1
|
Pöpperl P, Stoff M, Beineke A. Alveolar Macrophages in Viral Respiratory Infections: Sentinels and Saboteurs of Lung Defense. Int J Mol Sci 2025; 26:407. [PMID: 39796262 PMCID: PMC11721917 DOI: 10.3390/ijms26010407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Respiratory viral infections continue to cause pandemic and epidemic outbreaks in humans and animals. Under steady-state conditions, alveolar macrophages (AlvMϕ) fulfill a multitude of tasks in order to maintain tissue homeostasis. Due to their anatomic localization within the deep lung, AlvMϕ are prone to detect and react to inhaled viruses and thus play a role in the early pathogenesis of several respiratory viral infections. Here, detection of viral pathogens causes diverse antiviral and proinflammatory reactions. This fact not only makes them promising research targets, but also suggests them as potential targets for therapeutic and prophylactic approaches. This review aims to give a comprehensive overview of the current knowledge about the role of AlvMϕ in respiratory viral infections of humans and animals.
Collapse
Affiliation(s)
- Pauline Pöpperl
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Melanie Stoff
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| |
Collapse
|
2
|
Hu W, Tang D, Zeng Z, Wang B, Zhou M, Mao Y, Zhou P, He S. Research progress on the molecular mechanism of immune escape of porcine reproductive and respiratory syndrome virus. Virology 2025; 602:110298. [PMID: 39631153 DOI: 10.1016/j.virol.2024.110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by the porcine reproductive and respiratory syndrome virus (PRRSV), is a severe and highly contagious disease that results in significant economic losses for the pig industry. Currently, vaccination is one of the most effective methods for controlling PRRS; however, due to the extensive genetic variation of PRRSV and the generation of homologous immunity, vaccines provide protective effects only against homologous strains and lack effective cross-protection against heterologous strains. Furthermore, PRRSV encodes a variety of proteins with immune escape functions, and the mechanisms underlying these functions are complex and not yet fully understood. This complexity presents substantial challenges to the prevention, control, and eradication of the disease. Therefore, this article reviews the various escape mechanisms of PRRSV identified in recent years, with the aim of providing insights into the pathogenic mechanisms of PRRSV and facilitating the development of safer and more effective vaccines and therapeutics.
Collapse
Affiliation(s)
- Wenwen Hu
- College of Animal Science, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Deyuan Tang
- College of Animal Science, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Zhiyong Zeng
- College of Animal Science, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Bin Wang
- College of Animal Science, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Min Zhou
- College of Animal Science, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Yinming Mao
- College of Animal Science, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Piao Zhou
- College of Animal Science, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Song He
- College of Animal Science, Guizhou University, Guiyang, Guizhou, 550025, China
| |
Collapse
|
3
|
Fiers J, Cay AB, Maes D, Tignon M. A Comprehensive Review on Porcine Reproductive and Respiratory Syndrome Virus with Emphasis on Immunity. Vaccines (Basel) 2024; 12:942. [PMID: 39204065 PMCID: PMC11359659 DOI: 10.3390/vaccines12080942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in pig production worldwide and responsible for enormous production and economic losses. PRRSV infection in gestating gilts and sows induces important reproductive failure. Additionally, respiratory distress is observed in infected piglets and fattening pigs, resulting in growth retardation and increased mortality. Importantly, PRRSV infection interferes with immunity in the respiratory tract, making PRRSV-infected pigs more susceptible to opportunistic secondary pathogens. Despite the availability of commercial PRRSV vaccines for more than three decades, control of the disease remains a frustrating and challenging task. This paper provides a comprehensive overview of PRRSV, covering its history, economic and scientific importance, and description of the viral structure and genetic diversity. It explores the virus's pathogenesis, including cell tropism, viral entry, replication, stages of infection and epidemiology. It reviews the porcine innate and adaptative immune responses to comprehend the modulation mechanisms employed by PRRS for immune evasion.
Collapse
Affiliation(s)
- Jorian Fiers
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Ann Brigitte Cay
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
| | - Dominiek Maes
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Marylène Tignon
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
| |
Collapse
|
4
|
Bettin L, Darbellay J, van Kessel J, Dhar N, Gerdts V. Porcine γδ T cells express cytotoxic cell-associated markers and display killing activity but are not selectively cytotoxic against PRRSV- or swIAV-infected macrophages. Front Immunol 2024; 15:1434011. [PMID: 39144143 PMCID: PMC11321972 DOI: 10.3389/fimmu.2024.1434011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
Background Gamma-delta (γδ) T cells are a major immune cell subset in pigs. Approximately 50% of circulating T cells are γδ T cells in young pigs and up to 30% in adult sows. Despite this abundance, the functions of porcine γδ T cells are mostly unidentified. In humans and mice, activated γδ T cells exhibit broad innate cytotoxic activity against a wide variety of stressed, infected, and cancerous cells through death receptor/ligand-dependent and perforin/granzyme-dependent pathways. However, so far, it is unknown whether porcine γδ T cells have the ability to perform cytotoxic functions. Methods In this study, we conducted a comprehensive phenotypic characterization of porcine γδ T cells isolated from blood, lung, and nasal mucosa. To further analyze the cytolytic potential of γδ T cells, in vitro cytotoxicity assays were performed using purified γδ T cells as effector cells and virus-exposed or mock-treated primary porcine alveolar macrophages as target cells. Results Our results show that only CD2+ γδ T cells express cytotoxic markers (CD16, NKp46, perforin) with higher perforin and NKp46 expression in γδ T cells isolated from lung and nasal mucosa. Moreover, we found that γδ T cells can exhibit cytotoxic functions in a cell-cell contact and degranulation-dependent manner. However, porcine γδ T cells did not seem to specifically target Porcine Reproductive and Respiratory Syndrome Virus or swine Influenza A Virus-infected macrophages, which may be due to viral escape mechanisms. Conclusion Porcine γδ T cells express cytotoxic markers and can exhibit cytotoxic activity in vitro. The specific mechanisms by which porcine γδ T cells recognize target cells are not fully understood but may involve the detection of cellular stress signals.
Collapse
MESH Headings
- Animals
- Swine
- Porcine respiratory and reproductive syndrome virus/immunology
- Porcine respiratory and reproductive syndrome virus/physiology
- Cytotoxicity, Immunologic
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/virology
- Porcine Reproductive and Respiratory Syndrome/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Biomarkers
- Orthomyxoviridae Infections/immunology
- Perforin/metabolism
- Perforin/immunology
- Intraepithelial Lymphocytes/immunology
- Cells, Cultured
Collapse
Affiliation(s)
- Leonie Bettin
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joseph Darbellay
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Jill van Kessel
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Neeraj Dhar
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Cai H, Zhang H, Cheng H, Liu M, Wen S, Ren J. Progress in PRRSV Infection and Adaptive Immune Response Mechanisms. Viruses 2023; 15:1442. [PMID: 37515130 PMCID: PMC10385784 DOI: 10.3390/v15071442] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Since its discovery, Porcine reproductive and respiratory syndrome (PRRS) has had a huge impact on the farming industry. The virus that causes PRRS is Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), and because of its genetic diversity and the complexity of the immune response, the eradication of PRRS has been a challenge. To provide scientific references for PRRSV control and vaccine development, this study describes the processes of PRRSV-induced infection and escape, as well as the host adaptive immune response to PRRSV. It also discusses the relationship between PRRSV and the adaptive immune response.
Collapse
Affiliation(s)
- Huanchang Cai
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Hewei Zhang
- College of Food and Drugs, Luoyang Polytechnic, Luoyang 471099, China
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang 471000, China
| | - Huai Cheng
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Min Liu
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Shubo Wen
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jingqiang Ren
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang 471000, China
| |
Collapse
|
6
|
Chrun T, Maze EA, Roper KJ, Vatzia E, Paudyal B, McNee A, Martini V, Manjegowda T, Freimanis G, Silesian A, Polo N, Clark B, Besell E, Booth G, Carr BV, Edmans M, Nunez A, Koonpaew S, Wanasen N, Graham SP, Tchilian E. Simultaneous co-infection with swine influenza A and porcine reproductive and respiratory syndrome viruses potentiates adaptive immune responses. Front Immunol 2023; 14:1192604. [PMID: 37287962 PMCID: PMC10242126 DOI: 10.3389/fimmu.2023.1192604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Porcine respiratory disease is multifactorial and most commonly involves pathogen co-infections. Major contributors include swine influenza A (swIAV) and porcine reproductive and respiratory syndrome (PRRSV) viruses. Experimental co-infection studies with these two viruses have shown that clinical outcomes can be exacerbated, but how innate and adaptive immune responses contribute to pathogenesis and pathogen control has not been thoroughly evaluated. We investigated immune responses following experimental simultaneous co-infection of pigs with swIAV H3N2 and PRRSV-2. Our results indicated that clinical disease was not significantly exacerbated, and swIAV H3N2 viral load was reduced in the lung of the co-infected animals. PRRSV-2/swIAV H3N2 co-infection did not impair the development of virus-specific adaptive immune responses. swIAV H3N2-specific IgG serum titers and PRRSV-2-specific CD8β+ T-cell responses in blood were enhanced. Higher proportions of polyfunctional CD8β+ T-cell subset in both blood and lung washes were found in PRRSV-2/swIAV H3N2 co-infected animals compared to the single-infected groups. Our findings provide evidence that systemic and local host immune responses are not negatively affected by simultaneous swIAV H3N2/PRRSV-2 co-infection, raising questions as to the mechanisms involved in disease modulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Adam McNee
- The Pirbright Institute, Woking, United Kingdom
| | | | | | | | | | - Noemi Polo
- The Pirbright Institute, Woking, United Kingdom
| | - Becky Clark
- The Pirbright Institute, Woking, United Kingdom
| | | | | | | | | | - Alejandro Nunez
- Pathology and Animal Sciences, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Surapong Koonpaew
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Nanchaya Wanasen
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | | | | |
Collapse
|
7
|
Chen XX, Qiao S, Li R, Wang J, Li X, Zhang G. Evasion strategies of porcine reproductive and respiratory syndrome virus. Front Microbiol 2023; 14:1140449. [PMID: 37007469 PMCID: PMC10063791 DOI: 10.3389/fmicb.2023.1140449] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
During the co-evolution of viruses and their hosts, viruses have developed various strategies for overcoming host immunological defenses so that they can proliferate efficiently. Porcine reproductive and respiratory syndrome virus (PRRSV), a significant virus to the swine industry across the world, typically establishes prolonged infection via diverse and complicated mechanisms, which is one of the biggest obstacles for controlling the associated disease, porcine reproductive and respiratory syndrome (PRRS). In this review, we summarize the latest research on how PRRSV circumvents host antiviral responses from both the innate and adaptive immune systems and how this virus utilizes other evasion mechanisms, such as the manipulation of host apoptosis and microRNA. A thorough understanding of the exact mechanisms of PRRSV immune evasion will help with the development of novel antiviral strategies against PRRSV.
Collapse
Affiliation(s)
- Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Jing Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xuewu Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
8
|
De Pelsmaeker S, Denaeghel S, Hermans L, Favoreel HW. Identification of a Porcine Liver Eomes highT-bet low NK Cell Subset That Resembles Human Liver Resident NK Cells. Front Immunol 2019; 10:2561. [PMID: 31736976 PMCID: PMC6836759 DOI: 10.3389/fimmu.2019.02561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells are cells of the innate immunity and play an important role in the defense against viral infections and cancer, but also contribute to shaping adaptive immune responses. Long-lived tissue-resident NK cells have been described in man and mouse, particularly in the liver, contributing to the idea that the functional palette of NK cells may be broader than originally thought, and may include memory-like responses and maintaining tissue homeostasis. Remarkably, liver resident (lr)NK cells in man and mouse show substantial species-specific differences, in particular reverse expression patterns of the T-box transcription factors Eomesodermin (Eomes) and T-bet (EomeshighT-betlow in man and vice versa in mouse). In pig, compared to blood NK cells which are CD3-CD8αhigh cells, the porcine liver contains an abundant additional CD3-CD8αdim NK cell subpopulation. In the current study, we show that this porcine CD3-CD8αdim liver NK population is highly similar to its human lrNK counterpart and therefore different from mouse lrNK cells. Like human lrNK cells, this porcine NK cell population shows an EomeshighT-betlow expression pattern. In addition, like its human counterpart, the porcine liver NK population is CD49e- and CXCR6+. Furthermore, the porcine EomeshighT-betlow liver NK cell population is able to produce IFN-γ upon IL-2/12/18 stimulation but lacks the ability to kill K562 or pseudorabies virus-infected target cells, although limited degranulation could be observed upon incubation with K562 cells or upon CD16 crosslinking. All together, these results show that porcine EomeshighT-betlow NK cells in the liver strongly resemble human lrNK cells, and therefore indicate that the pig may represent a unique model to study the function of these lrNK cells in health and disease.
Collapse
Affiliation(s)
- Steffi De Pelsmaeker
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sofie Denaeghel
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Leen Hermans
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Herman W Favoreel
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
9
|
Sánchez-Carvajal JM, Rodríguez-Gómez IM, Carrasco L, Barranco I, Álvarez B, Domínguez J, Salguero FJ, Gómez-Laguna J. Kinetics of the expression of CD163 and CD107a in the lung and tonsil of pigs after infection with PRRSV-1 strains of different virulence. Vet Res Commun 2019; 43:187-195. [PMID: 31104196 DOI: 10.1007/s11259-019-09755-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/30/2019] [Indexed: 11/26/2022]
Abstract
The emergence of virulent strains of porcine reproductive and respiratory syndrome virus (PRRSV), causing atypical and severe outbreaks, has been notified worldwide. This study assesses the expression, distribution and kinetics of PRRSV N-protein, CD163 and CD107a in the lung and tonsil from experimentally-infected piglets with three different PRRSV-1 strains: a virulent PRRSV-1 subtype 3 strain (SU1-bel) and two low-virulent subtype 1 strains, Lelystad virus (LV) and 215-06. SU1-bel replicated more efficiently in the lungs and tonsils. The number of CD163+ cells decreased in both tissues from all infected groups at 7 dpi, followed by an increase at the end of the study, highlighting a negative correlation with the number of N-protein+-infected cells. A significant increase in CD107a was observed in all infected groups at 35 dpi but no differences were observed among them. Whereas the initial decrease of CD163+ cells appears to be associated to virus replication and cell death, the later recovery of the CD163+ population may be due to either the induction of CD163 in immature cells, the recruitment of CD163+ cells in the area of infection, or both. These results highlight the ability of macrophage subpopulations in infected animals to recover and restore their potential biological functions at one-month post-infection, with the greatest improvement observed in SU1-bel-infected animals.
Collapse
Affiliation(s)
- Jose M Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'ceiA3', 14071, Córdoba, Spain.
| | - Irene M Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'ceiA3', 14071, Córdoba, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'ceiA3', 14071, Córdoba, Spain
| | - Inmaculada Barranco
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'ceiA3', 14071, Córdoba, Spain
| | - Belén Álvarez
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Javier Domínguez
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | | | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'ceiA3', 14071, Córdoba, Spain
| |
Collapse
|
10
|
Goldeck D, Perry DM, Hayes JWP, Johnson LPM, Young JE, Roychoudhury P, McLuskey EL, Moffat K, Bakker AQ, Kwakkenbos MJ, Frossard JP, Rowland RRR, Murtaugh MP, Graham SP. Establishment of Systems to Enable Isolation of Porcine Monoclonal Antibodies Broadly Neutralizing the Porcine Reproductive and Respiratory Syndrome Virus. Front Immunol 2019; 10:572. [PMID: 30972067 PMCID: PMC6445960 DOI: 10.3389/fimmu.2019.00572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/04/2019] [Indexed: 02/01/2023] Open
Abstract
The rapid evolution of porcine reproductive and respiratory syndrome viruses (PRRSV) poses a major challenge to effective disease control since available vaccines show variable efficacy against divergent strains. Knowledge of the antigenic targets of virus-neutralizing antibodies that confer protection against heterologous PRRSV strains would be a catalyst for the development of next-generation vaccines. Key to discovering these epitopes is the isolation of neutralizing monoclonal antibodies (mAbs) from immune pigs. To address this need, we sought to establish systems to enable the isolation of PRRSV neutralizing porcine mAbs. We experimentally produced a cohort of immune pigs by sequential challenge infection with four heterologous PRRSV strains spanning PRRSV-1 subtypes and PRRSV species. Whilst priming with PRRSV-1 subtype 1 did not confer full protection against a subsequent infection with a PRRSV-1 subtype 3 strain, animals were protected against a subsequent PRRSV-2 infection. The infection protocol resulted in high serum neutralizing antibody titers against PRRSV-1 Olot/91 and significant neutralization of heterologous PRRSV-1/-2 strains. Enriched memory B cells isolated at the termination of the study were genetically programmed by transduction with a retroviral vector expressing the Bcl-6 transcription factor and the anti-apoptotic Bcl-xL protein, a technology we demonstrated efficiently converts porcine memory B cells into proliferating antibody-secreting cells. Pools of transduced memory B cells were cultured and supernatants containing PRRSV-specific antibodies identified by flow cytometric staining of infected MARC-145 cells and in vitro neutralization of PRRSV-1. Collectively, these data suggest that this experimental system may be further exploited to produce a panel of PRRSV-specific mAbs, which will contribute both to our understanding of the antibody response to PRRSV and allow epitopes to be resolved that may ultimately guide the design of immunogens to induce cross-protective immunity.
Collapse
Affiliation(s)
| | - Dana M Perry
- The Pirbright Institute, Pirbright, United Kingdom.,School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Jack W P Hayes
- The Pirbright Institute, Pirbright, United Kingdom.,School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Luke P M Johnson
- The Pirbright Institute, Pirbright, United Kingdom.,School of Veterinary Science, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Jordan E Young
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Parimal Roychoudhury
- The Pirbright Institute, Pirbright, United Kingdom.,College of Veterinary Science and Animal Husbandry, Central Agricultural University, Aizawl, India
| | - Elle L McLuskey
- The Pirbright Institute, Pirbright, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Katy Moffat
- The Pirbright Institute, Pirbright, United Kingdom
| | | | | | - Jean-Pierre Frossard
- Department of Virology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Raymond R R Rowland
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Michael P Murtaugh
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Simon P Graham
- The Pirbright Institute, Pirbright, United Kingdom.,School of Veterinary Science, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
11
|
Cellular Innate Immunity against PRRSV and Swine Influenza Viruses. Vet Sci 2019; 6:vetsci6010026. [PMID: 30862035 PMCID: PMC6466325 DOI: 10.3390/vetsci6010026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Porcine respiratory disease complex (PRDC) is a polymicrobial syndrome that results from a combination of infectious agents, such as environmental stressors, population size, management strategies, age, and genetics. PRDC results in reduced performance as well as increased mortality rates and production costs in the pig industry worldwide. This review focuses on the interactions of two enveloped RNA viruses—porcine reproductive and respiratory syndrome virus (PRRSV) and swine influenza virus (SwIV)—as major etiological agents that contribute to PRDC within the porcine cellular innate immunity during infection. The innate immune system of the porcine lung includes alveolar and parenchymal/interstitial macrophages, neutrophils (PMN), conventional dendritic cells (DC) and plasmacytoid DC, natural killer cells, and γδ T cells, thus the in vitro and in vivo interactions between those cells and PRRSV and SwIV are reviewed. Likewise, the few studies regarding PRRSV-SwIV co-infection are illustrated together with the different modulation mechanisms that are induced by the two viruses. Alterations in responses by natural killer (NK), PMN, or γδ T cells have not received much attention within the scientific community as their counterpart antigen-presenting cells and there are numerous gaps in the knowledge regarding the role of those cells in both infections. This review will help in paving the way for future directions in PRRSV and SwIV research and enhancing the understanding of the innate mechanisms that are involved during infection with these viruses.
Collapse
|
12
|
Montaner-Tarbes S, Del Portillo HA, Montoya M, Fraile L. Key Gaps in the Knowledge of the Porcine Respiratory Reproductive Syndrome Virus (PRRSV). Front Vet Sci 2019; 6:38. [PMID: 30842948 PMCID: PMC6391865 DOI: 10.3389/fvets.2019.00038] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important swine diseases in the world. It is causing an enormous economic burden due to reproductive failure in sows and a complex respiratory syndrome in pigs of all ages, with mortality varying from 2 to 100% in the most extreme cases of emergent highly pathogenic strains. PRRSV displays complex interactions with the immune system and a high mutation rate, making the development, and implementation of control strategies a major challenge. In this review, the biology of the virus will be addressed focusing on newly discovered functions of non-structural proteins and novel dissemination mechanisms. Secondly, the role of different cell types and viral proteins will be reviewed in natural and vaccine-induced immune response together with the role of different immune evasion mechanisms focusing on those gaps of knowledge that are critical to generate more efficacious vaccines. Finally, novel strategies for antigen discovery and vaccine development will be discussed, in particular the use of exosomes (extracellular vesicles of endocytic origin). As nanocarriers of lipids, proteins and nucleic acids, exosomes have potential effects on cell activation, modulation of immune responses and antigen presentation. Thus, representing a novel vaccination approach against this devastating disease.
Collapse
Affiliation(s)
- Sergio Montaner-Tarbes
- Innovex Therapeutics S.L, Badalona, Spain.,Departamento de Ciencia Animal, Escuela Técnica Superior de Ingenieria Agraria (ETSEA), Universidad de Lleida, Lleida, Spain
| | - Hernando A Del Portillo
- Innovex Therapeutics S.L, Badalona, Spain.,Germans Trias i Pujol Health Science Research Institute, Badalona, Spain.,ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - María Montoya
- Innovex Therapeutics S.L, Badalona, Spain.,Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Lorenzo Fraile
- Innovex Therapeutics S.L, Badalona, Spain.,Departamento de Ciencia Animal, Escuela Técnica Superior de Ingenieria Agraria (ETSEA), Universidad de Lleida, Lleida, Spain
| |
Collapse
|
13
|
Recombinant Porcine Reproductive and Respiratory Syndrome Virus Expressing Membrane-Bound Interleukin-15 as an Immunomodulatory Adjuvant Enhances NK and γδ T Cell Responses and Confers Heterologous Protection. J Virol 2018; 92:JVI.00007-18. [PMID: 29643245 DOI: 10.1128/jvi.00007-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023] Open
Abstract
Cytokines are often used as adjuvants to improve vaccine immunogenicity, since they are important in initiating and shaping the immune response. The available commercial modified live-attenuated vaccines (MLVs) against porcine reproductive and respiratory syndrome virus (PRRSV) are unable to mount sufficient heterologous protection, as they typically induce weak innate and inadequate T cell responses. In this study, we investigated the immunogenicity and vaccine efficacy of recombinant PRRSV MLVs incorporated with the porcine cytokine interleukin-15 (IL-15) or IL-18 gene fused to a glycosylphosphatidylinositol (GPI) modification signal that can anchor the cytokines to the cell membrane. We demonstrated that both cytokines were successfully expressed on the cell membrane of porcine alveolar macrophages after infection with recombinant MLVs. Pigs vaccinated with recombinant MLVs or the parental Suvaxyn MLV had significantly reduced lung lesions and viral RNA loads in the lungs after heterologous challenge with the PRRSV NADC20 strain. The recombinant MLVs SUV-IL-15 and SUV-IL-18 recovered the inhibition of the NK cell response seen with Suvaxyn MLV. The recombinant MLV SUV-IL-15 significantly increased the numbers of gamma interferon (IFN-γ)-producing cells in circulation at 49 days postvaccination (dpv), especially for IFN-γ-producing CD4- CD8+ T cells and γδ T cells, compared to the Suvaxyn MLV and SUV-IL-18. Additionally, MLV SUV-IL-15-vaccinated pigs also had elevated levels of γδ T cell responses observed at 7 dpv, 49 dpv, and 7 days postchallenge. These data demonstrate that the recombinant MLV expressing membrane-bound IL-15 enhances NK and T cell immune responses after vaccination and confers improved heterologous protection, although this was not statistically significant compared to the parental MLV.IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS) has arguably been the most economically important global swine disease, causing immense economic losses worldwide. The available commercial modified live-attenuated vaccines (MLVs) against PRRS virus (PRRSV) are generally effective against only homologous or closely related virus strains but are ineffective against heterologous strains, partially due to the insufficient immune response induced by the vaccine virus. To improve the immunogenicity of MLVs, in this study, we present a novel approach of using porcine IL-15 or IL-18 as an adjuvant by directly incorporating its encoding gene into a PRRSV MLV and expressing it as an adjuvant. Importantly, we directed the expression of the incorporated cytokines to the cell membrane surface by fusing the genes with a membrane-targeting signal from CD59. The recombinant MLV virus expressing the membrane-bound IL-15 cytokine greatly enhanced NK cell and γδ T cell responses and also conferred improved protection against heterologous challenge with the PRRSV NADC20 strain.
Collapse
|
14
|
Chaves-Pozo E, Valero Y, Esteve-Codina A, Gómez-Garrido J, Dabad M, Alioto T, Meseguer J, Esteban MÁ, Cuesta A. Innate Cell-Mediated Cytotoxic Activity of European Sea Bass Leucocytes Against Nodavirus-Infected Cells: A Functional and RNA-seq Study. Sci Rep 2017; 7:15396. [PMID: 29133947 PMCID: PMC5684396 DOI: 10.1038/s41598-017-15629-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022] Open
Abstract
Nervous necrosis virus (NNV) causes high mortalities in several marine species. We aimed to evaluate the innate cell-mediated cytotoxic (CMC) activity of head-kidney leucocytes (HKLs) isolated from naïve European sea bass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata), a very susceptible and resistant fish species to NNV, respectively, against fish cell lines infected with NNV. Seabream HKLs showed significantly increased innate CMC activity against NNV-infected cells, compared to those uninfected, while sea bass HKLs failed to do so. Thus, we performed a RNA-seq study to identify genes related to the CMC activity of sea bass leucocytes. Thus, we found that sea bass HKLs incubated with DLB-1 cells alone (CMC_DLB1) or with NNV-infected DLB-1 cells (CMC_DLB1-NNV) showed very similar transcriptomic profiles and the GO analysis revealed that most of the up-regulated genes were related to immunity. Strikingly, when the CMC samples with and without NNV were compared, GO analysis revealed that most of the up-regulated genes in CMC_DLB1-NNV samples were related to metabolism and very few to immunity. This is also in agreement with the functional data. These data point to the escape of CMC activity by NNV infection as an important factor involved in the high susceptibility to nodavirus infections of European sea bass.
Collapse
Affiliation(s)
- Elena Chaves-Pozo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860, Murcia, Spain
| | - Yulema Valero
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860, Murcia, Spain
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marc Dabad
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - José Meseguer
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - M Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
15
|
Rahe MC, Murtaugh MP. Mechanisms of Adaptive Immunity to Porcine Reproductive and Respiratory Syndrome Virus. Viruses 2017; 9:v9060148. [PMID: 28608816 PMCID: PMC5490824 DOI: 10.3390/v9060148] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/25/2017] [Accepted: 06/07/2017] [Indexed: 02/07/2023] Open
Abstract
The adaptive immune response is necessary for the development of protective immunity against infectious diseases. Porcine reproductive and respiratory syndrome virus (PRRSV), a genetically heterogeneous and rapidly evolving RNA virus, is the most burdensome pathogen of swine health and wellbeing worldwide. Viral infection induces antigen-specific immunity that ultimately clears the infection. However, the resulting immune memory, induced by virulent or attenuated vaccine viruses, is inconsistently protective against diverse viral strains. The immunological mechanisms by which primary and memory protection are generated and used are not well understood. Here, we summarize current knowledge regarding cellular and humoral components of the adaptive immune response to PRRSV infection that mediate primary and memory immune protection against viruses.
Collapse
Affiliation(s)
- Michael C Rahe
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA.
| | - Michael P Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA.
| |
Collapse
|
16
|
Diseases Primarily Affecting the Reproductive System. Vet Med (Auckl) 2017. [PMCID: PMC7150237 DOI: 10.1016/b978-0-7020-5246-0.00018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Wilkinson JM, Bao H, Ladinig A, Hong L, Stothard P, Lunney JK, Plastow GS, Harding JCS. Genome-wide analysis of the transcriptional response to porcine reproductive and respiratory syndrome virus infection at the maternal/fetal interface and in the fetus. BMC Genomics 2016; 17:383. [PMID: 27207143 PMCID: PMC4875603 DOI: 10.1186/s12864-016-2720-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 05/10/2016] [Indexed: 02/07/2023] Open
Abstract
Background Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) infection of pregnant pigs can result in congenital infection and ultimately fetal death. Little is known about immune responses to infection at the maternal-fetal interface and in the fetus itself, or the molecular events behind virus transmission and disease progression in the fetus. To investigate these processes, RNA-sequencing of two sites, uterine endothelium with adherent placental tissue and fetal thymus, was performed 21 days post-challenge on four groups of fetuses selected from a large PRRSV challenge experiment of pregnant gilts: control (CON), uninfected (UNINF), infected (INF), and meconium-stained (MEC) (n = 12/group). Transcriptional analyses consisted of multiple contrasts between groups using two approaches: differential gene expression analysis and weighted gene co-expression network analysis (WGCNA). Biological functions, pathways, and regulators enriched for differentially expressed genes or module members were identified through functional annotation analyses. Expression data were validated by reverse transcription quantitative polymerase chain reaction (RTqPCR) carried out for 16 genes of interest. Results The immune response to infection in endometrium was mainly adaptive in nature, with the most upregulated genes functioning in either humoral or cell-mediated immunity. In contrast, the expression profile of infected fetal thymus revealed a predominantly innate immune response to infection, featuring the upregulation of genes regulated by type I interferon and pro-inflammatory cytokines. Fetal infection was associated with an increase in viral load coupled with a reduction in T cell signaling in the endometrium that could be due to PRRSV-controlled apoptosis of uninfected bystander cells. There was also evidence for a reduction in TWIST1 activity, a transcription factor involved in placental implantation and maturation, which could facilitate virus transmission or fetal pathology through dysregulation of placental function. Finally, results suggested that events within the fetus could also drive fetal pathology. Thymus samples of meconium-stained fetuses exhibited an increase in the expression of pro-inflammatory cytokine and granulocyte genes previously implicated in swine infectious disease pathology. Conclusions This study identified major differences in the response to PRRSV infection in the uterine endometrium and fetus at the gene expression level, and provides insight into the molecular basis of virus transmission and disease progression. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2720-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jamie M Wilkinson
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
| | - Hua Bao
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Andrea Ladinig
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine, Vienna, Austria.,Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Linjun Hong
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, USA.,Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Paul Stothard
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Joan K Lunney
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, USA
| | - Graham S Plastow
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - John C S Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
18
|
Wilkinson JM, Ladinig A, Bao H, Kommadath A, Stothard P, Lunney JK, Harding JCS, Plastow GS. Differences in Whole Blood Gene Expression Associated with Infection Time-Course and Extent of Fetal Mortality in a Reproductive Model of Type 2 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Infection. PLoS One 2016; 11:e0153615. [PMID: 27093427 PMCID: PMC4836665 DOI: 10.1371/journal.pone.0153615] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/31/2016] [Indexed: 01/12/2023] Open
Abstract
Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) infection of pregnant females causes fetal death and increased piglet mortality, but there is substantial variation in the extent of reproductive pathology between individual dams. This study used RNA-sequencing to characterize the whole blood transcriptional response to type 2 PRRSV in pregnant gilts during the first week of infection (at 0, 2, and 6 days post-inoculation), and attempted to identify gene expression signatures associated with a low or high level of fetal mortality rates (LFM and HFM; n = 8/group) at necropsy, 21 days post-inoculation. The initial response to infection measured at 2 days post-inoculation saw an upregulation of genes involved in innate immunity, such as interferon-stimulated antiviral genes and inflammatory markers, and apoptosis. A concomitant decrease in expression of protein synthesis and T lymphocyte markers was observed. By day 6 the pattern had reversed, with a drop in innate immune signaling and an increase in the expression of genes involved in cell division and T cell signaling. Differentially expressed genes (DEGs) associated with extremes of litter mortality rate were identified at all three time-points. Among the 15 DEGs upregulated in LFM gilts on all three days were several genes involved in platelet function, including integrins ITGA2B and ITGB3, and the chemokine PF4 (CXCL4). LFM gilts exhibited a higher baseline expression of interferon-stimulated and pro-inflammatory genes prior to infection, and of T cell markers two days post-infection, indicative of a more rapid progression of the immune response to PRRSV. This study has increased our knowledge of the early response to PRRSV in the blood of pregnant gilts, and could ultimately lead to the development of a biomarker panel that can be used to predict PRRSV-associated reproductive pathology.
Collapse
Affiliation(s)
- Jamie M. Wilkinson
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- * E-mail:
| | - Andrea Ladinig
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hua Bao
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Arun Kommadath
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Paul Stothard
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Joan K. Lunney
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland, United States of America
| | - John C. S. Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Graham S. Plastow
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
19
|
Annamalai T, Saif LJ, Lu Z, Jung K. Age-dependent variation in innate immune responses to porcine epidemic diarrhea virus infection in suckling versus weaned pigs. Vet Immunol Immunopathol 2015; 168:193-202. [PMID: 26433606 PMCID: PMC7112776 DOI: 10.1016/j.vetimm.2015.09.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 08/17/2015] [Accepted: 09/12/2015] [Indexed: 01/02/2023]
Abstract
Porcine epidemic diarrhea (PED) is an enteric coronaviral infection that causes severe morbidity and mortality in suckling pigs, but less severe disease in older pigs. Consequently, it causes significant economic losses to the pork industry. There are limited studies on the innate immune responses to PED virus (PEDV) in pigs. The aims of our study were to investigate differences in innate immune responses to PEDV infection in suckling and weaned pigs and to examine if disease severity coincides with reduced innate immune responses. Weaned 26-day-old pigs (n=20) and 9-day-old nursing pigs (n=20) were assigned to PEDV inoculated or uninoculated control groups. The pigs were observed daily for clinical signs, virus shedding and were euthanized at post-inoculation days (PIDs) 1 and 5 to assay immune responses. Blood samples were collected at PIDs 1, 3 and 5. The natural killer (NK) cell frequencies, NK cell activities (lysis of target K562 tumor cells in vitro), CD3+CD4+ T cell and CD3+CD8+ T cell frequencies were measured in blood and ileum at PIDs 1 and 5. The PEDV infected suckling pigs showed severe diarrhea and vomiting at PID 1, whereas the PEDV infected weaned pigs showed milder clinical signs starting at PID 3. PEDV infected suckling pigs had significantly higher diarrhea scores, earlier fecal PEDV RNA shedding and significantly higher viremia (viral RNA in serum) compared to weaned pigs. There was no mortality in either infected suckling or infected weaned pigs. The control pigs not inoculated with PEDV did not show any clinical signs and no detectable fecal or serum PEDV RNA. Strikingly, PEDV infected suckling pigs had significantly lower NK cell frequencies, undetectable NK cell activity and lower IFNγ producing NK cells in blood and ileum compared to PEDV infected weaned pigs. Pro-inflammatory cytokine profiles of PEDV infected suckling pigs differed from those of PEDV infected weaned pigs and coincided with onset of fecal PEDV RNA shedding and serum PEDV RNA titers. The infected suckling pigs have higher and earlier increases in serum IFNα, but lower serum IL-8 and TNFα levels compared to infected weaned pigs. CD3+CD4+ T cell frequencies were significantly higher in ileum of suckling pigs than in weaned pigs, whereas there was no difference in CD3+CD8+ T cell frequencies. In conclusion, the observations of impaired lytic activity and IFN-γ production by NK cells in suckling pigs coincided with the increased severity of PEDV infection in the suckling pigs compared with the weaned pigs.
Collapse
Affiliation(s)
- Thavamathi Annamalai
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| | - Zhongyan Lu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA
| | - Kwonil Jung
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| |
Collapse
|
20
|
Fan B, Liu X, Bai J, Li Y, Zhang Q, Jiang P. The 15N and 46R Residues of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Nucleocapsid Protein Enhance Regulatory T Lymphocytes Proliferation. PLoS One 2015; 10:e0138772. [PMID: 26397116 PMCID: PMC4580451 DOI: 10.1371/journal.pone.0138772] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/09/2015] [Indexed: 12/14/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) negatively modulates host immune responses, resulting in persistent infection and immunosuppression. PRRSV infection increases the number of PRRSV-specific regulatory T lymphocytes (Tregs) in infected pigs. However, the target antigens for Tregs proliferation in PRRSV infection have not been fully understood. In this study, we demonstrated that the highly pathogenic PRRSV (HP-PRRSV) induced more CD4+CD25+Foxp3+ Tregs than classical PRRSV (C-PRRSV) strain. Of the recombinant GP5, M and N proteins of HP-PRRSV expressed in baculovirus expression systems, only N protein induced Tregs proliferation. The Tregs assays showed that three amino-acid regions, 15–21, 42–48 and 88–94, in N protein played an important role in induction of Tregs proliferation with synthetic peptides covering the whole length of N protein. By using reverse genetic methods, it was firstly found that the 15N and 46R residues in PRRSV N protein were critical for induction of Tregs proliferation. The phenotype of induced Tregs closely resembled that of transforming-growth-factor-β-secreting T helper 3 Tregs in swine. These data should be useful for understanding the mechanism of immunity to PRRSV and development of infection control strategies in the future.
Collapse
Affiliation(s)
- Baochao Fan
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yufeng Li
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiaoya Zhang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail:
| |
Collapse
|
21
|
Yu Y, Wang G, Li Q, Du Y, Du T, Mu Y, Xiao S, Zhao Q, Wang C, Sun Y, Xu X, Zhang G, Hsu WH, Cai X, Zhou EM. Single-chain anti-idiotypic antibody retains its specificity to porcine reproductive and respiratory syndrome virus GP5. Immunol Lett 2015; 163:8-13. [DOI: 10.1016/j.imlet.2014.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/30/2014] [Accepted: 11/14/2014] [Indexed: 10/24/2022]
|
22
|
Mair KH, Sedlak C, Käser T, Pasternak A, Levast B, Gerner W, Saalmüller A, Summerfield A, Gerdts V, Wilson HL, Meurens F. The porcine innate immune system: an update. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:321-43. [PMID: 24709051 PMCID: PMC7103209 DOI: 10.1016/j.dci.2014.03.022] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/30/2014] [Accepted: 03/31/2014] [Indexed: 05/21/2023]
Abstract
Over the last few years, we have seen an increasing interest and demand for pigs in biomedical research. Domestic pigs (Sus scrofa domesticus) are closely related to humans in terms of their anatomy, genetics, and physiology, and often are the model of choice for the assessment of novel vaccines and therapeutics in a preclinical stage. However, the pig as a model has much more to offer, and can serve as a model for many biomedical applications including aging research, medical imaging, and pharmaceutical studies to name a few. In this review, we will provide an overview of the innate immune system in pigs, describe its anatomical and physiological key features, and discuss the key players involved. In particular, we compare the porcine innate immune system to that of humans, and emphasize on the importance of the pig as model for human disease.
Collapse
Affiliation(s)
- K H Mair
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - C Sedlak
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - T Käser
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - A Pasternak
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - B Levast
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - W Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - A Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - A Summerfield
- Institute of Virology and Immunoprophylaxis (IVI), Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland
| | - V Gerdts
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - H L Wilson
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - F Meurens
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
23
|
Efficacy of an attenuated European subtype 1 porcine reproductive and respiratory syndrome virus (PRRSV) vaccine in pigs upon challenge with the East European subtype 3 PRRSV strain Lena. Vaccine 2014; 32:2995-3003. [PMID: 24709589 DOI: 10.1016/j.vaccine.2014.03.077] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/13/2014] [Accepted: 03/25/2014] [Indexed: 11/21/2022]
Abstract
The efficacy of a commercial attenuated European subtype 1 PRRSV vaccine was evaluated upon challenge with the East European subtype 3 PRRSV strain Lena (83.3% nucleotide identity). Two vaccination experiments were carried out. Four- and seven-week-old pigs were vaccinated with the modified-live vaccine. Upon vaccination, virus specific IPMA antibodies were detected in all vaccinated animals with titers ranging from 10(2.8) to 10(4.6). No virus neutralizing (VN) antibodies were detected after vaccination. Eight (exp. 1) or six (exp. 2) weeks after vaccination, pigs were challenged with 10(6) (exp. 1) resp. 10(5) (exp. 2) TCID50 of the European subtype 3 PRRSV Lena. Upon challenge, non-vaccinated animals showed fever during 5.1 (exp. 1) or 7.7 (exp. 2) days. In vaccinated pigs, the duration of fever was reduced by 1.8 (exp. 1) or 3.5 (exp. 2) days. The modified-live virus vaccine reduced the mean duration of nasal shedding and viremia. In non-vaccinated pigs, virus shedding lasted 5.8 days (exp. 1), resp. 8.3 days (exp. 2). This period was reduced to 3.6 (exp. 1), resp. 3.0 (exp. 2) days in vaccinated animals. Viremia was observed during a shorter period in vaccinated (exp. 1: 7.4 days, exp. 2: 4.8 days) than in non-vaccinated groups (exp. 1: 11.8 days, exp. 2: 12.3 days). Starting from 5 days post challenge, virus titers in nasal secretions and sera were significantly lower in vaccinated animals (P<0.05). Virus-neutralizing antibodies were detected at low titers (≤ 16) after 7 days post challenge in vaccinated animals and 28 days post challenge in control animals. In conclusion, it can be stated that vaccination of pigs with an attenuated European subtype 1 vaccine provides a partial protection against a subsequent exposure to the highly pathogenic East European subtype 3 PRRSV strain Lena.
Collapse
|
24
|
Rodríguez-Gómez IM, Gómez-Laguna J, Carrasco L. Impact of PRRSV on activation and viability of antigen presenting cells. World J Virol 2013; 2:146-151. [PMID: 24286035 PMCID: PMC3832909 DOI: 10.5501/wjv.v2.i4.146] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/29/2013] [Accepted: 10/16/2013] [Indexed: 02/05/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most important diseases of swine industry. The causal agent, PRRS-virus (PRRSV), is able to evade the host immune response and survive in the organism causing transient infections. Despite all scientific efforts, there are still some gaps in the knowledge of the pathogenesis of this disease. Antigen presenting cells (APCs), as initiators of the immune response, are located in the first line of defense against microorganisms, and are responsible for antigen recognition, processing and presentation. Dendritic cells (DCs) are the main type of APC involved in antigen presentation and they are susceptible to PRRSV infection. Thus, PRRSV replication in DCs may trigger off different mechanisms to impair the onset of a host effective immune response against the virus. On the one side, PRRSV may impair the basic functions of DCs by regulating the expression of major histocompatibility complex class II and CD80/86. Other strategy followed by the virus is the induction of cell death of APCs by apoptosis, necrosis or both of them. The impairment and/or cell death of APCs could lead to a failure in the onset of an efficient immune response, as long as cells could not properly activate T cells. Future aspects to take into account are also discussed in this review.
Collapse
|
25
|
Karniychuk UU, Nauwynck HJ. Pathogenesis and prevention of placental and transplacental porcine reproductive and respiratory syndrome virus infection. Vet Res 2013; 44:95. [PMID: 24099529 PMCID: PMC4021427 DOI: 10.1186/1297-9716-44-95] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/26/2013] [Indexed: 01/09/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV)-induced reproductive problems are characterized by embryonic death, late-term abortions, early farrowing and increase in number of dead and mummified fetuses, and weak-born piglets. The virus recovery from fetal tissues illustrates transplacental infection, but despite many studies on the subject, the means by which PRRSV spreads from mother to fetus and the exact pathophysiological basis of the virus-induced reproductive failure remain unexplained. Recent findings from our group indicate that the endometrium and placenta are involved in the PRRSV passage from mother to fetus and that virus replication in the endometrial/placental tissues can be the actual reason for fetal death. The main purpose of this review is to clarify the role that PRRSV replication and PRRSV-induced changes in the endometrium/placenta play in the pathogenesis of PRRSV-induced reproductive failure in pregnant sows. In addition, strategies to control placental and transplacental PRRSV infection are discussed.
Collapse
Affiliation(s)
- Uladzimir U Karniychuk
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | | |
Collapse
|
26
|
Karniychuk U, De Spiegelaere W, Nauwynck H. Porcine reproductive and respiratory syndrome virus infection is associated with an increased number of Sn-positive and CD8-positive cells in the maternal–fetal interface. Virus Res 2013; 176:285-91. [DOI: 10.1016/j.virusres.2013.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
|