1
|
Quan F, Geng Y, Wu Y, Jiang F, Li X, Yu C. Development and application of a quadruplex real-time PCR method for Torque teno sus virus 1, Porcine circovirus type 2, pseudorabies virus, and porcine parvovirus. Front Cell Infect Microbiol 2024; 14:1461448. [PMID: 39479279 PMCID: PMC11523562 DOI: 10.3389/fcimb.2024.1461448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/01/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction In clinical diagnosis of porcine diseases, co-infection with multiple viruses often leads to similar clinical symptoms. Postweaning multisystemic wasting syndrome (PMWS) can be caused by infections with TTSuV or PCV2, while PCV2, PRV, and PPV can cause respiratory and reproductive disorders in pigs. The overlapping clinical and pathological features of these infections necessitate the development of a rapid and specific method for differentiating and detecting these four DNA viruses. Methods In this study, four pairs of primers and TaqMan probes were designed targeting the conserved sequence of TTSuV, the Rep gene of PCV2, the gE gene of PRV, and the VP2 gene of PPV. After optimizing reaction conditions, including annealing temperature, primer concentration, and probe concentration, a quadruplex real-time PCR method was developed. Results This method can specifically detect TTSuV1, PCV2, PRV, and PPV simultaneously, with no cross-reactivity with ASFV, CSFV, PRRSV, PEDV, PSV, and TGEV. The minimum detection limit for each virus was 10 copies/μl, and the inter-assay and intra-assay coefficients of variation ranged from 0.33% to 1.43%. Subsequently, 150 clinical samples were tested to evaluate the practical applicability of this method. The positive rates for TTSuV1, PCV2, PRV, and PPV were 8.6% (13/150), 10.67% (16/150), 14% (21/150), and 11.33% (17/150), respectively. Discussion The results indicate that the established quadruplex real-time PCR method can assist in the accurate and rapid diagnosis of TTSuV1, PCV2, PRV, and PPV in clinical settings, providing robust support for the prevention and control of these infections.
Collapse
Affiliation(s)
- Fushi Quan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yulu Geng
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yang Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Faming Jiang
- Engineering Center of Agricultural Biosafety Assessment and Biotechnology, School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, China
| | - Xuemei Li
- Engineering Center of Agricultural Biosafety Assessment and Biotechnology, School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, China
| | - Changqing Yu
- Engineering Center of Agricultural Biosafety Assessment and Biotechnology, School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, China
| |
Collapse
|
2
|
De Maio FA, Winter M, Abate S, Birochio D, Iglesias NG, Barrio DA, Bellusci CP. Torque teno sus virus k2a (TTSuVk2a) in wild boars from northeastern Patagonia, Argentina. Braz J Microbiol 2024; 55:981-989. [PMID: 38286944 PMCID: PMC10920574 DOI: 10.1007/s42770-024-01261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/14/2024] [Indexed: 01/31/2024] Open
Abstract
Torque teno sus virus k2a (TTSuVk2a) is a member of the family Anelloviridae that can establish persistent infections in both domestic pigs and wild boars. Its association with diseases has not been precisely elucidated, and it is often considered only as a commensal virus. This infectious agent has been reported in herds throughout the world. In this study, we investigated the detection rate and diversity of TTSuVk2a in free-living wild boars from northeastern Patagonia, Argentina. Total DNA was extracted from tonsil samples of 50 animals, nested PCR assays were carried out, and infection was verified in 60% of the cases. Sequence analysis of the viral non-coding region revealed distinct phylogenetic groups. These clusters showed contrasting patterns of spatial distribution, which presented statistically significant differences when evaluating spatial aggregation. In turn, the sequences were compared with those available in the database to find that the clusters were distinguished by having similarity with TTSuVk2a variants of different geographic origin. The results suggested that Patagonian wild boar populations are bearers of diverse viral strains of Asian, European, and South American provenance.
Collapse
Affiliation(s)
- Federico Andrés De Maio
- Universidad Nacional de Río Negro, Sede Atlántica, Centro de Investigaciones y Transferencia Río Negro (CONICET-UNRN), Ruta Provincial N°1 y Rotonda Cooperación, CP 8500, Viedma, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Marina Winter
- Universidad Nacional de Río Negro, Sede Atlántica, Centro de Investigaciones y Transferencia Río Negro (CONICET-UNRN), Ruta Provincial N°1 y Rotonda Cooperación, CP 8500, Viedma, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Sergio Abate
- Universidad Nacional de Río Negro, Sede Atlántica, Centro de Investigaciones y Transferencia Río Negro (CONICET-UNRN), Ruta Provincial N°1 y Rotonda Cooperación, CP 8500, Viedma, Río Negro, Argentina
| | - Diego Birochio
- Universidad Nacional de Río Negro, Sede Atlántica, Centro de Investigaciones y Transferencia Río Negro (CONICET-UNRN), Ruta Provincial N°1 y Rotonda Cooperación, CP 8500, Viedma, Río Negro, Argentina
| | - Néstor Gabriel Iglesias
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Laboratorio de Virología Molecular, Instituto de Biotecnología, Universidad Nacional de Hurlingham (UNAHUR), Buenos Aires, Argentina
| | - Daniel Alejandro Barrio
- Universidad Nacional de Río Negro, Sede Atlántica, Centro de Investigaciones y Transferencia Río Negro (CONICET-UNRN), Ruta Provincial N°1 y Rotonda Cooperación, CP 8500, Viedma, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Carolina Paula Bellusci
- Universidad Nacional de Río Negro, Sede Atlántica, Centro de Investigaciones y Transferencia Río Negro (CONICET-UNRN), Ruta Provincial N°1 y Rotonda Cooperación, CP 8500, Viedma, Río Negro, Argentina.
| |
Collapse
|
3
|
Wang X, Chen X, Song X, Cao L, Yang S, Shen Q, Ji L, Lu X, Zhang W. Identification of novel anelloviruses in the blood of giant panda (Ailuropoda melanoleuca). Comp Immunol Microbiol Infect Dis 2023; 100:102038. [PMID: 37572592 DOI: 10.1016/j.cimid.2023.102038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/15/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
In recent years, the continuous development of metagenomics has revealed that in addition to the digestive tract, some viruses are also common in mammalian blood. To explore and monitor potential novel viruses, in April 2015, a blood sample was collected from a healthy captive giant panda at the Chengdu Research Base of Giant Panda Breeding in Sichuan Province, China. The genomes of 25 different anelloviruses containing the complete ORF1 region have been identified. The BLASTp results showed that the amino acid sequence identity of these viruses with the best match in GenBank ranged from 27.15% to 41.29%. Based on phylogenetic analysis and SDT (Species Demarcation Tool) analysis of the complete ORF1 regions of these 25 viruses, these sequences were deduced to represent one or several novel virus genera or species. This virological study has increased our understanding of the diversity of anelloviruses in the blood of giant pandas, but further laboratory analysis is needed to verify its possible pathogenicity.
Collapse
Affiliation(s)
- Xiaochun Wang
- Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xurong Chen
- Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xulai Song
- Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ling Cao
- Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shixing Yang
- Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Quan Shen
- Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Likai Ji
- Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiang Lu
- Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Wen Zhang
- Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
4
|
de Souza AE, Cruz ACDM, Rodrigues IL, de Carvalho ECQ, Varella RB, Medina RM, Rodrigues RBR, Silveira RL, de Castro TX. Molecular detection of porcine circovirus (PCV2 and PCV3), torque teno swine virus 1 and 2 (TTSuV1 and TTSuVk2), and histopathological findings in swine organs submitted to regular slaughter in Southeast, Brazil. BRAZILIAN JOURNAL OF VETERINARY MEDICINE 2023; 45:e000623. [PMID: 37521362 PMCID: PMC10374291 DOI: 10.29374/2527-2179.bjvm000623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/06/2023] [Indexed: 08/01/2023] Open
Abstract
Porcine circovirus 2 and 3 (PCV2 and PCV3) and torque teno sus virus 1 and 2 (TTSuV1 and TTSuVk2) are important pathogens in pig associated with post-weaning mortality, different clinical syndromes in adults (PCVAD), and a decrease of average daily weight gain (PCV2-SI) but little is known about the infection on asymptomatic pigs. The aim of this study was to evaluate the presence of PCV2, PCV3, TTSuV1, and TTSuVk2 in swine organ samples from asymptomatic pigs slaughtered in Espírito Santo State, South-eastern Brazil, through molecular detection and histopathological analysis. Nested PCR showed the presence of PCV2 DNA in 10% (14/140), PCV3 in 13.6% (19/140), TTSuV1 in 12.9% (18/140), and TTSuVk2 in 30% (42/140) of the tissue samples. All four viruses were detected in the lung, kidney, lymph node, and liver. TTSuVk2 was detecded in 30% (42/140), PCV3 in 13.6% (19/140), TTSuV1 in 12.9% (18/140), and PCV2 in 10% (14/140) of the samples. Single infections were observed in 30.7% (43/140), while co-detections in the same tissue occurred in 15.7% (22/140). The most frequent combinations were TTSuV1/TTSuVk2 in 31.8% (7/22), PCV2/TTSuVk2 in 18.1% (4/22), and PCV2/PCV3/TTSuVk2 in 13.6% (3/22). Lymphocyte depletion was associated with TTSuVk2 infection (p = 0.0041) suggesting that TTSuVK2 plays an induction of PMWS-like lymphoid lesions in pigs. The data obtained in this study show that PCV2, PCV3, TTSuV1, and TTSuVk2 are related to infection in asymptomatic animals with different tissue lesions, and the molecular diagnosis for these pathogens should be considered in the sanitary monitoring of herds.
Collapse
Affiliation(s)
- Amanda Eduarda de Souza
- Veterinarian, Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas (PPGMPA), Departamento de Microbiologia e Parasitologia (MIP), Universidade Federal Fluminense (UFF). Niterói, RJ. Brazil.
| | | | - Ingrid Lyrio Rodrigues
- Veterinarian, MSc. PPGMPA, MIP, UFF. Niterói, RJ. Brazil.
- Veterinarian, DSc. Faculdade de Veterinária, Departamento de Zootecnia (MMO), UFF. Niterói, RJ. Brazil.
| | | | | | | | | | | | | |
Collapse
|
5
|
De Maio FA, Winter M, Abate S, Cifuentes S, Iglesias NG, Barrio DA, Bellusci CP. Detection of porcine circovirus 2, porcine parvovirus 1, and torque teno sus virus k2a in wild boars from northeastern Patagonia, Argentina. Arch Virol 2023; 168:208. [PMID: 37462757 DOI: 10.1007/s00705-023-05831-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/06/2023] [Indexed: 07/21/2023]
Abstract
Wild boars can act as a reservoir of pathogenic viruses that affect the pig industry. Here, we assessed the presence of porcine circovirus 2, porcine parvovirus 1, and torque teno sus virus k2a in wild boars in northeastern Patagonia (Argentina). Total DNA was extracted from the tonsils of 27 animals (collected between early 2016 and mid-2019) and used to prepare sample pools, which were subjected to viral detection through two-round PCR assays. Sequencing of the amplification products and phylogenetic analysis confirmed the occurrence of all of the aforementioned infectious agents.
Collapse
Affiliation(s)
- Federico Andrés De Maio
- Universidad Nacional de Río Negro, Sede Atlántica, Centro de Investigaciones y Transferencia Río Negro (CONICET-UNRN), Ruta provincial N°1 y Rotonda Cooperación, CP 8500, Viedma, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Marina Winter
- Universidad Nacional de Río Negro, Sede Atlántica, Centro de Investigaciones y Transferencia Río Negro (CONICET-UNRN), Ruta provincial N°1 y Rotonda Cooperación, CP 8500, Viedma, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Sergio Abate
- Universidad Nacional de Río Negro, Sede Atlántica, Centro de Investigaciones y Transferencia Río Negro (CONICET-UNRN), Ruta provincial N°1 y Rotonda Cooperación, CP 8500, Viedma, Río Negro, Argentina
| | - Sabrina Cifuentes
- Universidad Nacional de Río Negro, Sede Atlántica, Centro de Investigaciones y Transferencia Río Negro (CONICET-UNRN), Ruta provincial N°1 y Rotonda Cooperación, CP 8500, Viedma, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Néstor Gabriel Iglesias
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Universidad Nacional de Hurlingham (UNAHUR), Buenos Aires, Argentina
| | - Daniel Alejandro Barrio
- Universidad Nacional de Río Negro, Sede Atlántica, Centro de Investigaciones y Transferencia Río Negro (CONICET-UNRN), Ruta provincial N°1 y Rotonda Cooperación, CP 8500, Viedma, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Carolina Paula Bellusci
- Universidad Nacional de Río Negro, Sede Atlántica, Centro de Investigaciones y Transferencia Río Negro (CONICET-UNRN), Ruta provincial N°1 y Rotonda Cooperación, CP 8500, Viedma, Río Negro, Argentina.
| |
Collapse
|
6
|
Yan T, Zhao M, Sun Y, Zhang S, Zhang X, Liu Q, Li Y, Cheng Z. Molecular evolution analysis of three species gyroviruses in China from 2018 to 2019. Virus Res 2023; 326:199058. [PMID: 36731631 DOI: 10.1016/j.virusres.2023.199058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Gyrovirus (GyV) is a widespread ssDNA virus with a high population diversity, and several of its species, including the chicken anemia virus (CAV), gyrovirus galga 1 (GyG1), and gyrovirus homsa 1 (GyH1), have been shown to be pathogenic to poultry. The evolution of these viruses, however, is still unclear. Our study analyzed epidemiology and molecular evolution of three species of GyVs (CAV, GyG1, and GyH1) from 2018 to 2019 in China. The survey results indicated that GyV was widespread in China. It is vital to consider the coinfections among the three species of GyV. The phylogenetic analysis showed that CAV was divided into three clades and GyG1 and GyH1 were divided into two clades. Based on the recombination analysis, CAV and GyG1 had similar recombination regions associated with viral replication and transcription. Furthermore, the substitution rates for CAV and GyG1 were approximately 6.09 × 10-4 and 2.784 × 10-4 nucleotides per site per year, respectively. The high substitution rate and recombination were the main factors for the high diversity of GyVs. Unfortunately, GyH1 strains have not been discovered in enough numbers to allow evolutionary analysis. The GyVs had several positively selected sites, possibly related to their potential to escape the host immune response. In summary, our study provides insights into the time of origin, evolution rate, and recombination of GyV for assessing their evolutionary process and genetic diversity.
Collapse
Affiliation(s)
- Tianxing Yan
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Manda Zhao
- Department of Animal Science and Technology, Vocational-technical school of Husbandry and Veterinary Medicine, Weifang, 261061, China
| | - Yufeng Sun
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Shicheng Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Xianwen Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Qing Liu
- Service center of Jinan Zoo, Jinan, 250032, China
| | - Yubao Li
- Liaocheng University, Liaocheng, 252059, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
7
|
Identification and Genomic Characterization of Anelloviruses in Patients with Chronic Lymphocytic Leukemia. J Clin Pharm Ther 2023. [DOI: 10.1155/2023/4125745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Purpose. Metagenomics has revealed that, in addition to the digestive tract, certain viruses are also commonly found in human blood. In order to explore and monitor potential novel viruses, three serum samples of patients with chronic lymphocytic leukemia were collected at the No. 2 People’s Hospital of Changshu City, China. Materials and Methods. We sequenced the virome of serum samples from three patients with chronic lymphocytic leukemia using an unbiased viral metagenomic approach and subsequently performed maximum likelihood phylogenetic analysis using MrBayes v3.2. In addition, pairwise sequence comparison was produced with ORF1 amino acid sequences of anelloviruses within Bayesian consensus tree. Results. Partial genomes of eight different anelloviruses containing the complete ORF1 gene have been identified. BLASTp results showed that the amino acid sequence identity of these viruses with the best match in GenBank was between 56.22% and 95.43%. Phylogenetic analysis based on ORF1 indicated that seven sequences belong to the genus Alphatorquevirus and one sequence belongs to the genus Gammatorquevirus. Conclusions. This virological investigation has increased our understanding of the diversity of anelloviruses in human serum, but further study is needed to verify its potential correlation with disease.
Collapse
|
8
|
Tan CY, Thanawongnuwech R, Arshad SS, Hassan L, Fong MWC, Ooi PT. Genotype Shift of Malaysian Porcine Circovirus 2 (PCV2) from PCV2b to PCV2d within a Decade. Animals (Basel) 2022; 12:1849. [PMID: 35883396 PMCID: PMC9311952 DOI: 10.3390/ani12141849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 12/18/2022] Open
Abstract
This paper aims to update the molecular status of porcine circovirus 2 (PCV2) in Malaysia. Firstly, the molecular detection rate of PCV2 in farm and sampled pig population were reported to be 83.78% (31/37 farms) and 83.54% (66/79 pigs) positive for PCV2, respectively. PCV2 was detected across all age groups, from fetuses, porkers to sows. Co-detection of PCV2 and PCV3 antigens was also reported at a rate of 28.77% (21/73). Secondly, PCV2 antigen was also detected in Malaysian abattoir lung samples: 18 out of 19 (94.74%) samples originating from clinically healthy finishers were tested positive. Further, this is the first study to confirm the circulation of PCV2 in the wild boar population roaming Peninsular Malaysia, where 28 out of 28 (100%) wild boar lung samples were found positive. One decade earlier, only genotype PCV2b was reported in Malaysia. This most recent update revealed that genotypes PCV2a, PCV2b and PCV2d were present, with PCV2d being the predominant circulating genotype. PCV2 cap gene nucleotide sequences in this study were found to be under negative selection pressure, with an estimated substitution rate of 1.102 × 10-3 substitutions/site/year (ssy).
Collapse
Affiliation(s)
- Chew Yee Tan
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (C.Y.T.); (S.S.A.); (L.H.); (M.W.C.F.)
| | - Roongroje Thanawongnuwech
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri Dunant Road, Pathumwan, Bangkok 10330, Thailand;
| | - Siti Suri Arshad
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (C.Y.T.); (S.S.A.); (L.H.); (M.W.C.F.)
| | - Latiffah Hassan
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (C.Y.T.); (S.S.A.); (L.H.); (M.W.C.F.)
| | - Michelle Wai Cheng Fong
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (C.Y.T.); (S.S.A.); (L.H.); (M.W.C.F.)
| | - Peck Toung Ooi
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (C.Y.T.); (S.S.A.); (L.H.); (M.W.C.F.)
| |
Collapse
|
9
|
da Silva Andrade J, Loiko MR, Schmidt C, Vidalett MR, Lopes BC, Cerva C, Varela APM, Tochetto C, Maciel ALG, Bertagnolli AC, Rodrigues RO, Roehe PM, Lunge VR, Mayer FQ. Molecular survey of Porcine Respiratory Disease Complex pathogens in Brazilian wild boars. Prev Vet Med 2022; 206:105698. [DOI: 10.1016/j.prevetmed.2022.105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/16/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
|
10
|
First Report of TTSuV1 in Domestic Swiss Pigs. Viruses 2022; 14:v14050870. [PMID: 35632612 PMCID: PMC9146045 DOI: 10.3390/v14050870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/08/2022] [Accepted: 04/21/2022] [Indexed: 12/14/2022] Open
Abstract
Serum prevalence of Torque teno sus viruses (TTSuV1 and k2; family Anelloviridae) is known to be high in the porcine population worldwide but pathogenesis and associated pathomorphological lesions remain to be elucidated. In this study, quantitative real-time PCR for detection of TTSuV1 was performed in 101 porcine samples of brain tissue, with animals showing inflammatory lesions or no histological changes. Additionally, a pathomorphological and immunohistochemical characterization of possible lesions was carried out. Selected cases were screened by TTSuV1 in situ hybridization. Furthermore, TTSuV1 quantitative real-time PCR in splenic and pulmonary tissue and in situ hybridization (ISH) in spleen, lungs, mesenteric lymph node, heart, kidney, and liver were performed in 22 animals. TTSuV1 was detected by PCR not only in spleen and lung but also in brain tissue (71.3%); however, in general, spleen and lung tissue displayed lower Ct values than the brain. Positive TTSuV1 results were frequently associated with the morphological diagnosis of non-suppurative encephalitis. Single TTSuV1-positive lymphocytes were detected by ISH in the brain but also in lungs, spleen, mesenteric lymph node and in two cases of non-suppurative myocarditis. A pathogenetic role of a TTSuV1 infection as a co-factor for non-suppurative encephalitides cannot be ruled out.
Collapse
|
11
|
Righi F, Arnaboldi S, Filipello V, Ianiro G, Di Bartolo I, Calò S, Bellini S, Trogu T, Lelli D, Bianchi A, Bonardi S, Pavoni E, Bertasi B, Lavazza A. Torque Teno Sus Virus (TTSuV) Prevalence in Wild Fauna of Northern Italy. Microorganisms 2022; 10:microorganisms10020242. [PMID: 35208696 PMCID: PMC8875128 DOI: 10.3390/microorganisms10020242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
Torque teno sus virus (TTSuV) is a non-enveloped circular ssDNA virus which frequently infects swine and has been associated with hepatic, respiratory, and autoimmune disorders. TTSuV’s pathogenic role is still uncertain, and clear data in the literature on virus reservoirs are lacking. The aims of this study were to investigate the presence of potentially zoonotic TTSuV in wild animals in Northern Italy and to evaluate their role as reservoirs. Liver samples were collected between 2016 and 2020 during four hunting seasons from wild boars (Sus scrofa), red deer (Cervus elaphus), roe deer (Capreolus capreolus), and chamois (Rupicapra rupicapra). Samples originated from areas in Northern Italy characterized by different traits, i.e., mountains and flatland with, respectively low and high farm density and anthropization. Viral identification was carried out by end-point PCR with specific primers for TTSuV1a and TTSuVk2a species. TTSuV prevalence in wild boars was higher in the mountains than in the flatland (prevalence of 6.2% and 2.3%, respectively). In wild ruminants only TTSuVk2a was detected (with a prevalence of 9.4%). Our findings shed light on the occurrence and distribution of TTSuV in some wild animal species, investigating their possible role as reservoirs.
Collapse
Affiliation(s)
- Francesco Righi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; (F.R.); (V.F.); (S.C.); (S.B.); (T.T.); (D.L.); (E.P.); (B.B.); (A.L.)
- National Reference Centre for Emerging Risks in Food Safety (CRESA), Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 20133 Milan, Italy
| | - Sara Arnaboldi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; (F.R.); (V.F.); (S.C.); (S.B.); (T.T.); (D.L.); (E.P.); (B.B.); (A.L.)
- National Reference Centre for Emerging Risks in Food Safety (CRESA), Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 20133 Milan, Italy
- Correspondence: ; Tel.: +39-030-229-0781
| | - Virginia Filipello
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; (F.R.); (V.F.); (S.C.); (S.B.); (T.T.); (D.L.); (E.P.); (B.B.); (A.L.)
- National Reference Centre for Emerging Risks in Food Safety (CRESA), Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 20133 Milan, Italy
| | - Giovanni Ianiro
- Emerging Zoonoses Unit, Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.I.); (I.D.B.)
| | - Ilaria Di Bartolo
- Emerging Zoonoses Unit, Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.I.); (I.D.B.)
| | - Stefania Calò
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; (F.R.); (V.F.); (S.C.); (S.B.); (T.T.); (D.L.); (E.P.); (B.B.); (A.L.)
| | - Silvia Bellini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; (F.R.); (V.F.); (S.C.); (S.B.); (T.T.); (D.L.); (E.P.); (B.B.); (A.L.)
| | - Tiziana Trogu
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; (F.R.); (V.F.); (S.C.); (S.B.); (T.T.); (D.L.); (E.P.); (B.B.); (A.L.)
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; (F.R.); (V.F.); (S.C.); (S.B.); (T.T.); (D.L.); (E.P.); (B.B.); (A.L.)
| | - Alessandro Bianchi
- Istituto Zooprofilattico della Lombardia e dell’Emilia Romagna (IZSLER), 23100 Sondrio, Italy;
| | - Silvia Bonardi
- Veterinary Science Department, Università degli Studi di Parma, 43100 Parma, Italy;
| | - Enrico Pavoni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; (F.R.); (V.F.); (S.C.); (S.B.); (T.T.); (D.L.); (E.P.); (B.B.); (A.L.)
- National Reference Centre for Emerging Risks in Food Safety (CRESA), Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 20133 Milan, Italy
| | - Barbara Bertasi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; (F.R.); (V.F.); (S.C.); (S.B.); (T.T.); (D.L.); (E.P.); (B.B.); (A.L.)
- National Reference Centre for Emerging Risks in Food Safety (CRESA), Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 20133 Milan, Italy
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; (F.R.); (V.F.); (S.C.); (S.B.); (T.T.); (D.L.); (E.P.); (B.B.); (A.L.)
| |
Collapse
|
12
|
Leng C, Ma Y, Yuan Z, Zhai H, Ding Y, Bao Y, Li H, Ayra-Pardo C, Shi H, Qiu R, Zhang H, Chen K, Kan Y, Yao L, Tian Z. Characterization of two newly emerged torque teno sus virus isolates from a large-scale pig farm in China, in 2018. Res Vet Sci 2021; 136:18-24. [PMID: 33578290 DOI: 10.1016/j.rvsc.2021.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 11/19/2022]
Abstract
Torque teno sus virus (TTSuV) infection is common in China's pig herd. Although of uncertain pathogenicity, TTSuVs have been reported as a worsening factor of other porcine diseases, including porcine circovirus associated disease (PCVAD), porcine respiratory diseases complex (PRDC) or porcine dermatitis and nephropathy syndrome (PDNS). To better understand the genetic diversity in TTSuVs, the complete genomes of two newly emerged isolates, referred to as HeN1-A9 and HeN1-A11, collected from pig samples at a large-scale pig farm in China, were analyzed. Phylogenetic relationships of TTSuV sequences separated TTSuV1 and TTSuVk2a groups and divided TTSuV1 into two major subtypes, including TTSuV1a and TTSuV1b; HeN1-A9 and HeN1-A11 strains classified into the TTSuV1a subtype. Recombination analysis demonstrated HeN1-A9 and HeN1-A11 were generated via recombination in the overlapping ORF1/ORF3 region of TTSuV1a genome, which we report for the first time. Furthermore, we found that HeN1-A9 could be replicated in cultured MARC-145 cells for 18 passages. Our findings may be useful for elucidating the characteristics and epidemic status of TTSuVs in China.
Collapse
Affiliation(s)
- Chaoliang Leng
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Key Laboratory of Insect Biology in Funiu Mountain, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, PR China
| | - Yujing Ma
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Key Laboratory of Insect Biology in Funiu Mountain, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, PR China
| | - Zhiqiao Yuan
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Key Laboratory of Insect Biology in Funiu Mountain, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, PR China
| | - Hongyue Zhai
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Key Laboratory of Insect Biology in Funiu Mountain, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, PR China
| | - Yushan Ding
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Key Laboratory of Insect Biology in Funiu Mountain, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, PR China
| | - Yin Bao
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Key Laboratory of Insect Biology in Funiu Mountain, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, PR China
| | - Huimin Li
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Key Laboratory of Insect Biology in Funiu Mountain, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, PR China
| | - Camilo Ayra-Pardo
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Key Laboratory of Insect Biology in Funiu Mountain, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, PR China
| | - Hongfei Shi
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Key Laboratory of Insect Biology in Funiu Mountain, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, PR China
| | - Reng Qiu
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Key Laboratory of Insect Biology in Funiu Mountain, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, PR China
| | - Hongliang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Ke Chen
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Key Laboratory of Insect Biology in Funiu Mountain, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, PR China
| | - Yunchao Kan
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Key Laboratory of Insect Biology in Funiu Mountain, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, PR China
| | - Lunguang Yao
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Key Laboratory of Insect Biology in Funiu Mountain, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, PR China
| | - Zhijun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China.
| |
Collapse
|
13
|
Cibulski S, Alves de Lima D, Fernandes Dos Santos H, Teixeira TF, Tochetto C, Mayer FQ, Roehe PM. A plate of viruses: Viral metagenomics of supermarket chicken, pork and beef from Brazil. Virology 2021; 552:1-9. [PMID: 33032031 PMCID: PMC7521440 DOI: 10.1016/j.virol.2020.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 02/08/2023]
Abstract
A viral metagenomics study was conducted in beef, pork, and chicken sold in supermarkets from Southern Brazil. From chicken, six distinct gyroviruses (GyV) were detected, including GyV3 and GyV6, which for the first time were detected in samples from avian species, plus a novel smacovirus species and two highly divergent circular Rep-encoding ssDNA (CRESS-DNA) viruses. From pork, genomes of numerous anelloviruses, porcine parvovirus 5 (PPV5) and 6 (PPV6), two new genomoviruses and two new CRESS-DNA viruses were found. Finally, two new CRESS-DNA genomes were recovered from beef. Although none of these viruses have history of transmission to humans, the findings reported here reveal that such agents are inevitably consumed in diets that include these types of meat.
Collapse
Affiliation(s)
- Samuel Cibulski
- Centro de Biotecnologia - CBiotec, Laboratório de Biotecnologia Celular e Molecular, Universidade Federal da Paraíba - UFPB, João Pessoa, Paraíba, Brazil.
| | - Diane Alves de Lima
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Centro Universitário da Serra Gaúcha - FSG, Caxias do Sul, Grande do Sul, Brazil
| | - Helton Fernandes Dos Santos
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria - UFSM, Santa Maria, Rio Grande do Sul, Brazil
| | - Thais Fumaco Teixeira
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, RS, Brazil
| | - Caroline Tochetto
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabiana Quoos Mayer
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, RS, Brazil
| | - Paulo Michel Roehe
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
14
|
Epidemiology and evolutionary analysis of Torque teno sus virus. Vet Microbiol 2020; 244:108668. [PMID: 32402339 DOI: 10.1016/j.vetmic.2020.108668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 11/20/2022]
Abstract
Single stranded (ss) DNA viruses are increasingly being discovered due to the ongoing development of modern technologies in exploring the virosphere. Characterized by high rates of recombination and nucleotide substitutions, it could be comparable to RNA virus ones. Torque teno sus virus (TTSuV) is a standard ssDNA virus with a high population diversity, whose evolution is still obscure, further, it is frequently found in co-infections with other viruses threatening the porcine industry and therefore share the same host and epidemiological context. Here, we implement and describe approach to integrate viral nucleotide sequence analysis, surveillance data, and a structural approach to examine the evolution of TTSuVs, we collected samples from pigs displaying respiratory signs in China and revealed a high prevalence of TTSuV1 and TTSuVk2, frequently as part of co-infections with porcine circoviruses (PCVs), especially in spleen and lung. In addition, thirty six strains sequenced were obtained to investigate their genetic diversity in China. The evolutionary history of TTSuVs were unveiled as following: At the nucleotide sequence level, TTSuVs ORF1 was confirmed to be a robust phylogenetic maker to study evolution comparably to full genomes. Additionally, extensive recombination discovered within TTSuVk2a (also 5 out of the 36 sequenced strains in this study revealed to be recombination). Then, pairwise distance, phylogenetic trees, and amino acid analysis confirmed TTSuVs species, and allowed to define circulating genotypes (TTSuV1a-1, 1a-2, 1b-1, 1b-2, 1b-3, and k2a-1, k2a-2, k2b). Selection analysis uncovered seven and six positive selected sites in TTSuV1 and TTSuVk2, respectively. At the protein structure level, mapping of sites onto the three-dimensional structure revealed that several positive selected sites locate into potential epitopes, which might related to the potential escaping from host immune response. Our result could assist future studies on swine ssDNA virus classification, surveillance and control.
Collapse
|
15
|
Viral DNA genomes in sera of farrowing sows with or without stillbirths. PLoS One 2020; 15:e0230714. [PMID: 32214388 PMCID: PMC7098587 DOI: 10.1371/journal.pone.0230714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/06/2020] [Indexed: 11/19/2022] Open
Abstract
A study was conducted to investigate the serum virome of sows with and without stillbirths after farrowing. Sera from sows with at least one stillbirth or with normal litters were collected immediately after farrowing. Viral DNA was extracted from serum pools and submitted to high throughput sequencing. No differences in the proportion of virus-related reads were found in both groups (p > 0.05). A variety of viral DNA genomes were identified, mostly representative of three viral families: Anelloviridae, Circoviridae and Smacoviridae. Besides, a number of novel unclassified circular Rep-encoding single stranded DNA (CRESS DNA) viruses were also identified. These findings suggest that the presence of such viral genomes in sows’ sera bears no correlation with stillbirths’ occurrence; it seems likely that these constitute part of the normal serum microbiome of sows at farrowing.
Collapse
|
16
|
Subramanyam V, Hemadri D, Kashyap SP, Hiremath J, Barman NN, Ralte EL, Patil SS, Suresh KP, Rahaman H. Detection of torque teno sus virus infection in Indian pigs. Vet World 2019; 12:1467-1471. [PMID: 31749583 PMCID: PMC6813605 DOI: 10.14202/vetworld.2019.1467-1471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background and Aim: Torque teno viruses (TTVs) are circular, single-stranded DNA viruses, which infect a wide range of animals including livestock and companion animals. Swine TTVs (torque teno sus viruses [TTSuVs]) are thought to act as a primary or coinfecting pathogen in pathological conditions such as porcine dermatitis and nephropathy syndrome and post-weaning multisystemic wasting syndrome. So far, the presence of the virus has not been reported in India. Considering that TTSuVs have the potential to cross the species barrier into humans and that pork consumption is common in North-Eastern states of India, the current study aims to investigate the presence of TTSuV in the Indian pig population. Materials and Methods: A total of 416 samples were collected during 2014-2018, from both apparently healthy pigs and also from pigs suspected of having died from classical swine fever and/or porcine reproductive and respiratory syndrome. These samples were screened for TTSuV infection by polymerase chain reaction (PCR) and DNA sequencing techniques. Results: The presence of the virus was confirmed in 110 samples from 12 different states of India. Phylogenetic analysis of the nucleotide sequences obtained from the PCR products indicated the presence of viruses of both Iotatorquevirus and Kappatorquevirus genera in India. Conclusion: The study is the first report on the presence of TTSuVs in India and highlights the circulation of both genera of the virus in the country.
Collapse
Affiliation(s)
- Vinutha Subramanyam
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, Karnataka, India.,Department of Microbiology and Biotechnology, Jain University, Bengaluru, Karnataka, India
| | - Divakar Hemadri
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, Karnataka, India
| | - Shashidhara Phani Kashyap
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, Karnataka, India.,Department of Microbiology and Biotechnology, Jain University, Bengaluru, Karnataka, India
| | - Jagadish Hiremath
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, Karnataka, India
| | - Nagendra Nath Barman
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agriculture University, Guwahati, Assam, India
| | - Esther Lalzoliani Ralte
- State Disease Investigation Laboratory, Directorate of Animal Husbandry and Veterinary, Aizawl, Mizoram, India
| | - Sharanagouda S Patil
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, Karnataka, India
| | - Kuralayanapalya P Suresh
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, Karnataka, India
| | - Habibur Rahaman
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, Karnataka, India.,Regional Representative for South Asia, International Livestock Research Institute, New Delhi, India
| |
Collapse
|
17
|
Li G, Zhang W, Wang R, Xing G, Wang S, Ji X, Wang N, Su S, Zhou J. Genetic Analysis and Evolutionary Changes of the Torque teno sus Virus. Int J Mol Sci 2019; 20:E2881. [PMID: 31200479 PMCID: PMC6628323 DOI: 10.3390/ijms20122881] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 01/03/2023] Open
Abstract
The torque teno sus virus (TTSuV) is an emerging virus threating the Suidae species of unclear pathogenicity, although it was previously reported as a worsening factor of other porcine diseases, in particular, porcine circovirus associated disease (PCVAD). Here, a comprehensive codon usage analysis of the open reading frame 1 (ORF1), which encodes the viral capsid protein, was undertaken for the first time to reveal its evolutionary history. We revealed independent phylogenetic processes for the two genera during TTSuV evolution, which was confirmed by principal component analysis (PCA). A low codon usage bias was observed in different genera and different species, with Kappatorquevirus a (TTSuVk2a) displaying the highest, which was mainly driven by mutation pressure and natural selection, especially natural selection. Overall, ATs were more abundant than GCs, along with more A-ended synonymous codons in relative synonymous codon usage (RSCU) analysis. To further confirm the role of natural selection and TTSuV adaptation to the Suidae species, codon adaptation index (CAI), relative codon deoptimization index (RCDI), and similarity index (SiD) analyses were performed, which showed different adaptations for different TTSuVs. Importantly, we identified a more dominant role of Sus scrofa in the evolution of Iotatorquevirus (TTSuV1), with the highest CAI values and lowest RCDI values compared to Sus scrofa domestica. However, in TTSuVk2, the roles of Sus scrofa and Sus scrofa domestica were the same, regarding codon usage, with similar CAI and RCDI values. Our study provides a new perspective of the evolution of TTSuV and valuable information to develop control measures against TTSuV.
Collapse
Affiliation(s)
- Gairu Li
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China.
| | - Wenyan Zhang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China.
| | - Ruyi Wang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China.
| | - Gang Xing
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310027, China.
| | - Shilei Wang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China.
| | - Xiang Ji
- Department of Biomathematics, University of California, Los Angeles, CA 90095, USA.
| | - Ningning Wang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China.
| | - Shuo Su
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China.
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|