed: 01/25/2023] Open
Abstract
Background Porcine circovirus type 2 (PCV2) is an etiological agent of porcine circovirus diseases (PCVDs). Post-weaning multisystemic wasting syndrome (PMWS) as the most important PCVD is considered a multifactorial disease. It was demonstrated that not only PCV2 but several viruses are associated with PMWS. Studies of viral co-infections in PMWS pigs led often to controversial results. The aim of this work was to determine the presence of emerging (PRRSV), re-emerging (PTV) and newly-emerging (TTSuV1, TTSuV2, PBoV1) viruses in samples of dead pigs suffering from PMWS. The impact of vaccination against PCV2 and the influence of age on the occurrence of single and multiple viral infections in pigs were also investigated. Results Viruses were detected by PCR, RT-PCR and real-time PCR in the pooled tissue samples (lymph nodes, liver and spleen) of pigs with PMWS (n = 56) which were divided into three groups: suckling piglets, post-weaning pigs and fattening pigs. In addition, lymph node samples were collected from apparently healthy fattening pigs (n = 59). The effect of vaccination against PCV2 with Ingelvac CircoFlex vaccine was also investigated. Between non-vaccinated pigs, the highest prevalence of individual viruses and multiple viral infections were found in diseased post-weaning and fattening animals with PMWS. Severe clinical disease was observed in swine co-infected with PCV2 and PRRSV. The prevalence of TTSuV1 and TTSuV2 was high in all groups of pigs and did not appear to have a significant effect on the syndrome. Simultaneous infection with TTSuV1 and PBoV1 was frequently confirmed in pigs with PMWS. No healthy pig was found to be infected with PRRSV, PTV or PBoV1. Vaccination against PCV2 did not influence the prevalence of TTSuVs, but significantly protected pigs against multiple viral infections. Conclusions Post-weaning PMWS pigs were more often co-infected with viral pathogens than suckling or fattening pigs. Co-infection with PRRSV enforces clinical signs of PMWS, the influence of other viral co-infections is not clear. Vaccination against PCV2 significantly reduced viral co-infections in pigs.
Collapse
|
24
|
Nonstructural proteins of Torque teno sus virus 2 from O2AUG: prediction to experimental validation. Virus Res 2013; 178:272-80. [PMID: 24091363 DOI: 10.1016/j.virusres.2013.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/19/2013] [Accepted: 09/20/2013] [Indexed: 11/24/2022]
Abstract
The expression profiles of nonstructural proteins (NSPs) in Torque teno sus virus 2 (TTSuV2) have not yet been characterized. Here, we determined the coding sequences of the TTSuV2 NSPs ORF2, ORF2/2, and ORF2/2/3 by overlapping polymerase chain reaction (PCR) and subsequent expression in bacterial and mammalian cells. We generated two monoclonal antibodies (mAbs), 2E5 and 6F8, from mice immunized with mixed Escherichia coli expressing His-tagged ORF2 and ORF2/2. Enzyme-linked immunosorbent assay (ELISA) and western blot analysis revealed that, 2E5 mAbs bound to the consensus sequences of ORF2, ORF2/2, and ORF2/2/3, while 6F8 recognized the common sequences of ORF2/2 and ORF2/2/3. Immunofluorescence assay (IFA) revealed that ORF2 was localized in the cytoplasm, ORF2/2, in the nucleus but not the nucleolus, and ORF2/2/3, in the peri-nuclear region. To identify the expression profiles of TTSuV NSPs, a circular TTSuV2_ZJ (GenBank: KF660540) genomic DNA clone was constructed and transfected into HEK293T and HeLa cells. Splicing mRNAs and the expression and localization of ORF2/2 and ORF2/2/3 were identified by RT-PCR, western blot analysis, and IFA, respectively. However, ORF2 was not detected either at the RNA or protein level. Our study is the first to provide experimental evidence of the existence of ORF2/2 and ORF2/2/3 at the protein level. Moreover, the mAbs have potential applications in future research on TTSuV2 viral protein function and diagnosis of related diseases.
Collapse
|
25
|
Ramos N, Mirazo S, Castro G, Arbiza J. Molecular analysis of Porcine Circovirus Type 2 strains from Uruguay: Evidence for natural occurring recombination. INFECTION GENETICS AND EVOLUTION 2013; 19:23-31. [DOI: 10.1016/j.meegid.2013.06.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/11/2013] [Accepted: 06/14/2013] [Indexed: 10/26/2022]
|
26
|
Detection of porcine anelloviruses in pork meat and human faeces. Virus Res 2013; 178:522-4. [PMID: 24091365 DOI: 10.1016/j.virusres.2013.09.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 09/22/2013] [Accepted: 09/23/2013] [Indexed: 11/19/2022]
Abstract
Torque teno viruses (TTV) are icosahedral, single-stranded circular DNA viruses infecting several vertebrate species. Currently, these viruses are considered non-pathogenic although they are suggested to be co-factors in several diseases. Recently single-stranded circular DNA viruses have been found in human faeces. Considering the consumption of pork meat products and the ubiquitous nature of swine TTV (Torque tenosus virus, TTSuV), the human population is frequently exposed to these viruses. To determine if TTSuVs could be delivered through food, human faecal samples were analysed for their presence. Indeed, the results of this study show that up to 25% of faecal samples were positive for known TTSuVs by PCR and sequencing. Additionally, all commercially available pork products purchased in Spanish supermarkets contained DNA of TTSuV.
Collapse
|
27
|
Phylogeny, spatio-temporal phylodynamics and evolutionary scenario of Torque teno sus virus 1 (TTSuV1) and 2 (TTSuV2) in wild boars: Fast dispersal and high genetic diversity. Vet Microbiol 2013; 166:200-13. [DOI: 10.1016/j.vetmic.2013.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/29/2013] [Accepted: 06/10/2013] [Indexed: 01/09/2023]
|
28
|
Liu J, Guo L, Zhang L, Wei Y, Huang L, Wu H, Liu C. Three new emerging subgroups of Torque teno sus viruses (TTSuVs) and co-infection of TTSuVs with porcine circovirus type 2 in China. Virol J 2013; 10:189. [PMID: 23758726 PMCID: PMC3691836 DOI: 10.1186/1743-422x-10-189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 06/04/2013] [Indexed: 12/23/2022] Open
Abstract
Background Torque teno sus viruses (TTSuVs) are non-enveloped viruses and have single-stranded, negative sense circular DNA genomes and are widely distributed in pigs. But till now, the prevalence of TTSuVs with porcine circovirus type 2 (PCV2) in pig herds of China is not very clear; and the genetic variation among different TTSuVs isolate is very large and need to divide the subgroups. In this study, the co-infection with TTSuVs and porcine circovrius (PCV) in the pig population of China was investigated and the subgroups of all TTSuVs genomes in Genbank were divided. Results Results showed that the rate of co-infection with TTSuV1 and TTSuV2 reached 75% in PCV2-positive samples. Also Two TTSuV1 and four TTSuV2 isolates genome sequences were obtained, and the similarity of all TTSuV1 and TTSuV2 genomic sequences in GenBank were compared. Phylogenetic trees indicated that both the TTSuV1 and TTSuV2 sequences could be divided into four genotypes. Interestingly, the sub-genotypes TTSuV1d, TTSuV2c and TTSuV2d exist only in the pig population of China. Conclusions This study demonstrates that co-infection with TTSuVs and PCVs is very common in the pig population of China, in which the viruses maybe contribute to clinical diseases cooperatively. In addition, three new subgroups of TTSuVs emerged in China for the first time and a high level of variation among different isolates of TTSuV1 and TTSuV2 was indicated by their genetic diversity.
Collapse
Affiliation(s)
- Jianbo Liu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, 427 Maduan Street, Nangang District, Harbin 150001, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Jarosova V, Celer V. Preliminary epitope mapping of Torque teno sus virus 1 and 2 putative capsid protein and serological detection of infection in pigs. J Gen Virol 2013; 94:1351-1356. [DOI: 10.1099/vir.0.050500-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this work is to identify antigenic regions within the ORF1 protein of Torque teno sus virus 1 (TTSuV1) and Torque teno virus sus 2 (TTSuV2) that could be used as antigens to detect virus-specific antibodies following infection in pigs. Protein sequences of TTSuV ORF1 genes were analysed to predict linear antigenic epitopes. Synthesized peptides were analysed for serological reactivity with swine sera. Such an antigenic region was identified at the C terminus of the ORF1 protein of both viruses and showed serological reactivity with 78 % (TTSuV1) and 88 % (TTSuV2) of swine sera. An ELISA with an immunodominant peptide as antigen was used to examine the sera of piglets, aged 4–20 weeks, and adults. Results indicated that TTSuV1- and TTSuV2-specific antibodies were detectable at 4 weeks. Antibody titres increased from week 10 and peaked at week 20. A relatively high antibody titre persisted to adulthood.
Collapse
Affiliation(s)
- Veronika Jarosova
- Institute of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| | - Vladimír Celer
- CEITEC – Central European Institute of Technology, Veterinary and Pharmaceutical University, Brno, Czech Republic
- Institute of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| |
Collapse
|
30
|
Zhai SL, Long JX, Wei WK, Chen QL, Luo ML, Lv DH, Wu DC, Gao F, Yuan SS, Tong GZ, Wei ZZ. High prevalence of torque teno sus virus in China and genetic diversity of the 5’ non-coding region. Arch Virol 2013; 158:1567-73. [DOI: 10.1007/s00705-013-1644-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
|
31
|
Aramouni M, Kekarainen T, Ganges L, Tarradas J, Segalés J. Increased viral load and prevalence of Torque teno sus virus 2 (TTSuV2) in pigs experimentally infected with classical swine fever virus (CSFV). Virus Res 2012; 172:81-4. [PMID: 23274109 DOI: 10.1016/j.virusres.2012.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/14/2012] [Accepted: 12/18/2012] [Indexed: 01/21/2023]
Abstract
Torque teno sus viruses (TTSuVs) are considered non-pathogenic viruses, although lately they have been linked to porcine circovirus diseases, mainly with post weaning multisystemic wasting syndrome (PMWS). These associations point out a possible pathogenic role of TTSuVs or, alternatively, that TTSuV replication is up-regulated under disease conditions. In order to further explore the association of TTSuVs with disease occurrence, TTSuVs prevalence and viral load were assessed before and after an experimental infection with a highly pathogenic classical swine fever (CSF) virus (CSFV) isolate. Serum samples from 56 animals were analyzed by means of a real time quantitative PCR (qPCR) for TTSuV1 and TTSuV2 before and after (between 6 and 13 days post-inoculation) the CSFV challenge. Based on the post-infection clinical evolution and immune response against CSFV, the animals were divided into two groups: group I, with protecting immunity against CSFV and no clinical signs at the day of necropsy, and group II, with no detectable immune response against CSFV and moderate to severe clinical signs. TTSuVs qPCR results indicated that TTSuV2 and not TTSuV1 load in serum increased significantly after challenge with CSFV in the group of pigs with clinical signs, specifically in those with a moderate course of the disease. Therefore, this study emphasizes the different behaviour of both TTSuVs, as already found in the PMWS background, and further supports the association of TTSuV2 with disease occurrence.
Collapse
Affiliation(s)
- M Aramouni
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, (Cerdanyola del Vallès), Barcelona, Spain
| | | | | | | | | |
Collapse
|
32
|
Novosel D, Lipej Z, Cubric-Curik V, Jungic A. Presence of Torque teno sus virus in porcine circovirus type 2-associated disease in Croatia. Vet Rec 2012; 171:529. [DOI: 10.1136/vr.100887] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- D. Novosel
- Department of Pathology; Croatian Veterinary Institute; Savska cesta Zagreb 10000 Croatia
| | - Z. Lipej
- Department of Pathology; Croatian Veterinary Institute; Savska cesta Zagreb 10000 Croatia
| | - V. Cubric-Curik
- Department of Animal Science; University of Zagreb; Zagreb Croatia
| | - A. Jungic
- Department of Virology; Croatian Veterinary Institute; Zagreb Croatia
| |
Collapse
|
33
|
Cornelissen-Keijsers V, Jiménez-Melsió A, Sonnemans D, Cortey M, Segalés J, van den Born E, Kekarainen T. Discovery of a novel Torque teno sus virus species: genetic characterization, epidemiological assessment and disease association. J Gen Virol 2012; 93:2682-2691. [PMID: 22956737 DOI: 10.1099/vir.0.045518-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The study describes a novel Torque teno sus virus (TTSuV) species, provisionally named Torque teno sus virus k2b (TTSuVk2b), originally found in commercial pig sera by applying the rolling-circle amplification technique. Full-length sequences of TTSuVk2b were obtained, annotated and used in the phylogenetic analyses, which revealed that TTSuVk2b is a novel Anellovirus species within the genus Kappatorquevirus of the family Anelloviridae. Quantitative PCR techniques were developed to determine total TTSuV DNA quantities as well as the prevalence and viral DNA quantities of TTSuV1, TTSuVk2a and TTSuVk2b. The mean total TTSuV load in seven commercial sera was determined at 6.3 log(10) DNA copies ml(-1) of serum, with TTSuVk2b loads being the lowest at 4.5 log(10) DNA copies ml(-1) of serum. Subsequently, prevalence and loads of TTSuVs were determined in pig sera from 17 countries. TTSuVk2b prevalence ranged from 0 to 100 % with viral loads from 3.3 to 4.6 log(10) copies ml(-1) of sera. TTSuVk2a, so far the only species in the genus Kappatorquevirus, has been linked to an economically important swine disease, namely post-weaning multisystemic wasting syndrome (PMWS). Considering the grouping of TTSuVk2b in the same genus as TTSuVk2a, TTSuVk2b prevalence and viral DNA load were determined in PMWS-affected animals and healthy counterparts. This revealed that TTSuVk2a and TTSuVk2b are not only genetically related, but also that their viral loads in serum are elevated in PMWS animals compared with those of healthy pen mates. In summary, the present work describes a novel TTSuV species including its genetic characterization, epidemiological assessment and potential disease association.
Collapse
Affiliation(s)
| | - Alexandra Jiménez-Melsió
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, (Cerdanyola del Vallès), Spain
| | - Denny Sonnemans
- MSD Animal Health, Wim de Körverstraat 35, P.O. Box 31, 5830 AA Boxmeer, the Netherlands
| | - Martí Cortey
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, (Cerdanyola del Vallès), Spain
| | - Joaquim Segalés
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, (Cerdanyola del Vallès), Spain.,Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, (Cerdanyola del Vallès), Spain
| | - Erwin van den Born
- MSD Animal Health, Wim de Körverstraat 35, P.O. Box 31, 5830 AA Boxmeer, the Netherlands
| | - Tuija Kekarainen
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, (Cerdanyola del Vallès), Spain
| |
Collapse
|
34
|
Abstract
The newly established family Anelloviridae includes a number of viruses infecting humans (Torque teno viruses) and other animal species. The ones infecting domestic swine and wild boar are nowadays named Torque teno sus viruses (TTSuV), which are small circular single-stranded DNA viruses highly prevalent in the pig population. So far, two genetically distinct TTSuV species are infecting swine. Both TTSuVs appear to efficiently spread by vertical and horizontal transmission routes; in fact, foetuses may be infected and the prevalence and viral loads increase by age of the animals. Detailed immunological studies on TTSuVs are still lacking, but it seems that there are no efficient immunological responses limiting viraemia. These viruses are currently receiving more attention due to the latest results on disease association. Torque teno sus viruses have been circulating unnoticed in pigs for a long time, and even considered non-pathogenic by themselves; there is increasing evidence that points to influence the development of some diseases or even affect their outcome. Such link has been mainly established with porcine circovirus diseases.
Collapse
Affiliation(s)
- T Kekarainen
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | |
Collapse
|