1
|
Xu J, Song S, Nie C, Chen H, Hao K, Yu F, Zhao Z. Characterization of the Ictalurid herpesvirus 1 immediate-early gene ORF24 and its potential role in transcriptional regulation in yeast. Arch Virol 2024; 169:127. [PMID: 38789713 DOI: 10.1007/s00705-024-06045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/23/2024] [Indexed: 05/26/2024]
Abstract
Herpesviruses adhere to a precise temporal expression model in which immediate-early (IE) genes play a crucial role in regulating the viral life cycle. However, there is a lack of functional research on the IE genes in Ictalurid herpesvirus 1 (IcHV-1). In this study, we identified the IcHV-1 ORF24 as an IE gene via a metabolic inhibition assay, and subcellular analysis indicated its predominant localisation in the nucleus. To investigate its function, we performed yeast reporter assays using an ORF24 fusion protein containing the Gal4-BD domain and found that BD-ORF24 was able to activate HIS3/lacZ reporter genes without the Gal4-AD domain. Our findings provide concrete evidence that ORF24 is indeed an IE gene that likely functions as a transcriptional regulator during IcHV-1 infection. This work contributes to our understanding of the molecular mechanisms underlying fish herpesvirus IE gene expression.
Collapse
Affiliation(s)
- Jiehua Xu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China
| | - Siyang Song
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China
| | - Chunlan Nie
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China
| | - Hongxun Chen
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China
| | - Kai Hao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China
| | - Fei Yu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China.
- College of Oceanography, Hohai University, Nanjing, 210098, P.R. China.
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China.
- College of Oceanography, Hohai University, Nanjing, 210098, P.R. China.
| |
Collapse
|
2
|
O'Brien MJ, Ansari A. Critical Involvement of TFIIB in Viral Pathogenesis. Front Mol Biosci 2021; 8:669044. [PMID: 33996913 PMCID: PMC8119876 DOI: 10.3389/fmolb.2021.669044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/08/2021] [Indexed: 11/23/2022] Open
Abstract
Viral infections and the harm they cause to their host are a perpetual threat to living organisms. Pathogenesis and subsequent spread of infection requires replication of the viral genome and expression of structural and non-structural proteins of the virus. Generally, viruses use transcription and translation machinery of the host cell to achieve this objective. The viral genome encodes transcriptional regulators that alter the expression of viral and host genes by manipulating initiation and termination steps of transcription. The regulation of the initiation step is often through interactions of viral factors with gene specific factors as well as general transcription factors (GTFs). Among the GTFs, TFIIB (Transcription Factor IIB) is a frequent target during viral pathogenesis. TFIIB is utilized by a plethora of viruses including human immunodeficiency virus, herpes simplex virus, vaccinia virus, Thogoto virus, hepatitis virus, Epstein-Barr virus and gammaherpesviruses to alter gene expression. A number of viral transcriptional regulators exhibit a direct interaction with host TFIIB in order to accomplish expression of their genes and to repress host transcription. Some viruses have evolved proteins with a three-dimensional structure very similar to TFIIB, demonstrating the importance of TFIIB for viral persistence. Upon viral infection, host transcription is selectively altered with viral transcription benefitting. The nature of viral utilization of TFIIB for expression of its own genes, along with selective repression of host antiviral genes and downregulation of general host transcription, makes TFIIB a potential candidate for antiviral therapies.
Collapse
Affiliation(s)
- Michael J O'Brien
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| |
Collapse
|
3
|
Kim SK, Shakya AK, O'Callaghan DJ. Full trans-activation mediated by the immediate-early protein of equine herpesvirus 1 requires a consensus TATA box, but not its cognate binding sequence. Virus Res 2015; 211:222-32. [PMID: 26541315 DOI: 10.1016/j.virusres.2015.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
Abstract
The immediate-early protein (IEP) of equine herpesvirus 1 (EHV-1) has extensive homology to the IEP of alphaherpesviruses and possesses domains essential for trans-activation, including an acidic trans-activation domain (TAD) and binding domains for DNA, TFIIB, and TBP. Our data showed that the IEP directly interacted with transcription factor TFIIA, which is known to stabilize the binding of TBP and TFIID to the TATA box of core promoters. When the TATA box of the EICP0 promoter was mutated to a nonfunctional TATA box, IEP-mediated trans-activation was reduced from 22-fold to 7-fold. The IEP trans-activated the viral promoters in a TATA motif-dependent manner. Our previous data showed that the IEP is able to repress its own promoter when the IEP-binding sequence (IEBS) is located within 26-bp from the TATA box. When the IEBS was located at 100 bp upstream of the TATA box, IEP-mediated trans-activation was very similar to that of the minimal IE(nt -89 to +73) promoter lacking the IEBS. As the distance from the IEBS to the TATA box decreased, IEP-mediated trans-activation progressively decreased, indicating that the IEBS located within 100 bp from the TATA box sequence functions as a distance-dependent repressive element. These results indicated that IEP-mediated full trans-activation requires a consensus TATA box of core promoters, but not its binding to the cognate sequence (IEBS).
Collapse
Affiliation(s)
- Seong K Kim
- Department of Microbiology and Immunology, and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, United States.
| | - Akhalesh K Shakya
- Department of Microbiology and Immunology, and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, United States
| | - Dennis J O'Callaghan
- Department of Microbiology and Immunology, and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, United States
| |
Collapse
|
4
|
Bergmann T, Moore C, Sidney J, Miller D, Tallmadge R, Harman RM, Oseroff C, Wriston A, Shabanowitz J, Hunt DF, Osterrieder N, Peters B, Antczak DF, Sette A. The common equine class I molecule Eqca-1*00101 (ELA-A3.1) is characterized by narrow peptide binding and T cell epitope repertoires. Immunogenetics 2015; 67:675-89. [PMID: 26399241 DOI: 10.1007/s00251-015-0872-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/14/2015] [Indexed: 11/29/2022]
Abstract
Here we describe a detailed quantitative peptide-binding motif for the common equine leukocyte antigen (ELA) class I allele Eqca-1*00101, present in roughly 25 % of Thoroughbred horses. We determined a preliminary binding motif by sequencing endogenously bound ligands. Subsequently, a positional scanning combinatorial library (PSCL) was used to further characterize binding specificity and derive a quantitative motif involving aspartic acid in position 2 and hydrophobic residues at the C-terminus. Using this motif, we selected and tested 9- and 10-mer peptides derived from the equine herpesvirus type 1 (EHV-1) proteome for their capacity to bind Eqca-1*00101. PSCL predictions were very efficient, with an receiver operating characteristic (ROC) curve performance of 0.877, and 87 peptides derived from 40 different EHV-1 proteins were identified with affinities of 500 nM or higher. Quantitative analysis revealed that Eqca-1*00101 has a narrow peptide-binding repertoire, in comparison to those of most human, non-human primate, and mouse class I alleles. Peripheral blood mononuclear cells from six EHV-1-infected, or vaccinated but uninfected, Eqca-1*00101-positive horses were used in IFN-γ enzyme-linked immunospot (ELISPOT) assays. When we screened the 87 Eqca-1*00101-binding peptides for T cell reactivity, only one Eqca-1*00101 epitope, derived from the intermediate-early protein ICP4, was identified. Thus, despite its common occurrence in several horse breeds, Eqca-1*00101 is associated with a narrow binding repertoire and a similarly narrow T cell response to an important equine viral pathogen. Intriguingly, these features are shared with other human and macaque major histocompatibility complex (MHC) molecules with a similar specificity for D in position 2 or 3 in their main anchor motif.
Collapse
Affiliation(s)
- Tobias Bergmann
- Institut für Virologie, Freie Universtiät Berlin, 14163, Berlin, Germany
| | - Carrie Moore
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - John Sidney
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Donald Miller
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Rebecca Tallmadge
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Carla Oseroff
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Amanda Wriston
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Donald F Hunt
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA.,Department of Pathology, University of Virginia, Charlottesville, VA, 22904, USA
| | | | - Bjoern Peters
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Douglas F Antczak
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Alessandro Sette
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA.
| |
Collapse
|
5
|
Characterization of cis-acting elements required for autorepression of the equine herpesvirus 1 IE gene. Virus Res 2012; 165:52-60. [PMID: 22265772 DOI: 10.1016/j.virusres.2012.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/03/2012] [Accepted: 01/05/2012] [Indexed: 11/21/2022]
Abstract
The immediate-early protein (IEP), the major regulatory protein encoded by the IE gene of equine herpesvirus 1 (EHV-1), plays a crucial role as both transcription activator and repressor during a productive lytic infection. To investigate the mechanism by which the EHV-1 IEP inhibits its own promoter, IE promoter-luciferase reporter plasmids containing wild-type and mutant IEP-binding site (IEBS) were constructed and used for luciferase reporter assays. The IEP inhibited transcription from its own promoter in the presence of a consensus IEBS (5'-ATCGT-3') located near the transcription initiation site but did not inhibit when the consensus sequence was deleted. To determine whether the distance between the TATA box and the IEBS affects transcriptional repression, the IEBS was displaced from the original site by the insertion of synthetic DNA sequences. Luciferase reporter assays revealed that the IEP is able to repress its own promoter when the IEBS is located within 26-bp from the TATA box. We also found that the proper orientation and position of the IEBS were required for the repression by the IEP. Interestingly, the level of repression was significantly reduced when a consensus TATA sequence was deleted from the promoter region, indicating that the IEP efficiently inhibits its own promoter in a TATA box-dependent manner. Taken together, these results suggest that the EHV-1 IEP delicately modulates autoregulation of its gene through the consensus IEBS that is near the transcription initiation site and the TATA box.
Collapse
|
6
|
Kim SK, Kim S, Dai G, Zhang Y, Ahn BC, O'Callaghan DJ. Identification of functional domains of the IR2 protein of equine herpesvirus 1 required for inhibition of viral gene expression and replication. Virology 2011; 417:430-42. [PMID: 21794889 DOI: 10.1016/j.virol.2011.06.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 06/22/2011] [Accepted: 06/27/2011] [Indexed: 10/17/2022]
Abstract
The equine herpesvirus 1 (EHV-1) negative regulatory IR2 protein (IR2P), an early 1,165-amino acid (aa) truncated form of the 1487-aa immediate-early protein (IEP), lacks the trans-activation domain essential for IEP activation functions but retains domains for binding DNA, TFIIB, and TBP and the nuclear localization signal. IR2P mutants of the N-terminal region which lack either DNA-binding activity or TFIIB-binding activity were unable to down-regulate EHV-1 promoters. In EHV-1-infected cells expressing full-length IR2P, transcription and protein expression of viral regulatory IE, early EICP0, IR4, and UL5, and late ETIF genes were dramatically inhibited. Viral DNA levels were reduced to 2.1% of control infected cells, but were vey weakly affected in cells that express the N-terminal 706 residues of IR2P. These results suggest that IR2P function requires the two N-terminal domains for binding DNA and TFIIB as well as the C-terminal residues 707 to 1116 containing the TBP-binding domain.
Collapse
Affiliation(s)
- Seong K Kim
- Department of Microbiology and Immunology, and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana LA 71130-3932, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Breitenbach JE, Ebner PD, O'Callaghan DJ. The IR4 auxiliary regulatory protein expands the in vitro host range of equine herpesvirus 1 and is essential for pathogenesis in the murine model. Virology 2009; 383:188-94. [PMID: 19012943 PMCID: PMC2655125 DOI: 10.1016/j.virol.2008.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 09/18/2008] [Accepted: 10/09/2008] [Indexed: 10/21/2022]
Abstract
IR4, an early regulatory protein of equine herpesvirus 1 (EHV-1), is not a DNA-binding protein, but interacts with the sole immediate-early protein (IEP) to increase both IEP site-specific DNA-binding and IEP-mediated trans-activation of EHV-1 promoters. To investigate the biological properties of IR4 and ascertain whether this regulatory protein is essential for virus growth, bacterial artificial chromosome methods were employed to generate an IR4-null EHV-1. The IR4 gene was dispensable for EHV-1 growth in non-immortalized equine NBL-6 cells, but virus replication was delayed and was reduced by greater than 10-fold. In addition, replication of the IR4 mutant was abrogated in all other cell types tested, including equine ETCC tumor cells and cells of mouse, rabbit, monkey, and human origin. Further, in contrast to the highly pathogenic parent virus, the IR4 deletion mutant failed to cause disease in the CBA mouse as judged by assessing body weight and clinical signs and was unable to replicate in the murine lung. To define the nature of the block in the replication of the IR4-null virus, molecular analyses were carried out in RK-13 rabbits' cells infected with the IR4-deleted virus and revealed that: 1) the synthesis of the sole IEP was not inhibited; 2) the synthesis of early viral proteins examined was either not affected or was delayed to late times; 3) viral DNA replication was inhibited by more than 99.9%; and 4) synthesis of essential late proteins such as glycoprotein D and glycoprotein K was prevented. These findings indicate that the IR4 protein is required for EHV-1 DNA replication in non-permissive cells, and, like its homologues in other alphaherpesviruses, contributes a function required for virus replication in a variety of cell types.
Collapse
Affiliation(s)
- Jonathan E Breitenbach
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | |
Collapse
|
8
|
Ahn BC, Breitenbach JE, Kim SK, O’Callaghan DJ. The equine herpesvirus-1 IR3 gene that lies antisense to the sole immediate-early (IE) gene is trans-activated by the IE protein, and is poorly expressed to a protein. Virology 2007; 363:15-25. [PMID: 17306852 PMCID: PMC1939811 DOI: 10.1016/j.virol.2007.01.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 11/17/2006] [Accepted: 01/18/2007] [Indexed: 10/23/2022]
Abstract
The unique IR3 gene of equine herpesvirus 1 (EHV-1) is expressed as a late 1.0-kb transcript. Previous studies confirmed the IR3 transcription initiation site and tentatively identified other cis-acting elements specific to IR3 such as a TATA box, a 443 base pair 5'untranslated region (UTR), a 285 base pair open reading frame (ORF), and a poly adenylation (A) signal [Holden, V.R., Harty, R.N., Yalamanchili, R.R., O'Callaghan, D.J., 1992. The IR3 gene of equine herpesvirus type 1: a unique gene regulated by sequences within the intron of the immediate-early gene. DNA Seq. 3, 143-152]. Transient transfection assays revealed that the IR3 promoter is strongly trans-activated by the IE protein (IEP) and that coexpression of the IEP with the early EICP0 and IR4 regulatory proteins results in maximal trans-activation of the IR3 promoter. Gel shift assays revealed that the IEP directly binds to the IR3 promoter region. Western blot analysis showed that the IR3 protein produced in E. coli was detected by antibodies to IR3 synthetic peptides; however, the IR3 protein was not detected in EHV-1 infected cell extracts by these same anti-IR3 antibodies, even though the IR3 transcript was detected by northern blot. These findings suggest that the IR3 may not be expressed to a protein. Expression of an IR3/GFP fusion gene was not observed, but expression of a GFP/IR3 fusion gene was detected by fluorescent microscopy. In further attempts to detect the IR3/GFP fusion protein using anti-GFP antibody, western blot analysis showed that the IR3/GFP fusion protein was not detected in vivo. Interestingly, a truncated form of the GFP/IR3 protein was synthesized from the GFP/IR3 fusion gene. However, GFP/IR3 and IR3/GFP fusion proteins of the predicted sizes were synthesized by in vitro coupled transcription and translation of the fusion genes, suggesting poor expression of the IR3 protein in vivo. The possible role of the IR3 transcript in EHV-1 infection is discussed.
Collapse
Affiliation(s)
- Byung Chul Ahn
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Jonathan E. Breitenbach
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Seong K. Kim
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Dennis J. O’Callaghan
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| |
Collapse
|
9
|
Buczynski KA, Kim SK, O'Callaghan DJ. Initial characterization of 17 viruses harboring mutant forms of the immediate-early gene of equine herpesvirus 1. Virus Genes 2006; 31:229-39. [PMID: 16025249 DOI: 10.1007/s11262-005-1801-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 03/23/2005] [Indexed: 10/25/2022]
Abstract
The sole immediate-early (IE) gene of equine herpesvirus 1 (EHV-1) encodes a major regulatory protein of 1487 amino acids (aa) capable of modulating gene expression from both early and late promoters and also of trans-repressing its own promoter. Using a specially designed recombination system and a library of IE linker-insertion, deletion, point, and nonsense mutant constructs that encode forms of the IE protein (IEP) harboring mutations within all five regions, 17 mutant viruses were generated and characterized. Ribonuclease protection analyses revealed that all 17 mutants synthesize the IE mRNA in RK-13 cells, whereas those that failed to replicate on non-complementing RK-13 cells displayed a defect in the transcription of either an important early gene (EICP0) and/or an essential late gene (glycoprotein D). Western blot analyses showed that the IEP was synthesized and detectable in cells infected with each mutant virus, including those mutants that failed to replicate on non-complementing RK-13 cells. Eleven of the 17 mutants were capable of growth on non-complementing RK-13 cells, whereas mutant viruses with deletions within the serine-rich tract (SRT), nucleus localization signal (NLS), or DNA-binding domain (DBD) were capable of growth only on the IEP-producing cell line (IE13.1). Lastly, temperature shift experiments revealed that mutant viruses containing deletions within the C-terminus (KyAn1029 and KyAn1411) or within the SRT (KyADeltaSRT2) of the IEP exhibited a temperature-sensitive phenotype in that these viruses, in contrast to the parent KyA, failed to replicate at 39 degrees C. Overall, these results indicate that the C-terminus of the IEP is not essential for IEP function in cell culture, but this region contains elements that enhance the function(s) of the IEP. The initial characterization of these 17 EHV-1 mutants has shown that sequences totaling at least 43% of the IEP are not essential for virus replication in cell culture.
Collapse
Affiliation(s)
- Kimberly A Buczynski
- Department of Microbiology and Immunology, and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130, USA
| | | | | |
Collapse
|
10
|
Kim SK, Ahn BC, Albrecht RA, O'Callaghan DJ. The unique IR2 protein of equine herpesvirus 1 negatively regulates viral gene expression. J Virol 2006; 80:5041-9. [PMID: 16641295 PMCID: PMC1472049 DOI: 10.1128/jvi.80.10.5041-5049.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The IR2 protein (IR2P) is a truncated form of the immediate-early protein (IEP) lacking the essential acidic transcriptional activation domain (TAD) and serine-rich tract and yet retaining binding domains for DNA and TFIIB and nuclear localization signal (NLS). Analysis of the IR2 promoter indicated that the IR2 promoter was upregulated by the EICP0P. The IR2P was first detected in the nucleus at 5 h postinfection in equine herpesvirus 1 (EHV-1)-infected HeLa and equine NBL6 cells. Transient-transfection assays revealed that (i) the IR2P by itself downregulated EHV-1 early promoters (EICP0, TK, EICP22, and EICP27) in a dose-dependent manner; (ii) the IR2P abrogated the IEP and the EICP27P (UL5) mediated transactivation of viral promoters in a dose-dependent manner; and (iii) the IR2P, like the IEP itself, also downregulated the IE promoter, indicating that the IEP TAD is not necessary to downregulate the IE promoter. In vitro interaction assays revealed that the IR2P interacts with TATA box-binding protein (TBP). The essential domain(s) of the IR2P that mediate negative regulation were mapped to amino acid residues 1 to 706, indicating that the DNA-binding domain and the NLS of the IR2P may be important for the downregulation. In transient-transfection and virus growth assays, the IR2P reduced EHV-1 production by 23-fold compared to virus titers achieved in cells transfected with the empty vector. Overall, these studies suggest that the IR2P downregulates viral gene expression by acting as a dominant-negative protein that blocks IEP-binding to viral promoters and/or squelching the limited supplies of TFIIB and TBP.
Collapse
Affiliation(s)
- Seong K Kim
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | | | |
Collapse
|
11
|
Slater JD, Lunn DP, Horohov DW, Antczak DF, Babiuk L, Breathnach C, Chang YW, Davis-Poynter N, Edington N, Ellis S, Foote C, Goehring L, Kohn CW, Kydd J, Matsumura T, Minke J, Morley P, Mumford J, Neubauer T, O'Callaghan D, Osterrieder K, Reed S, Smith K, Townsend H, van der Meulen K, Whalley M, Wilson WD. Report of the equine herpesvirus-1 Havermeyer Workshop, San Gimignano, Tuscany, June 2004. Vet Immunol Immunopathol 2006; 111:3-13. [PMID: 16542736 DOI: 10.1016/j.vetimm.2006.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Amongst the infectious diseases that threaten equine health, herpesviral infections remain a world wide cause of serious morbidity and mortality. Equine herpesvirus-1 infection is the most important pathogen, causing an array of disorders including epidemic respiratory disease abortion, neonatal foal death, myeloencephalopathy and chorioretinopathy. Despite intense scientific investigation, extensive use of vaccination, and established codes of practice for control of disease outbreaks, infection and disease remain common. While equine herpesvirus-1 infection remains a daunting challenge for immunoprophylaxis, many critical advances in equine immunology have resulted in studies of this virus, particularly related to MHC-restricted cytotoxicity in the horse. A workshop was convened in San Gimignano, Tuscany, Italy in June 2004, to bring together clinical and basic researchers in the field of equine herpesvirus-1 study to discuss the latest advances and future prospects for improving our understanding of these diseases, and equine immunity to herpesviral infection. This report highlights the new information that was the focus of this workshop, and is intended to summarize this material and identify the critical questions in the field.
Collapse
Affiliation(s)
- J D Slater
- Department of Veterinary Clinical Sciences, Royal Veterinary College, Hatfield, Hertfordshire AL9 7TA, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Albrecht RA, Kim SK, O'Callaghan DJ. The EICP27 protein of equine herpesvirus 1 is recruited to viral promoters by its interaction with the immediate-early protein. Virology 2005; 333:74-87. [PMID: 15708594 DOI: 10.1016/j.virol.2004.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 11/17/2004] [Accepted: 12/14/2004] [Indexed: 11/20/2022]
Abstract
The equine herpesvirus 1 (EHV-1) EICP27 protein cooperates with either the immediate-early (IE) or the EICP0 protein to synergistically trans-activate viral promoters. GST-pulldown and co-immunoprecipitation assays revealed that the EICP27 protein's cooperation with the IE or the EICP0 protein involves its physical interaction with these viral proteins. In the case of the IE-EICP27 protein interaction, IE residues 424 to 826 and EICP27 residues 41 to 206 harbor the interactive domains. Electrophoretic mobility shift assays (EMSA) suggested that the EICP27 protein is not a sequence-specific DNA-binding protein as it fails to directly bind to the IE promoter, the early EICP27, EICP0, and TK promoters, or the late gD and IR5 promoters. However, EMSA studies also showed that the interaction of the IE and EICP27 proteins results in the recruitment of the EICP27 protein to representative early promoters. These results support our hypothesis that the EICP27 protein participates in the trans-activation of EHV-1 promoters, and suggest its presence within RNA polymerase II preinitiation complexes that assemble at viral promoters.
Collapse
Affiliation(s)
- Randy A Albrecht
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | | | |
Collapse
|
13
|
Kim SK, Albrecht RA, O'Callaghan DJ. A negative regulatory element (base pairs -204 to -177) of the EICP0 promoter of equine herpesvirus 1 abolishes the EICP0 protein's trans-activation of its own promoter. J Virol 2004; 78:11696-706. [PMID: 15479811 PMCID: PMC523287 DOI: 10.1128/jvi.78.21.11696-11706.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The early EICP0 protein is a powerful trans-activator that activates all classes of equine herpesvirus 1 (EHV-1) promoters but, unexpectedly, trans-activates its own promoter very weakly. Transient transfection assays that employed constructs harboring deletions within the EICP0 promoter indicated that EICP0 cis-acting sequences within bp -224 to -158 relative to the first ATG abolished the EICP0 protein's trans-activation of its own promoter. When inserted into the promoters of other EHV-1 genes, this sequence also downregulated activation of the immediate-early IE(-169/+73), early thymidine kinase TK(-215/+97), and late glycoprotein K gK(-83/+14) promoters, indicating that the cis-acting sequence (-224 to -158) downregulated expression of representative promoters of all classes of EHV-1 genes and contains a negative regulatory element (NRE). To define the cis-acting element(s), three synthetic oligonucleotides (Na [bp -224 to -195], Nb [bp -204 to -177], and Nc [bp -185 to -156]) were synthesized and cloned upstream of the EICP0(-157/-21) promoter. Of the three synthetic sequences, only the Nb oligonucleotide caused the downregulation of the EICP0 promoter. The NRE was identified as a 28-bp element to lie at -204 to -177 that encompassed the sequence of ([-204]AGATACAGATGTTCGATAAATTGGAACC[-177]). Gel shift assays performed with mouse L-M, rabbit RK-13, and human HeLa cell nuclear extracts and gamma-(32)P-labeled wild-type and mutant NREs demonstrated that a ubiquitous nuclear protein(s) (NRE-binding protein, NREBP) binds specifically to a sequence (bp -193 to -183) in the NRE. The NREBP is also present in the nucleus of EHV-1-infected cells; however, the amount of NREBP in EHV-1-infected L-M cells that bound to the Nb oligonucleotide was reduced compared to that in uninfected L-M cells. Transient transfection assays showed that deletions or mutations within the NREBP-binding site abolished the NRE activity of the EICP0 promoter. These results suggested that the NREBP may mediate the NRE activity of the EICP0 promoter and may function in the coordinate expression of EHV-1 genes.
Collapse
Affiliation(s)
- Seong K Kim
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, P.O. Box 33932, Shreveport, LA 71130-3932, USA
| | | | | |
Collapse
|
14
|
Albrecht RA, Kim SK, Zhang Y, Zhao Y, O'Callaghan DJ. The equine herpesvirus 1 EICP27 protein enhances gene expression via an interaction with TATA box-binding protein. Virology 2004; 324:311-26. [PMID: 15207618 DOI: 10.1016/j.virol.2004.03.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 03/11/2004] [Accepted: 03/24/2004] [Indexed: 11/25/2022]
Abstract
The mechanism(s) by which the early EICP27 gene product cooperates with other equine herpesvirus 1 (EHV-1) regulatory proteins to achieve maximal promoter activity remains unknown. Transient transfection assays revealed that deletion of residues 93-140 of the 470-aa EICP27 protein substantially diminished its activation of the immediate-early (IE) promoter, whereas deletion of residues 140-470 that contain a zinc-finger motif abolished this activity. Fluorescence microscopy of cells expressing the full-length EICP27 protein or portions of this protein revealed that an arginine-rich sequence spanning residues 178-185 mediates nuclear entry. Experiments employing the mammalian Gal4 two-plasmid system revealed that the EICP27 protein does not possess an independent trans-activation domain (TAD). Protein-protein interaction assays using purified proteins revealed that residues 124-220 of the EICP27 protein mediate its direct interaction with TATA box-binding protein (TBP). Partial deletion of this TBP-binding domain attenuated the ability of the EICP27 protein to stimulate the IE and early EICP0 promoters by 68% and 71%, respectively, indicating the importance of this protein-protein interaction.
Collapse
Affiliation(s)
- Randy A Albrecht
- Center for Molecular and Tumor Virology and Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | | | | | | | |
Collapse
|
15
|
Yao H, Osterrieder N, O'Callaghan DJ. Generation and characterization of an EICP0 null mutant of equine herpesvirus 1. Virus Res 2003; 98:163-72. [PMID: 14659563 DOI: 10.1016/j.virusres.2003.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The EICP0 gene (gene 63) of equine herpesvirus 1 (EHV-1) encodes an early regulatory protein that is a promiscuous trans-activator of all classes of viral genes. Bacterial artificial chromosome (BAC) technology and RecE/T cloning were employed to delete the EICP0 gene from EHV-1 strain KyA. Polymerase chain reaction, Southern blot analysis, and DNA sequencing confirmed the deletion of the EICP0 gene and its replacement with a kanamycin resistance gene in mutant KyA. Transfection of rabbit kidney cells with the EICP0 mutant genome produced infectious virus, indicating that the EICP0 gene is not essential for KyA replication in cell culture. Experiments to assess the effect of the EICP0 deletion on EHV-1 gene programming revealed that mRNA expression of the immediate-early gene and representative early and late genes as well as the synthesis of these viral proteins were reduced as compared to the kinetics of viral mRNA and protein synthesis observed for the wild type virus. However, the transition from early to late viral gene expression was not prevented or delayed, suggesting that the absence of the EICP0 gene did not disrupt the temporal aspects of EHV-1 gene regulation. The extracellular virus titer and plaque areas of the EICP0 mutant virus KyADeltaEICP0, in which the gp2-encoding gene 71 gene that is absent in the KyA BAC was restored, were reduced by 10-fold and 19%, respectively, when compared to parental KyA virus; while the titer and plaque areas of mutant KyADeltaEICP0Deltagp2 that lacks both the EICP0 gene and gene 71 were reduced more than 50-fold and 67%, respectively. The above results show that the EICP0 gene is dispensable for EHV-1 replication in cell culture, and that the switch from early to late viral gene expression for the representative genes examined does not require the EICP0 protein, but that the EICP0 protein may be structurally required for virus egress and cell-to-cell spread.
Collapse
Affiliation(s)
- Haijun Yao
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, P.O. Box 33932, Shreveport, LA 71130-3932, USA
| | | | | |
Collapse
|