1
|
Sitinjak MC, Chen JK, Liu PC, Wang CY. Engineering in vitro-assembled beak and feather disease virus-like particles loaded with biomolecules. Biochem Biophys Res Commun 2025; 759:151704. [PMID: 40153997 DOI: 10.1016/j.bbrc.2025.151704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Beak and feather disease virus (BFDV) is a member of the Circoviridae family and causes psittacine beak and feather diseases (PBFD) in birds. Abnormal feathers, brittle claws and beaks, and susceptibility to secondary infections are typical sympotoms of the BFDV-infected birds. The BFDV virion possesses a single-stranded DNA genome encapsidated within a 17-22 nm non-enveloped icosahedral virions. This study evaluated the loading capacity of BFDV virus-like particles (VLPs) with different biomolecules, such as DNA, RNA, and proteins. The reassembled BFDV (ReBFDV) VLPs successfully encapsidated plasmids, small interfering RNA (siRNA), the BFDV genome, and fluorophore-coupled transferrin but not the fluorophore-coupled streptavidin. However, streptavidin conjugated with the biotinylated oligomers, which served as the nuclear factor, could be loaded into the reassembled VLPs. Using urea disruption assays, the stability of ReBFDV packing biomolecules was shown to be comparable with that of the native BFDV virions. The presence of fluorophore-coupled proteins and siRNA and the expressed proteins from plasmids inside the cells, as determined by the immunofluorescence assay, indicated the successful delivery of cargoes by the ReBFDV VLPs. An attenuation of immunogenicity and nitric oxide release was found when the cells were infected with the ReBFDV VLPs coated with polyethylene glycol.
Collapse
Affiliation(s)
- Mikael Cristofer Sitinjak
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan
| | - Jui-Kai Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan
| | - Pan-Chen Liu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan
| | - Chi-Young Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan.
| |
Collapse
|
2
|
Omole A, Affonso de Oliveira JF, Sutorus L, Steinmetz NF. Pharmacology of a Plant Virus Immunotherapy Candidate for Peritoneal Metastatic Ovarian Cancer. ACS Pharmacol Transl Sci 2024; 7:445-455. [PMID: 38357279 PMCID: PMC10863429 DOI: 10.1021/acsptsci.3c00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024]
Abstract
Due to the increasing incidence of cancer, there is a need to develop new platforms that can combat this disease. Cancer immunotherapy is a platform that takes advantage of the immune system to recognize and eradicate tumors and metastases. Our lab has identified a plant virus nanoparticle, cowpea mosaic virus (CPMV) as a promising approach for cancer immunotherapy. When administered intratumorally, CPMV relieves the immune system of tumor-induced immunosuppression and reprograms the tumor microenvironment into an activated state to launch systemic antitumor immunity. The efficacy of CPMV has been tested in many tumor models and in canine cancer patients with promising results: tumor shrinkage, systemic efficacy (abscopal effect), and immune memory to prevent recurrence. To translate this drug candidate from the bench to the clinic, studies that investigate the safety, pharmacology, and toxicity are needed. In this work, we describe the efficacy of CPMV against a metastatic ovarian tumor model and investigate the biodistribution of CPMV after single or repeated intraperitoneal administration in tumor-bearing and healthy mice. CPMV shows good retention in the tumor nodules and broad bioavailability with no apparent organ toxicity based on histopathology. Data indicate persistence of the viral RNA, which remains detectable 2 weeks post final administration, a phenomenon also observed with some mammalian viral infections. Lastly, while protein was not detected in stool or urine, RNA was shed through excretion from mice; however, there was no evidence that RNA was infectious to plants. Taken together, the data indicate that systemic administration results in broad bioavailability with no apparent toxicity. While RNA is shed from the subjects, data suggest agronomical safety. This data is consistent with prior reports and provides support for translational efforts.
Collapse
Affiliation(s)
- Anthony
O. Omole
- Department
of Nanoengineering, University of California, San Diego, La Jolla, California 92093-0021, United
States
- Shu
and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, California 92093, United States
- Center
for Nano-ImmunoEngineering, University of
California, San Diego, La Jolla, California 92093-0403, United States
- Moores
Cancer Center, University of California,
San Diego, La Jolla, California 92037, United States
| | - Jessica Fernanda Affonso de Oliveira
- Department
of Nanoengineering, University of California, San Diego, La Jolla, California 92093-0021, United
States
- Shu
and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, California 92093, United States
- Center
for Nano-ImmunoEngineering, University of
California, San Diego, La Jolla, California 92093-0403, United States
- Moores
Cancer Center, University of California,
San Diego, La Jolla, California 92037, United States
| | - Lucas Sutorus
- Department
of Nanoengineering, University of California, San Diego, La Jolla, California 92093-0021, United
States
- Shu
and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, California 92093, United States
- Center
for Nano-ImmunoEngineering, University of
California, San Diego, La Jolla, California 92093-0403, United States
- Moores
Cancer Center, University of California,
San Diego, La Jolla, California 92037, United States
| | - Nicole F. Steinmetz
- Department
of Nanoengineering, University of California, San Diego, La Jolla, California 92093-0021, United
States
- Shu
and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, California 92093, United States
- Center
for Nano-ImmunoEngineering, University of
California, San Diego, La Jolla, California 92093-0403, United States
- Moores
Cancer Center, University of California,
San Diego, La Jolla, California 92037, United States
- Department
of Bioengineering, University of California,
San Diego, La Jolla, California 92093-0412, United States
- Department
of Radiology, University of California,
San Diego, La Jolla, California 92122, United States
- Institute
for Materials Discovery and Design, University
of California, San Diego, La Jolla, California 92093, United States
- Center
for Engineering in Cancer, Institute of Engineering Medicine, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
3
|
Pei C, Dong H, Teng Z, Wei S, Zhang Y, Yin S, Tang J, Sun S, Guo H. Self-Assembling Nanovaccine Fused with Flagellin Enhances Protective Effect against Foot-and-Mouth Disease Virus. Vaccines (Basel) 2023; 11:1675. [PMID: 38006007 PMCID: PMC10675102 DOI: 10.3390/vaccines11111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Nanovaccines based on self-assembling nanoparticles (NPs) can show conformational epitopes of antigens and they have high immunogenicity. In addition, flagellin, as a biological immune enhancer, can be fused with an antigen to considerably enhance the immune effect of antigens. In improving the immunogenicity and stability of a foot-and-mouth disease virus (FMDV) antigen, novel FMDV NP antigens were prepared by covalently coupling the VP1 protein and truncated flagellin containing only N-terminus D0 and D1 (N-terminal aa 1-99, nFLiC) with self-assembling NPs (i301). The results showed that the fusion proteins VP1-i301 and VP1-i301-nFLiC can assemble into NPs with high thermal tolerance and stability, obtain high cell uptake efficiency, and upregulate marker molecules and immune-stimulating cytokines in vitro. In addition, compared with monomeric VP1 antigen, high-level cytokines were stimulated with VP1-i301 and VP1-i301-nFLiC nanovaccines in guinea pigs, to provide clinical protection against viral infection comparable to an inactivated vaccine. This study provides new insight for the development of a novel FMD vaccine.
Collapse
Affiliation(s)
- Chenchen Pei
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Hu Dong
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Zhidong Teng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Sumin Wei
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Yun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Shuanghui Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Jianli Tang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- College of Animal Science, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
4
|
Mellid-Carballal R, Gutierrez-Gutierrez S, Rivas C, Garcia-Fuentes M. Viral protein nanoparticles (Part 1): Pharmaceutical characteristics. Eur J Pharm Sci 2023; 187:106460. [PMID: 37156338 DOI: 10.1016/j.ejps.2023.106460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/21/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023]
Abstract
Viral protein nanoparticles fill the gap between viruses and synthetic nanoparticles. Combining advantageous properties of both systems, they have revolutionized pharmaceutical research. Virus-like particles are characterized by a structure identical to viruses but lacking genetic material. Another type of viral protein nanoparticles, virosomes, are similar to liposomes but include viral spike proteins. Both systems are effective and safe vaccine candidates capable of overcoming the disadvantages of both traditional and subunit vaccines. Besides, their particulate structure, biocompatibility, and biodegradability make them good candidates as vectors for drug and gene delivery, and for diagnostic applications. In this review, we analyze viral protein nanoparticles from a pharmaceutical perspective and examine current research focused on their development process, from production to administration. Advances in synthesis, modification and formulation of viral protein nanoparticles are critical so that large-scale production of viral protein nanoparticle products becomes viable and affordable, which ultimately will increase their market penetration in the future. We will discuss their expression systems, modification strategies, formulation, biopharmaceutical properties, and biocompatibility.
Collapse
Affiliation(s)
- Rocio Mellid-Carballal
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Sara Gutierrez-Gutierrez
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Carmen Rivas
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain; Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CNB)-CSIC, Spain
| | - Marcos Garcia-Fuentes
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain.
| |
Collapse
|
5
|
Caparco AA, González-Gamboa I, Hays SS, Pokorski JK, Steinmetz NF. Delivery of Nematicides Using TMGMV-Derived Spherical Nanoparticles. NANO LETTERS 2023. [PMID: 37327572 DOI: 10.1021/acs.nanolett.3c01684] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Spherical nanoparticles (SNPs) from tobacco mild green mosaic virus (TMGMV) were developed and characterized, and their application for agrochemical delivery was demonstrated. Specifically, we set out to develop a platform for pesticide delivery targeting nematodes in the rhizosphere. SNPs were obtained by thermal shape-switching of the TMGMV. We demonstrated that cargo can be loaded into the SNPs during thermal shape-switching, enabling the one-pot synthesis of functionalized nanocarriers. Cyanine 5 and ivermectin were encapsulated into SNPs to achieve 10% mass loading. SNPs demonstrated good mobility and soil retention slightly higher than that of TMGMV rods. Ivermectin delivery to Caenorhabditis elegans using SNPs was determined after passing the formulations through soil. Using a gel burrowing assay, we demonstrate the potent efficacy of SNP-delivered ivermectin against nematodes. Like many pesticides, free ivermectin is adsorbed in the soil and did not show efficacy. The SNP nanotechnology offers good soil mobility and a platform technology for pesticide delivery to the rhizosphere.
Collapse
Affiliation(s)
- Adam A Caparco
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Ivonne González-Gamboa
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Samuel S Hays
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Jonathan K Pokorski
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, California 92093, United States
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Center for Engineering in Cancer, Institute for Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
6
|
Tran L, Das S, Zhao L, Finn MG, Gaucher EA. Oral Delivery of Nanoparticles Carrying Ancestral Uricase Enzyme Protects against Hyperuricemia in Knockout Mice. Biomacromolecules 2023; 24:2003-2008. [PMID: 37126604 PMCID: PMC10170503 DOI: 10.1021/acs.biomac.2c01388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The therapeutic value of delivering recombinant uricase to human patients has been appreciated for decades. The development of therapeutic uricases has been hampered by the fact that humans do not encode an endogenous uricase and therefore most recombinant forms of the protein are recognized as foreign by the immune system and are therefore highly immunogenic. In order to both shield and stabilize the active enzyme, we encapsulated a functional ancestral uricase in recombinant, noninfectious Qβ capsid nanoparticles and characterized its catalytic activity. Oral delivery of the nanoparticles moderated key symptoms of kidney dysfunction in uricase-knockout mice by lowering uric acid levels. Histological kidney samples of the treated mice suggest that delivery of recombinant uricase had a protective effect against the destructive effects of uric acid that lead to renal failure caused by hyperuricemia.
Collapse
Affiliation(s)
- Lily Tran
- Department of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Soumen Das
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30306, United States
| | - Liangjun Zhao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30306, United States
| | - M G Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30306, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30306, United States
| | - Eric A Gaucher
- Department of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
7
|
Affonso de Oliveira JF, Chan SK, Omole AO, Agrawal V, Steinmetz NF. In Vivo Fate of Cowpea Mosaic Virus In Situ Vaccine: Biodistribution and Clearance. ACS NANO 2022; 16:18315-18328. [PMID: 36264973 PMCID: PMC9840517 DOI: 10.1021/acsnano.2c06143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cowpea mosaic virus (CPMV) is a nucleoprotein nanoparticle that functions as a highly potent immunomodulator when administered intratumorally and is used as an in situ vaccine. CPMV in situ vaccination remodels the tumor microenvironment and primes a highly potent, systemic, and durable antitumor immune response against the treated and untreated, distant metastatic sites (abscopal effect). Potent efficacy was demonstrated in multiple tumor mouse models and, most importantly, in canine cancer patients with spontaneous tumors. Data indicate that presence of anti-CPMV antibodies are not neutralizing and that in fact opsonization leads to enhanced efficacy. Plant viruses are part of the food chain, but to date, there is no information on human exposure to CPMV. Therefore, patient sera were tested for the presence of immunoglobulins against CPMV, and indeed, >50% of deidentified patient samples tested positive for CPMV antibodies. To get a broader sense of plant virus exposure and immunogenicity in humans, we also tested sera for antibodies against tobacco mosaic virus (>90% patients tested positive), potato virus X (<20% patients tested positive), and cowpea chlorotic mottle virus (no antibodies were detected). Further, patient sera were analyzed for the presence of antibodies against the coliphage Qβ, a platform technology currently undergoing clinical trials for in situ vaccination; we found that 60% of patients present with anti-Qβ antibodies. Thus, data indicate human exposure to CPMV and other plant viruses and phages. Next, we thought to address agronomical safety; i.e., we examined the fate of CPMV after intratumoral treatment and oral gavage (to mimic consumption by food). Because live CPMV is used, an important question is whether there is any evidence of shedding of infectious particles from mice or patients. CPMV is noninfectious toward mammals; however, it is infectious toward plants including black-eyed peas and other legumes. Biodistribution data in tumor-bearing and healthy mice indicate little leaching from tumors and clearance via the reticuloendothelial system followed by biliary excretion. While there was evidence of shedding of RNA in stool, there was no evidence of infectious particles when plants were challenged with stool extracts, thus indicating agronomical safety. Together these data aid the translational development of CPMV as a drug candidate for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Soo Khim Chan
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
| | - Anthony O Omole
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
| | - Vanshika Agrawal
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
- Department of Radiology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
| |
Collapse
|
8
|
Li Y, Bao Q, Yang S, Yang M, Mao C. Bionanoparticles in cancer imaging, diagnosis, and treatment. VIEW 2022. [DOI: 10.1002/viw.20200027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yan Li
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Hangzhou Zhejiang China
| | - Qing Bao
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang China
| | - Shuxu Yang
- Department of Neurosurgery Sir Run Run Shaw Hospital School of Medicine Zhejiang University Hangzhou Zhejiang China
| | - Mingying Yang
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Hangzhou Zhejiang China
| | - Chuanbin Mao
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang China
- Department of Chemistry and Biochemistry Stephenson Life Science Research Center University of Oklahoma Norman Oklahoma USA
| |
Collapse
|
9
|
Shende P, Rodrigues B, Govardhane S. Diversified applications of self-assembled nanocluster delivery systems- A state-of-the- art review. Curr Pharm Des 2022; 28:1870-1884. [PMID: 35232345 DOI: 10.2174/1381612828666220301125944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Self-assembled nanoclusters arrange the components into an organized structure for the nanoparticulate system and also in the transportation of cellular elements for the fabrication of microelectronic devices. Nanoclusters reduce transcytosis and increase endocytosis in intestinal mucin to strengthen the retrograde pathway that helped in the delivery of actives to the Golgi apparatus. OBJECTIVES This review article focuses on the self-assembled nanoclusters for cellular transportation, applications of self-assembled structures in the delivery of essential elements like the use of a peptide in targeted and stimuli-responsive drug delivery systems, self-assembly of tocopherol nanoclusters that promotes vitamin E delivery across the endothelial barrier. Methods Current innovation in the self-assembly of peptides includes the formation of nanostructures like vesicles, fibers, and rod-coil in the applications of wound healing, tissue engineering, treatment of atherosclerosis, in sensing heavy metals from biological and environmental samples and advanced drug delivery. RESULTS Self-assembled biodegradable nanoclusters are used as biomimetic structures for synergistic effect. Improvement in the methods of preparation like the addition of a copolymer is used for temperature-triggered drug release nanoclusters. CONCLUSION Green synthesis of nanoclusters, nanocluster-based biosensor and artificial intelligence are the future concept in the manufacturing and the prevention of toxicity in humans.
Collapse
Affiliation(s)
- Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Bernice Rodrigues
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Sharayu Govardhane
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
10
|
Souri M, Chiani M, Farhangi A, Mehrabi MR, Nourouzian D, Raahemifar K, Soltani M. Anti-COVID-19 Nanomaterials: Directions to Improve Prevention, Diagnosis, and Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:783. [PMID: 35269270 PMCID: PMC8912597 DOI: 10.3390/nano12050783] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023]
Abstract
Following the announcement of the outbreak of COVID-19 by the World Health Organization, unprecedented efforts were made by researchers around the world to combat the disease. So far, various methods have been developed to combat this "virus" nano enemy, in close collaboration with the clinical and scientific communities. Nanotechnology based on modifiable engineering materials and useful physicochemical properties has demonstrated several methods in the fight against SARS-CoV-2. Here, based on what has been clarified so far from the life cycle of SARS-CoV-2, through an interdisciplinary perspective based on computational science, engineering, pharmacology, medicine, biology, and virology, the role of nano-tools in the trio of prevention, diagnosis, and treatment is highlighted. The special properties of different nanomaterials have led to their widespread use in the development of personal protective equipment, anti-viral nano-coats, and disinfectants in the fight against SARS-CoV-2 out-body. The development of nano-based vaccines acts as a strong shield in-body. In addition, fast detection with high efficiency of SARS-CoV-2 by nanomaterial-based point-of-care devices is another nanotechnology capability. Finally, nanotechnology can play an effective role as an agents carrier, such as agents for blocking angiotensin-converting enzyme 2 (ACE2) receptors, gene editing agents, and therapeutic agents. As a general conclusion, it can be said that nanoparticles can be widely used in disinfection applications outside in vivo. However, in in vivo applications, although it has provided promising results, it still needs to be evaluated for possible unintended immunotoxicity. Reviews like these can be important documents for future unwanted pandemics.
Collapse
Affiliation(s)
- Mohammad Souri
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (M.S.); (M.C.); (A.F.)
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran
| | - Mohsen Chiani
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (M.S.); (M.C.); (A.F.)
| | - Ali Farhangi
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (M.S.); (M.C.); (A.F.)
| | - Mohammad Reza Mehrabi
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (M.S.); (M.C.); (A.F.)
| | - Dariush Nourouzian
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (M.S.); (M.C.); (A.F.)
| | - Kaamran Raahemifar
- Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), Penn State University, State College, PA 16801, USA;
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
- School of Optometry and Vision Science, Faculty of Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - M. Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Advanced Bioengineering Initiative Center, Multidisciplinary International Complex, K. N. Toosi University of Technology, Tehran 14176-14411, Iran
| |
Collapse
|
11
|
Xu F, Mu J, Teng Y, Zhang X, Sundaram K, Sriwastva MK, Kumar A, Lei C, Zhang L, Liu QM, Yan J, McClain CJ, Merchant ML, Zhang HG. Restoring Oat Nanoparticles Mediated Brain Memory Function of Mice Fed Alcohol by Sorting Inflammatory Dectin-1 Complex Into Microglial Exosomes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105385. [PMID: 34897972 PMCID: PMC8858573 DOI: 10.1002/smll.202105385] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/25/2021] [Indexed: 05/23/2023]
Abstract
Microglia modulate pro-inflammatory and neurotoxic activities. Edible plant-derived factors improve brain function. Current knowledge of the molecular interactions between edible plant-derived factors and the microglial cell is limited. Here an alcohol-induced chronic brain inflammation model is used to identify that the microglial cell is the novel target of oat nanoparticles (oatN). Oral administration of oatN inhibits brain inflammation and improves brain memory function of mice that are fed alcohol. Mechanistically, ethanol activates dectin-1 mediated inflammatory pathway. OatN is taken up by microglial cells via β-glucan mediated binding to microglial hippocalcin (HPCA) whereas oatN digalactosyldiacylglycerol (DGDG) prevents assess of oatN β-glucan to dectin-1. Subsequently endocytosed β-glucan/HPCA is recruited in an endosomal recycling compartment (ERC) via interaction with Rab11a. This complex then sequesters the dectin-1 in the ERC in an oatN β-glucan dependent manner and alters the location of dectin-1 from Golgi to early endosomes and lysosomes and increases exportation of dectin-1 into exosomes in an Rab11a dependent manner. Collectively, these cascading actions lead to preventing the activation of the alcoholic induced brain inflammation signing pathway(s). This coordinated assembling of the HPCA/Rab11a/dectin-1 complex by oral administration of oatN may contribute to the prevention of brain inflammation.
Collapse
Affiliation(s)
- Fangyi Xu
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Jingyao Mu
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Yun Teng
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Xiangcheng Zhang
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
- Department of ICU, the Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, China
| | - Kumaran Sundaram
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Mukesh K Sriwastva
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Anil Kumar
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Chao Lei
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Lifeng Zhang
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Qiaohong M Liu
- Peak Neuromonitoring Associates-Kentucky, Louisville, KY, 40202, USA
| | - Jun Yan
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Craig J McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY, 40202, USA
| | - Michael L Merchant
- Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, KY, 40202, USA
| | - Huang-Ge Zhang
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
- Robley Rex Veterans Affairs Medical Center, Louisville, KY, 40206, USA
| |
Collapse
|
12
|
Hasanzadeh A, Alamdaran M, Ahmadi S, Nourizadeh H, Bagherzadeh MA, Mofazzal Jahromi MA, Simon P, Karimi M, Hamblin MR. Nanotechnology against COVID-19: Immunization, diagnostic and therapeutic studies. J Control Release 2021; 336:354-374. [PMID: 34175366 PMCID: PMC8226031 DOI: 10.1016/j.jconrel.2021.06.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/08/2023]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in early 2020 soon led to the global pandemic of Coronavirus Disease 2019 (COVID-19). Since then, the clinical and scientific communities have been closely collaborating to develop effective strategies for controlling the ongoing pandemic. The game-changing fields of recent years, nanotechnology and nanomedicine have the potential to not only design new approaches, but also to improve existing methods for the fight against COVID-19. Nanomaterials can be used in the development of highly efficient, reusable personal protective equipment, and antiviral nano-coatings in public settings could prevent the spread of SARS-CoV-2. Smart nanocarriers have accelerated the design of several therapeutic, prophylactic, or immune-mediated approaches against COVID-19. Some nanovaccines have even entered Phase IΙ/IIΙ clinical trials. Several rapid and cost-effective COVID-19 diagnostic techniques have also been devised based on nanobiosensors, lab-on-a-chip systems, or nanopore technology. Here, we provide an overview of the emerging role of nanotechnology in the prevention, diagnosis, and treatment of COVID-19.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoomeh Alamdaran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Helena Nourizadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Aref Bagherzadeh
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran; Department of Immunology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mirza Ali Mofazzal Jahromi
- Department of Immunology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran; Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran; Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Perikles Simon
- Department of Sport Medicine, Disease Prevention and Rehabilitation, Faculty of Social Science, Media and Sport, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
13
|
Nkanga CI, Steinmetz NF. The pharmacology of plant virus nanoparticles. Virology 2021; 556:39-61. [PMID: 33545555 PMCID: PMC7974633 DOI: 10.1016/j.virol.2021.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
The application of nanoparticles for medical purposes has made enormous strides in providing new solutions to health problems. The observation that plant virus-based nanoparticles (VNPs) can be repurposed and engineered as smart bio-vehicles for targeted drug delivery and imaging has launched extensive research for improving the therapeutic and diagnostic management of various diseases. There is evidence that VNPs are promising high value nanocarriers with potential for translational development. This is mainly due to their unique features, encompassing structural uniformity, ease of manufacture and functionalization by means of expression, chemical biology and self-assembly. While the development pipeline is moving rapidly, with many reports focusing on engineering and manufacturing aspects to tailor the properties and efficacy of VNPs, fewer studies have focused on gaining insights into the nanotoxicity of this novel platform nanotechnology. Herein, we discuss the pharmacology of VNPs as a function of formulation and route of administration. VNPs are reviewed in the context of their application as therapeutic adjuvants or nanocarrier excipients to initiate, enhance, attenuate or impede the formulation's toxicity. The summary of the data however also underlines the need for meticulous VNP structure-nanotoxicity studies to improve our understanding of their in vivo fates and pharmacological profiles to pave the way for translation of VNP-based formulations into the clinical setting.
Collapse
Affiliation(s)
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA, 92039, United States; Department of Bioengineering, Department of Radiology, Center for NanoImmunoEngineering, Moores Cancer Center, Institute for Materials Discovery and Design, University of California-San Diego, La Jolla, CA, 92039, United States.
| |
Collapse
|
14
|
Chariou PL, Beiss V, Ma Y, Steinmetz NF. In situ vaccine application of inactivated CPMV nanoparticles for cancer immunotherapy. MATERIALS ADVANCES 2021; 2:1644-1656. [PMID: 34368764 PMCID: PMC8323807 DOI: 10.1039/d0ma00752h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/26/2021] [Indexed: 05/24/2023]
Abstract
Cowpea mosaic virus (CPMV) is currently in the development pipeline for multiple biomedical applications, including cancer immunotherapy. In particular the application of CPMV as in situ vaccine has shown promise; here the plant viral nanoparticle is used as an adjuvant and is injected directly into a tumor to reverse immunosuppression and prime systemic anti-tumor immunity. Efficacy of this CPMV-based cancer immunotherapy has been demonstrated in multiple tumor mouse models and canine cancer patients. However, while CPMV is non-infectious to mammals, it is infectious to legumes and therefore, from a safety perspective, it is desired to develop non-infectious CPMV formulations. Non-infectious virus-like particles of CPMV devoid of nucleic acids have been produced; nevertheless, efficacy of such empty CPMV nanoparticles does not match efficacy of nucleic acid-laden CPMV. The multivalent capsid activates the innate immune system through pathogen pattern recognition receptors (PRRs) such as toll-like receptors (TLRs); the RNA cargo provides additional signaling through TLR-7/8, which boosts the efficacy of this adjuvant. Therefore, in this study, we set out to develop RNA-laden, but non-infectious CPMV. We report inactivation of CPMV using UV light and chemical inactivation using β-propiolactone (βPL) or formalin. 7.5 J cm-2 UV, 50 mM βPL or 1 mM formalin was determined to be sufficient to inactivate CPMV and prevented plant infection. We compared the immunogenicity of native CPMV and inactivated CPMV formulations in vitro and in vivo using RAW-Blue™ reporter cells and a murine syngeneic, orthotropic melanoma model (using B16F10 cells and C57BL6 mice). While the in vitro assay indicated activation of the RAW-Blue™ reporter cells by formaldehyde and UV-inactivated CPMV at levels comparable to native CPMV; βPL-inactivated CPMV appeared to have diminished activity. Tumor mouse model experiments indicate potent efficacy of the chemically-inactivated CPMV (UV-treated CPMV was not tested) leading to tumor regression and increased survival; efficacy was somewhat reduced when compared to CPMV, however these samples outperformed the empty CPMV nanoparticles. These results will facilitate the translational development of safe and potent CPMV-based cancer immunotherapies.
Collapse
Affiliation(s)
- Paul L. Chariou
- Department of Bioengineering, University of California-San DiegoLa JollaCA 92039USA
| | - Veronique Beiss
- Department of NanoEngineering, University of California-San DiegoLa JollaCA 92039USA
| | - Yifeng Ma
- Department of NanoEngineering, University of California-San DiegoLa JollaCA 92039USA
| | - Nicole F. Steinmetz
- Department of Bioengineering, University of California-San DiegoLa JollaCA 92039USA
- Department of NanoEngineering, University of California-San DiegoLa JollaCA 92039USA
- Department of Radiology, University of California-San DiegoLa JollaCA 92039USA
- Moores Cancer Center, University of California-San DiegoLa JollaCA 92039USA
- Center for Nano-ImmunoEngineering, University of California-San DiegoLa JollaCA 92039USA
- Institute for Materials Discovery and Design, University of California-San DiegoLa JollaCA 92039USA
| |
Collapse
|
15
|
Berardi A, Castells-Graells R, Lomonossoff GP. High stability of plant-expressed virus-like particles of an insect virus in artificial gastric and intestinal fluids. Eur J Pharm Biopharm 2020; 155:103-111. [PMID: 32805362 DOI: 10.1016/j.ejpb.2020.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 01/15/2023]
Abstract
The harsh conditions of the gastro-intestinal (GI) milieu pose a major barrier to the oral delivery of protein nanocages. Here we studied the stability of Nudaurelia capensis omega virus (NωV) virus-like particles (VLPs) in simulated GI fluids. NωV VLPs capsids and procapsids were transiently expressed in plants, the VLPs were incubated in various simulated GI fluids and their stability was determined by gel electrophoresis, density gradient ultracentrifugation and transmission electron microscopy (TEM). The results showed that the capsids were highly resistant to simulated gastric fluids at pH ≥ 3. Even under the harshest conditions, which consisted of a pepsin solution at pH 1.2, NωV capsids remained assembled as VLPs, though some digestion of the coat protein occurred. Moreover, 80.8% (±10.2%) stability was measured for NωV capsids upon 4 h incubation in simulated intestinal fluids. The high resistance of this protein cage to digestion and denaturation can be attributed to its distinctively compact structure. The more porous form of the VLPs, the procapsid, was less stable under all conditions. Our results suggest that NωV VLPs capsids are likely to endure transit through the GI tract, designating them as promising candidate protein nanocages for oral drug delivery.
Collapse
Affiliation(s)
- Alberto Berardi
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan; Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Roger Castells-Graells
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - George P Lomonossoff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
16
|
Aguado-García Y, Taboada B, Morán P, Rivera-Gutiérrez X, Serrano-Vázquez A, Iša P, Rojas-Velázquez L, Pérez-Juárez H, López S, Torres J, Ximénez C, Arias CF. Tobamoviruses can be frequently present in the oropharynx and gut of infants during their first year of life. Sci Rep 2020; 10:13595. [PMID: 32788688 PMCID: PMC7423923 DOI: 10.1038/s41598-020-70684-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/29/2020] [Indexed: 11/09/2022] Open
Abstract
Plant viruses have been reported to be common in the gut of human adults, presumably as result of food ingestion. In this work, we report that plant viruses can also be found frequently in the gut and oropharynx of children during their first year of life, even when they are exclusively breast-fed. Fecal and oropharynx samples were collected monthly, from birth to 1 year of age, from three apparently healthy children in a semi-rural community and analyzed by next generation sequencing. In 100% of the fecal samples and 65% of the oropharynx samples at least one plant virus was identified. Tobamoviruses in the Virgaviridae family were by far the most frequently detected, with tropical soda apple mosaic virus, pepper mild mottle virus, and opuntia tobamovirus 2 being the most common species. Seventeen complete virus genomes could be assembled, and phylogenetic analyses showed a large diversity of virus strains circulating in the population. These results suggest that children are continuously exposed to an extensive and highly diverse collection of tobamoviruses. Whether the common presence of plant viruses at an early age influences the infant's immune system, either directly or through interaction with other members of the microbiota, remains to be investigated.
Collapse
Affiliation(s)
- Yarenci Aguado-García
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Morelos, Mexico
| | - Blanca Taboada
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Morelos, Mexico
| | - Patricia Morán
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis Num. 148 Doctores, 06726, Ciudad de México, Mexico
| | - Xaira Rivera-Gutiérrez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Morelos, Mexico
| | - Angélica Serrano-Vázquez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis Num. 148 Doctores, 06726, Ciudad de México, Mexico
| | - Pavel Iša
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Morelos, Mexico
| | - Liliana Rojas-Velázquez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis Num. 148 Doctores, 06726, Ciudad de México, Mexico
| | - Horacio Pérez-Juárez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis Num. 148 Doctores, 06726, Ciudad de México, Mexico
| | - Susana López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Morelos, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06726, Cuauhtémoc, Ciudad de México, Mexico.
| | - Cecilia Ximénez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis Num. 148 Doctores, 06726, Ciudad de México, Mexico.
| | - Carlos F Arias
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
17
|
Shin MD, Shukla S, Chung YH, Beiss V, Chan SK, Ortega-Rivera OA, Wirth DM, Chen A, Sack M, Pokorski JK, Steinmetz NF. COVID-19 vaccine development and a potential nanomaterial path forward. NATURE NANOTECHNOLOGY 2020; 15:646-655. [PMID: 32669664 DOI: 10.1038/s41565-020-0737-y] [Citation(s) in RCA: 416] [Impact Index Per Article: 83.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/22/2020] [Indexed: 05/18/2023]
Abstract
The COVID-19 pandemic has infected millions of people with no clear signs of abatement owing to the high prevalence, long incubation period and lack of established treatments or vaccines. Vaccines are the most promising solution to mitigate new viral strains. The genome sequence and protein structure of the 2019-novel coronavirus (nCoV or SARS-CoV-2) were made available in record time, allowing the development of inactivated or attenuated viral vaccines along with subunit vaccines for prophylaxis and treatment. Nanotechnology benefits modern vaccine design since nanomaterials are ideal for antigen delivery, as adjuvants, and as mimics of viral structures. In fact, the first vaccine candidate launched into clinical trials is an mRNA vaccine delivered via lipid nanoparticles. To eradicate pandemics, present and future, a successful vaccine platform must enable rapid discovery, scalable manufacturing and global distribution. Here, we review current approaches to COVID-19 vaccine development and highlight the role of nanotechnology and advanced manufacturing.
Collapse
Affiliation(s)
- Matthew D Shin
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Sourabh Shukla
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Young Hun Chung
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Veronique Beiss
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Soo Khim Chan
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Oscar A Ortega-Rivera
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - David M Wirth
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Angela Chen
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | | | - Jonathan K Pokorski
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, CA, USA
- Institute for Materials Discovery and Design, University of California San Diego, La Jolla, CA, USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, CA, USA.
- Institute for Materials Discovery and Design, University of California San Diego, La Jolla, CA, USA.
- Department of Radiology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
18
|
TRAIL in oncology: From recombinant TRAIL to nano- and self-targeted TRAIL-based therapies. Pharmacol Res 2020; 155:104716. [PMID: 32084560 DOI: 10.1016/j.phrs.2020.104716] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) selectively induces the apoptosis pathway in tumor cells leading to tumor cell death. Because TRAIL induction can kill tumor cells, cancer researchers have developed many agents to target TRAIL and some of these agents have entered clinical trials in oncology. Unfortunately, these trials have failed for many reasons, including drug resistance, off-target toxicities, short half-life, and specifically in gene therapy due to the limited uptake of TRAIL genes by cancer cells. To address these drawbacks, translational researchers have utilized drug delivery platforms. Although, these platforms can improve TRAIL-based therapies, they are unable to sufficiently translate the full potential of TRAIL-targeting to clinically viable products. Herein, we first summarize the complex biology of TRAIL signaling, including TRAILs cross-talk with other signaling pathways and immune cells. Next, we focus on known resistant mechanisms to TRAIL-based therapies. Then, we discuss how nano-formulation has the potential to enhance the therapeutic efficacy of TRAIL protein. Finally, we specify strategies with the potential to overcome the challenges that cannot be addressed via nanotechnology alone, including the alternative methods of TRAIL-expressing circulating cells, tumor-targeting bacteria, viruses, and exosomes.
Collapse
|
19
|
Nuñez-Rivera A, Fournier PGJ, Arellano DL, Rodriguez-Hernandez AG, Vazquez-Duhalt R, Cadena-Nava RD. Brome mosaic virus-like particles as siRNA nanocarriers for biomedical purposes. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:372-382. [PMID: 32175217 PMCID: PMC7059527 DOI: 10.3762/bjnano.11.28] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/07/2020] [Indexed: 05/06/2023]
Abstract
There is an increasing interest in the use of plant viruses as vehicles for anti-cancer therapy. In particular, the plant virus brome mosaic virus (BMV) and cowpea chlorotic mottle virus (CCMV) are novel potential nanocarriers for different therapies in nanomedicine. In this work, BMV and CCMV were loaded with a fluorophore and assayed on breast tumor cells. The viruses BMV and CCMV were internalized into breast tumor cells. Both viruses, BMV and CCMV, did not show cytotoxic effects on tumor cells in vitro. However, only BMV did not activate macrophages in vitro. This suggests that BMV is less immunogenic and may be a potential carrier for therapy delivery in tumor cells. Furthermore, BMV virus-like particles (VLPs) were efficiently loaded with small interfering RNA (siRNA) without packaging signal. The gene silencing was demonstrated by VLPs loaded with siGFP and tested on breast tumor cells that constitutively express the green fluorescent protein (GPF). After VLP-siGFP treatment, GFP expression was efficiently inhibited corroborating the cargo release inside tumor cells and the gene silencing. In addition, BMV VLP carring siAkt1 inhibited the tumor growth in mice. These results show the attractive potential of plant virus VLPs to deliver molecular therapy to tumor cells with low immunogenic response.
Collapse
Affiliation(s)
- Alfredo Nuñez-Rivera
- Centro de Nanociencias y Nanotecnología - Universidad Nacional Autónoma de México (UNAM) – Ensenada, Baja California, México
- Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Ensenada, Baja California, México
| | - Pierrick G J Fournier
- Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Ensenada, Baja California, México
| | - Danna L Arellano
- Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Ensenada, Baja California, México
| | - Ana G Rodriguez-Hernandez
- Centro de Nanociencias y Nanotecnología - Universidad Nacional Autónoma de México (UNAM) – Ensenada, Baja California, México
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología - Universidad Nacional Autónoma de México (UNAM) – Ensenada, Baja California, México
| | - Ruben D Cadena-Nava
- Centro de Nanociencias y Nanotecnología - Universidad Nacional Autónoma de México (UNAM) – Ensenada, Baja California, México
| |
Collapse
|
20
|
Yazdani R, Shams-Bakhsh M, Hassani-Mehraban A, Arab SS, Thelen N, Thiry M, Crommen J, Fillet M, Jacobs N, Brans A, Servais AC. Production and characterization of virus-like particles of grapevine fanleaf virus presenting L2 epitope of human papillomavirus minor capsid protein. BMC Biotechnol 2019; 19:81. [PMID: 31752839 PMCID: PMC6868843 DOI: 10.1186/s12896-019-0566-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/09/2019] [Indexed: 11/17/2022] Open
Abstract
Background Virus-like particle (VLP) platform represents a promising approach for the generation of efficient and immunogenic subunit vaccines. Here, the feasibility of using grapevine fanleaf virus (GFLV) VLPs as a new carrier for the presentation of human papillomavirus (HPV) L2 epitope was studied. To achieve this goal, a model of the HPV L2 epitope secondary structure was predicted and its insertion within 5 external loops in the GFLV capsid protein (CP) was evaluated. Results The epitope sequence was genetically inserted in the αB-αB” domain C of the GFLV CP, which was then over-expressed in Pichia pastoris and Escherichia coli. The highest expression yield was obtained in E. coli. Using this system, VLP formation requires a denaturation-refolding step, whereas VLPs with lower production yield were directly formed using P. pastoris, as confirmed by electron microscopy and immunostaining electron microscopy. Since the GFLV L2 VLPs were found to interact with the HPV L2 antibody under native conditions in capillary electrophoresis and in ELISA, it can be assumed that the inserted epitope is located at the VLP surface with its proper ternary structure. Conclusions The results demonstrate that GFLV VLPs constitute a potential scaffold for surface display of the epitope of interest.
Collapse
Affiliation(s)
- Razieh Yazdani
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University, Pajouhesh Blvd., Tehran to Karaj highway, Tehran, Iran.,Laboratory for the Analysis of Medicines (LAM), Department of Pharmaceutical Sciences, CIRM, University of Liège, Quartier Hôpital, B36, Tower 4, Avenue Hippocrate, 15, 4000, Liège, Belgium
| | - Masoud Shams-Bakhsh
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University, Pajouhesh Blvd., Tehran to Karaj highway, Tehran, Iran.
| | | | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nicolas Thelen
- Cellular and Tissular Biology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Marc Thiry
- Cellular and Tissular Biology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Jacques Crommen
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmaceutical Sciences, CIRM, University of Liège, Quartier Hôpital, B36, Tower 4, Avenue Hippocrate, 15, 4000, Liège, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmaceutical Sciences, CIRM, University of Liège, Quartier Hôpital, B36, Tower 4, Avenue Hippocrate, 15, 4000, Liège, Belgium
| | - Nathalie Jacobs
- Cellular and Molecular Immunology, GIGA-Research, University of Liège, Liège, Belgium
| | - Alain Brans
- Center for Protein Engineering, University of Liège, Chemistry Institute B6, 4000, Liège (Sart Tilman), Belgium
| | - Anne-Catherine Servais
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmaceutical Sciences, CIRM, University of Liège, Quartier Hôpital, B36, Tower 4, Avenue Hippocrate, 15, 4000, Liège, Belgium.
| |
Collapse
|
21
|
Sabharwal P, Amritha CK, Sushmitha C, Natraj U, Savithri HS. Intracellular trafficking and endocytic uptake pathway of Pepper vein banding virus-like particles in epithelial cells. Nanomedicine (Lond) 2019; 14:1247-1265. [PMID: 31084385 DOI: 10.2217/nnm-2018-0405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: Plant virus-like particles (VLPs) have emerged as a novel platform for delivery of drugs/antibodies. The aim of the present investigation is to establish the entry mechanism of flexuous rod-shaped virus particles into mammalian cells. Methods: Far-Western blot analysis, pull-down and ELISA were used to characterize vimentin and Hsp60 interaction with VLPs. The mode/kinetics of internalization of VLPs was deciphered using pharmacological inhibitors/endosomal markers. Results & discussion: The flexuous rod-shaped VLPs of Pepper vein banding virus (PVBV) enter HeLa and HepG2 cells via cell-surface proteins: vimentin and Hsp60, respectively. VLPs internalize via different modes of endocytosis in HeLa, HepG2 cells and are biodegradable. Vimentin and Hsp60 could be potential epithelial ligands that facilitate targeting of nanoparticles to tumor cells.
Collapse
Affiliation(s)
- Pallavi Sabharwal
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Cheekati Sushmitha
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Usha Natraj
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
22
|
Wang C, Fiering SN, Steinmetz NF. Cowpea Mosaic Virus Promotes Anti-Tumor Activity and Immune Memory in a Mouse Ovarian Tumor Model. ADVANCED THERAPEUTICS 2019; 2:1900003. [PMID: 33969181 PMCID: PMC8101952 DOI: 10.1002/adtp.201900003] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Indexed: 01/08/2023]
Abstract
Cowpea mosaic virus (CPMV) is a promising platform nanotechnology with applications as a cancer therapeutic. To understand the therapeutic potential of CPMV in more detail, its antitumor mechanisms are investigated using a syngeneic immunocompetent murine orthotopic ovarian cancer model (ID8-Defb29/Vegf-A). CPMV treatment in situ promotes tumor regression and prevents tumor recurrence. Although CPMV does not kill tumor cells directly, it promotes an intra-tumoral cytokine response which induces pre-existing myeloid cells to break immunotolerance and initiate antitumor responses. The upregulation of interleukin-6 and interferon-γ as well as the downregulation of IL-10 and transforming growth factor β are observed, associated with activation and repolarization of tumor-associated macrophages and neutrophils to an anti-tumor phenotype. Furthermore, the in situ administration of CPMV recruits dendritic cells and natural killer cells to the tumor site, and induces the expression of costimulatory molecules on CD11b- myeloid cells. By converting immunosuppressive myeloid cells into potent antigen-presenting cells, in situ CPMV treatment significantly improves effector and memory CD4+ and CD8+ T cell responses and promoted systemic tumor-specific cytotoxic CD8+ T cell activity. CPMV in situ immunotherapy induces significant tumor control in an aggressive ovarian tumor model by coordinating innate and adaptive immune responses involving neutrophils, macrophages, and T cells.
Collapse
Affiliation(s)
- Chao Wang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Steven N Fiering
- Department of Microbiology and Immunology and Norris Cotton Cancer Center, Dartmouth University, Lebanon, NH 03756, USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
23
|
Balke I, Zeltins A. Use of plant viruses and virus-like particles for the creation of novel vaccines. Adv Drug Deliv Rev 2019; 145:119-129. [PMID: 30172923 DOI: 10.1016/j.addr.2018.08.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 07/24/2018] [Accepted: 08/27/2018] [Indexed: 12/15/2022]
Abstract
In recent decades, the development of plant virology and genetic engineering techniques has resulted in the construction of plant virus-based vaccines for protection against different infectious agents, cancers and autoimmune diseases in both humans and animals. Interaction studies between plant viruses and mammalian organisms have suggested that plant viruses and virus-like particles (VLPs) are safe and noninfectious to humans and animals. Plant viruses with introduced antigens are powerful vaccine components due to their strongly organized, repetitive spatial structure; they can elicit strong immune responses similar to those observed with infectious mammalian viruses. The analysis of published data demonstrated that at least 73 experimental vaccines, including 61 prophylactic and 12 therapeutic vaccines, have been constructed using plant viruses as a carrier structure for presentation of different antigens. This information clearly demonstrates that noninfectious viruses are also applicable as vaccine carriers. Moreover, several plant viruses have been used for platform development, and corresponding vaccines are currently being tested in human and veterinary clinical trials. This review therefore discusses the main principles of plant VLP vaccine construction, emphasizing the physical, chemical, genetic and immunological aspects. Results of the latest studies suggest that several plant virus-based vaccines will join the list of approved human and animal vaccines in the near future.
Collapse
Affiliation(s)
- Ina Balke
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga LV1067, Latvia
| | - Andris Zeltins
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga LV1067, Latvia.
| |
Collapse
|
24
|
Plant virus-based materials for biomedical applications: Trends and prospects. Adv Drug Deliv Rev 2019; 145:96-118. [PMID: 30176280 DOI: 10.1016/j.addr.2018.08.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/06/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022]
Abstract
Nanomaterials composed of plant viral components are finding their way into medical technology and health care, as they offer singular properties. Precisely shaped, tailored virus nanoparticles (VNPs) with multivalent protein surfaces are efficiently loaded with functional compounds such as contrast agents and drugs, and serve as carrier templates and targeting vehicles displaying e.g. peptides and synthetic molecules. Multiple modifications enable uses including vaccination, biosensing, tissue engineering, intravital delivery and theranostics. Novel concepts exploit self-organization capacities of viral building blocks into hierarchical 2D and 3D structures, and their conversion into biocompatible, biodegradable units. High yields of VNPs and proteins can be harvested from plants after a few days so that various products have reached or are close to commercialization. The article delineates potentials and limitations of biomedical plant VNP uses, integrating perspectives of chemistry, biomaterials sciences, molecular plant virology and process engineering.
Collapse
|
25
|
Beatty PH, Lewis JD. Cowpea mosaic virus nanoparticles for cancer imaging and therapy. Adv Drug Deliv Rev 2019; 145:130-144. [PMID: 31004625 DOI: 10.1016/j.addr.2019.04.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 12/07/2018] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
Nanoparticle platforms are particularly attractive for theranostic applications due to their capacity for multifunctionality and multivalency. Some of the most promising nano-scale scaffold systems have been co-opted from nature including plant viruses such as cowpea mosaic virus (CPMV). The use of plant viruses like CPMV as viral nanoparticles is advantageous for many reasons; they are non-infectious and nontoxic to humans and safe for use in intravital imaging and drug delivery. The CPMV capsid icosahedral shape allows for enhanced multifunctional group display and the ability to carry specific cargoes. The native tropism of CPMV for cell-surface displayed vimentin and the enhanced permeability and retention effect allow them to preferentially extravasate from tumor neovasculature and efficiently penetrate tumors. Furthermore, CPMVs can be engineered via several straightforward chemistries to display targeting and imaging moieties on external, addressable residues and they can be loaded internally with therapeutic drug cargoes. These qualities make them highly effective as biocompatible platforms for tumor targeting, intravital imaging and cancer therapy.
Collapse
|
26
|
Berardi A, Baldelli Bombelli F, Thuenemann EC, Lomonossoff GP. Viral nanoparticles can elude protein barriers: exploiting rather than imitating nature. NANOSCALE 2019; 11:2306-2316. [PMID: 30662985 DOI: 10.1039/c8nr09067j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Protein-corona formation in body fluids and/or entrapment of nanoparticles in protein matrices (e.g. food and mucus) can hinder the delivery of nanoparticles, irrespective of the route of administration. Here we demonstrate that certain viral nanoparticles (VNPs) can evade the adhesion of a broad panel of macromolecules from several biological milieus. We also show that the permeability of VNPs through mucin gels is far superior to that of synthetic nanoparticles. The non-sticky nature of VNPs implies that they will be able to readily cross most non-specific protein and glycoprotein barriers encountered, ubiquitously, upon administration through mucosal, and non-mucosal routes.
Collapse
Affiliation(s)
- Alberto Berardi
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan.
| | | | | | | |
Collapse
|
27
|
Ungaro F, Massimino L, Furfaro F, Rimoldi V, Peyrin-Biroulet L, D’Alessio S, Danese S. Metagenomic analysis of intestinal mucosa revealed a specific eukaryotic gut virome signature in early-diagnosed inflammatory bowel disease. Gut Microbes 2018; 10:149-158. [PMID: 30252582 PMCID: PMC6546319 DOI: 10.1080/19490976.2018.1511664] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/17/2018] [Accepted: 08/07/2018] [Indexed: 02/07/2023] Open
Abstract
Intestinal dysbiosis is one of the causes underlying the pathogenesis of inflammatory bowel disease (IBD), encompassing ulcerative colitis (UC) and Crohn's disease (CD). Besides bacteria, microbiota comprises both prokaryotic and eukaryotic viruses, that together compose the gut virome. Few works have defined the viral composition of stools, while the virome populating intestinal mucosae from early-diagnosed IBD patients has never been studied. Here we show that, by in-depth metagenomic analysis of RNA-Seq data obtained from gut mucosae of young treatment-naïve patients, early-diagnosed for CD and UC, and from healthy subjects (Ctrl), UC patients display significantly higher levels of eukaryotic Hepadnaviridae transcripts by comparison with both Ctrl and CD patients, whereas CD patients show increased abundance of Hepeviridae versus Ctrl. Moreover, we found that UC gut mucosa is characterized by lower levels of Polydnaviridae and Tymoviridae, whereas the mucosa of patients with CD showed a reduced abundance of Virgaviridae. Our findings support the idea that certain eukaryotic viruses might trigger intestinal inflammation and contribute to IBD pathogenesis and pave the way not only for the discovery of novel diagnostic biomarkers but also for the development of anti-viral drugs for the treatment of IBD.
Collapse
Affiliation(s)
- Federica Ungaro
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Luca Massimino
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Federica Furfaro
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan, Italy
| | - Valeria Rimoldi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Laurent Peyrin-Biroulet
- Institut National de la Santé et de la Recherche Médicale U954 and Department of Gastroenterology, Nancy University Hospital, Lorraine University, Nancy, France
| | - Silvia D’Alessio
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Silvio Danese
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
28
|
Aanei IL, Huynh T, Seo Y, Francis MB. Vascular Cell Adhesion Molecule-Targeted MS2 Viral Capsids for the Detection of Early-Stage Atherosclerotic Plaques. Bioconjug Chem 2018; 29:2526-2530. [DOI: 10.1021/acs.bioconjchem.8b00453] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ioana L. Aanei
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| | - Tony Huynh
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143, United States
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143, United States
| | - Matthew B. Francis
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| |
Collapse
|
29
|
Alemzadeh E, Dehshahri A, Izadpanah K, Ahmadi F. Plant virus nanoparticles: Novel and robust nanocarriers for drug delivery and imaging. Colloids Surf B Biointerfaces 2018; 167:20-27. [PMID: 29625419 DOI: 10.1016/j.colsurfb.2018.03.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/09/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022]
Abstract
Nanoparticles have been gained much attention for biomedical applications. A promising type of nanocarriers is viral nanoparticles (VNPs) which are natural bio-nanomaterials derived from different type of viruses. Amongst VNPs, plant VNPs present several pros over general nanoparticles such as liposomes, dendrimers or quantum dots. Some of these advantages include: degradability, safety for human, known structures to atomic level, possibility of attaching ligand with vigorous control on structure, availability for genetic and chemical manipulations and very flexible methods to prepare them. Variety of plant viruses have been modified by chemical and genetic modification of their inner cavities and their outer-surfaces. These modifications provide suitable sites for attachment of markers and drug molecules for vascular imaging and tumor targeting. In this review a brief description of plant virus nanoparticles and their biomedical applications especially in drug delivery is provided. The methods of loading cargos in these VNPs and their final biofate are also reviewed.
Collapse
Affiliation(s)
- Effat Alemzadeh
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Dehshahri
- Research Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Keramatolah Izadpanah
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Fatemeh Ahmadi
- Research Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
30
|
Berardi A, Evans DJ, Baldelli Bombelli F, Lomonossoff GP. Stability of plant virus-based nanocarriers in gastrointestinal fluids. NANOSCALE 2018; 10:1667-1679. [PMID: 29231944 PMCID: PMC5804478 DOI: 10.1039/c7nr07182e] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/04/2017] [Indexed: 05/17/2023]
Abstract
Cowpea mosaic virus (CPMV) is a plant virus which is being extensively investigated as a drug delivery and vaccine nanocarrier for parenteral administration. However, to date little is known about the suitability of plant-based nanocarriers for oral delivery. In this study, the colloidal (i.e. aggregation), physical (i.e. denaturation) and chemical (i.e. digestion of the polypeptides) stability of CPMV and its empty virus-like particles (eVLPs) in conditions resembling the gastrointestinal fluids were evaluated. The nanoparticles were incubated in various simulated gastric and intestinal fluids and in pig gastric and intestinal fluids. CPMV and eVLPs had similar stabilities. In simulated gastric media, they were stable at pH ≥ 2.5. At lower pH destabilisation of the particle structure occurred, which, in turn, rendered the polypeptides extremely sensitive to pepsin digestion. However, both CPMV and eVLPs were stable in simulated intestinal fluids, in pig gastric fluids and in pig intestinal fluids. Thus CPMV, despite being a protein-based nanoparticle, was much more resistant to the harsh GI conditions than soluble proteins. Remarkably, both CPMV and eVLPs incubated in pig gastric and intestinal fluids were not subject to protein adsorption, with no formation of a detectable protein corona. The lack of a protein corona on CPMV and eVLP surfaces in GI fluids would imply that, if orally administered, these nanoparticles could maintain their native surface characteristics; thus, their biological interactions would remain predictable and unchanged. In summary, CPMV and eVLPs can be considered promising nanocarriers for applications requiring oral delivery, given their chemical, physical and colloidal stability and lack of protein adsorption from the environment in most of the tested conditions.
Collapse
Affiliation(s)
- Alberto Berardi
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan. and Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - David J Evans
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Francesca Baldelli Bombelli
- Laboratory of Supramolecular and BioNano Materials (SupraBioNanoLab), Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Milano, Italy
| | - George P Lomonossoff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
31
|
Combining high-resolution cryo-electron microscopy and mutagenesis to develop cowpea mosaic virus for bionanotechnology. Biochem Soc Trans 2017; 45:1263-1269. [PMID: 29101307 PMCID: PMC5730940 DOI: 10.1042/bst20160312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 01/26/2023]
Abstract
Particles of cowpea mosaic virus (CPMV) have enjoyed considerable success as nanoparticles. The development of a system for producing empty virus-like particles (eVLPs) of the virus, which are non-infectious and have the potential to be loaded with heterologous material, has increased the number of possible applications for CPMV-based particles. However, for this potential to be realised, it was essential to demonstrate that eVLPs were accurate surrogates for natural virus particles, and this information was provided by high-resolution cryo-EM studies of eVLPs. This demonstration has enabled the approaches developed for the production of modified particles developed with natural CPMV particles to be applied to eVLPs. Furthermore, a combination of cryo-EM and mutagenic studies allowed the development of particles which are permeable but which could still assemble efficiently. These particles were shown to be loadable with cobalt, indicating that they can, indeed, be used as nano-containers.
Collapse
|
32
|
Steele JFC, Peyret H, Saunders K, Castells‐Graells R, Marsian J, Meshcheriakova Y, Lomonossoff GP. Synthetic plant virology for nanobiotechnology and nanomedicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9:e1447. [PMID: 28078770 PMCID: PMC5484280 DOI: 10.1002/wnan.1447] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/12/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022]
Abstract
Nanotechnology is a rapidly expanding field seeking to utilize nano-scale structures for a wide range of applications. Biologically derived nanostructures, such as viruses and virus-like particles (VLPs), provide excellent platforms for functionalization due to their physical and chemical properties. Plant viruses, and VLPs derived from them, have been used extensively in biotechnology. They have been characterized in detail over several decades and have desirable properties including high yields, robustness, and ease of purification. Through modifications to viral surfaces, either interior or exterior, plant-virus-derived nanoparticles have been shown to support a range of functions of potential interest to medicine and nano-technology. In this review we highlight recent and influential achievements in the use of plant virus particles as vehicles for diverse functions: from delivery of anticancer compounds, to targeted bioimaging, vaccine production to nanowire formation. WIREs Nanomed Nanobiotechnol 2017, 9:e1447. doi: 10.1002/wnan.1447 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
| | - Hadrien Peyret
- Department of Biology ChemistryJohn Innes CentreNorwichUK
| | - Keith Saunders
- Department of Biology ChemistryJohn Innes CentreNorwichUK
| | | | | | | | | |
Collapse
|
33
|
Tang WL, Tang WH, Chen WC, Diako C, Ross CF, Li SD. Development of a Rapidly Dissolvable Oral Pediatric Formulation for Mefloquine Using Liposomes. Mol Pharm 2017; 14:1969-1979. [DOI: 10.1021/acs.molpharmaceut.7b00077] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wei-Lun Tang
- Faculty
of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Wei-Hsin Tang
- Faculty
of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Weihsu Claire Chen
- Faculty
of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Charles Diako
- School
of Food Science, Washington State University, Pullman, Washington 99164, United States
| | - Carolyn F. Ross
- School
of Food Science, Washington State University, Pullman, Washington 99164, United States
| | - Shyh-Dar Li
- Faculty
of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
34
|
Zhang X, Zhao X, Luckanagul JA, Yan J, Nie Y, Lee LA, Wang Q. Polymer-Protein Core-Shell Nanoparticles for Enhanced Antigen Immunogenicity. ACS Macro Lett 2017; 6:442-446. [PMID: 35610867 DOI: 10.1021/acsmacrolett.7b00049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nanoengineered vaccine platforms can be modeled after viruses and other pathogens with highly organized and repetitive structures that trigger the host immune system. Here we demonstrated a pyridine-grafted poly(ε-caprolactone)-based polymer-protein core-shell nanoparticles (PPCS-NPs) platform can effectively trigger the host immune system and lead to significantly higher antibody titers.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- MicroSep Biological
Science Co. Ltd., Wuxi, Jiangsu 214400, People’s Republic of China
| | - Xia Zhao
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Jittima Amie Luckanagul
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Jing Yan
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Yuzhe Nie
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- Department
of Life Science, Northeast Forestry University, Harbin, Heilongjiang 150040, People’s Republic of China
| | - L. Andrew Lee
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Qian Wang
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
35
|
Rohovie MJ, Nagasawa M, Swartz JR. Virus-like particles: Next-generation nanoparticles for targeted therapeutic delivery. Bioeng Transl Med 2017; 2:43-57. [PMID: 29313023 PMCID: PMC5689521 DOI: 10.1002/btm2.10049] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/23/2016] [Accepted: 11/30/2016] [Indexed: 12/12/2022] Open
Abstract
Most drug therapies distribute the agents throughout the entire body, even though the drugs are typically only needed at specific tissues. This often limits dosage and causes discomfort and harmful side‐effects. Significant research has examined nanoparticles (NPs) for use as targeted delivery vehicles for therapeutic cargo, however, major clinical success has been limited. Current work focuses mainly on liposomal and polymer‐based NPs, but emerging research is exploring the engineering of viral capsids as noninfectious protein‐based NPs—termed virus‐like particles (VLPs). This review covers the research that has been performed thus far and outlines the potential for these VLPs to become highly effective delivery vehicles that overcome the many challenges encountered for targeted delivery of therapeutic cargo.
Collapse
Affiliation(s)
- Marcus J Rohovie
- Dept. of Chemical Engineering Stanford University Stanford CA 94305
| | - Maya Nagasawa
- Dept. of Bioengineering Stanford University Stanford CA 94305
| | - James R Swartz
- Dept. of Chemical Engineering Stanford University Stanford CA 94305.,Dept. of Bioengineering Stanford University Stanford CA 94305
| |
Collapse
|
36
|
Calle D, Yilmaz D, Cerdan S, Kocer A. Drug delivery from engineered organisms and nanocarriers as monitored by multimodal imaging technologies. AIMS BIOENGINEERING 2017. [DOI: 10.3934/bioeng.2017.2.198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
37
|
Barwal I, Kumar R, Kateriya S, Dinda AK, Yadav SC. Targeted delivery system for cancer cells consist of multiple ligands conjugated genetically modified CCMV capsid on doxorubicin GNPs complex. Sci Rep 2016; 6:37096. [PMID: 27872483 PMCID: PMC5118717 DOI: 10.1038/srep37096] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/26/2016] [Indexed: 12/27/2022] Open
Abstract
Targeted nano-delivery vehicles were developed from genetically modified Cowpea chlorotic mottle virus (CCMV) capsid by ligands bioconjugation for efficient drug delivery in cancer cells. RNA binding (N 1-25aa) and β-hexamer forming (N 27-41aa) domain of capsid was selectively deleted by genetic engineering to achieve the efficient in vitro assembly without natural cargo. Two variants of capsids were generated by truncating 41 and 26 amino acid from N terminus (NΔ41 and NΔ26) designated as F1 and F2 respectively. These capsid were optimally self-assembled in 1:2 molar ratio (F1:F2) to form a monodisperse nano-scaffold of size 28 nm along with chemically conjugated modalities for visualization (fluorescent dye), targeting (folic acid, FA) and anticancer drug (doxorubicin). The cavity of the nano-scaffold was packed with doxorubicin conjugated gold nanoparticles (10 nm) to enhance the stability, drug loading and sustained release of drug. The chimeric system was stable at pH range of 4–8. This chimeric nano-scaffold system showed highly specific receptor mediated internalization (targeting) and ~300% more cytotoxicity (with respect to FA− delivery system) to folate receptor positive Michigan Cancer Foundation-7 (MCF7) cell lines. The present system may offer a programmable nano-scaffold based platform for developing chemotherapeutics for cancer.
Collapse
Affiliation(s)
- Indu Barwal
- TERI University, Vasant Kunj, New Delhi, 110070, India.,TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi, 110003, India
| | - Rajiv Kumar
- School of Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Suneel Kateriya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Amit Kumar Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Subhash Chandra Yadav
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi, 110003, India.,Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
38
|
Schwarz B, Uchida M, Douglas T. Biomedical and Catalytic Opportunities of Virus-Like Particles in Nanotechnology. Adv Virus Res 2016; 97:1-60. [PMID: 28057256 DOI: 10.1016/bs.aivir.2016.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Within biology, molecules are arranged in hierarchical structures that coordinate and control the many processes that allow for complex organisms to exist. Proteins and other functional macromolecules are often studied outside their natural nanostructural context because it remains difficult to create controlled arrangements of proteins at this size scale. Viruses are elegantly simple nanosystems that exist at the interface of living organisms and nonliving biological machines. Studied and viewed primarily as pathogens to be combatted, viruses have emerged as models of structural efficiency at the nanoscale and have spurred the development of biomimetic nanoparticle systems. Virus-like particles (VLPs) are noninfectious protein cages derived from viruses or other cage-forming systems. VLPs provide incredibly regular scaffolds for building at the nanoscale. Composed of self-assembling protein subunits, VLPs provide both a model for studying materials' assembly at the nanoscale and useful building blocks for materials design. The robustness and degree of understanding of many VLP structures allow for the ready use of these systems as versatile nanoparticle platforms for the conjugation of active molecules or as scaffolds for the structural organization of chemical processes. Lastly the prevalence of viruses in all domains of life has led to unique activities of VLPs in biological systems most notably the immune system. Here we discuss recent efforts to apply VLPs in a wide variety of applications with the aim of highlighting how the common structural elements of VLPs have led to their emergence as paradigms for the understanding and design of biological nanomaterials.
Collapse
Affiliation(s)
- B Schwarz
- Indiana University, Bloomington, IN, United States
| | - M Uchida
- Indiana University, Bloomington, IN, United States
| | - T Douglas
- Indiana University, Bloomington, IN, United States.
| |
Collapse
|
39
|
Aanei IL, ElSohly AM, Farkas ME, Netirojjanakul C, Regan M, Taylor Murphy S, O'Neil JP, Seo Y, Francis MB. Biodistribution of Antibody-MS2 Viral Capsid Conjugates in Breast Cancer Models. Mol Pharm 2016; 13:3764-3772. [PMID: 27611245 DOI: 10.1021/acs.molpharmaceut.6b00566] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A variety of nanoscale scaffolds, including virus-like particles (VLPs), are being developed for biomedical applications; however, little information is available about their in vivo behavior. Targeted nanoparticles are particularly valuable as diagnostic and therapeutic carriers because they can increase the signal-to-background ratio of imaging agents, improve the efficacy of drugs, and reduce adverse effects by concentrating the therapeutic molecule in the region of interest. The genome-free capsid of bacteriophage MS2 has several features that make it well-suited for use in delivery applications, such as facile production and modification, the ability to display multiple copies of targeting ligands, and the capacity to deliver large payloads. Anti-EGFR antibodies were conjugated to MS2 capsids to construct nanoparticles targeted toward receptors overexpressed on breast cancer cells. The MS2 agents showed good stability in physiological conditions up to 2 days and specific binding to the targeted receptors in in vitro experiments. Capsids radiolabeled with 64Cu isotopes were injected into mice possessing tumor xenografts, and both positron emission tomography-computed tomography (PET/CT) and scintillation counting of the organs ex vivo were used to determine the localization of the agents. The capsids exhibit surprisingly long circulation times (10-15% ID/g in blood at 24 h) and moderate tumor uptake (2-5% ID/g). However, the targeting antibodies did not lead to increased uptake in vivo despite in vitro enhancements, suggesting that extravasation is a limiting factor for delivery to tumors by these particles.
Collapse
Affiliation(s)
- Ioana L Aanei
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratories , Berkeley, California 94720, United States
| | - Adel M ElSohly
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| | - Michelle E Farkas
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| | - Chawita Netirojjanakul
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| | - Melanie Regan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco , San Francisco, California 94143, United States
| | - Stephanie Taylor Murphy
- Department of Radiology and Biomedical Imaging, University of California, San Francisco , San Francisco, California 94143, United States
| | - James P O'Neil
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratories , Berkeley, California 94720, United States
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco , San Francisco, California 94143, United States
| | - Matthew B Francis
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratories , Berkeley, California 94720, United States
| |
Collapse
|
40
|
Nikitin NA, Trifonova EA, Karpova OV, Atabekov JG. Biosafety of plant viruses for human and animals. ACTA ACUST UNITED AC 2016. [DOI: 10.3103/s0096392516030081] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Zhang Y, Ardejani MS, Orner BP. Design and Applications of Protein-Cage-Based Nanomaterials. Chem Asian J 2016; 11:2814-2828. [DOI: 10.1002/asia.201600769] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Zhang
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals; College of Chemical Engineering; Nanjing Forestry University; Nanjing 210037 P.R. China
| | - Maziar S. Ardejani
- Department of Chemistry; The Scripps Research Institute; La Jolla CA 92037 United States
| | - Brendan P. Orner
- Department of Chemistry; King's College London; London SE1 1DB United Kingdom
| |
Collapse
|
42
|
Wen AM, Steinmetz NF. Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chem Soc Rev 2016; 45:4074-126. [PMID: 27152673 PMCID: PMC5068136 DOI: 10.1039/c5cs00287g] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review provides an overview of recent developments in "chemical virology." Viruses, as materials, provide unique nanoscale scaffolds that have relevance in chemical biology and nanotechnology, with diverse areas of applications. Some fundamental advantages of viruses, compared to synthetically programmed materials, include the highly precise spatial arrangement of their subunits into a diverse array of shapes and sizes and many available avenues for easy and reproducible modification. Here, we will first survey the broad distribution of viruses and various methods for producing virus-based nanoparticles, as well as engineering principles used to impart new functionalities. We will then examine the broad range of applications and implications of virus-based materials, focusing on the medical, biotechnology, and energy sectors. We anticipate that this field will continue to evolve and grow, with exciting new possibilities stemming from advancements in the rational design of virus-based nanomaterials.
Collapse
Affiliation(s)
- Amy M Wen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA. and Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
43
|
Affiliation(s)
- Vladimir Murashov
- National Institute for Occupational Safety and Health, Washington, DC
| | - John Howard
- National Institute for Occupational Safety and Health, Washington, DC
| |
Collapse
|
44
|
Wen AM, Lee KL, Cao P, Pangilinan K, Carpenter BL, Lam P, Veliz FA, Ghiladi RA, Advincula RC, Steinmetz NF. Utilizing Viral Nanoparticle/Dendron Hybrid Conjugates in Photodynamic Therapy for Dual Delivery to Macrophages and Cancer Cells. Bioconjug Chem 2016; 27:1227-35. [PMID: 27077475 DOI: 10.1021/acs.bioconjchem.6b00075] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photodynamic therapy (PDT) is a promising avenue for greater treatment efficacy of highly resistant and aggressive melanoma. Through photosensitizer attachment to nanoparticles, specificity of delivery can be conferred to further reduce potential side effects. While the main focus of PDT is the destruction of cancer cells, additional targeting of tumor-associated macrophages also present in the tumor microenvironment could further enhance treatment by eliminating their role in processes such as invasion, metastasis, and immunosuppression. In this study, we investigated PDT of macrophages and tumor cells through delivery using the natural noninfectious nanoparticle cowpea mosaic virus (CPMV), which has been shown to have specificity for the immunosuppressive subpopulation of macrophages and also targets cancer cells. We further explored conjugation of CPMV/dendron hybrids in order to improve the drug loading capacity of the nanocarrier. Overall, we demonstrated effective elimination of both macrophage and tumor cells at low micromolar concentrations of the photosensitizer when delivered with the CPMV bioconjugate, thereby potentially improving melanoma treatment.
Collapse
Affiliation(s)
| | | | | | | | - Bradley L Carpenter
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | | | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | | |
Collapse
|
45
|
Ganguly R, Wen AM, Myer AB, Czech T, Sahu S, Steinmetz NF, Raman P. Anti-atherogenic effect of trivalent chromium-loaded CPMV nanoparticles in human aortic smooth muscle cells under hyperglycemic conditions in vitro. NANOSCALE 2016; 8:6542-6554. [PMID: 26935414 PMCID: PMC5136293 DOI: 10.1039/c6nr00398b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Atherosclerosis, a major macrovascular complication associated with diabetes, poses a tremendous burden on national health care expenditure. Despite extensive efforts, cost-effective remedies are unknown. Therapies for atherosclerosis are challenged by a lack of targeted drug delivery approaches. Toward this goal, we turn to a biology-derived drug delivery system utilizing nanoparticles formed by the plant virus, Cowpea mosaic virus (CPMV). The aim herein is to investigate the anti-atherogenic potential of the beneficial mineral nutrient, trivalent chromium, loaded CPMV nanoparticles in human aortic smooth muscle cells (HASMC) under hyperglycemic conditions. A non-covalent loading protocol is established yielding CrCl3-loaded CPMV (CPMV-Cr) carrying 2000 drug molecules per particle. Using immunofluorescence microscopy, we show that CPMV-Cr is readily taken up by HASMC in vitro. In glucose (25 mM)-stimulated cells, 100 nM CPMV-Cr inhibits HASMC proliferation concomitant to attenuated proliferating cell nuclear antigen (PCNA, proliferation marker) expression. This is accompanied by attenuation in high glucose-induced phospho-p38 and pAkt expression. Moreover, CPMV-Cr inhibits the expression of pro-inflammatory cytokines, transforming growth factor-β (TGF-β) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), in glucose-stimulated HASMCs. Finally glucose-stimulated lipid uptake is remarkably abrogated by CPMV-Cr, revealed by Oil Red O staining. Together, these data provide key cellular evidence for an atheroprotective effect of CPMV-Cr in vascular smooth muscle cells (VSMC) under hyperglycemic conditions that may promote novel therapeutic ventures for diabetic atherosclerosis.
Collapse
Affiliation(s)
- Rituparna Ganguly
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272-0095, USA. and School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Amy M Wen
- Department of Biomedical Engineering, 10990 Euclid Avenue and Case Western Reserve University, Cleveland, OH, USA
| | - Ashley B Myer
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272-0095, USA.
| | - Tori Czech
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272-0095, USA.
| | - Soumyadip Sahu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272-0095, USA. and School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, 10990 Euclid Avenue and Case Western Reserve University, Cleveland, OH, USA and Department of Radiology, 10990 Euclid Avenue and Case Western Reserve University, Cleveland, OH, USA and Department of Materials Science and Engineering, 10990 Euclid Avenue and Case Western Reserve University, Cleveland, OH, USA and Department of Macromolecular Science and Engineering, 10990 Euclid Avenue and Case Western Reserve University, Cleveland, OH, USA and Case Comprehensive Cancer Center, 10990 Euclid Avenue and Case Western Reserve University, Cleveland, OH, USA
| | - Priya Raman
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272-0095, USA. and School of Biomedical Sciences, Kent State University, Kent, OH, USA
| |
Collapse
|
46
|
Huynh NT, Hesketh EL, Saxena P, Meshcheriakova Y, Ku YC, Hoang LT, Johnson JE, Ranson NA, Lomonossoff GP, Reddy VS. Crystal Structure and Proteomics Analysis of Empty Virus-like Particles of Cowpea Mosaic Virus. Structure 2016; 24:567-575. [PMID: 27021160 DOI: 10.1016/j.str.2016.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/12/2016] [Accepted: 02/22/2016] [Indexed: 11/24/2022]
Abstract
Empty virus-like particles (eVLPs) of Cowpea mosaic virus (CPMV) are currently being utilized as reagents in various biomedical and nanotechnology applications. Here, we report the crystal structure of CPMV eVLPs determined using X-ray crystallography at 2.3 Å resolution and compare it with previously reported cryo-electron microscopy (cryo-EM) of eVLPs and virion crystal structures. Although the X-ray and cryo-EM structures of eVLPs are mostly similar, there exist significant differences at the C terminus of the small (S) subunit. The intact C terminus of the S subunit plays a critical role in enabling the efficient assembly of CPMV virions and eVLPs, but undergoes proteolysis after particle formation. In addition, we report the results of mass spectrometry-based proteomics analysis of coat protein subunits from CPMV eVLPs and virions that identify the C termini of S subunits undergo proteolytic cleavages at multiple sites instead of a single cleavage site as previously observed.
Collapse
Affiliation(s)
- Nhung T Huynh
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Emma L Hesketh
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Pooja Saxena
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Yulia Meshcheriakova
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - You-Chan Ku
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linh T Hoang
- Scripps Center for Metabolics and Mass Spectrometry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John E Johnson
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - George P Lomonossoff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Vijay S Reddy
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
47
|
Chen Z, Li N, Li S, Dharmarwardana M, Schlimme A, Gassensmith JJ. Viral chemistry: the chemical functionalization of viral architectures to create new technology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:512-34. [DOI: 10.1002/wnan.1379] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/31/2015] [Accepted: 09/15/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Zhuo Chen
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTXUSA
| | - Na Li
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTXUSA
| | - Shaobo Li
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTXUSA
| | | | - Anna Schlimme
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTXUSA
| | - Jeremiah J Gassensmith
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTXUSA
| |
Collapse
|
48
|
Wen AM, Le N, Zhou X, Steinmetz NF, Popkin DL. Tropism of CPMV to Professional Antigen Presenting Cells Enables a Platform to Eliminate Chronic Infections. ACS Biomater Sci Eng 2015; 1:1050-1054. [PMID: 27280157 PMCID: PMC4894745 DOI: 10.1021/acsbiomaterials.5b00344] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chronic viral infections (e.g., HIV, HBV, HCV) represent a significant source of morbidity and mortality with over 500 million people infected worldwide. Dendritic cells (DCs) and macrophages are key cell types for productive viral replication and persistent systemic infection. We demonstrate that the plant virus cowpea mosaic virus (CPMV) displays tropism for such antigen presenting cells in both mice and humans, thus making it an ideal candidate for targeted drug delivery toward viral infections. Furthermore, we show inhibition of a key host protein for viral infection, site-1 protease (S1P), using the small molecule PF-429242 in the model pathogen arenavirus lymphocytic choriomeningitis virus (LCMV) limits viral growth. By packaging PF-429242 in CPMV, we are able to control drug release and efficiently deliver the drug. This sets the groundwork for utilizing the natural tropism of CPMV for a therapeutic approach that specifically targets cell types most commonly subverted by chronic viruses.
Collapse
Affiliation(s)
- Amy M. Wen
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, Ohio 44106, United States
| | - Nga Le
- Department of Dermatology, Case Western Reserve University Hospitals, Cleveland, Ohio 44106, United States
| | - Xin Zhou
- Department of Dermatology, Case Western Reserve University Hospitals, Cleveland, Ohio 44106, United States
| | - Nicole F. Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, Ohio 44106, United States
- Department of Radiology, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, Ohio 44106, United States
- Department of Materials Science and Engineering, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, Ohio 44106, United States
- Department of Macromolecular Science and Engineering, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, Ohio 44106, United States
| | - Daniel L. Popkin
- Department of Dermatology, Case Western Reserve University Hospitals, Cleveland, Ohio 44106, United States
- Department of Pathology, Case Western Reserve University Hospitals, Cleveland, Ohio 44106, United States
- Department of Molecular Biology and Microbiology, Case Western Reserve University Hospitals, Cleveland, Ohio 44106, United States
| |
Collapse
|
49
|
Sohrab SS, Bhattacharya P, Rana D, Kamal MA, Pande M. Development of interspecific Solanum lycopersicum and screening for Tospovirus resistance. Saudi J Biol Sci 2015; 22:730-8. [PMID: 26587001 PMCID: PMC4625138 DOI: 10.1016/j.sjbs.2014.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/25/2014] [Accepted: 11/07/2014] [Indexed: 12/04/2022] Open
Abstract
Tospovirus has emerged as a serious viral pathogen for several crops including tomato. The tomato production is being severely affected worldwide by Tospovirus. Some reports have been published about the association of plant virus and development of human disease either by direct or indirect consumption. Resistance to this virus has been identified as good source in wild tomato species (Lycopersicum peruvianum). But the introgression of resistance genes into cultivated tomato lines and the development of interspecific hybrid are hampered due to incompatibility, fertilization barriers and embryo abortion. But this barrier has been broken by applying the embryo rescue methods. This study describes the development of interspecific hybrid tomato plants by highly efficient embryo rescue method and screening for Tospovirus resistance. The interspecific hybrid tomato plants were developed by making a cross between wild tomato species (L. peruvianum) and cultivated tomato (Solanum lycopersicum). The immature embryos were cultured in standardized medium and interspecific hybrids were developed from embryogenic callus. The immature embryos excised from 7 to 35 days old fruits were used for embryo rescue and 31 days old embryos showed very good germination capabilities and produced the highest number of plants. Developed plants were hardened enough and shifted to green house. The hybrid nature of interspecific plants was further confirmed by comparing the morphological characters from their parents. The F1, F2 and F3 plants were found to have varying characters especially for leaf type, color of stem, fruits, size, shapes and they were further screened for virus resistance both in lab and open field followed by Enzyme linked Immunosorbant Assay confirmation. Finally, a total of 11 resistant plants were selected bearing red color fruits with desired shape and size.
Collapse
Affiliation(s)
- Sayed Sartaj Sohrab
- King Fahd Medical Research Center, King Abdulaziz University, Post Box No. 80216, Jeddah 21589, Saudi Arabia
| | - P.S. Bhattacharya
- Division of Biotechnology, JK Agri-Genetics Ltd., Hyderabad, A.P., India
| | - D. Rana
- Division of Biotechnology, JK Agri-Genetics Ltd., Hyderabad, A.P., India
| | - Mohammad A. Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Post Box No. 80216, Jeddah 21589, Saudi Arabia
| | - M.K. Pande
- Division of Biotechnology, JK Agri-Genetics Ltd., Hyderabad, A.P., India
| |
Collapse
|
50
|
Abstract
Nanoscale engineering is revolutionizing the way we prevent, detect, and treat diseases. Viruses have played a special role in these developments because they can function as prefabricated nanoscaffolds that have unique properties and are easily modified. The interiors of virus particles can encapsulate and protect sensitive compounds, while the exteriors can be altered to display large and small molecules in precisely defined arrays. These properties of viruses, along with their innate biocompatibility, have led to their development as actively targeted drug delivery systems that expand on and improve current pharmaceutical options. Viruses are naturally immunogenic, and antigens displayed on their surface have been used to create vaccines against pathogens and to break self-tolerance to initiate an immune response to dysfunctional proteins. Densely and specifically aligned imaging agents on viruses have allowed for high-resolution and noninvasive visualization tools to detect and treat diseases earlier than previously possible. These and future applications of viruses have created an exciting new field within the disciplines of both nanotechnology and medicine.
Collapse
Affiliation(s)
| | | | - Marianne Manchester
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093
| | - Nicole F Steinmetz
- Departments of 2Biomedical Engineering
- Radiology
- Materials Science and Engineering, and
- Macromolecular Science and Engineering, Case Western Reserve University, Schools of Medicine and Engineering, Cleveland, Ohio 44106;
| |
Collapse
|