1
|
Souza KFCDSE, Rabelo VWH, Abreu PA, Santos CC, Amaral e Silva NAD, Luna DD, Ferreira VF, Braz BF, Santelli RE, Gonçalves-de-Albuquerque CF, Paixão ICDP, Burth P. Synthetic Naphthoquinone Inhibits Herpes Simplex Virus Type-1 Replication Targeting Na +, K + ATPase. ACS OMEGA 2024; 9:36835-36846. [PMID: 39220530 PMCID: PMC11360054 DOI: 10.1021/acsomega.4c05904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Since 1970 acyclovir (ACV) has been the reference drug in treating herpes simplex virus (HSV) infections. However, resistant herpes simplex virus type 1 (HSV-1) strains have emerged, narrowing the treatment efficacy. The antiviral activity of classical Na+, K+ ATPase enzyme (NKA) inhibitors linked the viral replication to the NKA's activity. Herein, we evaluated the anti-HSV-1 activity of synthetic naphthoquinones, correlating their antiviral activity with NKA inhibition. We tested seven synthetic naphthoquinones initially at 50 μM on HSV-1-infected African green monkey kidney cells (VERO cells). Only one compound, 2-hydroxy-3-(2-thienyl)-1,4-naphthoquinone (AN-06), exhibited higher antiviral activity with a low cytotoxicity. AN-06 reduced the viral titer of 9 (log10) to 1.32 (log10) and decreased the steps of attachment and penetration. The addition of AN-06 up to 20 h postinfection (hpi) interfered with the viral cycle. The viral infection alone increases NKA activity 3 h postinfection (hpi), scaling up to 6 hpi. The addition of AN-06 in a culture infected with HSV-1 decreased NKA activity, suggesting that its antiviral action is linked to NKA inhibition. Also, docking results showed that this compound binds at the same site of NKA in which adenosine triphosphate (ATP) binds. AN-06 exhibited promising pharmacokinetic and toxicology properties. Thus, we postulate that AN-06 may be a good candidate for antiviral compounds with a mechanism of action targeting NKA activity.
Collapse
Affiliation(s)
| | - Vitor Won-Held Rabelo
- Departamento
de Biologia Celular e Molecular, Instituto
de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro CEP 24020-201, Brazil
| | - Paula Alvarez Abreu
- Instituto
de Biodiversidade e Sustentabilidade, Universidade
Federal do Rio de Janeiro, Macaé, Rio de Janeiro CEP 27965-045, Brazil
| | - Cláudio
César Cirne Santos
- Departamento
de Biologia Celular e Molecular, Instituto
de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro CEP 24020-201, Brazil
| | - Nayane Abreu do Amaral e Silva
- Departamento
de Química, Instituto de Química, Laboratório
de Catálise e Síntese (Lab CSI), Universidade Federal Fluminense, Niterói, Rio de Janeiro CEP 24020-141, Brazil
| | - Daniela de Luna
- Departamento
de Química, Instituto de Química, Laboratório
de Catálise e Síntese (Lab CSI), Universidade Federal Fluminense, Niterói, Rio de Janeiro CEP 24020-141, Brazil
| | - Vitor Francisco Ferreira
- Departamento
de Tecnologia Farmacêutica, Universidade
Federal Fluminense, Faculdade de Farmácia, Niterói, Rio de Janeiro 24241-002, Brazil
| | - Bernardo Ferreira Braz
- Departamento
de Química Analítica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro CEP 21941-909, Brazil
| | - Ricardo Erthal Santelli
- Departamento
de Química Analítica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro CEP 21941-909, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório
de Imunofarmacologia, Instituto Oswaldo
Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro CEP 21040-900 Brazil
- Laboratório
de Imunofarmacologia, Universidade Federal
do Estado do Rio de Janeiro, Rio
de Janeiro, Rio de Janeiro CEP 20211-010 Brazil
| | | | - Patricia Burth
- Departamento
de Biologia Celular e Molecular, Instituto
de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro CEP 24020-201, Brazil
| |
Collapse
|
2
|
Samolej J, White IJ, Strang BL, Mercer J. Cardiac glycosides inhibit early and late vaccinia virus protein expression. J Gen Virol 2024; 105:001971. [PMID: 38546099 PMCID: PMC10995631 DOI: 10.1099/jgv.0.001971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Cardiac glycosides (CGs) are natural steroid glycosides, which act as inhibitors of the cellular sodium-potassium ATPase pump. Although traditionally considered toxic to human cells, CGs are widely used as drugs for the treatment of cardiovascular-related medical conditions. More recently, CGs have been explored as potential anti-viral drugs and inhibit replication of a range of RNA and DNA viruses. Previously, a compound screen identified CGs that inhibited vaccinia virus (VACV) infection. However, no further investigation of the inhibitory potential of these compounds was performed, nor was there investigation of the stage(s) of the poxvirus lifecycle they impacted. Here, we investigated the anti-poxvirus activity of a broad panel of CGs. We found that all CGs tested were potent inhibitors of VACV replication. Our virological experiments showed that CGs did not impact virus infectivity, binding, or entry. Rather, experiments using recombinant viruses expressing reporter proteins controlled by VACV promoters and arabinoside release assays demonstrated that CGs inhibited early and late VACV protein expression at different concentrations. Lack of virus assembly in the presence of CGs was confirmed using electron microscopy. Thus, we expand our understanding of compounds with anti-poxvirus activity and highlight a yet unrecognized mechanism by which poxvirus replication can be inhibited.
Collapse
Affiliation(s)
- Jerzy Samolej
- Insititute of Microbiology and Infection, University of Birmingham, Birmingham, UK
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Ian J. White
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Blair L. Strang
- Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Jason Mercer
- Insititute of Microbiology and Infection, University of Birmingham, Birmingham, UK
- Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
3
|
Jahanshahi S, Ouyang H, Ahmed C, Zahedi Amiri A, Dahal S, Mao YQ, Van Ommen DAJ, Malty R, Duan W, Been T, Hernandez J, Mangos M, Nurtanto J, Babu M, Attisano L, Houry WA, Moraes TJ, Cochrane A. Broad spectrum post-entry inhibitors of coronavirus replication: Cardiotonic steroids and monensin. Virology 2024; 589:109915. [PMID: 37931588 DOI: 10.1016/j.virol.2023.109915] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
A small molecule screen identified several cardiotonic steroids (digitoxin and ouabain) and the ionophore monensin as potent inhibitors of HCoV-229E, HCoV-OC43, and SARS-CoV-2 replication with EC50s in the low nM range. Subsequent tests confirmed antiviral activity in primary cell models including human nasal epithelial cells and lung organoids. Addition of digitoxin, ouabain, or monensin strongly reduced viral gene expression as measured by both viral protein and RNA accumulation. Furthermore, the compounds acted post virus entry. While the antiviral activity of digitoxin was dependent upon activation of the MEK and JNK signaling pathways but not signaling through GPCRs, the antiviral effect of monensin was reversed upon inhibition of several signaling pathways. Together, the data demonstrates the potent anti-coronavirus properties of two classes of FDA approved drugs that function by altering the properties of the infected cell, rendering it unable to support virus replication.
Collapse
Affiliation(s)
- Shahrzad Jahanshahi
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Dept. of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Hong Ouyang
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Choudhary Ahmed
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ali Zahedi Amiri
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Subha Dahal
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yu-Qian Mao
- Dept. of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | - Ramy Malty
- Dept. of Biochemistry, University of Toronto, Toronto, ON, Canada; Research and Innovation Centre, Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Wenming Duan
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Terek Been
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Maria Mangos
- Donnelly Center, University of Toronto, Ontario, Canada
| | | | - Mohan Babu
- Research and Innovation Centre, Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Liliana Attisano
- Dept. of Biochemistry, University of Toronto, Toronto, ON, Canada; Donnelly Center, University of Toronto, Ontario, Canada
| | - Walid A Houry
- Dept. of Biochemistry, University of Toronto, Toronto, ON, Canada; Dept. of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Theo J Moraes
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alan Cochrane
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
The Alpha-1 Subunit of the Na +/K +-ATPase (ATP1A1) Is a Host Factor Involved in the Attachment of Porcine Epidemic Diarrhea Virus. Int J Mol Sci 2023; 24:ijms24044000. [PMID: 36835408 PMCID: PMC9966514 DOI: 10.3390/ijms24044000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/18/2023] Open
Abstract
Porcine epidemic diarrhea (PED) is an acute and severe atrophic enteritis caused by porcine epidemic diarrhea virus (PEDV) that infects pigs and makes huge economic losses to the global swine industry. Previously, researchers have believed that porcine aminopeptidase-N (pAPN) was the primary receptor for PEDV, but it has been found that PEDV can infect pAPN knockout pigs. Currently, the functional receptor for PEDV remains unspecified. In the present study, we performed virus overlay protein binding assay (VOPBA), found that ATP1A1 was the highest scoring protein in the mass spectrometry results, and confirmed that the CT structural domain of ATP1A1 interacts with PEDV S1. First, we investigated the effect of ATP1A1 on PEDV replication. Inhibition of hosts ATP1A1 protein expression using small interfering RNA (siRNAs) significantly reduced the cells susceptibility to PEDV. The ATP1A1-specific inhibitors Ouabain (a cardiac steroid) and PST2238 (a digitalis toxin derivative), which specifically bind ATP1A1, could block the ATP1A1 protein internalization and degradation, and consequently reduce the infection rate of host cells by PEDV significantly. Additionally, as expected, overexpression of ATP1A1 notably enhanced PEDV infection. Next, we observed that PEDV infection of target cells resulted in upregulation of ATP1A1 at the mRNA and protein levels. Furthermore, we found that the host protein ATP1A1 was involved in PEDV attachment and co-localized with PEDV S1 protein in the early stage of infection. In addition, pretreatment of IPEC-J2 and Vero-E6 cells with ATP1A1 mAb significantly reduced PEDV attachment. Our observations provided a perspective on identifying key factors in PEDV infection, and may provide valuable targets for PEDV infection, PEDV functional receptor, related pathogenesis, and the development of new antiviral drugs.
Collapse
|
5
|
Antiviral activity of ouabain against a Brazilian Zika virus strain. Sci Rep 2022; 12:12598. [PMID: 35871157 PMCID: PMC9308787 DOI: 10.1038/s41598-022-14243-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/14/2022] [Indexed: 11/20/2022] Open
Abstract
Zika virus (ZIKV) is an emerging arbovirus associated with neurological disorders. Currently, no specific vaccines or antivirals are available to treat the ZIKV infection. Ouabain, a cardiotonic steroid known as Na+/K+-ATPase inhibitor, has been previously described as an immunomodulatory substance by our group. Here, we evaluated for the first time the antiviral activity of this promising substance against a Brazilian ZIKV strain. Vero cells were treated with different concentrations of ouabain before and after the infection with ZIKV. The antiviral effect was evaluated by the TCID50 method and RT-qPCR. Ouabain presented a dose-dependent inhibitory effect against ZIKV, mainly when added post infection. The reduction of infectious virus was accompanied by a decrease in ZIKV RNA levels, suggesting that the mechanism of ZIKV inhibition by ouabain occurred at the replication step. In addition, our in silico data demonstrated a conformational stability and favorable binding free energy of ouabain in the biding sites of the NS5-RdRp and NS3-helicase proteins, which could be related to its mechanism of action. Taken together, these data demonstrate the antiviral activity of ouabain against a Brazilian ZIKV strain and evidence the potential of cardiotonic steroids as promising antiviral agents.
Collapse
|
6
|
Chemistry and the Potential Antiviral, Anticancer, and Anti-Inflammatory Activities of Cardiotonic Steroids Derived from Toads. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196586. [PMID: 36235123 PMCID: PMC9571018 DOI: 10.3390/molecules27196586] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Cardiotonic steroids (CTS) were first documented by ancient Egyptians more than 3000 years ago. Cardiotonic steroids are a group of steroid hormones that circulate in the blood of amphibians and toads and can also be extracted from natural products such as plants, herbs, and marines. It is well known that cardiotonic steroids reveal effects against congestive heart failure and atrial fibrillation; therefore, the term "cardiotonic" has been coined. Cardiotonic steroids are divided into two distinct groups: cardenolides (plant-derived) and bufadienolides (mainly of animal origin). Cardenolides have an unsaturated five-membered lactone ring attached to the steroid nucleus at position 17; bufadienolides have a doubly unsaturated six-membered lactone ring. Cancer is a leading cause of mortality in humans all over the world. In 2040, the global cancer load is expected to be 28.4 million cases, which would be a 47% increase from 2020. Moreover, viruses and inflammations also have a very nebative impact on human health and lead to mortality. In the current review, we focus on the chemistry, antiviral and anti-cancer activities of cardiotonic steroids from the naturally derived (toads) venom to combat these chronic devastating health problems. The databases of different research engines (Google Scholar, PubMed, Science Direct, and Sci-Finder) were screened using different combinations of the following terms: “cardiotonic steroids”, “anti-inflammatory”, “antiviral”, “anticancer”, “toad venom”, “bufadienolides”, and “poison chemical composition”. Various cardiotonic steroids were isolated from diverse toad species and exhibited superior anti-inflammatory, anticancer, and antiviral activities in in vivo and in vitro models such as marinobufagenin, gammabufotalin, resibufogenin, and bufalin. These steroids are especially difficult to identify. However, several compounds and their bioactivities were identified by using different molecular and biotechnological techniques. Biotechnology is a new tool to fully or partially generate upscaled quantities of natural products, which are otherwise only available at trace amounts in organisms.
Collapse
|
7
|
de Padua RM, Kratz JM, Munkert J, Bertol JW, Rigotto C, Schuster D, Maltarollo VG, Kreis W, Simões CMO, Braga F. Effects of Lipophilicity and Structural Features on the Antiherpes Activity of Digitalis Cardenolides and Derivatives. Chem Biodivers 2022; 19:e202200411. [DOI: 10.1002/cbdv.202200411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/06/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Rodrigo Maia de Padua
- UFMG: Universidade Federal de Minas Gerais Pharmaceutical Products Av. Antônio Carlos 6627 Belo Horizonte BRAZIL
| | - Jadel Müller Kratz
- UFSC: Universidade Federal de Santa Catarina Pharmaceutical Sciences R. Delfino Conti, S/N Florianópolis BRAZIL
| | - Jennifer Munkert
- University of Erlangen-Nuernberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Division of Pharmaceutical Biology Staudtstraße 5 Erlangen GERMANY
| | - Jéssica Wildgrube Bertol
- UFSC: Universidade Federal de Santa Catarina Pharmaceutical Sciences R. Delfino Conti, S/N Florianópolis BRAZIL
| | - Caroline Rigotto
- UFSC: Universidade Federal de Santa Catarina Pharmaceutical Sciences R. Delfino Conti, S/N Florianópolis BRAZIL
| | - Daniela Schuster
- Paracelsus Medical University Salzburg: Paracelsus Medizinische Privatuniversitat Department of Pharmaceutical and Medicinal Chemistry Strubergasse 21 Salzburg AUSTRIA
| | | | - Wolfgang Kreis
- University of Erlangen-Nuernberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Division of Pharmaceutical Biology Staudtstraße 5 Erlangen GERMANY
| | | | - Fernão Braga
- Universidade Federal de Minas Gerais Pharmaceutical Sciences Av. Antônio Carlos 6627 31270901 Belo Horizonte BRAZIL
| |
Collapse
|
8
|
Cai J, Zhang BD, Li YQ, Zhu WF, Akihisa T, Kikuchi T, Xu J, Liu WY, Feng F, Zhang J. Cardiac glycosides from the roots of Streblus asper Lour. with activity against Epstein-Barr virus lytic replication. Bioorg Chem 2022; 127:106004. [PMID: 35843015 DOI: 10.1016/j.bioorg.2022.106004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/15/2022]
Abstract
Cardiac glycosides (CGs) show potential broad-spectrum antiviral activity by targeting cellular host proteins. Herein are reported the isolation of five new (1-5) and eight known (7-13) CGs from the roots of Streblus asper Lour. Of these compounds 1 and 7 exhibited inhibitory action against EBV early antigen (EA) expression, with half-maximal effective concentration values (EC50) being less than 60 nM, and they also showed selectivity, with selectivity index (SI) values being 56.80 and 103.17, respectively. Preliminary structure activity relationships indicated that the C-10 substituent, C-5 hydroxy groups, and C-3 sugar unit play essential roles in the mediation of the inhibitory activity of CGs against EBV. Further enzyme experiments demonstrated that these compounds might inhibit ion pump function and thereby change the intracellular signal transduction pathway by binding to Na+/K+-ATPase, as validated by simulated molecular docking. This study is the first report that CGs can effectively limit EBV lytic replication, and the observations made in this study may be of value for lead compound development.
Collapse
Affiliation(s)
- Jing Cai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Bo-Dou Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yu-Qi Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wan-Fang Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Toshihiro Akihisa
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan
| | - Jian Xu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wen-Yuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China.
| |
Collapse
|
9
|
Škubník J, Bejček J, Pavlíčková VS, Rimpelová S. Repurposing Cardiac Glycosides: Drugs for Heart Failure Surmounting Viruses. Molecules 2021; 26:molecules26185627. [PMID: 34577097 PMCID: PMC8469069 DOI: 10.3390/molecules26185627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
Drug repositioning is a successful approach in medicinal research. It significantly simplifies the long-term process of clinical drug evaluation, since the drug being tested has already been approved for another condition. One example of drug repositioning involves cardiac glycosides (CGs), which have, for a long time, been used in heart medicine. Moreover, it has been known for decades that CGs also have great potential in cancer treatment and, thus, many clinical trials now evaluate their anticancer potential. Interestingly, heart failure and cancer are not the only conditions for which CGs could be effectively used. In recent years, the antiviral potential of CGs has been extensively studied, and with the ongoing SARS-CoV-2 pandemic, this interest in CGs has increased even more. Therefore, here, we present CGs as potent and promising antiviral compounds, which can interfere with almost any steps of the viral life cycle, except for the viral attachment to a host cell. In this review article, we summarize the reported data on this hot topic and discuss the mechanisms of antiviral action of CGs, with reference to the particular viral life cycle phase they interfere with.
Collapse
|
10
|
Zhang J, Zheng T, Zhou X, Wang H, Li Z, Huan C, Zheng B, Zhang W. ATP1B3 Restricts Hepatitis B Virus Replication Via Reducing the Expression of the Envelope Proteins. Virol Sin 2021; 36:678-691. [PMID: 33534085 PMCID: PMC7856454 DOI: 10.1007/s12250-021-00346-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/23/2020] [Indexed: 11/30/2022] Open
Abstract
Our recent study reported that ATP1B3 inhibits hepatitis B virus (HBV) replication via inducing NF-κB activation. However, ATP1B3 mutants which were defective in NF-κB activation still maintained the moderate degree of suppression on HBV replication, suggesting that another uncharacterized mechanism is also responsible for ATP1B3-mediated HBV suppression. Here, we demonstrated that ATP1B3 reduced the expression of HBV envelope proteins LHBs, MHBs and SHBs, but had no effect on intracellular HBV DNA, RNA levels as well as HBV promoter activities. Further investigation showed that proteasome inhibitor MG132 rescued ATP1B3-mediated envelope proteins degradation, demonstrating that proteasome-dependent pathway is involved in ATP1B3-induced degradation of envelope proteins. Co-IP showed that ATP1B3 interacts with LHBs and MHBs and induces LHBs and MHBs polyubiquitination. Immunofluorescence co-localization analysis confirmed LHBs and MHBs colocalized with ATP1B3 together. Our work provides important information for targeting ATP1B3 as a potential therapeutic molecule for HBV infection.
Collapse
Affiliation(s)
- Jun Zhang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, 130021, China
| | - Tianhang Zheng
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaolei Zhou
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, 130021, China
| | - Hong Wang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, 130021, China
| | - Zhaolong Li
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, 130021, China
| | - Chen Huan
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, 130021, China
| | - Baisong Zheng
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, 130021, China.
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
11
|
Li X, Peng T. Strategy, Progress, and Challenges of Drug Repurposing for Efficient Antiviral Discovery. Front Pharmacol 2021; 12:660710. [PMID: 34017257 PMCID: PMC8129523 DOI: 10.3389/fphar.2021.660710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Emerging or re-emerging viruses are still major threats to public health. Prophylactic vaccines represent the most effective way to prevent virus infection; however, antivirals are more promising for those viruses against which vaccines are not effective enough or contemporarily unavailable. Because of the slow pace of novel antiviral discovery, the high disuse rates, and the substantial cost, repurposing of the well-characterized therapeutics, either approved or under investigation, is becoming an attractive strategy to identify the new directions to treat virus infections. In this review, we described recent progress in identifying broad-spectrum antivirals through drug repurposing. We defined the two major categories of the repurposed antivirals, direct-acting repurposed antivirals (DARA) and host-targeting repurposed antivirals (HTRA). Under each category, we summarized repurposed antivirals with potential broad-spectrum activity against a variety of viruses and discussed the possible mechanisms of action. Finally, we proposed the potential investigative directions of drug repurposing.
Collapse
Affiliation(s)
- Xinlei Li
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Abd-Alla HI, Soltan MM, Hassan AZ, Taie HAA, Abo-Salem HM, Karam EA, El-Safty MM, Hanna AG. Cardenolides and pentacyclic triterpenes isolated from Acokanthera oblongifolia leaves: their biological activities with molecular docking study. ACTA ACUST UNITED AC 2020; 76:301-315. [PMID: 34218548 DOI: 10.1515/znc-2020-0198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/01/2020] [Indexed: 01/09/2023]
Abstract
Pentacyclic triterpenes and cardenolides were isolated from Acokanthera oblongifolia leaves. Their chemical structures were determined based on comprehensive 1D and 2D NMR spectroscopy. Their MIC was determined against 12 microorganisms. Their exerted cytotoxicity on the immortalized normal cells, hTERT-RPE1 was assessed by the sulforhodamine-B assay. The viral inhibitory effects of compounds against Newcastle disease virus (NDV) and H5N1 influenza virus IV were evaluated. Four in vitro antioxidant assays were performed in comparison with BHT and trolox and a weak activity was exhibited. Acovenoside A was with potent against H5N1-IV and NDV with IC50 ≤ 3.2 and ≤ 2.1 μg/ml and SI values of 93.75 and 95.23%, respectively, in comparison to ribavirin. Its CC50 record on Vero cells was > 400 and 200 μg/ml, respectively. Acobioside A was the most active compound against a broad range of microbes while Pseudomonas aeruginosa was the most sensitive. Its MIC (0.07 μg/ml) was 1/100-fold of the recorded CC50 (7.1 μg/ml/72 h) against hTERT-RPE1. The molecular docking of compounds on human DNA topoisomerase I (Top1-DNA) and IV glycoprotein hemagglutinin were studied using MOE program. This study has introduced the cardenolides rather than triterpenoids with the best docking score and binding interaction with the active site of the studied proteins.
Collapse
Affiliation(s)
- Howaida I Abd-Alla
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki-Giza, 12622, Egypt
| | - Maha M Soltan
- Chemistry of Medicinal Plants Department, Biology Unit, Central Laboratory for Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki-Giza, 12622, Egypt
| | - Amal Z Hassan
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki-Giza, 12622, Egypt
| | - Hanan A A Taie
- Plant Biochemistry Department, National Research Centre, Dokki-Giza, 12622, Egypt
| | - Heba M Abo-Salem
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki-Giza, 12622, Egypt
| | - Eman A Karam
- Microbial Chemistry Department, National Research Centre, Dokki-Giza, 12622, Egypt
| | - Mounir M El-Safty
- Central Laboratory for Evaluation of Veterinary Biologics, Abbassia-Cairo, 13181, Egypt
| | - Atef G Hanna
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki-Giza, 12622, Egypt
| |
Collapse
|
13
|
Seoane R, Vidal S, Bouzaher YH, El Motiam A, Rivas C. The Interaction of Viruses with the Cellular Senescence Response. BIOLOGY 2020; 9:E455. [PMID: 33317104 PMCID: PMC7764305 DOI: 10.3390/biology9120455] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 01/10/2023]
Abstract
Cellular senescence is viewed as a mechanism to prevent malignant transformation, but when it is chronic, as occurs in age-related diseases, it may have adverse effects on cancer. Therefore, targeting senescent cells is a novel therapeutic strategy against senescence-associated diseases. In addition to its role in cancer protection, cellular senescence is also considered a mechanism to control virus replication. Both interferon treatment and some viral infections can trigger cellular senescence as a way to restrict virus replication. However, activation of the cellular senescence program is linked to the alteration of different pathways, which can be exploited by some viruses to improve their replication. It is, therefore, important to understand the potential impact of senolytic agents on viral propagation. Here we focus on the relationship between virus and cellular senescence and the reported effects of senolytic compounds on virus replication.
Collapse
Affiliation(s)
- Rocío Seoane
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (R.S.); (S.V.); (Y.H.B.); (A.E.M.)
| | - Santiago Vidal
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (R.S.); (S.V.); (Y.H.B.); (A.E.M.)
| | - Yanis Hichem Bouzaher
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (R.S.); (S.V.); (Y.H.B.); (A.E.M.)
| | - Ahmed El Motiam
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (R.S.); (S.V.); (Y.H.B.); (A.E.M.)
| | - Carmen Rivas
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (R.S.); (S.V.); (Y.H.B.); (A.E.M.)
- Centro Nacional de Biotecnología (CNB), CSIC, 28049 Madrid, Spain
| |
Collapse
|
14
|
Newman RA, Sastry KJ, Arav-Boger R, Cai H, Matos R, Harrod R. Antiviral Effects of Oleandrin. J Exp Pharmacol 2020; 12:503-515. [PMID: 33262663 PMCID: PMC7686471 DOI: 10.2147/jep.s273120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past 15 years, investigators have reported on the utility and safety of cardiac glycosides for numerous health benefits including those as treatments for malignant disease, stroke-mediated ischemic injury and certain neurodegenerative diseases. In addition to those, there is a growing body of evidence for novel antiviral effects of selected cardiac glycoside molecules. One unique cardiac glycoside, oleandrin derived from Nerium oleander, has been reported to have antiviral activity specifically against 'enveloped' viruses including HIV and HTLV-1. Importantly, a recent publication has presented in vitro evidence for oleandrin's ability to inhibit production of infectious virus particles when used for treatment prior to, as well as after infection by SARS-CoV-2/COVID-19. This review will highlight the known in vitro antiviral effects of oleandrin as well as present previously unpublished effects of this novel cardiac glycoside against Ebola virus, Cytomegalovirus, and Herpes simplex viruses.
Collapse
Affiliation(s)
- Robert A Newman
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77054, USA.,Phoenix Biotechnology, Inc, San Antonio, TX 78217, USA
| | - K Jagannadha Sastry
- Departments of Thoracic, Head and Neck Medical Oncology and Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ravit Arav-Boger
- Division of Infectious Diseases, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hongyi Cai
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Robert Harrod
- Department of Biological Sciences, the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX 75275, USA
| |
Collapse
|
15
|
Boff L, Schreiber A, da Rocha Matos A, Del Sarto J, Brunotte L, Munkert J, Melo Ottoni F, Silva Ramos G, Kreis W, Castro Braga F, José Alves R, Maia de Pádua R, Maria Oliveira Simões C, Ludwig S. Semisynthetic Cardenolides Acting as Antiviral Inhibitors of Influenza A Virus Replication by Preventing Polymerase Complex Formation. Molecules 2020; 25:molecules25204853. [PMID: 33096707 PMCID: PMC7587960 DOI: 10.3390/molecules25204853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 02/05/2023] Open
Abstract
Influenza virus infections represent a major public health issue by causing annual epidemics and occasional pandemics that affect thousands of people worldwide. Vaccination is the main prophylaxis to prevent these epidemics/pandemics, although the effectiveness of licensed vaccines is rather limited due to the constant mutations of influenza virus antigenic characteristics. The available anti-influenza drugs are still restricted and there is an increasing viral resistance to these compounds, thus highlighting the need for research and development of new antiviral drugs. In this work, two semisynthetic derivatives of digitoxigenin, namely C10 (3β-((N-(2-hydroxyethyl)aminoacetyl)amino-3-deoxydigitoxigenin) and C11 (3β-(hydroxyacetyl)amino-3-deoxydigitoxigenin), showed anti-influenza A virus activity by affecting the expression of viral proteins at the early and late stages of replication cycle, and altering the transcription and synthesis of new viral proteins, thereby inhibiting the formation of new virions. Such antiviral action occurred due to the interference in the assembly of viral polymerase, resulting in an impaired polymerase activity and, therefore, reducing viral replication. Confirming the in vitro results, a clinically relevant ex vivo model of influenza virus infection of human tumor-free lung tissues corroborated the potential of these compounds, especially C10, to completely abrogate influenza A virus replication at the highest concentration tested (2.0 µM). Taken together, these promising results demonstrated that C10 and C11 can be considered as potential new anti-influenza drug candidates.
Collapse
Affiliation(s)
- Laurita Boff
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University (WWU), 48149 Münster, Germany; (L.B.); (A.S.); (A.d.R.M.); (J.D.S.); (L.B.); (S.L.)
- Laboratory of Applied Virology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
| | - André Schreiber
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University (WWU), 48149 Münster, Germany; (L.B.); (A.S.); (A.d.R.M.); (J.D.S.); (L.B.); (S.L.)
| | - Aline da Rocha Matos
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University (WWU), 48149 Münster, Germany; (L.B.); (A.S.); (A.d.R.M.); (J.D.S.); (L.B.); (S.L.)
- Respiratory Viruses and Measles Laboratory, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 22775-051, Brazil
| | - Juliana Del Sarto
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University (WWU), 48149 Münster, Germany; (L.B.); (A.S.); (A.d.R.M.); (J.D.S.); (L.B.); (S.L.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (F.M.O.); (G.S.R.); (F.C.B.); (R.J.A.); (R.M.d.P.)
| | - Linda Brunotte
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University (WWU), 48149 Münster, Germany; (L.B.); (A.S.); (A.d.R.M.); (J.D.S.); (L.B.); (S.L.)
| | - Jennifer Munkert
- Pharmaceutical Biology, Department of Biology, Friedrich-Alexander-University, 91054 Erlangen-Nuremberg, Germany; (J.M.); (W.K.)
| | - Flaviano Melo Ottoni
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (F.M.O.); (G.S.R.); (F.C.B.); (R.J.A.); (R.M.d.P.)
| | - Gabriela Silva Ramos
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (F.M.O.); (G.S.R.); (F.C.B.); (R.J.A.); (R.M.d.P.)
| | - Wolfgang Kreis
- Pharmaceutical Biology, Department of Biology, Friedrich-Alexander-University, 91054 Erlangen-Nuremberg, Germany; (J.M.); (W.K.)
| | - Fernão Castro Braga
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (F.M.O.); (G.S.R.); (F.C.B.); (R.J.A.); (R.M.d.P.)
| | - Ricardo José Alves
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (F.M.O.); (G.S.R.); (F.C.B.); (R.J.A.); (R.M.d.P.)
| | - Rodrigo Maia de Pádua
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (F.M.O.); (G.S.R.); (F.C.B.); (R.J.A.); (R.M.d.P.)
| | - Cláudia Maria Oliveira Simões
- Laboratory of Applied Virology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
- Correspondence:
| | - Stephan Ludwig
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University (WWU), 48149 Münster, Germany; (L.B.); (A.S.); (A.d.R.M.); (J.D.S.); (L.B.); (S.L.)
| |
Collapse
|
16
|
Cho J, Lee YJ, Kim JH, Kim SI, Kim SS, Choi BS, Choi JH. Antiviral activity of digoxin and ouabain against SARS-CoV-2 infection and its implication for COVID-19. Sci Rep 2020; 10:16200. [PMID: 33004837 PMCID: PMC7530981 DOI: 10.1038/s41598-020-72879-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
The current coronavirus (COVID-19) pandemic is exacerbated by the absence of effective therapeutic agents. Notably, patients with COVID-19 and comorbidities such as hypertension and cardiac diseases have a higher mortality rate. An efficient strategy in response to this issue is repurposing drugs with antiviral activity for therapeutic effect. Digoxin (DIG) and ouabain (OUA) are FDA drugs for heart diseases that have antiviral activity against several coronaviruses. Thus, we aimed to assess antiviral activity of DIG and OUA against SARS-CoV-2 infection. The half-maximal inhibitory concentrations (IC50) of DIG and OUA were determined at a nanomolar concentration. Progeny virus titers of single-dose treatment of DIG, OUA and remdesivir were approximately 103-, 104- and 103-fold lower (> 99% inhibition), respectively, than that of non-treated control or chloroquine at 48 h post-infection (hpi). Furthermore, therapeutic treatment with DIG and OUA inhibited over 99% of SARS-CoV-2 replication, leading to viral inhibition at the post entry stage of the viral life cycle. Collectively, these results suggest that DIG and OUA may be an alternative treatment for COVID-19, with potential additional therapeutic effects for patients with cardiovascular disease.
Collapse
Affiliation(s)
- Junhyung Cho
- Division of Viral Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, 28159, Chungcheongbuk-do, Republic of Korea
| | - Young Jae Lee
- Division of Viral Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, 28159, Chungcheongbuk-do, Republic of Korea
| | - Je Hyoung Kim
- Division of Viral Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, 28159, Chungcheongbuk-do, Republic of Korea
| | - Sang Il Kim
- Division of Infectious Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University, Seoul, Republic of Korea
| | - Sung Soon Kim
- Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Republic of Korea
| | - Byeong-Sun Choi
- Division of Viral Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, 28159, Chungcheongbuk-do, Republic of Korea.
| | - Jang-Hoon Choi
- Division of Viral Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, 28159, Chungcheongbuk-do, Republic of Korea.
| |
Collapse
|
17
|
Saha B, Parks RJ. Recent Advances in Novel Antiviral Therapies against Human Adenovirus. Microorganisms 2020; 8:E1284. [PMID: 32842697 PMCID: PMC7563841 DOI: 10.3390/microorganisms8091284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 12/27/2022] Open
Abstract
Human adenovirus (HAdV) is a very common pathogen that typically causes minor disease in most patients. However, the virus can cause significant morbidity and mortality in certain populations, including young children, the elderly, and those with compromised immune systems. Currently, there are no approved therapeutics to treat HAdV infections, and the standard treatment relies on drugs approved to combat other viral infections. Such treatments often show inconsistent efficacy, and therefore, more effective antiviral therapies are necessary. In this review, we discuss recent developments in the search for new chemical and biological anti-HAdV therapeutics, including drugs that are currently undergoing preclinical/clinical testing, and small molecule screens for the identification of novel compounds that abrogate HAdV replication and disease.
Collapse
Affiliation(s)
- Bratati Saha
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
18
|
Reddy D, Kumavath R, Barh D, Azevedo V, Ghosh P. Anticancer and Antiviral Properties of Cardiac Glycosides: A Review to Explore the Mechanism of Actions. Molecules 2020; 25:E3596. [PMID: 32784680 PMCID: PMC7465415 DOI: 10.3390/molecules25163596] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/19/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiac glycosides (CGs) have a long history of treating cardiac diseases. However, recent reports have suggested that CGs also possess anticancer and antiviral activities. The primary mechanism of action of these anticancer agents is by suppressing the Na+/k+-ATPase by decreasing the intracellular K+ and increasing the Na+ and Ca2+. Additionally, CGs were known to act as inhibitors of IL8 production, DNA topoisomerase I and II, anoikis prevention and suppression of several target genes responsible for the inhibition of cancer cell proliferation. Moreover, CGs were reported to be effective against several DNA and RNA viral species such as influenza, human cytomegalovirus, herpes simplex virus, coronavirus, tick-borne encephalitis (TBE) virus and Ebola virus. CGs were reported to suppress the HIV-1 gene expression, viral protein translation and alters viral pre-mRNA splicing to inhibit the viral replication. To date, four CGs (Anvirzel, UNBS1450, PBI05204 and digoxin) were in clinical trials for their anticancer activity. This review encapsulates the current knowledge about CGs as anticancer and antiviral drugs in isolation and in combination with some other drugs to enhance their efficiency. Further studies of this class of biomolecules are necessary to determine their possible inhibitory role in cancer and viral diseases.
Collapse
Affiliation(s)
- Dhanasekhar Reddy
- Department of Genomic Science, School of Biological Sciences, University of Kerala, Tejaswini Hills, Periya (P.O), Kasaragod, Kerala 671320, India;
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, University of Kerala, Tejaswini Hills, Periya (P.O), Kasaragod, Kerala 671320, India;
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur WB-721172, India;
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal deMinas Gerais (UFMG), Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA;
| |
Collapse
|
19
|
Patil VM, Singhal S, Masand N. A systematic review on use of aminoquinolines for the therapeutic management of COVID-19: Efficacy, safety and clinical trials. Life Sci 2020; 254:117775. [PMID: 32418894 PMCID: PMC7211740 DOI: 10.1016/j.lfs.2020.117775] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 01/08/2023]
Abstract
Recent global outbreak of the pandemic caused by coronavirus (COVID-19) emphasizes the urgent need for novel antiviral therapeutics. It can be supplemented by utilization of efficient and validated drug discovery approaches such as drug repurposing/repositioning. The well reported and clinically used anti-malarial aminoquinoline drugs (chloroquine and hydroxychloroquine) have shown potential to be repurposed to control the present pandemic by inhibition of COVID-19. The review elaborates the mechanism of action, safety (side effects, adverse effects, toxicity) and details of clinical trials for chloroquine and hydroxychloroquine to benefit the clinicians, medicinal chemist, pharmacologist actively involved in controlling the pandemic and to provide therapeutics for the treatment of COVID-19 infection.
Collapse
Affiliation(s)
- Vaishali M Patil
- Computer Aided Drug Design Lab, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India.
| | - Shipra Singhal
- Computer Aided Drug Design Lab, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | - Neeraj Masand
- Department of Pharmacy, Lala Lajpat Rai Memorial Medical College, Meerut, Uttar Pradesh, India
| |
Collapse
|
20
|
Alphavirus Replication: The Role of Cardiac Glycosides and Ion Concentration in Host Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2813253. [PMID: 32461975 PMCID: PMC7232666 DOI: 10.1155/2020/2813253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 01/07/2023]
Abstract
Alphaviruses are arthropod-borne viruses that can cause fever, rash, arthralgias, and encephalitis. The mosquito species Aedes aegypti and Aedes albopictus are the most frequent transmitters of alphaviruses. There are no effective vaccines or specific antivirals available for the treatment of alphavirus-related infections. Interestingly, changes in ion concentration in host cells have been characterized as critical regulators of the alphavirus life cycle, including fusion with the host cell, glycoprotein trafficking, genome translation, and viral budding. Cardiac glycosides, which are classical inhibitors of the Na+ K+ ATPase (NKA), can inhibit alphavirus replication although their mechanisms of action are poorly understood. Nonetheless, results from multiple studies suggest that inhibition of NKA may be a suitable strategy for the development of alphavirus-specific antiviral treatments. This review is aimed at exploring the role of changes in ion concentration during alphavirus replication and at considering the possibility of NKA as a potential therapeutic target for antiviral drugs.
Collapse
|
21
|
Elucidation of the mechanism of anti-herpes action of two novel semisynthetic cardenolide derivatives. Arch Virol 2020; 165:1385-1396. [PMID: 32346764 PMCID: PMC7188521 DOI: 10.1007/s00705-020-04562-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022]
Abstract
Human herpesviruses are among the most prevalent pathogens worldwide and have become an important public health issue. Recurrent infections and the emergence of resistant viral strains reinforce the need of searching new drugs to treat herpes virus infections. Cardiac glycosides are used clinically to treat cardiovascular disturbances, such as congestive heart failure and atrial arrhythmias. In recent years, they have sparked new interest in their potential anti-herpes action. It has been previously reported by our research group that two new semisynthetic cardenolides, namely C10 (3β-[(N-(2-hydroxyethyl)aminoacetyl]amino-3-deoxydigitoxigenin) and C11 (3β-(hydroxyacetyl)amino-3-deoxydigitoxigenin), exhibited potential anti-HSV-1 and anti-HSV-2 with selectivity index values > 1,000, comparable with those of acyclovir. This work reports the mechanism investigation of anti-herpes action of these derivatives. The results demonstrated that C10 and C11 interfere with the intermediate and final steps of HSV replication, but not with the early stages, since they completely abolished the expression of the UL42 (β) and gD (γ) proteins and partially reduced that of ICP27 (α). Additionally, they were not virucidal and had no prophylactic effects. Both compounds inhibited HSV replication at nanomolar concentrations, but cardenolide C10 was more active than C11 and can be considered as an anti-herpes drug candidate including against acyclovir-resistant HSV-1 strains.
Collapse
|
22
|
Saha B, Varette O, Stanford WL, Diallo JS, Parks RJ. Development of a novel screening platform for the identification of small molecule inhibitors of human adenovirus. Virology 2019; 538:24-34. [PMID: 31561058 DOI: 10.1016/j.virol.2019.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/07/2019] [Accepted: 09/12/2019] [Indexed: 12/01/2022]
Abstract
Human adenovirus (HAdV) can cause severe disease and death in both immunocompromised and immunocompetent patients. The current standards of treatment are often ineffective, and no approved antiviral therapy against HAdV exists. We report here the design and validation of a fluorescence-based high-content screening platform for the identification of novel anti-HAdV compounds. The screen was conducted using a wildtype-like virus containing the red fluorescent protein (RFP) gene under the regulation of the HAdV major late promoter. Thus, RFP expression allows monitoring of viral late gene expression (a surrogate marker for virus replication), and compounds affecting virus growth can be easily discovered by quantifying RFP intensity. We used our platform to screen ~1200 FDA-approved small molecules, and identified several cardiotonic steroids, corticosteroids and chemotherapeutic agents as anti-HAdV compounds. Our screening platform provides the stringency necessary to detect compounds with varying degrees of antiviral activity, and facilitates drug discovery/repurposing to combat HAdV infections.
Collapse
Affiliation(s)
- Bratati Saha
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Oliver Varette
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - William L Stanford
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Simon Diallo
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Robin J Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada; Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada.
| |
Collapse
|
23
|
Lingemann M, McCarty T, Liu X, Buchholz UJ, Surman S, Martin SE, Collins PL, Munir S. The alpha-1 subunit of the Na+,K+-ATPase (ATP1A1) is required for macropinocytic entry of respiratory syncytial virus (RSV) in human respiratory epithelial cells. PLoS Pathog 2019; 15:e1007963. [PMID: 31381610 PMCID: PMC6695199 DOI: 10.1371/journal.ppat.1007963] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/15/2019] [Accepted: 07/05/2019] [Indexed: 01/07/2023] Open
Abstract
Human respiratory syncytial virus (RSV) is the leading viral cause of acute pediatric lower respiratory tract infections worldwide, with no available vaccine or effective antiviral drug. To gain insight into virus-host interactions, we performed a genome-wide siRNA screen. The expression of over 20,000 cellular genes was individually knocked down in human airway epithelial A549 cells, followed by infection with RSV expressing green fluorescent protein (GFP). Knockdown of expression of the cellular ATP1A1 protein, which is the major subunit of the Na+,K+-ATPase of the plasma membrane, had one of the strongest inhibitory effects on GFP expression and viral titer. Inhibition was not observed for vesicular stomatitis virus, indicating that it was RSV-specific rather than a general effect. ATP1A1 formed clusters in the plasma membrane very early following RSV infection, which was independent of replication but dependent on the attachment glycoprotein G. RSV also triggered activation of ATP1A1, resulting in signaling by c-Src-kinase activity that transactivated epidermal growth factor receptor (EGFR) by Tyr845 phosphorylation. ATP1A1 signaling and activation of both c-Src and EGFR were found to be required for efficient RSV uptake. Signaling events downstream of EGFR culminated in the formation of macropinosomes. There was extensive uptake of RSV virions into macropinosomes at the beginning of infection, suggesting that this is a major route of RSV uptake, with fusion presumably occurring in the macropinosomes rather than at the plasma membrane. Important findings were validated in primary human small airway epithelial cells (HSAEC). In A549 cells and HSAEC, RSV uptake could be inhibited by the cardiotonic steroid ouabain and the digitoxigenin derivative PST2238 (rostafuroxin) that bind specifically to the ATP1A1 extracellular domain and block RSV-triggered EGFR Tyr845 phosphorylation. In conclusion, we identified ATP1A1 as a host protein essential for macropinocytic entry of RSV into respiratory epithelial cells, and identified PST2238 as a potential anti-RSV drug. RSV continues to be the most important viral cause of severe bronchiolitis and pneumonia in infants and young children, and also has a substantial impact in the elderly. It is estimated to claim the lives of ~118,000 children under five years of age annually. No vaccine or antiviral drug suitable for general use is available. The involvement of host factors in RSV infection and replication is not well understood, but this knowledge might lead to intervention strategies to prevent infection. Using a genome-wide siRNA screen to knock down the expression of over 20,000 individual cellular genes, we identified ATP1A1, the major subunit of the Na+,K+-ATPase, as an important host protein for RSV entry. We showed that ATP1A1 activation by RSV resulted in transactivation of EGFR by Src-kinase activity, resulting in the uptake of RSV particles into the host cell through macropinocytosis. We also showed that the cardiotonic steroid ouabain and the synthetic digitoxigenin derivative PST2238, which bind specifically to the extracellular domain of ATP1A1, significantly reduced RSV entry. Taken together, we describe a novel ATP1A1-enabled mechanism used by RSV to enter the host cell, and describe candidate antiviral drugs that block this entry.
Collapse
Affiliation(s)
- Matthias Lingemann
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Thomas McCarty
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xueqiao Liu
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ursula J. Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sonja Surman
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Scott E. Martin
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, Rockville, Maryland, United States of America
| | - Peter L. Collins
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shirin Munir
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
24
|
Norris MJ, Malhi M, Duan W, Ouyang H, Granados A, Cen Y, Tseng YC, Gubbay J, Maynes J, Moraes TJ. Targeting Intracellular Ion Homeostasis for the Control of Respiratory Syncytial Virus. Am J Respir Cell Mol Biol 2019; 59:733-744. [PMID: 30095982 DOI: 10.1165/rcmb.2017-0345oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of mortality in infants and young children. Despite the RSV disease burden, no vaccine is available, and treatment remains nonspecific. New drug candidates are needed to combat RSV. Toward this goal, we screened over 2,000 compounds to identify approved drugs with novel anti-RSV activity. Cardiac glycosides, inhibitors of the membrane-bound Na+/K+-ATPase, were identified to have anti-RSV activity. Cardiac glycosides diminished RSV infection in human epithelial type 2 cells and in primary human airway epithelial cells grown at an air-liquid interface. Digoxin, a U.S. Food and Drug Administration-approved cardiac glycoside, was also able to inhibit infection of primary nasal epithelial cells with community isolates of RSV. Our results suggest that the antiviral effects of cardiac glycosides may be dependent on changes in the intracellular Na+ and K+ composition. Consistent with this mechanism, we demonstrated that the ionophoric antibiotics salinomycin, valinomycin, and monensin inhibited RSV in human epithelial type 2 cells and primary nasal epithelial cells. Our data indicate that the K+/Na+-sensitive steps in the RSV life cycle occur within the initial 4 hours of viral infection but do not include virus binding/entry. Rather, our findings demonstrated a negative effect on the RSV transcription and/or replication process. Overall, this work suggests that targeting intracellular ion concentrations offers a novel antiviral strategy.
Collapse
Affiliation(s)
- Michael J Norris
- 1 Department of Laboratory Medicine and Pathobiology and.,2 Program in Translational Medicine
| | - Manpreet Malhi
- 3 Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.,4 Program in Molecular Medicine
| | | | | | - Andrea Granados
- 1 Department of Laboratory Medicine and Pathobiology and.,5 Public Health Ontario, Toronto, Ontario, Canada
| | | | | | | | - Jason Maynes
- 4 Program in Molecular Medicine.,6 Department of Anesthesia and Pain Medicine, and
| | - Theo J Moraes
- 1 Department of Laboratory Medicine and Pathobiology and.,2 Program in Translational Medicine.,7 Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada; and
| |
Collapse
|
25
|
García-Serradilla M, Risco C, Pacheco B. Drug repurposing for new, efficient, broad spectrum antivirals. Virus Res 2019; 264:22-31. [PMID: 30794895 PMCID: PMC7114681 DOI: 10.1016/j.virusres.2019.02.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 12/26/2022]
Abstract
Emerging viruses are a major threat to human health. Recent outbreaks have emphasized the urgent need for new antiviral treatments. For several pathogenic viruses, considerable efforts have focused on vaccine development. However, during epidemics infected individuals need to be treated urgently. High-throughput screening of clinically tested compounds provides a rapid means to identify undiscovered, antiviral functions for well-characterized therapeutics. Repurposed drugs can bypass part of the early cost and time needed for validation and authorization. In this review we describe recent efforts to find broad spectrum antivirals through drug repurposing. We have chosen several candidates and propose strategies to understand their mechanism of action and to determine how resistance to antivirals develops in infected cells.
Collapse
Affiliation(s)
- Moisés García-Serradilla
- Cell Structure Laboratory, National Center for Biotechnology, National Research Council, CNB-CSIC, Darwin 3, UAM, campus de Cantoblanco, 28049 Madrid, Spain
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, National Research Council, CNB-CSIC, Darwin 3, UAM, campus de Cantoblanco, 28049 Madrid, Spain.
| | - Beatriz Pacheco
- Cell Structure Laboratory, National Center for Biotechnology, National Research Council, CNB-CSIC, Darwin 3, UAM, campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
26
|
Potential anti-herpes and cytotoxic action of novel semisynthetic digitoxigenin-derivatives. Eur J Med Chem 2019; 167:546-561. [DOI: 10.1016/j.ejmech.2019.01.076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/05/2018] [Accepted: 01/29/2019] [Indexed: 11/17/2022]
|
27
|
Amarelle L, Katzen J, Shigemura M, Welch LC, Cajigas H, Peteranderl C, Celli D, Herold S, Lecuona E, Sznajder JI. Cardiac glycosides decrease influenza virus replication by inhibiting cell protein translational machinery. Am J Physiol Lung Cell Mol Physiol 2019; 316:L1094-L1106. [PMID: 30892074 DOI: 10.1152/ajplung.00173.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiac glycosides (CGs) are used primarily for cardiac failure and have been reported to have other effects, including inhibition of viral replication. Here we set out to study mechanisms by which CGs as inhibitors of the Na-K-ATPase decrease influenza A virus (IAV) replication in the lungs. We found that CGs inhibit influenza virus replication in alveolar epithelial cells by decreasing intracellular potassium, which in turn inhibits protein translation, independently of viral entry, mRNA transcription, and protein degradation. These effects were independent of the Src signaling pathway and intracellular calcium concentration changes. We found that short-term treatment with ouabain prevented IAV replication without cytotoxicity. Rodents express a Na-K-ATPase-α1 resistant to CGs. Thus we utilized Na-K-ATPase-α1-sensitive mice, infected them with high doses of influenza virus, and observed a modest survival benefit when treated with ouabain. In summary, we provide evidence that the inhibition of the Na-K-ATPase by CGs decreases influenza A viral replication by modulating the cell protein translational machinery and results in a modest survival benefit in mice.
Collapse
Affiliation(s)
- Luciano Amarelle
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois.,Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República , Montevideo , Uruguay
| | - Jeremy Katzen
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois.,Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Masahiko Shigemura
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Lynn C Welch
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Héctor Cajigas
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Christin Peteranderl
- Department of Internal Medicine II, University of Giessen and Marburg Lung Center , Giessen , Germany
| | - Diego Celli
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Susanne Herold
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois.,Department of Internal Medicine II, University of Giessen and Marburg Lung Center , Giessen , Germany
| | - Emilia Lecuona
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| |
Collapse
|
28
|
Amarelle L, Lecuona E. The Antiviral Effects of Na,K-ATPase Inhibition: A Minireview. Int J Mol Sci 2018; 19:ijms19082154. [PMID: 30042322 PMCID: PMC6121263 DOI: 10.3390/ijms19082154] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/11/2022] Open
Abstract
Since being first described more than 60 years ago, Na,K-ATPase has been extensively studied, while novel concepts about its structure, physiology, and biological roles continue to be elucidated. Cardiac glycosides not only inhibit the pump function of Na,K-ATPase but also activate intracellular signal transduction pathways, which are important in many biological processes. Recently, antiviral effects have been described as a novel feature of Na,K-ATPase inhibition with the use of cardiac glycosides. Cardiac glycosides have been reported to be effective against both DNA viruses such as cytomegalovirus and herpes simplex and RNA viruses such as influenza, chikungunya, coronavirus, and respiratory syncytial virus, among others. Consequently, cardiac glycosides have emerged as potential broad-spectrum antiviral drugs, with the great advantage of targeting cell host proteins, which help to minimize resistance to antiviral treatments, making them a very promising strategy against human viral infections. Here, we review the effect of cardiac glycosides on viral biology and the mechanisms by which these drugs impair the replication of this array of different viruses.
Collapse
Affiliation(s)
- Luciano Amarelle
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
- Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay.
| | - Emilia Lecuona
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
29
|
Iwasaki M, Minder P, Caì Y, Kuhn JH, Yates JR, Torbett BE, de la Torre JC. Interactome analysis of the lymphocytic choriomeningitis virus nucleoprotein in infected cells reveals ATPase Na+/K+ transporting subunit Alpha 1 and prohibitin as host-cell factors involved in the life cycle of mammarenaviruses. PLoS Pathog 2018; 14:e1006892. [PMID: 29462184 PMCID: PMC5834214 DOI: 10.1371/journal.ppat.1006892] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 03/02/2018] [Accepted: 01/22/2018] [Indexed: 12/25/2022] Open
Abstract
Several mammalian arenaviruses (mammarenaviruses) cause hemorrhagic fevers in humans and pose serious public health concerns in their endemic regions. Additionally, mounting evidence indicates that the worldwide-distributed, prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), is a neglected human pathogen of clinical significance. Concerns about human-pathogenic mammarenaviruses are exacerbated by of the lack of licensed vaccines, and current anti-mammarenavirus therapy is limited to off-label use of ribavirin that is only partially effective. Detailed understanding of virus/host-cell interactions may facilitate the development of novel anti-mammarenavirus strategies by targeting components of the host-cell machinery that are required for efficient virus multiplication. Here we document the generation of a recombinant LCMV encoding a nucleoprotein (NP) containing an affinity tag (rLCMV/Strep-NP) and its use to capture the NP-interactome in infected cells. Our proteomic approach combined with genetics and pharmacological validation assays identified ATPase Na+/K+ transporting subunit alpha 1 (ATP1A1) and prohibitin (PHB) as pro-viral factors. Cell-based assays revealed that ATP1A1 and PHB are involved in different steps of the virus life cycle. Accordingly, we observed a synergistic inhibitory effect on LCMV multiplication with a combination of ATP1A1 and PHB inhibitors. We show that ATP1A1 inhibitors suppress multiplication of Lassa virus and Candid#1, a live-attenuated vaccine strain of Junín virus, suggesting that the requirement of ATP1A1 in virus multiplication is conserved among genetically distantly related mammarenaviruses. Our findings suggest that clinically approved inhibitors of ATP1A1, like digoxin, could be repurposed to treat infections by mammarenaviruses pathogenic for humans.
Collapse
Affiliation(s)
- Masaharu Iwasaki
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Petra Minder
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Yíngyún Caì
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Bruce E. Torbett
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Juan C. de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
30
|
Wong RW, Lingwood CA, Ostrowski MA, Cabral T, Cochrane A. Cardiac glycoside/aglycones inhibit HIV-1 gene expression by a mechanism requiring MEK1/2-ERK1/2 signaling. Sci Rep 2018; 8:850. [PMID: 29339801 PMCID: PMC5770468 DOI: 10.1038/s41598-018-19298-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
The capacity of HIV-1 to develop resistance to current drugs calls for innovative strategies to control this infection. We aimed at developing novel inhibitors of HIV-1 replication by targeting viral RNA processing—a stage dependent on conserved host processes. We previously reported that digoxin is a potent inhibitor of this stage. Herein, we identify 12 other cardiac glycoside/aglycones or cardiotonic steroids (CSs) that impede HIV growth in HIV-infected T cells from clinical patients at IC50s (1.1–1.3 nM) that are 2–26 times below concentrations used in patients with heart conditions. We subsequently demonstrate that CSs inhibit HIV-1 gene expression in part through modulation of MEK1/2-ERK1/2 signaling via interaction with the Na+/K+-ATPase, independent of alterations in intracellular Ca2+. Supporting this hypothesis, depletion of the Na+/K+-ATPase or addition of a MEK1/2-ERK1/2 activator also impairs HIV-1 gene expression. Similar to digoxin, all CSs tested induce oversplicing of HIV-1 RNAs, reducing unspliced (Gag) and singly spliced RNAs (Env/p14-Tat) encoding essential HIV-1 structural/regulatory proteins. Furthermore, all CSs cause nuclear retention of genomic/unspliced RNAs, supporting viral RNA processing as the underlying mechanism for their disruption of HIV-1 replication. These findings call for further in vivo validation and supports the targeting of cellular processes to control HIV-1 infection.
Collapse
Affiliation(s)
- Raymond W Wong
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Clifford A Lingwood
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S1A8, Canada.,Division of Molecular Structure and Function, Hospital for Sick Children, Toronto, ON, M5G1X8, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S1A8, Canada
| | - Mario A Ostrowski
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital Toronto, Toronto, ON, M5B1W8, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, M5S1A8, Canada.,Department of Immunology, University of Toronto, Toronto, ON, M5S1A8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Tyler Cabral
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Alan Cochrane
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S1A8, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada.
| |
Collapse
|
31
|
Suppression of Adenovirus Replication by Cardiotonic Steroids. J Virol 2017; 91:JVI.01623-16. [PMID: 27881644 DOI: 10.1128/jvi.01623-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/15/2016] [Indexed: 12/12/2022] Open
Abstract
The dependence of adenovirus on the host pre-RNA splicing machinery for expression of its complete genome potentially makes it vulnerable to modulators of RNA splicing, such as digoxin and digitoxin. Both drugs reduced the yields of four human adenoviruses (HAdV-A31, -B35, and -C5 and a species D conjunctivitis isolate) by at least 2 to 3 logs by affecting one or more steps needed for genome replication. Immediate early E1A protein levels are unaffected by the drugs, but synthesis of the delayed protein E4orf6 and the major late capsid protein hexon is compromised. Quantitative reverse transcription-PCR (qRT-PCR) analyses revealed that both drugs altered E1A RNA splicing (favoring the production of 13S over 12S RNA) early in infection and partially blocked the transition from 12S and 13S to 9S RNA at late stages of virus replication. Expression of multiple late viral protein mRNAs was lost in the presence of either drug, consistent with the observed block in viral DNA replication. The antiviral effect was dependent on the continued presence of the drug and was rapidly reversible. RIDK34, a derivative of convallotoxin, although having more potent antiviral activity, did not show an improved selectivity index. All three drugs reduced metabolic activity to some degree without evidence of cell death. By blocking adenovirus replication at one or more steps beyond the onset of E1A expression and prior to genome replication, digoxin and digitoxin show potential as antiviral agents for treatment of serious adenovirus infections. Furthermore, understanding the mechanism(s) by which digoxin and digitoxin inhibit adenovirus replication will guide the development of novel antiviral therapies. IMPORTANCE Despite human adenoviruses being a common and, in some instances, life-threating pathogen in humans, there are few well-tolerated therapies. In this report, we demonstrate that two cardiotonic steroids already in use in humans, digoxin and digitoxin, are potent inhibitors of multiple adenovirus species. A synthetic derivative of the cardiotonic steroid convallotoxin was even more potent than digoxin and digitoxin when tested with HAdV-C5. These drugs alter the cascade of adenovirus gene expression, acting after initiation of early gene expression to block viral DNA replication and synthesis of viral structural proteins. These findings validate a novel approach to treating adenovirus infections through the modulation of host cell processes.
Collapse
|
32
|
Amarelle L, Lecuona E, Sznajder JI. Anti-Influenza Treatment: Drugs Currently Used and Under Development. ACTA ACUST UNITED AC 2017. [PMID: 27519544 DOI: 10.1016/j.arbr.2016.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Convallatoxin-Induced Reduction of Methionine Import Effectively Inhibits Human Cytomegalovirus Infection and Replication. J Virol 2016; 90:10715-10727. [PMID: 27654292 DOI: 10.1128/jvi.01050-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022] Open
Abstract
Cytomegalovirus (CMV) is a ubiquitous human pathogen that increases the morbidity and mortality of immunocompromised individuals. The current FDA-approved treatments for CMV infection are intended to be virus specific, yet they have significant adverse side effects, including nephrotoxicity and hematological toxicity. Thus, there is a medical need for safer and more effective CMV therapeutics. Using a high-content screen, we identified the cardiac glycoside convallatoxin as an effective compound that inhibits CMV infection. Using a panel of cardiac glycoside variants, we assessed the structural elements critical for anti-CMV activity by both experimental and in silico methods. Analysis of the antiviral effects, toxicities, and pharmacodynamics of different variants of cardiac glycosides identified the mechanism of inhibition as reduction of methionine import, leading to decreased immediate-early gene translation without significant toxicity. Also, convallatoxin was found to dramatically reduce the proliferation of clinical CMV strains, implying that its mechanism of action is an effective strategy to block CMV dissemination. Our study has uncovered the mechanism and structural elements of convallatoxin, which are important for effectively inhibiting CMV infection by targeting the expression of immediate-early genes. IMPORTANCE Cytomegalovirus is a highly prevalent virus capable of causing severe disease in certain populations. The current FDA-approved therapeutics all target the same stage of the viral life cycle and induce toxicity and viral resistance. We identified convallatoxin, a novel cell-targeting antiviral that inhibits CMV infection by decreasing the synthesis of viral proteins. At doses low enough for cells to tolerate, convallatoxin was able to inhibit primary isolates of CMV, including those resistant to the anti-CMV drug ganciclovir. In addition to identifying convallatoxin as a novel antiviral, limiting mRNA translation has a dramatic impact on CMV infection and proliferation.
Collapse
|
34
|
Volatile Organic Compound Gamma-Butyrolactone Released upon Herpes Simplex Virus Type -1 Acute Infection Modulated Membrane Potential and Repressed Viral Infection in Human Neuron-Like Cells. PLoS One 2016; 11:e0161119. [PMID: 27537375 PMCID: PMC4990300 DOI: 10.1371/journal.pone.0161119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/29/2016] [Indexed: 12/14/2022] Open
Abstract
Herpes Simplex Virus Type -1 (HSV-1) infections can cause serious complications such as keratitis and encephalitis. The goal of this study was to identify any changes in the concentrations of volatile organic compounds (VOCs) produced during HSV-1 infection of epithelial cells that could potentially be used as an indicator of a response to stress. An additional objective was to study if any VOCs released from acute epithelial infection may influence subsequent neuronal infection to facilitate latency. To investigate these hypotheses, Vero cells were infected with HSV-1 and the emission of VOCs was analyzed using two-dimensional gas chromatograph/mass spectrometry (2D GC/MS). It was observed that the concentrations of gamma-butyrolactone (GBL) in particular changed significantly after a 24-hour infection. Since HSV-1 may establish latency in neurons after the acute infection, GBL was tested to determine if it exerts neuronal regulation of infection. The results indicated that GBL altered the resting membrane potential of differentiated LNCaP cells and promoted a non-permissive state of HSV-1 infection by repressing viral replication. These observations may provide useful clues towards understanding the complex signaling pathways that occur during the HSV-1 primary infection and establishment of viral latency.
Collapse
|
35
|
Amarelle L, Lecuona E, Sznajder JI. Anti-Influenza Treatment: Drugs Currently Used and Under Development. Arch Bronconeumol 2016; 53:19-26. [PMID: 27519544 PMCID: PMC6889083 DOI: 10.1016/j.arbres.2016.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/24/2016] [Accepted: 07/10/2016] [Indexed: 02/06/2023]
Abstract
La gripe es una enfermedad contagiosa altamente prevalente y con significativa morbimortalidad. El tratamiento disponible con fármacos antivirales, de ser administrado de forma precoz, puede reducir el riesgo de complicaciones severas; sin embargo, muchos tipos de virus desarrollan resistencia a estos fármacos, reduciendo notablemente su efectividad. Ha habido un gran interés en el desarrollo de nuevas opciones terapéuticas para combatir la enfermedad. Una gran variedad de fármacos han demostrado tener actividad antiinfluenza, pero aún no están disponibles para su uso en la clínica. Muchos de ellos tienen como objetivo componentes del virus, mientras que otros son dirigidos a elementos de la célula huésped que participan en el ciclo viral. Modular los componentes del huésped es una estrategia que minimiza el desarrollo de cepas resistentes, dado que estos no están sujetos a la variabilidad genética que tiene el virus. Por otro lado, la principal desventaja es que existe un mayor riesgo de efectos secundarios asociados al tratamiento. El objetivo de la presente revisión es describir los principales agentes farmacológicos disponibles en la actualidad, así como los nuevos fármacos en estudio con potencial beneficio en el tratamiento de la gripe.
Collapse
Affiliation(s)
- Luciano Amarelle
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, Estados Unidos de América; Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Emilia Lecuona
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, Estados Unidos de América
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, Estados Unidos de América.
| |
Collapse
|
36
|
Milutinovic S, Heynen-Genel S, Chao E, Dewing A, Solano R, Milan L, Barron N, He M, Diaz PW, Matsuzawa SI, Reed JC, Hassig CA. Cardiac Glycosides Activate the Tumor Suppressor and Viral Restriction Factor Promyelocytic Leukemia Protein (PML). PLoS One 2016; 11:e0152692. [PMID: 27031987 PMCID: PMC4816303 DOI: 10.1371/journal.pone.0152692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/17/2016] [Indexed: 02/05/2023] Open
Abstract
Cardiac glycosides (CGs), inhibitors of Na+/K+-ATPase (NKA), used clinically to treat heart failure, have garnered recent attention as potential anti-cancer and anti-viral agents. A high-throughput phenotypic screen designed to identify modulators of promyelocytic leukemia protein (PML) nuclear body (NB) formation revealed the CG gitoxigenin as a potent activator of PML. We demonstrate that multiple structurally distinct CGs activate the formation of PML NBs and induce PML protein SUMOylation in an NKA-dependent fashion. CG effects on PML occur at the post-transcriptional level, mechanistically distinct from previously described PML activators and are mediated through signaling events downstream of NKA. Curiously, genomic deletion of PML in human cancer cells failed to abrogate the cytotoxic effects of CGs and other apoptotic stimuli such as ceramide and arsenic trioxide that were previously shown to function through PML in mice. These findings suggest that alternative pathways can compensate for PML loss to mediate apoptosis in response to CGs and other apoptotic stimuli.
Collapse
Affiliation(s)
- Snezana Milutinovic
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Susanne Heynen-Genel
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Elizabeth Chao
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Antimone Dewing
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Ricardo Solano
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Loribelle Milan
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Nikki Barron
- Bemer USA, LLC, Carlsbad, CA, United States of America
| | - Min He
- National Cancer Institute (NCI), Bethesda, MD, United States of America
| | - Paul W. Diaz
- P.William Diaz, Pharmaceutical Consulting, Riverside, CA, United States of America
| | - Shu-ichi Matsuzawa
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - John C. Reed
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Christian A. Hassig
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, United States of America
| |
Collapse
|
37
|
Lanatoside C Promotes Foam Cell Formation and Atherosclerosis. Sci Rep 2016; 6:20154. [PMID: 26821916 PMCID: PMC4731744 DOI: 10.1038/srep20154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/30/2015] [Indexed: 12/18/2022] Open
Abstract
Lanatoside C’s impact on atherosclerosis is poorly understood. The present study was conducted to determine whether lanatoside C affects the development of atherosclerosis in apolipoprotein E-deficient (ApoE–/–) mice. ApoE–/– mice were administered either phosphate-buffered saline (PBS) containing 0.1% DMSO (the vehicle control group) or lanatoside C at low (1 mg/kg per day) or high (2 mg/kg per day) doses, and fed a Western diet for 12 weeks. Lanatoside C dose-dependently aggravated the development of atherosclerosis in the ApoE–/– mice compared with the vehicle control group. In an effort to determine the mechanism by which lanatoside C increased atherosclerosis, we found that lanatoside C significantly promoted the uptake of oxidised low-density lipoprotein (oxLDL) and increased foam-cell formation by upregulation of scavenger receptor class A (SR-A) and the class B scavenger receptor (CD36) in macrophages. Meanwhile, the effects of lanatoside C were abolished using small interfering RNA (siRNA) inhibition of peroxisome proliferator-activated receptors β/δ (PPARβ/δ). Overall, our data demonstrate that lanatoside C aggravates the development of atherosclerosis by inducing PPARβ/δ expression, which mediates upregulation of SR-A and CD36, and promotes oxLDL uptake and foam-cell formation.
Collapse
|
38
|
Thete D, Danthi P. Conformational changes required for reovirus cell entry are sensitive to pH. Virology 2015; 483:291-301. [PMID: 26004253 DOI: 10.1016/j.virol.2015.04.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/23/2015] [Accepted: 04/30/2015] [Indexed: 12/31/2022]
Abstract
During cell entry, reovirus particles disassemble to generate ISVPs. ISVPs undergo conformational changes to form ISVP(*) and this conversion is required for membrane penetration. In tissues where ISVP formation occurs within endosomes, ISVP-to-ISVP(*) conversion occurs at low pH. In contrast, in tissues where ISVP formation occurs extracellularly, ISVP-to-ISVP(*) transition occurs at neutral pH. Whether these two distinct pH environments influence the efficiency of cell entry is not known. In this study, we used Ouabain to lower the endosomal pH and determined its effect on reovirus infection. We found that Ouabain treatment blocks reovirus infection. In cells treated with Ouabain, virus attachment, internalization, and ISVP formation were unaffected but the efficiency of ISVP(*)s formation was diminished. Low pH also diminished the efficiency of ISVP-to-ISVP(*) conversion in vitro. Thus, the pH of the compartment where ISVP-to-ISVP(*) conversion takes place may dictate the efficiency of reovirus infection.
Collapse
Affiliation(s)
- Deepti Thete
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| | - Pranav Danthi
- Department of Biology, Indiana University, Bloomington, IN 47405, United States.
| |
Collapse
|
39
|
Lai KY, Ng WYG, Cheng FF. Human Ebola virus infection in West Africa: a review of available therapeutic agents that target different steps of the life cycle of Ebola virus. Infect Dis Poverty 2014; 3:43. [PMID: 25699183 PMCID: PMC4334593 DOI: 10.1186/2049-9957-3-43] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/13/2014] [Indexed: 12/21/2022] Open
Abstract
The recent outbreak of the human Zaire ebolavirus (EBOV) epidemic is spiraling out of control in West Africa. Human EBOV hemorrhagic fever has a case fatality rate of up to 90%. The EBOV is classified as a biosafety level 4 pathogen and is considered a category A agent of bioterrorism by Centers for Disease Control and Prevention, with no approved therapies and vaccines available for its treatment apart from supportive care. Although several promising therapeutic agents and vaccines against EBOV are undergoing the Phase I human trial, the current epidemic might be outpacing the speed at which drugs and vaccines can be produced. Like all viruses, the EBOV largely relies on host cell factors and physiological processes for its entry, replication, and egress. We have reviewed currently available therapeutic agents that have been shown to be effective in suppressing the proliferation of the EBOV in cell cultures or animal studies. Most of the therapeutic agents in this review are directed against non-mutable targets of the host, which is independent of viral mutation. These medications are approved by the Food and Drug Administration (FDA) for the treatment of other diseases. They are available and stockpileable for immediate use. They may also have a complementary role to those therapeutic agents under development that are directed against the mutable targets of the EBOV.
Collapse
Affiliation(s)
- Kang Yiu Lai
- />Department of Intensive Care, Queen Elizabeth Hospital, HKSAR, B6, 30 Gascoigne Rd, Kowloon, Hong Kong SAR China
| | - Wing Yiu George Ng
- />Department of Intensive Care, Queen Elizabeth Hospital, HKSAR, B6, 30 Gascoigne Rd, Kowloon, Hong Kong SAR China
| | - Fan Fanny Cheng
- />Department of Medicine, Queen Elizabeth Hospital, HKSAR, Kowloon, Hong Kong SARChina
| |
Collapse
|
40
|
García-Dorival I, Wu W, Dowall S, Armstrong S, Touzelet O, Wastling J, Barr JN, Matthews D, Carroll M, Hewson R, Hiscox JA. Elucidation of the Ebola Virus VP24 Cellular Interactome and Disruption of Virus Biology through Targeted Inhibition of Host-Cell Protein Function. J Proteome Res 2014; 13:5120-35. [DOI: 10.1021/pr500556d] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Isabel García-Dorival
- Department
of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool L69 7BE, United Kingdom
| | - Weining Wu
- Department
of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, United Kingdom
| | - Stuart Dowall
- Public Health England, Porton
Down, Salisbury SP4 0JG, United Kingdom
| | - Stuart Armstrong
- Department
of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool L69 7BE, United Kingdom
| | - Olivier Touzelet
- Department
of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, United Kingdom
| | - Jonathan Wastling
- Department
of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool L69 7BE, United Kingdom
| | - John N. Barr
- School
of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - David Matthews
- School
of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Miles Carroll
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool L69 7BE, United Kingdom
- Public Health England, Porton
Down, Salisbury SP4 0JG, United Kingdom
| | - Roger Hewson
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool L69 7BE, United Kingdom
- Public Health England, Porton
Down, Salisbury SP4 0JG, United Kingdom
| | - Julian A. Hiscox
- Department
of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool L69 7BE, United Kingdom
| |
Collapse
|
41
|
Cheung YY, Chen KC, Chen H, Seng EK, Chu JJH. Antiviral activity of lanatoside C against dengue virus infection. Antiviral Res 2014; 111:93-9. [PMID: 25251726 DOI: 10.1016/j.antiviral.2014.09.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 08/07/2014] [Accepted: 09/13/2014] [Indexed: 10/24/2022]
Abstract
Dengue infection poses a serious threat globally due to its recent rapid spread and rise in incidence. Currently, there is no approved vaccine or effective antiviral drug for dengue virus infection. In response to the urgent need for the development of an effective antiviral for dengue virus, the US Drug Collection library was screened in this study to identify compounds with anti-dengue activities. Lanatoside C, an FDA approved cardiac glycoside was identified as a candidate anti-dengue compound. Our data revealed that lanatoside C has an IC50 of 0.19μM for dengue virus infection in HuH-7 cells. Dose-dependent reduction in dengue viral RNA and viral proteins synthesis were also observed upon treatment with increasing concentrations of lanatoside C. Time of addition study indicated that lanatoside C inhibits the early processes of the dengue virus replication cycle. Furthermore, lanatoside C can effectively inhibit all four serotypes of dengue virus, flavivirus Kunjin, alphavirus Chikungunya and Sindbis virus as well as the human enterovirus 71. These findings suggest that lanatoside C possesses broad spectrum antiviral activity against several groups of positive-sense RNA viruses.
Collapse
Affiliation(s)
- Yan Yi Cheung
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597, Singapore
| | - Karen Caiyun Chen
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597, Singapore
| | - Huixin Chen
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597, Singapore
| | - Eng Khuan Seng
- School of Chemical & Life Sciences, 180 Ang Mo Kio Ave 8, Nanyang Polytechnic, Singapore 569830, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
42
|
New Herpes Simplex Virus Replication Targets. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Cai H, Wang HYL, Venkatadri R, Fu DX, Forman M, Bajaj SO, Li H, O’Doherty GA, Arav-Boger R. Digitoxin analogues with improved anticytomegalovirus activity. ACS Med Chem Lett 2014; 5:395-9. [PMID: 24900847 DOI: 10.1021/ml400529q] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 01/25/2014] [Indexed: 12/21/2022] Open
Abstract
Cardiac glycosides are potent inhibitors of cancer cell growth and possess antiviral activities at nanomolar concentrations. In this study we evaluated the anticytomegalovirus (CMV) activity of digitoxin and several of its analogues. We show that sugar type and sugar length attached to the steroid core structure affects its anticytomegalovirus activity. Structure-activity relationship (SAR) studies identified the l-sugar containing cardiac glycosides as having improved anti-CMV activity and may lead to better understanding of how these compounds inhibit CMV replication.
Collapse
Affiliation(s)
- Hongyi Cai
- Department
of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Hua-Yu L. Wang
- Department
of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Rajkumar Venkatadri
- Department
of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - De-Xue Fu
- Department
of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Michael Forman
- Department
of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, United States
| | - Sumit O. Bajaj
- Department
of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Hongyan Li
- Department
of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - George A. O’Doherty
- Department
of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ravit Arav-Boger
- Department
of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| |
Collapse
|
44
|
A targeted RNA interference screen reveals novel epigenetic factors that regulate herpesviral gene expression. mBio 2014; 5:e01086-13. [PMID: 24496796 PMCID: PMC3950524 DOI: 10.1128/mbio.01086-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Herpes simplex virus (HSV) utilizes and subverts host chromatin mechanisms to express its lytic gene products in mammalian cells. The host cell attempts to silence the incoming viral genome by epigenetic mechanisms, but the viral VP16 and ICP0 proteins promote active chromatin on the viral genome by recruiting other host epigenetic factors. However, the dependence on VP16 and ICP0 differs in different cell lines, implying cell type-dependent functional contributions of epigenetic factors for HSV gene expression. In this study, we performed a targeted RNA interference (RNAi) screen for cellular chromatin factors that are involved in regulation of herpes simplex virus (HSV) gene expression in U2OS osteosarcoma cells, a cell line that complements ICP0 mutant and VP16 mutant virus replication. In this screen, we found the same general classes of chromatin factors that regulate HSV gene expression in U2OS cells as in other cell types, including histone demethylases (HDMs), histone deacetylases (HDACs), histone acetyltransferases (HATs), and chromatin-remodeling factors, but the specific factors within these classes are different from those identified previously for other cell types. For example, KDM3A and KDM1A (LSD1) both demethylate mono- and dimethylated H3K9, but KDM3A emerged in our screen of U2OS cells. Further, small interfering RNA (siRNA) and inhibitor studies support the idea that KDM1A is more critical in HeLa cells, as observed previously, while KDM3A is more critical in U2OS cells. These results argue that different cellular chromatin factors are critical in different cell lines to carry out the positive and negative epigenetic effects exerted on the HSV genome. Upon entry into the host cell nucleus, the herpes simplex virus genome is subjected to host epigenetic silencing mechanisms. Viral proteins recruit cellular epigenetic activator proteins to reverse and counter the cellular silencing mechanisms. Some of the host silencing and activator functions involved in HSV gene expression have been identified, but there have been indications that the host cell factors may vary in different cell types. In this study, we performed a screen of chromatin factors involved in HSV gene regulation in osteosarcoma cells, and we found that the chromatin factors that are critical for HSV gene expression in these cells are different from those for previously studied cell types. These results argue that the specific chromatin factors operative in different cell lines and cell types may differ. This has implications for epigenetic drugs that are under development.
Collapse
|
45
|
Human cytomegalovirus inhibition by cardiac glycosides: evidence for involvement of the HERG gene. Antimicrob Agents Chemother 2012; 56:4891-9. [PMID: 22777050 DOI: 10.1128/aac.00898-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with human cytomegalovirus (HCMV) continues to be a major threat for pregnant women and the immunocompromised population. Although several anti-HCMV therapies are available, the development of new anti-HCMV agents is highly desired. There is growing interest in identifying compounds that might inhibit HCMV by modulating the cellular milieu. Interest in cardiac glycosides (CG), used in patients with congestive heart failure, has increased because of their established anticancer and their suggested antiviral activities. We report that the several CG--digoxin, digitoxin, and ouabain--are potent inhibitors of HCMV at nM concentrations. HCMV inhibition occurred prior to DNA replication, but following binding to its cellular receptors. The levels of immediate early, early, and late viral proteins and cellular NF-κB were significantly reduced in CG-treated cells. The activity of CG in infected cells correlated with the expression of the potassium channel gene, hERG. CMV infection upregulated hERG, whereas CG significantly downregulated its expression. Infection with mouse CMV upregulated mouse ERG (mERG), but treatment with CG did not inhibit virus replication or mERG transcription. These findings suggest that CG may inhibit HCMV by modulating human cellular targets associated with hERG and that these compounds should be studied for their antiviral activities.
Collapse
|
46
|
Antiherpes activity of glucoevatromonoside, a cardenolide isolated from a Brazilian cultivar of Digitalis lanata. Antiviral Res 2011; 92:73-80. [DOI: 10.1016/j.antiviral.2011.06.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 06/03/2011] [Accepted: 06/23/2011] [Indexed: 11/18/2022]
|
47
|
A screen for regulators of survival of motor neuron protein levels. Nat Chem Biol 2011; 7:544-52. [PMID: 21685895 DOI: 10.1038/nchembio.595] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/15/2011] [Indexed: 01/15/2023]
Abstract
The motor neuron disease spinal muscular atrophy (SMA) results from mutations that lead to low levels of the ubiquitously expressed protein survival of motor neuron (SMN). An ever-increasing collection of data suggests that therapeutics that elevate SMN may be effective in treating SMA. We executed an image-based screen of annotated chemical libraries and discovered several classes of compounds that were able to increase cellular SMN. Among the most important was the RTK-PI3K-AKT-GSK-3 signaling cascade. Chemical inhibitors of glycogen synthase kinase 3 (GSK-3) and short hairpin RNAs (shRNAs) directed against this target elevated SMN levels primarily by stabilizing the protein. It was particularly notable that GSK-3 chemical inhibitors were also effective in motor neurons, not only in elevating SMN levels, but also in blocking the death that was produced when SMN was acutely reduced by an SMN-specific shRNA. Thus, we have established a screen capable of detecting drug-like compounds that correct the main phenotypic change underlying SMA.
Collapse
|
48
|
Taylor TJ, Knipe DM. The use of green fluorescent fusion proteins to monitor herpes simplex virus replication. Methods Mol Biol 2009; 515:239-48. [PMID: 19378129 DOI: 10.1007/978-1-59745-559-6_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The localization pattern of the seven herpes simplex virus (HSV) DNA replication proteins is dependent upon the status of viral DNA synthesis in the infected cell. Normally, the replication proteins accumulate within replication compartments, which expand as viral DNA synthesis increases. If viral replication is blocked, either by the addition of drugs or a genetic lesion, prereplicative sites are observed. Observing the distribution of a GFP-tagged HSV replication protein can monitor the progression of viral replication. Here, we demonstrate the use of an ICP8-GFP fusion protein to observe the status of HSV replication in cultured cells by the formation of viral replication compartments.
Collapse
Affiliation(s)
- Travis J Taylor
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
49
|
Hoffmann HH, Palese P, Shaw ML. Modulation of influenza virus replication by alteration of sodium ion transport and protein kinase C activity. Antiviral Res 2008; 80:124-34. [PMID: 18585796 PMCID: PMC2614658 DOI: 10.1016/j.antiviral.2008.05.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 05/15/2008] [Accepted: 05/15/2008] [Indexed: 11/10/2022]
Abstract
In recent years, increasing levels of resistance to the four FDA-approved anti-influenza virus drugs have been described and vaccine manufacturers have experienced demands that exceed their capacity. This situation underlines the urgent need for novel antivirals as well as innovations in vaccine production in preparation for the next influenza epidemic. Here we report the development of a cell-based high-throughput screen which we have used for the identification of compounds that modulate influenza virus growth either negatively or positively. We screened a library of compounds with known biological activity and identified distinct groups of inhibitors and enhancers that target sodium channels or protein kinase C (PKC). We confirmed these results in viral growth assays and find that treatment with a sodium channel opener or PKC inhibitor significantly reduces viral replication. In contrast, inhibition of sodium channels or activation of PKC leads to enhanced virus production in tissue culture. These diametrically opposing effects strongly support a role for PKC activity and the regulation of Na+ currents in influenza virus replication and both may serve as targets for antiviral drugs. Furthermore, we raise the possibility that compounds that result in increased viral titers may be beneficial for boosting the production of tissue culture-grown influenza vaccines.
Collapse
Affiliation(s)
- H-Heinrich Hoffmann
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|