1
|
Ma AZ, Yeo YY, Lee JF, Kim CM, Ezzatpour S, Menchaca C, Upadhye V, Annand EJ, Eden JS, Plowright RK, Peel AJ, Buchholz DW, Aguilar HC. Functional assessment of the glycoproteins of a novel Hendra virus variant reveals contrasting fusogenic capacities of the receptor-binding and fusion glycoproteins. mBio 2025; 16:e0348223. [PMID: 39704501 PMCID: PMC11796360 DOI: 10.1128/mbio.03482-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
A novel Hendra virus (HeV) genotype (HeV genotype 2 [HeV-g2]) was recently isolated from a deceased horse, revealing high-sequence conservation and antigenic similarities with the prototypic strain, HeV-g1. As the receptor-binding (G) and fusion (F) glycoproteins of HeV are essential for mediating viral entry, functional characterization of emerging HeV genotypic variants is key to understanding viral entry mechanisms and broader virus-host co-evolution. We first confirmed that HeV-g2 and HeV-g1 glycoproteins share a close phylogenetic relationship, underscoring HeV-g2's relevance to global health. Our in vitro data showed that HeV-g2 glycoproteins induced cell-cell fusion in human cells, shared receptor tropism with HeV-g1, and cross-reacted with antibodies raised against HeV-g1. Despite these similarities, HeV-g2 glycoproteins yielded reduced syncytia formation compared to HeV-g1. By expressing heterotypic combinations of HeV-g2, HeV-g1, and Nipah virus (NiV) glycoproteins, we found that while HeV-g2 G had strong fusion-promoting abilities, HeV-g2 F consistently displayed hypofusogenic properties. These fusion phenotypes were more closely associated with those observed in the related NiV. Further investigation using HeV-g1 and HeV-g2 glycoprotein chimeras revealed that multiple domains may play roles in modulating these fusion phenotypes. Altogether, our findings may establish intrinsic fusogenic capacities of viral glycoproteins as a potential driver behind the emergence of new henipaviral variants. IMPORTANCE HeV is a zoonotic pathogen that causes severe disease across various mammalian hosts, including horses and humans. The identification of unrecognized HeV variants, such as HeV-g2, highlights the need to investigate mechanisms that may drive their evolution, transmission, and pathogenicity. Our study reveals that HeV-g2 and HeV-g1 glycoproteins are highly conserved in identity, function, and receptor tropism, yet they differ in their abilities to induce the formation of multinucleated cells (syncytia), which is a potential marker of viral pathogenesis. By using heterotypic combinations of HeV-g2 with either HeV-g1 or NiV glycoproteins, as well as chimeric HeV-g1/HeV-g2 glycoproteins, we demonstrate that the differences in syncytial formation can be attributed to the intrinsic fusogenic capacities of each glycoprotein. Our data indicate that HeV-g2 glycoproteins have fusion phenotypes closely related to those of NiV and that fusion promotion may be a crucial factor driving the emergence of new henipaviral variants.
Collapse
Affiliation(s)
- Andrew Z. Ma
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Yao Yu Yeo
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jean F. Lee
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Colin M. Kim
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Shahrzad Ezzatpour
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Carolina Menchaca
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Viraj Upadhye
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Edward J. Annand
- Epidemiology Surveillance and Laboratory Section, Animal Health Policy Branch, Animal Division, Department of Agriculture Fisheries and Forestry, Canberra, Australian Capital Territory, Australia
| | - John-Sebastian Eden
- Westmead Institute for Medical Research, Centre for Virus Research, Westmead, New South Wales, Australia
| | - Raina K. Plowright
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Alison J. Peel
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, Queensland, Australia
| | - David W. Buchholz
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Oguntuyo KY, Haas GD, Azarm KD, Stevens CS, Brambilla L, Kowdle SS, Avanzato VA, Pryce R, Freiberg AN, Bowden TA, Lee B. Structure-guided mutagenesis of Henipavirus receptor-binding proteins reveals molecular determinants of receptor usage and antibody-binding epitopes. J Virol 2024; 98:e0183823. [PMID: 38426726 PMCID: PMC10949843 DOI: 10.1128/jvi.01838-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Nipah virus (NiV) is a highly lethal, zoonotic Henipavirus (HNV) that causes respiratory and neurological signs and symptoms in humans. Similar to other paramyxoviruses, HNVs mediate entry into host cells through the concerted actions of two surface glycoproteins: a receptor-binding protein (RBP) that mediates attachment and a fusion glycoprotein (F) that triggers fusion in an RBP-dependent manner. NiV uses ephrin-B2 (EFNB2) and ephrin-B3 (EFNB3) as entry receptors. Ghana virus (GhV), a novel HNV identified in a Ghanaian bat, uses EFNB2 but not EFNB3. In this study, we employ a structure-informed approach to identify receptor-interfacing residues and systematically introduce GhV-RBP residues into a NiV-RBP backbone to uncover the molecular determinants of EFNB3 usage. We reveal two regions that severely impair EFNB3 binding by NiV-RBP and EFNB3-mediated entry by NiV pseudotyped viral particles. Further analyses uncovered two-point mutations (NiVN557SGhV and NiVY581TGhV) pivotal for this phenotype. Moreover, we identify NiV interaction with Y120 of EFNB3 as important for the usage of this receptor. Beyond these EFNB3-related findings, we reveal two domains that restrict GhV binding of EFNB2, confirm the HNV-head as an immunodominant target for polyclonal and monoclonal antibodies, and describe putative epitopes for GhV- and NiV-specific monoclonal antibodies. Cumulatively, the work presented here generates useful reagents and tools that shed insight to residues important for NiV usage of EFNB3, reveal regions critical for GhV binding of EFNB2, and describe putative HNV antibody-binding epitopes. IMPORTANCE Hendra virus and Nipah virus (NiV) are lethal, zoonotic Henipaviruses (HNVs) that cause respiratory and neurological clinical features in humans. Since their initial outbreaks in the 1990s, several novel HNVs have been discovered worldwide, including Ghana virus. Additionally, there is serological evidence of zoonotic transmission, lending way to concerns about future outbreaks. HNV infection of cells is mediated by the receptor-binding protein (RBP) and the Fusion protein (F). The work presented here identifies NiV RBP amino acids important for the usage of ephrin-B3 (EFNB3), a receptor highly expressed in neurons and predicted to be important for neurological clinical features caused by NiV. This study also characterizes epitopes recognized by antibodies against divergent HNV RBPs. Together, this sheds insight to amino acids critical for HNV receptor usage and antibody binding, which is valuable for future studies investigating determinants of viral pathogenesis and developing antibody therapies.
Collapse
Affiliation(s)
| | - Griffin D. Haas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kristopher D. Azarm
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christian S. Stevens
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Luca Brambilla
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shreyas S. Kowdle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Victoria A. Avanzato
- Division of Structural Biology, Wellcome Center for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Rhys Pryce
- Division of Structural Biology, Wellcome Center for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Center for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
3
|
Oguntuyo KY, Haas GD, Azarm KD, Stevens CS, Brambilla L, Kowdle S, Avanzato VA, Pryce R, Freiberg AN, Bowden TA, Lee B. Structure guided mutagenesis of Henipavirus Receptor Binding Proteins reveals molecular determinants of receptor usage and antibody binding epitopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568281. [PMID: 38045373 PMCID: PMC10690272 DOI: 10.1101/2023.11.22.568281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Nipah virus (NiV) is a highly lethal, zoonotic henipavirus (HNV) that causes respiratory and neurological signs and symptoms in humans. Similar to other paramyxoviruses, HNVs mediate entry into host cells through the concerted actions of two surface glycoproteins: a receptor binding protein (RBP) that mediates attachment and a fusion glycoprotein (F) that triggers fusion in an RBP-dependent manner. NiV uses ephrin-B2 (EFNB2) and ephrin-B3 (EFNB3) as entry receptors. Ghana virus (GhV), a novel HNV identified in a Ghanaian bat, use EFNB2 but not EFNB3. In this study, we employ a structure-informed approach to identify receptor interfacing residues and systematically introduce GhV-RBP residues into a NiV-RBP backbone to uncover the molecular determinants of EFNB3 usage. We reveal two regions that severely impair EFNB3 binding by NiV-RBP and EFNB3-mediated entry by NiV pseudotyped viral particles. Further analyses uncovered two point mutations (NiVN557SGhV and NiVY581TGhV) pivotal for this phenotype. Moreover, we identify NiV interaction with Y120 of EFNB3 as important for usage of this receptor. Beyond these EFNB3-related findings, we reveal two domains that restrict GhV binding of EFNB2, identify the HNV-head as an immunodominant target for polyclonal and monoclonal antibodies, and describe putative epitopes for GhV and NiV-specific monoclonal antibodies. Cumulatively, the work presented here generates useful reagents and tools that shed insight to residues important for NiV usage of EFNB3, reveals regions critical for GhV binding of EFNB2, and describes putative HNV antibody binding epitopes.
Collapse
Affiliation(s)
- K Y Oguntuyo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - G D Haas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - K D Azarm
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - C S Stevens
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - L Brambilla
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S Kowdle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - V A Avanzato
- Division of Structural Biology, Wellcome Center for Human Genetics, University of Oxford, OX3 7BN Oxford, United Kingdom
| | - R Pryce
- Division of Structural Biology, Wellcome Center for Human Genetics, University of Oxford, OX3 7BN Oxford, United Kingdom
| | - A N Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - T A Bowden
- Division of Structural Biology, Wellcome Center for Human Genetics, University of Oxford, OX3 7BN Oxford, United Kingdom
| | - B Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
4
|
Escudero-Pérez B, Lalande A, Mathieu C, Lawrence P. Host–Pathogen Interactions Influencing Zoonotic Spillover Potential and Transmission in Humans. Viruses 2023; 15:v15030599. [PMID: 36992308 PMCID: PMC10060007 DOI: 10.3390/v15030599] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Emerging infectious diseases of zoonotic origin are an ever-increasing public health risk and economic burden. The factors that determine if and when an animal virus is able to spill over into the human population with sufficient success to achieve ongoing transmission in humans are complex and dynamic. We are currently unable to fully predict which pathogens may appear in humans, where and with what impact. In this review, we highlight current knowledge of the key host–pathogen interactions known to influence zoonotic spillover potential and transmission in humans, with a particular focus on two important human viruses of zoonotic origin, the Nipah virus and the Ebola virus. Namely, key factors determining spillover potential include cellular and tissue tropism, as well as the virulence and pathogenic characteristics of the pathogen and the capacity of the pathogen to adapt and evolve within a novel host environment. We also detail our emerging understanding of the importance of steric hindrance of host cell factors by viral proteins using a “flytrap”-type mechanism of protein amyloidogenesis that could be crucial in developing future antiviral therapies against emerging pathogens. Finally, we discuss strategies to prepare for and to reduce the frequency of zoonotic spillover occurrences in order to minimize the risk of new outbreaks.
Collapse
Affiliation(s)
- Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, 38124 Braunschweig, Germany
| | - Alexandre Lalande
- CIRI (Centre International de Recherche en Infectiologie), Team Neuro-Invasion, TROpism and VIRal Encephalitis, INSERM U1111, CNRS UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Cyrille Mathieu
- CIRI (Centre International de Recherche en Infectiologie), Team Neuro-Invasion, TROpism and VIRal Encephalitis, INSERM U1111, CNRS UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Philip Lawrence
- CONFLUENCE: Sciences et Humanités (EA 1598), Université Catholique de Lyon (UCLy), 69002 Lyon, France
- Correspondence:
| |
Collapse
|
5
|
Yeo YY, Buchholz DW, Gamble A, Jager M, Aguilar HC. Headless Henipaviral Receptor Binding Glycoproteins Reveal Fusion Modulation by the Head/Stalk Interface and Post-receptor Binding Contributions of the Head Domain. J Virol 2021; 95:e0066621. [PMID: 34288734 PMCID: PMC8475510 DOI: 10.1128/jvi.00666-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/13/2021] [Indexed: 11/20/2022] Open
Abstract
Cedar virus (CedV) is a nonpathogenic member of the Henipavirus (HNV) genus of emerging viruses, which includes the deadly Nipah (NiV) and Hendra (HeV) viruses. CedV forms syncytia, a hallmark of henipaviral and paramyxoviral infections and pathogenicity. However, the intrinsic fusogenic capacity of CedV relative to NiV or HeV remains unquantified. HNV entry is mediated by concerted interactions between the attachment (G) and fusion (F) glycoproteins. Upon receptor binding by the HNV G head domain, a fusion-activating G stalk region is exposed and triggers F to undergo a conformational cascade that leads to viral entry or cell-cell fusion. Here, we demonstrate quantitatively that CedV is inherently significantly less fusogenic than NiV at equivalent G and F cell surface expression levels. We then generated and tested six headless CedV G mutants of distinct C-terminal stalk lengths, surprisingly revealing highly hyperfusogenic cell-cell fusion phenotypes 3- to 4-fold greater than wild-type CedV levels. Additionally, similarly to NiV, a headless HeV G mutant yielded a less pronounced hyperfusogenic phenotype compared to wild-type HeV. Further, coimmunoprecipitation and cell-cell fusion assays revealed heterotypic NiV/CedV functional G/F bidentate interactions, as well as evidence of HNV G head domain involvement beyond receptor binding or G stalk exposure. All evidence points to the G head/stalk junction being key to modulating HNV fusogenicity, supporting the notion that head domains play several distinct and central roles in modulating stalk domain fusion promotion. Further, this study exemplifies how CedV may help elucidate important mechanistic underpinnings of HNV entry and pathogenicity. IMPORTANCE The Henipavirus genus in the Paramyxoviridae family includes the zoonotic Nipah (NiV) and Hendra (HeV) viruses. NiV and HeV infections often cause fatal encephalitis and pneumonia, but no vaccines or therapeutics are currently approved for human use. Upon viral entry, Henipavirus infections yield the formation of multinucleated cells (syncytia). Viral entry and cell-cell fusion are mediated by the attachment (G) and fusion (F) glycoproteins. Cedar virus (CedV), a nonpathogenic henipavirus, may be a useful tool to gain knowledge on henipaviral pathogenicity. Here, using homotypic and heterotypic full-length and headless CedV, NiV, and HeV G/F combinations, we discovered that CedV G/F are significantly less fusogenic than NiV or HeV G/F, and that the G head/stalk junction is key to modulating cell-cell fusion, refining the mechanism of henipaviral membrane fusion events. Our study exemplifies how CedV may be a useful tool to elucidate broader mechanistic understanding for the important henipaviruses.
Collapse
Affiliation(s)
- Yao Yu Yeo
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - David W. Buchholz
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Amandine Gamble
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Mason Jager
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
6
|
Voigt K, Hoffmann M, Drexler JF, Müller MA, Drosten C, Herrler G, Krüger N. Fusogenicity of the Ghana Virus ( Henipavirus: Ghanaian bat henipavirus) Fusion Protein is Controlled by the Cytoplasmic Domain of the Attachment Glycoprotein. Viruses 2019; 11:v11090800. [PMID: 31470664 PMCID: PMC6784138 DOI: 10.3390/v11090800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 01/11/2023] Open
Abstract
The Ghana virus (GhV) is phylogenetically related to the zoonotic henipaviruses Nipah (NiV) and Hendra virus. Although GhV uses the highly conserved receptor ephrin-B2, the fusogenicity is restricted to cell lines of bat origin. Furthermore, the surface expression of the GhV attachment glycoprotein (G) is reduced compared to NiV and most of this protein is retained in the endoplasmic reticulum (ER). Here, we generated truncated as well as chimeric GhV G proteins and investigated the influence of the structural domains (cytoplasmic tail, transmembrane domain, ectodomain) of this protein on the intracellular transport and the fusogenicity following coexpression with the GhV fusion protein (F). We demonstrate that neither the cytoplasmic tail nor the transmembrane domain is responsible for the intracellular retention of GhV G. Furthermore, the cytoplasmic tail of GhV G modulates the fusogenicity of GhV F and therefore controls the species-restricted fusogenicity of the GhV surface glycoproteins.
Collapse
Affiliation(s)
- Kathleen Voigt
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Jan Felix Drexler
- Institute of Virology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Marcel Alexander Müller
- Institute of Virology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Nadine Krüger
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| |
Collapse
|
7
|
Nipah and Hendra Virus Glycoproteins Induce Comparable Homologous but Distinct Heterologous Fusion Phenotypes. J Virol 2019; 93:JVI.00577-19. [PMID: 30971473 DOI: 10.1128/jvi.00577-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 02/02/2023] Open
Abstract
Nipah and Hendra viruses (NiV and HeV) exhibit high lethality in humans and are biosafety level 4 (BSL-4) paramyxoviruses in the growing genus Henipavirus The attachment (G) and fusion (F) envelope glycoproteins are both required for viral entry into cells and for cell-cell fusion, which is pathognomonic of henipaviral infections. Here, we compared the fusogenic capacities between homologous and heterologous pairs of NiV and HeV glycoproteins. Importantly, to accurately measure their fusogenic capacities, as these depend on glycoprotein cell surface expression (CSE) levels, we inserted identical extracellular tags to both fusion (FLAG tags) or both attachment (hemagglutinin [HA] tags) glycoproteins. Importantly, these tags were placed in extracellular sites where they did not affect glycoprotein expression or function. NiV and HeV glycoproteins induced comparable levels of homologous HEK293T cell-cell fusion. Surprisingly, however, while the heterologous NiV F/HeV G (NF/HG) combination yielded a hypofusogenic phenotype, the heterologous HeV F/NiV G (HF/NG) combination yielded a hyperfusogenic phenotype. Pseudotyped viral entry levels primarily corroborated the fusogenic phenotypes of the glycoprotein pairs analyzed. Furthermore, we constructed G and F chimeras that allowed us to map the overall regions in G and F that contributed to these hyperfusogenic or hypofusogenic phenotypes. Importantly, the fusogenic phenotypes of the glycoprotein combinations negatively correlated with the avidities of F-G interactions, supporting the F/G dissociation model of henipavirus-induced membrane fusion, even in the context of heterologous glycoprotein pairs.IMPORTANCE The NiV and HeV henipaviruses are BSL-4 pathogens transmitted from bats. NiV and HeV often lead to human death and animal diseases. The formation of multinucleated cells (syncytia) is a hallmark of henipaviral infections and is caused by fusion of cells coordinated by interactions of the viral attachment (G) and fusion (F) glycoproteins. We found via various assays that viral entry and syncytium formation depend on the viral origin of the glycoproteins, with HeV F and NiV G promoting higher membrane fusion levels than their counterparts. This is important knowledge, since both viruses use the same bat vector species and potential coinfections of these or subsequent hosts may alter the outcome of disease.
Collapse
|