1
|
Duan SH, Li ZM, Yu XJ, Li D. Alphaherpesvirus in Pets and Livestock. Microorganisms 2025; 13:82. [PMID: 39858850 PMCID: PMC11767655 DOI: 10.3390/microorganisms13010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Herpesviruses are a group of DNA viruses capable of infecting multiple mammalian species, including humans. This review primarily summarizes four common alphaherpesviruses found in pets and livestock (feline, swine, canine, and bovine) in aspects such as epidemiology, immune evasion, and latency and reactivation. Despite the fact that they primarily infect specific hosts, these viruses have the potential for cross-species transmission due to genetic mutations and/or recombination events. During infection, herpesviruses not only stimulate innate immune responses in host cells but also interfere with signaling pathways through specific proteins to achieve immune evasion. These viruses can remain latent within the host for extended periods and reactivate under certain conditions to trigger disease recurrence. They not only affect the health of animals and cause economic losses but may also pose a potential threat to humans under certain circumstances. This review deepens our understanding of the biological characteristics of these animal alphaherpesviruses and provides an important scientific basis for the prevention and control of related diseases.
Collapse
Affiliation(s)
- Shu-Hui Duan
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan 430071, China; (S.-H.D.); (Z.-M.L.)
| | - Ze-Min Li
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan 430071, China; (S.-H.D.); (Z.-M.L.)
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan 430071, China; (S.-H.D.); (Z.-M.L.)
| | - Dan Li
- Hubei Provincial Center for Disease Control and Prevention, Institute for Infectious Disease Prevention and Control, Wuhan 430079, China
| |
Collapse
|
2
|
Yang M, Jiao Y, Yan Y, Fu Z, Li L, Liu Z, Fang L, Hu X, Wu B, Shi Y, Li M, Shen Z, Peng G. Recombinant feline herpesvirus-1 (FHV-1) expressing granulocyte colony-stimulating factor (G-CSF) exhibits enhanced protective efficacy in felines. Virology 2025; 601:110282. [PMID: 39520791 DOI: 10.1016/j.virol.2024.110282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/15/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Vaccine efficacy relies not only on antigens but also on immunomodulatory agents/adjuvants that are often used to stimulate the immune system and enhance the immune response. However, current immunomodulatory agents are used to increase the immune response induced by viral or bacterial inactivated vaccine antigens, bacterial toxoids or polysaccharides but not attenuated live viruses. Based on the immunomodulatory functions of G-CSF and the characteristics of feline herpesvirus-1 (FHV-1) as an expression vector, a recombinant virus expressing feline G-CSF (WH2020-ΔTK/gI/gE-G-CSF) was constructed. The growth dynamics of WH2020-ΔTK/gI/gE-G-CSF were similar to those of WH2020-ΔTK/gI/gE. Compared with kittens vaccinated with WH2020 Δ TK/gI/gE, felines inoculated with WH2020 ΔTK/gI/gE-G-CSF produced more neutralizing antibodies and neutrophils, further alleviating clinical symptoms after FHV-1 infection. Taken together, our results revealed the potential of G-CSF as an ideal immune potentiator that can augment immune responses to FHV-1 and even other attenuated live vaccines.
Collapse
Affiliation(s)
- Mengfang Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, China
| | - Yuzhou Jiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, China
| | - Yuanyuan Yan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, China
| | - Zhen Fu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, China
| | - Lisha Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, China
| | - Zirui Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, China
| | - Lingying Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, China
| | - Xiaoshuai Hu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, China
| | - Benyuan Wu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, China
| | - Yuejun Shi
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, China
| | - Mengxia Li
- Wuhan Keqian Biology Co., Ltd., Wuhan, 430070, China.
| | - Zhou Shen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, China.
| | - Guiqing Peng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, China
| |
Collapse
|
3
|
Yang J, Li L, Xu F, Jia F. Development of a reporter feline herpesvirus-1 for antiviral screening assays. Vet Res 2024; 55:167. [PMID: 39696698 DOI: 10.1186/s13567-024-01430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/28/2024] [Indexed: 12/20/2024] Open
Abstract
Feline herpesvirus type 1 (FHV-1), a member of the Herpesviridae family, is one of the most important pathogens that causes upper respiratory tract disease in felines. Following infection, FHV-1 can spread retrogradely to the trigeminal ganglia, establishing a life-long latency. Although vaccines are available for routine feline vaccination, FHV-1 is still an agent that poses a serious threat to feline health. There are currently no specific drugs for the treatment of FHV-1. To facilitate the screening of antiviral drugs, we constructed a reporter FHV-1 virus, which expresses a secreted Gaussia luciferase (GLuc) and a bright green fluorescent protein, mNeonGreen. The reporter virus shows slower growth than does the wild-type FHV-1. The expression of the two reporter genes, Gluc and mNeonGreen, was consistent with viral propagation and remained stable during continuous passage in CRFK cells, even after twenty rounds. In addition, the known inhibitor ganciclovir was used to confirm the characteristics of the reporter virus for drug screening. We found that the reporter FHV-1 is suitable for antiviral screening assays. Overall, our work provides a useful tool for screening drugs to combat FHV-1.
Collapse
Affiliation(s)
- Jia Yang
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Li Li
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Fuqiang Xu
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, 518107, China
| | - Fan Jia
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, 518107, China.
| |
Collapse
|
4
|
Qi M, Yang M, Luo R, Fang L, Chen Y, Gao J, Jiao Z, Shi Y, Peng G. A novel neuro-attenuated vaccine candidate with excellent safety and protective efficacy against highly virulent Feline Herpesvirus-1. Vet Microbiol 2024; 298:110276. [PMID: 39442428 DOI: 10.1016/j.vetmic.2024.110276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Feline herpesvirus 1 (FHV-1) is a major pathogen responsible for respiratory, ocular and nervous system symptoms in felines. FHV-1 can remain latenct in ganglia and is difficult to eliminate completely with drug treatment. Currently, commercially FHV-1 vaccines are not sufficiently effective and provide only limited durations of protection. To enhance vaccine efficacy and reduce latent virus in tissues, two gene deletion mutants of FHV-1 conveyed excellent proliferation ability, genetic stability and attenuated FHV-1 virulence were constructed by CRISPR/Cas9-mediated homologous recombination, designated as FHV-△US3 and FHV-△UL50. Recombinant FHV-1 induce stronger cellular and humoral immune responses, as well as better protective effects than those of commercial vaccines. Notably, FHV-△US3 and FHV-△UL50 reveal neuro-attenuated, as viral residue in the trigeminal ganglia are significantly reduced. The knockout of the UL50 gene in FHV-1 has not been previously reported. In this study, we aimed to evaluate the safety and immunogenicity of FHV-△UL50, highlighting its potential as a novel neuroattenuated vaccine candidate.
Collapse
Affiliation(s)
- Mingyu Qi
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Lab, Wuhan, China
| | - Mengfang Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Lab, Wuhan, China
| | - Ruxue Luo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Lab, Wuhan, China
| | - Lingying Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Lab, Wuhan, China
| | - Yixi Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Lab, Wuhan, China
| | - Jianuo Gao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Lab, Wuhan, China
| | - Zhe Jiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Lab, Wuhan, China.
| | - Yuejun Shi
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Lab, Wuhan, China.
| | - Guiqing Peng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Lab, Wuhan, China.
| |
Collapse
|
5
|
Xiao X, Xu F, Jia F. Early Transcriptional Changes in Feline Herpesvirus-1-Infected Crandell-Rees Feline Kidney Cells. Vet Sci 2024; 11:529. [PMID: 39591303 PMCID: PMC11599068 DOI: 10.3390/vetsci11110529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
FHV-1 is a highly contagious pathogen that significantly threatens feline health and contributes to rising pet healthcare costs. The mechanisms underlying FHV-1 and host interactions remain poorly understood. For the first time, we conducted a systematic analysis of transcriptomic changes in CRFK cells following FHV-1 infection using RNA-seq. The differentially expressed genes (DEGs) displayed significant associations with cellular components, particularly the chromatin structure. Pathway analysis of the DEGs highlighted key host immune responses, including Toll-like receptors (TLRs), IL-17, TNF, MAPK, and Rap1 signaling pathways. By integrating the RNA-seq and RT-qPCR results, we identified CXCL8, CXCL10, MMP1, MMP9, CSF2, CSF3, CCL20, TLR2, TLR3, TLR4, TNF, and FOS as potentially important genes in the host's immune response to FHV-1. These findings provide valuable insights into the mechanisms underlying FHV-1 and host interactions.
Collapse
Affiliation(s)
- Xiuqing Xiao
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (X.X.); (F.X.)
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuqiang Xu
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (X.X.); (F.X.)
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Fan Jia
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (X.X.); (F.X.)
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| |
Collapse
|
6
|
Luo X, Liang R, Liang L, Tang A, Hou S, Ding J, Li Z, Tang X. Advancements, challenges, and future perspectives in developing feline herpesvirus 1 as a vaccine vector. Front Immunol 2024; 15:1445387. [PMID: 39328406 PMCID: PMC11424437 DOI: 10.3389/fimmu.2024.1445387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
As the most prevalent companion animal, cats are threatened by numerous infectious diseases and carry zoonotic pathogens such as Toxoplasma gondii and Bartonella henselae, which are the primary causes of human toxoplasmosis and cat-scratch disease. Vaccines play a crucial role in preventing and controlling the spread of diseases in both humans and animals. Currently, there are only three core vaccines available to prevent feline panleukopenia, feline herpesvirus, and feline calicivirus infections, with few vaccines available for other significant feline infectious and zoonotic diseases. Feline herpesvirus, a major component of the core vaccine, offers several advantages and a stable genetic manipulation platform, making it an ideal model for vaccine vector development to prevent and control feline infectious diseases. This paper reviews the technologies involved in the research and development of the feline herpesvirus vaccine vector, including homologous recombination, CRISPR/Cas9, and bacterial artificial chromosomes. It also examines the design and effectiveness of expressing antigens of other pathogens using the feline herpesvirus as a vaccine vector. Additionally, the paper analyzes existing technical bottlenecks and challenges, providing an outlook on its application prospects. The aim of this review is to provide a scientific basis for the research and development of feline herpesvirus as a vaccine vector and to offer new ideas for the prevention and control of significant feline infectious and zoonotic diseases.
Collapse
Affiliation(s)
- Xinru Luo
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) and Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs (MARA), Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruiying Liang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) and Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs (MARA), Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Liang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) and Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs (MARA), Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aoxing Tang
- Shanghai Veterinary Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shaohua Hou
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) and Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs (MARA), Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiabo Ding
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) and Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs (MARA), Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zibin Li
- College of Life and Health, Dalian University, Dalian, China
| | - Xinming Tang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) and Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs (MARA), Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Deng M, Liang H, Xu Y, Shi Q, Bao F, Mei C, Dai Z, Huang X. Identification, Genetic Characterization, and Pathogenicity of Three Feline Herpesvirus Type 1 Isolates from Domestic Cats in China. Vet Sci 2024; 11:285. [PMID: 39057969 PMCID: PMC11281335 DOI: 10.3390/vetsci11070285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Feline herpesvirus (FHV-1) is a significant pathogen in cats, causing respiratory and ocular diseases with consequential economic and welfare implications. (2) Methods: This study aimed to isolate and characterize FHV-1 from clinical samples and assess its pathogenicity. We collected 35 nasal and ocular swabs from cats showing symptoms of upper respiratory tract infection and FHV positivity detected by polymerase chain reaction (PCR). Viral isolation was carried out using feline kidney (F81) cell lines. Confirmation of FHV-1 presence was achieved through PCR detection, sequencing, electron microscopy, and indirect immunofluorescence assay. The isolated strains were further characterized by evaluating their titers, growth kinetics, and genetic characteristics. Additionally, we assessed the pathogenicity of the isolated strains in a feline model, monitoring clinical signs, viral shedding, and histopathological changes. (3) Results: Three strains of FHV-1 were isolated, purified, and identified. The isolated FHV-1 strains exhibited high homology among themselves and with domestic isolates and FHV-1 viruses from around the world. However, they showed varying degrees of virulence, with one strain (FHV-A1) causing severe clinical signs and histopathological lesions. (4) Conclusion: This study advances our understanding of the genetic and pathogenic characteristics of FHV-1 in China. These findings underscore FHV-A1 isolate as a potentially ideal candidate for establishing a challenge model and as a potential vaccine strain for vaccine development.
Collapse
Affiliation(s)
- Mingliang Deng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China;
- Ningbo Sansheng Biological Technology Co., Ltd., Ningbo 315000, China
| | - Haiyang Liang
- Ningbo Sansheng Biological Technology Co., Ltd., Ningbo 315000, China
| | - Yue Xu
- Ningbo Sansheng Biological Technology Co., Ltd., Ningbo 315000, China
| | - Qiwen Shi
- Ningbo Sansheng Biological Technology Co., Ltd., Ningbo 315000, China
| | - Fang Bao
- Ningbo Sansheng Biological Technology Co., Ltd., Ningbo 315000, China
| | - Caiying Mei
- Ningbo Sansheng Biological Technology Co., Ltd., Ningbo 315000, China
| | - Zhihong Dai
- Ningbo Sansheng Biological Technology Co., Ltd., Ningbo 315000, China
| | - Xianhui Huang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China;
| |
Collapse
|
8
|
Jiao C, Liu D, Jin H, Huang P, Zhang H, Li Y, Wang H. Immunogenicity evaluation of a bivalent vaccine based on a recombinant rabies virus expressing gB protein of FHV-1 in mice and cats. Vet J 2024; 304:106096. [PMID: 38503385 DOI: 10.1016/j.tvjl.2024.106096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
Feline viral rhinotracheitis (FVR) is caused by the feline herpesvirus-1 (FHV-1), which commonly results in upper respiratory symptoms, and can result in death in the kittens and weak cats. Rabies is an infectious disease with zoonotic characteristics highly relevant to public health and also poses a serious threat to cats. Vaccines are the most effective method to control the spread of both FHV-1 and RABV and have the advantage that they produce long-term specific immune responses. In this study, we constructed a bivalent vaccine against FHV-1 and rabies virus (RABV) simultaneously. The vaccine was constructed by cloning FHV-1 gB into a RABV based vector, and the recombinant RABV (SRV9-FHV-gB) expressing the FHV-1 gB protein was rescued. The growth characteristics of SRV9-FHV-gB were analyzed on NA and BSR cells. To assess the immunogenicity of the vaccine, mice and cats were immunized with SRV9-FHV-gB supplemented with Gel02 adjuvant. The SRV9-FHV-gB exhibited the same growth characteristics as the parent virus SRV9 in both BSR cells and NA cells. The safety of SRV9-FHV-gB was evaluated using 5-day-old and 14-day-old suckling mice. The results showed that mice infected with the SRV9-FHV-gB survived for longer than those in the SRV9 group. Mice immunized with inactivated SRV9-FHV-gB produced high titers of specific antibodies against FHV-1 and neutralizing antibodies against RABV. Cats that received three immunizations with SRV9-FHV-gB also produced neutralizing antibodies against both FHV-1 and RABV. This study represents the first time that a bivalent vaccine targeting FHV-1 and RABV has been constructed, laying the foundations and providing inspiration for the development of other multivalent vaccines.
Collapse
Affiliation(s)
- Cuicui Jiao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Di Liu
- Changchun Sino Biotechnology Co., Ltd., Changchun 130012, China
| | - Hongli Jin
- Changchun Sino Biotechnology Co., Ltd., Changchun 130012, China
| | - Pei Huang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Haili Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuanyuan Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Hualei Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
9
|
Yang M, Jiao Y, Li L, Yan Y, Fu Z, Liu Z, Hu X, Li M, Shi Y, He J, Shen Z, Peng G. A potential dual protection vaccine: Recombinant feline herpesvirus-1 expressing feline parvovirus VP2 antigen. Vet Microbiol 2024; 290:109978. [PMID: 38185071 DOI: 10.1016/j.vetmic.2023.109978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 01/09/2024]
Abstract
Recently, herpesvirus viral vectors that stimulate strong humoral and cellular immunity have been demonstrated to be the most promising platforms for the development of multivalent vaccines, because they contain various nonessential genes and exhibit long-life latency characteristics. Previously, we showed that the feline herpesvirus-1 (FHV-1) mutant WH2020-ΔTK/gI/gE, which was safe for felines and provided efficacious protection against FHV-1 challenge, can be used as a vaccine vector. Moreover, previous studies have shown that the major neutralizing epitope VP2 protein of feline parvovirus (FPV) can elicit high levels of neutralizing antibodies. Therefore, to develop a bivalent vaccine against FPV and FHV-1, we first generated a novel recombinant virus by CRISPR/Cas9-mediated homologous recombination, WH2020-ΔTK/gI/gE-VP2, which expresses the VP2 protein of FPV. The growth characteristics of WH2020-ΔTK/gI/gE-VP2 were similar to those of WH2020-ΔTK/gI/gE, and WH2020-ΔTK/gI/gE-VP2 was stable for at least 30 generations in CRFK cells. As expected, we found that the felines immunized with WH2020-ΔTK/gI/gE-VP2 produced FPV-neutralizing antibody titers (27.5) above the positive cutoff (26) on day 14 after single inoculation. More importantly, recombinant WH2020-ΔTK/gI/gE-VP2 exhibited severely impaired pathogenicity in inoculated and cohabiting cats. The kittens immunized with WH2020-ΔTK/gI/gE and WH2020-ΔTK/gI/gE-VP2 produced similar levels of FHV-specific antibodies and IFN-β. Furthermore, felines immunized with WH2020-ΔTK/gI/gE-VP2 were protected against challenge with FPV and FHV-1. These data showed that WH2020-ΔTK/gI/gE-VP2 appears to be a potentially safe, effective, and economical bivalent vaccine against FPV and FHV-1 and that WH2020-ΔTK/gI/gE can be used as a viral vector to develop feline multivalent vaccines.
Collapse
Affiliation(s)
- Mengfang Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuzhou Jiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lisha Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuanyuan Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhen Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zirui Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiaoshuai Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Mengxia Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuejun Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Junwei He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhou Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.
| |
Collapse
|
10
|
Jiao C, Jin H, Zhang M, Liu D, Huang P, Bai Y, Dai J, Zhang H, Li Y, Wang H. A bacterium-like particle vaccine displaying protective feline herpesvirus 1 antigens can induce an immune response in mice and cats. Vet Microbiol 2023; 287:109898. [PMID: 37931577 DOI: 10.1016/j.vetmic.2023.109898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023]
Abstract
Feline herpesvirus 1 (FHV-1) is a highly transmissible virus that mainly causes ocular and upper respiratory infections in cats and seriously threatens the health of domestic cats and captive or wild cats (such as tigers, cheetahs, and lions). Vaccination is crucial to reduce the incidence rate and mortality of cats infected with FHV-1. In this study, three bacterium-like particles (BLPs) displaying the gB, gC, and gD proteins of FHV-1 were constructed based on a gram-positive enhancer matrix-protein anchor (GEM-PA) surface display system. Indirect immunofluorescence assay, western blot, and electron microscopy results showed that gB, gC or gD protein of FHV-1 was successfully displayed on the surface of GEM particles. Additionally, we designed one more BLPs, designated gB&gC&gD-GEM, which consisted of a mixture of gB-GEM, gC-GEM, and gD-GEM at a protein content ratio of 1:1:1. Mice were immunized with the four BLPs mixed with Gel02 adjuvant, and the results indicated that neutralizing antibody level in the gB&gC&gD-GEM group was superior than those in the other groups. Moreover, gB&gC&gD-GEM significantly increased the secretion of cytokines, as well as the activation and maturation of B cells. It also boosted the production of central memory T cells among CD4 + and CD8 + T cells. Moreover, gB&gC&gD-GEM mixed with Gel02 adjuvant provoked an antibody response in cats. In conclusion, the BLPs vaccine prepared from gB&gC&gD-GEM induced specific humoral and cellular immune responses to FHV-1 and be used as a potential vaccine candidate for the control of FHV-1 infection in cats.
Collapse
Affiliation(s)
- Cuicui Jiao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Hongli Jin
- Changchun Sino Biotechnology Co., Ltd., Changchun 130012, China
| | - Mengyao Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Di Liu
- Changchun Sino Biotechnology Co., Ltd., Changchun 130012, China
| | - Pei Huang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yujie Bai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jiaxin Dai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Haili Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuanyuan Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Hualei Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|