1
|
Swanstrom AE, Gorelick RJ, Welker JL, Schmidt F, Lu B, Wang K, Rowe W, Breed MW, Killoran KE, Kramer JA, Donohue D, Roser JD, Bieniasz PD, Hatziioannou T, Pyle C, Thomas JA, Trubey CM, Zheng J, Blair W, Yant SR, Lifson JD, Del Prete GQ. Long-acting lenacapavir protects macaques against intravenous challenge with simian-tropic HIV. EBioMedicine 2023; 95:104764. [PMID: 37625266 PMCID: PMC10470178 DOI: 10.1016/j.ebiom.2023.104764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Long-acting subcutaneous lenacapavir (LEN), a first-in-class HIV capsid inhibitor approved by the US FDA for the treatment of multidrug-resistant HIV-1 with twice yearly dosing, is under investigation for HIV-1 pre-exposure prophylaxis (PrEP). We previously derived a simian-tropic HIV-1 clone (stHIV-A19) that encodes an HIV-1 capsid and replicates to high titres in pigtail macaques (PTM), resulting in a nonhuman primate model well-suited for evaluating LEN PrEP in vivo. METHODS Lenacapavir potency against stHIV-A19 in PTM peripheral blood mononuclear cells in vitro was determined and subcutaneous LEN pharmacokinetics were evaluated in naïve PTMs in vivo. To evaluate the protective efficacy of LEN PrEP, naïve PTMs received either a single subcutaneous injection of LEN (25 mg/kg, N = 3) or vehicle (N = 4) 30 days before a high-dose intravenous challenge with stHIV-A19, or 7 daily subcutaneous injections of a 3-drug control PrEP regimen starting 3 days before stHIV-A19 challenge (N = 3). FINDINGS In vitro, LEN showed potent antiviral activity against stHIV-A19, comparable to its potency against HIV-1. In vivo, subcutaneous LEN displayed sustained plasma drug exposures in PTMs. Following stHIV-A19 challenge, while all vehicle control animals became productively infected, all LEN and 3-drug control PrEP animals were protected from infection. INTERPRETATION These findings highlight the utility of the stHIV-A19/PTM model and support the clinical development of long-acting LEN for PrEP in humans. FUNDING Gilead Sciences as part of a Cooperative Research and Development Agreement between Gilead Sciences and Frederick National Lab; federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. 75N91019D00024/HHSN261201500003I; NIH grant R01AI078788.
Collapse
Affiliation(s)
- Adrienne E Swanstrom
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jorden L Welker
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, Rockefeller University, New York, NY, USA
| | - Bing Lu
- Gilead Sciences, Foster City, CA, USA
| | | | | | - Matthew W Breed
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kristin E Killoran
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Joshua A Kramer
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Duncan Donohue
- DMS Applies Information Management Sciences, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - James D Roser
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Paul D Bieniasz
- Laboratory of Retrovirology, Rockefeller University, New York, NY, USA
| | | | - Cathi Pyle
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - James A Thomas
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Charles M Trubey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jim Zheng
- Gilead Sciences, Foster City, CA, USA
| | | | | | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
2
|
Swanstrom AE, Immonen TT, Oswald K, Pyle C, Thomas JA, Bosche WJ, Silipino L, Hull M, Newman L, Coalter V, Wiles A, Wiles R, Kiser J, Morcock DR, Shoemaker R, Fast R, Breed MW, Kramer J, Donohue D, Malys T, Fennessey CM, Trubey CM, Deleage C, Estes JD, Lifson JD, Keele BF, Del Prete GQ. Antibody-mediated depletion of viral reservoirs is limited in SIV-infected macaques treated early with antiretroviral therapy. J Clin Invest 2021; 131:142421. [PMID: 33465055 PMCID: PMC7954603 DOI: 10.1172/jci142421] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/13/2021] [Indexed: 12/22/2022] Open
Abstract
The effectiveness of virus-specific strategies, including administered HIV-specific mAbs, to target cells that persistently harbor latent, rebound-competent HIV genomes during combination antiretroviral therapy (cART) has been limited by inefficient induction of viral protein expression. To examine antibody-mediated viral reservoir targeting without a need for viral induction, we used an anti-CD4 mAb to deplete both infected and uninfected CD4+ T cells. Ten rhesus macaques infected with barcoded SIVmac239M received cART for 93 weeks starting 4 days after infection. During cART, 5 animals received 5 to 6 anti-CD4 antibody administrations and CD4+ T cell populations were then allowed 1 year on cART to recover. Despite profound CD4+ T cell depletion in blood and lymph nodes, time to viral rebound following cART cessation was not significantly delayed in anti-CD4-treated animals compared with controls. Viral reactivation rates, determined based on rebounding SIVmac239M clonotype proportions, also were not significantly different in CD4-depleted animals. Notably, antibody-mediated depletion was limited in rectal tissue and negligible in lymphoid follicles. These results suggest that, even if robust viral reactivation can be achieved, antibody-mediated viral reservoir depletion may be limited in key tissue sites.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Duncan Donohue
- DMS Applied Information and Management Sciences, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Tyler Malys
- DMS Applied Information and Management Sciences, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Rational design and in vivo selection of SHIVs encoding transmitted/founder subtype C HIV-1 envelopes. PLoS Pathog 2019; 15:e1007632. [PMID: 30943274 PMCID: PMC6447185 DOI: 10.1371/journal.ppat.1007632] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/08/2019] [Indexed: 12/26/2022] Open
Abstract
Chimeric Simian-Human Immunodeficiency Viruses (SHIVs) are an important tool for evaluating anti-HIV Env interventions in nonhuman primate (NHP) models. However, most unadapted SHIVs do not replicate well in vivo limiting their utility. Furthermore, adaptation in vivo often negatively impacts fundamental properties of the Env, including neutralization profiles. Transmitted/founder (T/F) viruses are particularly important to study since they represent viruses that initiated primary HIV-1 infections and may have unique attributes. Here we combined in vivo competition and rational design to develop novel subtype C SHIVs containing T/F envelopes. We successfully generated 19 new, infectious subtype C SHIVs, which were tested in multiple combinatorial pools in Indian-origin rhesus macaques. Infected animals attained peak viremia within 5 weeks ranging from 103 to 107 vRNA copies/mL. Sequence analysis during primary infection revealed 7 different SHIVs replicating in 8 productively infected animals with certain clones prominent in each animal. We then generated 5 variants each of 6 SHIV clones (3 that predominated and 3 undetectable after pooled in vivo inoculations), converting a serine at Env375 to methionine, tyrosine, histidine, tryptophan or phenylalanine. Overall, most Env375 mutants replicated better in vitro and in vivo than wild type with both higher and earlier peak viremia. In 4 of these SHIV clones (with and without Env375 mutations) we also created mutations at position 281 to include serine, alanine, valine, or threonine. Some Env281 mutations imparted in vitro replication dynamics similar to mutations at 375; however, clones with both mutations did not exhibit incremental benefit. Therefore, we identified unique subtype C T/F SHIVs that replicate in rhesus macaques with improved acute phase replication kinetics without altering phenotype. In vivo competition and rational design can produce functional SHIVs with globally relevant HIV-1 Envs to add to the growing number of SHIV clones for HIV-1 research in NHPs. Nonhuman primates provide useful models for studying HIV transmission, pathogenesis and cure strategies. Due to species-specific antiviral factors, however, HIV cannot replicate in Asian macaques directly. Some chimeric viruses incorporating HIV Envelope genes in simian immunodeficiency virus (SIV) backbone can replicate to sufficient levels in Asian macaques to permit evaluation of anti-HIV interventions. Here we describe the generation of new SHIV clones unique to the field in 4 important ways. First, these clones were generated from the globally relevant HIV-1 subtype C, which is the most prevalent form of HIV globally and is found predominately in sub-Saharan Africa where the pandemic is particularly devastating but is poorly represented among SHIVs studied to date. Second, we utilized Envelope genes from viruses that established primary infection, making these clones particularly useful in transmission studies. Third, these clones were not generated by animal passage, which may alter some of the unique properties of these Envelopes. Finally, we used direct within animal competition studies and two targeted mutations to select highly replicative clones. We provide here both the discovery of new SHIV clones, and also a process to generate additional clones in the future.
Collapse
|
4
|
Fennessey CM, Pinkevych M, Immonen TT, Reynaldi A, Venturi V, Nadella P, Reid C, Newman L, Lipkey L, Oswald K, Bosche WJ, Trivett MT, Ohlen C, Ott DE, Estes JD, Del Prete GQ, Lifson JD, Davenport MP, Keele BF. Genetically-barcoded SIV facilitates enumeration of rebound variants and estimation of reactivation rates in nonhuman primates following interruption of suppressive antiretroviral therapy. PLoS Pathog 2017; 13:e1006359. [PMID: 28472156 PMCID: PMC5433785 DOI: 10.1371/journal.ppat.1006359] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/16/2017] [Accepted: 04/17/2017] [Indexed: 01/29/2023] Open
Abstract
HIV and SIV infection dynamics are commonly investigated by measuring plasma viral loads. However, this total viral load value represents the sum of many individual infection events, which are difficult to independently track using conventional sequencing approaches. To overcome this challenge, we generated a genetically tagged virus stock (SIVmac239M) with a 34-base genetic barcode inserted between the vpx and vpr accessory genes of the infectious molecular clone SIVmac239. Next-generation sequencing of the virus stock identified at least 9,336 individual barcodes, or clonotypes, with an average genetic distance of 7 bases between any two barcodes. In vitro infection of rhesus CD4+ T cells and in vivo infection of rhesus macaques revealed levels of viral replication of SIVmac239M comparable to parental SIVmac239. After intravenous inoculation of 2.2x105 infectious units of SIVmac239M, an average of 1,247 barcodes were identified during acute infection in 26 infected rhesus macaques. Of the barcodes identified in the stock, at least 85.6% actively replicated in at least one animal, and on average each barcode was found in 5 monkeys. Four infected animals were treated with combination antiretroviral therapy (cART) for 82 days starting on day 6 post-infection (study 1). Plasma viremia was reduced from >106 to <15 vRNA copies/mL by the time treatment was interrupted. Virus rapidly rebounded following treatment interruption and between 87 and 136 distinct clonotypes were detected in plasma at peak rebound viremia. This study confirmed that SIVmac239M viremia could be successfully curtailed with cART, and that upon cART discontinuation, rebounding viral variants could be identified and quantified. An additional 6 animals infected with SIVmac239M were treated with cART beginning on day 4 post-infection for 305, 374, or 482 days (study 2). Upon treatment interruption, between 4 and 8 distinct viral clonotypes were detected in each animal at peak rebound viremia. The relative proportions of the rebounding viral clonotypes, spanning a range of 5 logs, were largely preserved over time for each animal. The viral growth rate during recrudescence and the relative abundance of each rebounding clonotype were used to estimate the average frequency of reactivation per animal. Using these parameters, reactivation frequencies were calculated and ranged from 0.33–0.70 events per day, likely representing reactivation from long-lived latently infected cells. The use of SIVmac239M therefore provides a powerful tool to investigate SIV latency and the frequency of viral reactivation after treatment interruption. Elucidation of HIV dynamics is essential for a thorough understanding of viral transmission, therapeutic interventions, pathogenesis, and immune evasion. The complex dynamics of reservoir establishment and viral recrudescence upon therapy removal present the primary obstacles to developing a functional cure. We sought to develop a virus model system for use in nonhuman primates that allows for the genetic discrimination of nearly 10,000 otherwise isogenic clones. This “synthetic swarm” adds a genetic component to viral dynamics where individual viral lineages can be tracked and monitored during infection. Here we utilized this model to identify the dynamics of viral reservoir establishment and rebound. We found that after 300 or more days of therapy, between 4 and 8 distinct viral lineages could be detected upon therapeutic intervention. Using the relative proportion of each distinct genetic barcoded virus and the overall viral load curve, we could estimate the time and rate of reactivation from latency. On average, we found 1 reactivation event every 2 days with reactivation of the first rebounding variant within days of therapeutic interruption. This virus model will be useful for testing various approaches to reduce the latent viral reservoir and to molecularly track viral dynamics in all stages of infection.
Collapse
Affiliation(s)
- Christine M. Fennessey
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Mykola Pinkevych
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Australia, Sydney, NSW, Australia
| | - Taina T. Immonen
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Arnold Reynaldi
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Australia, Sydney, NSW, Australia
| | - Vanessa Venturi
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Australia, Sydney, NSW, Australia
| | - Priyanka Nadella
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Carolyn Reid
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Laura Newman
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Leslie Lipkey
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Kelli Oswald
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - William J. Bosche
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Matthew T. Trivett
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Claes Ohlen
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - David E. Ott
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Gregory Q. Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Miles P. Davenport
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Australia, Sydney, NSW, Australia
- * E-mail: (BFK); (MPD)
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- * E-mail: (BFK); (MPD)
| |
Collapse
|
5
|
Lopker MJ, Del Prete GQ, Estes JD, Li H, Reid C, Newman L, Lipkey L, Camus C, Easlick JL, Wang S, Decker JM, Bar KJ, Learn G, Pal R, Weiss DE, Hahn BH, Lifson JD, Shaw GM, Keele BF. Derivation and Characterization of Pathogenic Transmitted/Founder Molecular Clones from Simian Immunodeficiency Virus SIVsmE660 and SIVmac251 following Mucosal Infection. J Virol 2016; 90:8435-53. [PMID: 27412591 PMCID: PMC5021393 DOI: 10.1128/jvi.00718-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/06/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Currently available simian immunodeficiency virus (SIV) infectious molecular clones (IMCs) and isolates used in nonhuman primate (NHP) models of AIDS were originally derived from infected macaques during chronic infection or end stage disease and may not authentically recapitulate features of transmitted/founder (T/F) genomes that are of particular interest in transmission, pathogenesis, prevention, and treatment studies. We therefore generated and characterized T/F IMCs from genetically and biologically heterogeneous challenge stocks of SIVmac251 and SIVsmE660. Single-genome amplification (SGA) was used to identify full-length T/F genomes present in plasma during acute infection resulting from atraumatic rectal inoculation of Indian rhesus macaques with low doses of SIVmac251 or SIVsmE660. All 8 T/F clones yielded viruses that were infectious and replication competent in vitro, with replication kinetics similar to those of the widely used chronic-infection-derived IMCs SIVmac239 and SIVsmE543. Phenotypically, the new T/F virus strains exhibited a range of neutralization sensitivity profiles. Four T/F virus strains were inoculated into rhesus macaques, and each exhibited typical SIV replication kinetics. The SIVsm T/F viruses were sensitive to TRIM5α restriction. All T/F viruses were pathogenic in rhesus macaques, resulting in progressive CD4(+) T cell loss in gastrointestinal tissues, peripheral blood, and lymphatic tissues. The animals developed pathological immune activation; lymphoid tissue damage, including fibrosis; and clinically significant immunodeficiency leading to AIDS-defining clinical endpoints. These T/F clones represent a new molecular platform for the analysis of virus transmission and immunopathogenesis and for the generation of novel "bar-coded" challenge viruses and next-generation simian-human immunodeficiency viruses that may advance the HIV/AIDS vaccine agenda. IMPORTANCE Nonhuman primate research has relied on only a few infectious molecular clones for a myriad of diverse research projects, including pathogenesis, preclinical vaccine evaluations, transmission, and host-versus-pathogen interactions. With new data suggesting a selected phenotype of the virus that causes infection (i.e., the transmitted/founder virus), we sought to generate and characterize infectious molecular clones from two widely used simian immunodeficiency virus lineages (SIVmac251 and SIVsmE660). Although the exact requirements necessary to be a T/F virus are not yet fully understood, we generated cloned viruses with all the necessary characteristic of a successful T/F virus. The cloned viruses revealed typical acute and set point viral-load dynamics with pathological immune activation, lymphoid tissue damage progressing to significant immunodeficiency, and AIDS-defining clinical endpoints in some animals. These T/F clones represent a new molecular platform for studies requiring authentic T/F viruses.
Collapse
Affiliation(s)
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Hui Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carolyn Reid
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Laura Newman
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Leslie Lipkey
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Celine Camus
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - Shuyi Wang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Julie M Decker
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Katharine J Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gerald Learn
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ranajit Pal
- Advanced BioScience Laboratories, Inc., Rockville, Maryland, USA
| | | | - Beatrice H Hahn
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - George M Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
6
|
Apps R, Del Prete GQ, Chatterjee P, Lara A, Brumme ZL, Brockman MA, Neil S, Pickering S, Schneider DK, Piechocka-Trocha A, Walker BD, Thomas R, Shaw GM, Hahn BH, Keele BF, Lifson JD, Carrington M. HIV-1 Vpu Mediates HLA-C Downregulation. Cell Host Microbe 2016; 19:686-95. [PMID: 27173934 PMCID: PMC4904791 DOI: 10.1016/j.chom.2016.04.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/08/2016] [Accepted: 04/05/2016] [Indexed: 12/31/2022]
Abstract
Many pathogens evade cytotoxic T lymphocytes (CTLs) by downregulating HLA molecules on infected cells, but the loss of HLA can trigger NK cell-mediated lysis. HIV-1 is thought to subvert CTLs while preserving NK cell inhibition by Nef-mediated downregulation of HLA-A and -B but not HLA-C molecules. We find that HLA-C is downregulated by most primary HIV-1 clones, including transmitted founder viruses, in contrast to the laboratory-adapted NL4-3 virus. HLA-C reduction is mediated by viral Vpu and reduces the ability of HLA-C restricted CTLs to suppress viral replication in CD4+ cells in vitro. HLA-A/B are unaffected by Vpu, and primary HIV-1 clones vary in their ability to downregulate HLA-C, possibly in response to whether CTLs or NK cells dominate immune pressure through HLA-C. HIV-2 also suppresses HLA-C expression through distinct mechanisms, underscoring the immune pressure HLA-C exerts on HIV. This viral immune evasion casts new light on the roles of CTLs and NK cells in immune responses against HIV.
Collapse
Affiliation(s)
- Richard Apps
- Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Pramita Chatterjee
- Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Abigail Lara
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V67 1Y6, Canada
| | - Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V67 1Y6, Canada
| | - Stuart Neil
- Department of Infectious Disease, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK
| | - Suzanne Pickering
- Department of Infectious Disease, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK
| | - Douglas K Schneider
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Alicja Piechocka-Trocha
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139-3583, USA
| | - Bruce D Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139-3583, USA
| | - Rasmi Thomas
- Host Genetics Section, US Military HIV Research Program, Silver Spring, MD 20910, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA 19104-6076, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA 19104-6076, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139-3583, USA.
| |
Collapse
|
7
|
Del Prete GQ, Smedley J, Macallister R, Jones GS, Li B, Hattersley J, Zheng J, Piatak M, Keele BF, Hesselgesser J, Geleziunas R, Lifson JD. Short Communication: Comparative Evaluation of Coformulated Injectable Combination Antiretroviral Therapy Regimens in Simian Immunodeficiency Virus-Infected Rhesus Macaques. AIDS Res Hum Retroviruses 2016; 32:163-8. [PMID: 26150024 DOI: 10.1089/aid.2015.0130] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The use of nonhuman primate (NHP) models to study persistent residual virus and viral eradication strategies in combination antiretroviral therapy (cART)-treated individuals requires regimens that effectively suppress SIV replication to clinically relevant levels in macaques. We developed and evaluated two novel cART regimens in SIVmac239-infected rhesus macaques: (1) a "triple regimen" containing the nucleo(s/t)ide reverse transcriptase inhibitors emtricitabine (FTC) and tenofovir disoproxil fumarate [TDF, prodrug of tenofovir (TFV, PMPA)] with the integrase strand transfer inhibitor dolutegravir (DTG) (n = 3), or (2) a "quad regimen" containing the same three drugs plus the protease inhibitor darunavir (DRV) (n = 3), with each regimen coformulated for convenient administration by a single daily subcutaneous injection. Plasma drug concentrations were consistent across animals within the triple and quad regimen-treated groups, although DTG levels were lower in the quad regimen animals. Time to achieve plasma viral loads stably <30 viral RNA copies/ml ranged from 12 to 20 weeks of treatment between animals, and viral loads <30 viral RNA copies/ml plasma were maintained through 40 weeks of follow-up on cART. Notably, although we show virologic suppression and development of viral resistance in a separate cohort of SIV-infected animals treated with oral DRV monotherapy, the addition of DRV in the quad regimen did not confer an apparent virologic benefit during early treatment, hence the quad regimen-treated animals were switched to the triple regimen after 4 weeks. This coformulated triple cART regimen can be safely, conveniently, and sustainably administered to durably suppress SIV replication to clinically relevant levels in rhesus macaques.
Collapse
Affiliation(s)
- Gregory Q. Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Jeremy Smedley
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Rhonda Macallister
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Bei Li
- Gilead Sciences, Foster City, California
| | | | - Jim Zheng
- Gilead Sciences, Foster City, California
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | | | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| |
Collapse
|
8
|
Fennessey CM, Reid C, Lipkey L, Newman L, Oswald K, Piatak M, Roser JD, Chertova E, Smedley J, Gregory Alvord W, Del Prete GQ, Estes JD, Lifson JD, Keele BF. Generation and characterization of a SIVmac239 clone corrected at four suboptimal nucleotides. Retrovirology 2015; 12:49. [PMID: 26076651 PMCID: PMC4469405 DOI: 10.1186/s12977-015-0175-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/18/2015] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND SIVmac239 is a commonly used virus in non-human primate models of HIV transmission and pathogenesis. Previous studies identified four suboptimal nucleotides in the SIVmac239 genome, which putatively inhibit its replicative capacity. Since all four suboptimal changes revert to the optimal nucleotide consensus sequence during viral replication in vitro and in vivo, we sought to eliminate the variability of generating these mutations de novo and increase the overall consistency of viral replication by introducing the optimal nucleotides directly to the infectious molecular clone. RESULTS Using site directed mutagenesis of the full-length/nef-open SIVmac239 clone, we reverted all four nucleotides to the consensus/optimal base to generate SIVmac239Opt and subsequently tested its infectivity and replicative capacity in vitro and in vivo. In primary and cell line cultures, we observed that the optimized virus displayed consistent modest but not statistically significant increases in replicative kinetics compared to wild type. In vivo, SIVmac239Opt replicated to high peak titers with an average of 1.2 × 10(8) viral RNA copies/ml at day 12 following intrarectal challenge, reaching set-point viremia of 1.2 × 10(6) viral RNA copies/ml by day 28. Although the peak and set point viremia means were not statistically different from the original "wild type" SIVmac239, viral load variation at set point was greater for SIVmac239WT compared to SIVmac239Opt (p = 0.0015) demonstrating a greater consistency of the optimized virus. Synonymous mutations were added to the integrase gene of SIVmac239Opt to generate a molecular tag consisting of ten genetically distinguishable viral variants referred to as SIVmac239OptX (Del Prete et al., J Virol. doi: 10.1128/JVI.01026-14 , 2014). Replication dynamics in vitro of these optimized clones were not statistically different from the parental clones. Interestingly, the consistently observed rapid reversion of the primer binding site suboptimal nucleotide is not due to viral RT error but is changed post-integration of a mismatched base via host proofreading mechanisms. CONCLUSIONS Overall, our results demonstrate that SIVmac239Opt is a functional alternative to parental SIVmac239 with marginally faster replication dynamics and with increased replication uniformity providing a more consistent and reproducible infection model in nonhuman primates.
Collapse
Affiliation(s)
- Christine M Fennessey
- Retroviral Evolution Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Building 535, Rm. 408, Frederick, MD, 21702-1201, USA.
| | - Carolyn Reid
- Retroviral Evolution Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Building 535, Rm. 408, Frederick, MD, 21702-1201, USA.
| | - Leslie Lipkey
- Retroviral Evolution Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Building 535, Rm. 408, Frederick, MD, 21702-1201, USA.
| | - Laura Newman
- Retroviral Evolution Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Building 535, Rm. 408, Frederick, MD, 21702-1201, USA.
| | - Kelli Oswald
- Retroviral Evolution Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Building 535, Rm. 408, Frederick, MD, 21702-1201, USA.
| | - Michael Piatak
- Retroviral Evolution Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Building 535, Rm. 408, Frederick, MD, 21702-1201, USA.
| | - James D Roser
- Retroviral Evolution Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Building 535, Rm. 408, Frederick, MD, 21702-1201, USA.
| | - Elena Chertova
- Retroviral Evolution Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Building 535, Rm. 408, Frederick, MD, 21702-1201, USA.
| | - Jeremy Smedley
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA.
| | - W Gregory Alvord
- Statistical Consulting, Data Management Services, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Gregory Q Del Prete
- Retroviral Evolution Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Building 535, Rm. 408, Frederick, MD, 21702-1201, USA.
| | - Jacob D Estes
- Retroviral Evolution Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Building 535, Rm. 408, Frederick, MD, 21702-1201, USA.
| | - Jeffrey D Lifson
- Retroviral Evolution Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Building 535, Rm. 408, Frederick, MD, 21702-1201, USA.
| | - Brandon F Keele
- Retroviral Evolution Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Building 535, Rm. 408, Frederick, MD, 21702-1201, USA.
| |
Collapse
|
9
|
Apps R, Meng Z, Del Prete GQ, Lifson JD, Zhou M, Carrington M. Relative expression levels of the HLA class-I proteins in normal and HIV-infected cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:3594-600. [PMID: 25754738 PMCID: PMC4390493 DOI: 10.4049/jimmunol.1403234] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/07/2015] [Indexed: 02/02/2023]
Abstract
The expression level of HLA class-I proteins is known to influence pathological outcomes: pathogens downregulate HLA to evade host immune responses, host inflammatory reactions upregulate HLA, and differences among people with regard to the steady-state expression levels of HLA associate with disease susceptibility. Yet precise quantification of relative expression levels of the various HLA loci is difficult because of the tremendous polymorphism of HLA. We report relative expression levels of HLA-A, HLA-B, HLA-C, and HLA-E proteins for the specific haplotype A*02:01, B*44:02, C*05:01, which were characterized using two independent methods based on flow cytometry and mass spectrometry. PBLs from normal donors showed that HLA-A and HLA-B proteins are expressed at similar levels, which are 13-18 times higher than HLA-C by flow cytometry and 4-5 times higher than HLA-C by mass spectrometry; these differences may reflect variation in the conformation or location of proteins detected. HLA-E was detected at a level 25 times lower than that of HLA-C by mass spectrometry. Primary CD4(+) T cells infected with HIV in vitro were also studied because HIV downregulates selective HLA types. HLA-A and HLA-B were reduced on HIV-infected cells by a magnitude that varied between cells in an infected culture. Averaging all infected cells from an individual showed HLA-A to be 1-3 times higher and HLA-B to be 2-5 times higher than HLA-C by flow cytometry. These results quantify substantial differences in expression levels of the proteins from different HLA loci, which are very likely physiologically significant on both uninfected and HIV-infected cells.
Collapse
Affiliation(s)
- Richard Apps
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD 21702
| | - Zhaojing Meng
- Protein Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD 21702
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD 21702; and
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD 21702; and
| | - Ming Zhou
- Protein Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD 21702
| | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD 21702; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| |
Collapse
|
10
|
Del Prete GQ, Park H, Fennessey CM, Reid C, Lipkey L, Newman L, Oswald K, Kahl C, Piatak M, Quiñones OA, Alvord WG, Smedley J, Estes JD, Lifson JD, Picker LJ, Keele BF. Molecularly tagged simian immunodeficiency virus SIVmac239 synthetic swarm for tracking independent infection events. J Virol 2014; 88:8077-90. [PMID: 24807714 PMCID: PMC4097795 DOI: 10.1128/jvi.01026-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 04/30/2014] [Indexed: 12/20/2022] Open
Abstract
Following mucosal human immunodeficiency virus type 1 transmission, systemic infection is established by one or only a few viral variants. Modeling single-variant, mucosal transmission in nonhuman primates using limiting-dose inoculations with a diverse simian immunodeficiency virus isolate stock may increase variability between animals since individual variants within the stock may have substantial functional differences. To decrease variability between animals while retaining the ability to enumerate transmitted/founder variants by sequence analysis, we modified the SIVmac239 clone to generate 10 unique clones that differ by two or three synonymous mutations (molecular tags). Transfection- and infection-derived virus stocks containing all 10 variants showed limited phenotypic differences in 9 of the 10 clones. Twenty-nine rhesus macaques were challenged intrarectally or intravenously with either a single dose or repeated, limiting doses of either stock. The proportion of each variant within each inoculum and in plasma from infected animals was determined by using a novel real-time single-genome amplification assay. Each animal was infected with one to five variants, the number correlating with the dose. Longitudinal sequence analysis revealed that the molecular tags are highly stable with no reversion to the parental sequence detected in >2 years of follow-up. Overall, the viral stocks are functional and mucosally transmissible and the number of variants is conveniently discernible by sequence analysis of a small amplicon. This approach should be useful for tracking individual infection events in preclinical vaccine evaluations, long-term viral reservoir establishment/clearance research, and transmission/early-event studies. Importance: Human immunodeficiency virus type 1 transmission is established by one or only a few viral variants. Modeling of limited variant transmission in nonhuman primates with a diverse simian immunodeficiency virus isolate stock may increase the variability between animals because of functional differences in the individual variants within the stock. To decrease such variability while retaining the ability to distinguish and enumerate transmitted/founder variants by sequence analysis, we generated a viral stock with 10 sequence-identifiable but otherwise genetically identical variants. This virus was characterized in vitro and in vivo and shown to allow discrimination of distinct transmission events. This approach provides a novel nonhuman primate challenge system for the study of viral transmission, evaluation of vaccines and other prevention approaches, and characterization of viral reservoirs and strategies to target them.
Collapse
Affiliation(s)
- Gregory Q Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Haesun Park
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Carolyn Reid
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Leslie Lipkey
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Laura Newman
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Kelli Oswald
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Christoph Kahl
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Octavio A Quiñones
- Statistical Consulting, Data Management Services, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - W Gregory Alvord
- Statistical Consulting, Data Management Services, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeremy Smedley
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
11
|
Wang W, Naiyer N, Mitra M, Li J, Williams MC, Rouzina I, Gorelick RJ, Wu Z, Musier-Forsyth K. Distinct nucleic acid interaction properties of HIV-1 nucleocapsid protein precursor NCp15 explain reduced viral infectivity. Nucleic Acids Res 2014; 42:7145-59. [PMID: 24813443 PMCID: PMC4066767 DOI: 10.1093/nar/gku335] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During human immunodeficiency virus type 1 (HIV-1) maturation, three different forms of nucleocapsid (NC) protein—NCp15 (p9 + p6), NCp9 (p7 + SP2) and NCp7—appear successively. A mutant virus expressing NCp15 shows greatly reduced infectivity. Mature NCp7 is a chaperone protein that facilitates remodeling of nucleic acids (NAs) during reverse transcription. To understand the strict requirement for NCp15 processing, we compared the chaperone function of the three forms of NC. NCp15 anneals tRNA to the primer-binding site at a similar rate as NCp7, whereas NCp9 is the most efficient annealing protein. Assays to measure NA destabilization show a similar trend. Dynamic light scattering studies reveal that NCp15 forms much smaller aggregates relative to those formed by NCp7 and NCp9. Nuclear magnetic resonance studies suggest that the acidic p6 domain of HIV-1 NCp15 folds back and interacts with the basic zinc fingers. Neutralizing the acidic residues in p6 improves the annealing and aggregation activity of NCp15 to the level of NCp9 and increases the protein–NA aggregate size. Slower NCp15 dissociation kinetics is observed by single-molecule DNA stretching, consistent with the formation of electrostatic inter-protein contacts, which likely contribute to the distinct aggregate morphology, irregular HIV-1 core formation and non-infectious virus.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemistry and Biochemistry, Center for Retrovirus Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Nada Naiyer
- Department of Chemistry and Biochemistry, Center for Retrovirus Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Mithun Mitra
- Department of Chemistry and Biochemistry, Center for Retrovirus Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Jialin Li
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Mark C Williams
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Ioulia Rouzina
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Zhengrong Wu
- Department of Chemistry and Biochemistry, Center for Retrovirus Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Wu H, Mitra M, Naufer MN, McCauley MJ, Gorelick RJ, Rouzina I, Musier-Forsyth K, Williams MC. Differential contribution of basic residues to HIV-1 nucleocapsid protein's nucleic acid chaperone function and retroviral replication. Nucleic Acids Res 2013; 42:2525-37. [PMID: 24293648 PMCID: PMC3936775 DOI: 10.1093/nar/gkt1227] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) protein contains 15 basic residues located throughout its 55-amino acid sequence, as well as one aromatic residue in each of its two CCHC-type zinc finger motifs. NC facilitates nucleic acid (NA) rearrangements via its chaperone activity, but the structural basis for this activity and its consequences in vivo are not completely understood. Here, we investigate the role played by basic residues in the N-terminal domain, the N-terminal zinc finger and the linker region between the two zinc fingers. We use in vitro ensemble and single-molecule DNA stretching experiments to measure the characteristics of wild-type and mutant HIV-1 NC proteins, and correlate these results with cell-based HIV-1 replication assays. All of the cationic residue mutations lead to NA interaction defects, as well as reduced HIV-1 infectivity, and these effects are most pronounced on neutralizing all five N-terminal cationic residues. HIV-1 infectivity in cells is correlated most strongly with NC’s NA annealing capabilities as well as its ability to intercalate the DNA duplex. Although NC’s aromatic residues participate directly in DNA intercalation, our findings suggest that specific basic residues enhance these interactions, resulting in optimal NA chaperone activity.
Collapse
Affiliation(s)
- Hao Wu
- Department of Physics, Northeastern University, Boston, MA 02115, USA, Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA and Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Del Prete GQ, Scarlotta M, Newman L, Reid C, Parodi LM, Roser JD, Oswald K, Marx PA, Miller CJ, Desrosiers RC, Barouch DH, Pal R, Piatak M, Chertova E, Giavedoni LD, O'Connor DH, Lifson JD, Keele BF. Comparative characterization of transfection- and infection-derived simian immunodeficiency virus challenge stocks for in vivo nonhuman primate studies. J Virol 2013; 87:4584-95. [PMID: 23408608 PMCID: PMC3624367 DOI: 10.1128/jvi.03507-12] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/01/2013] [Indexed: 12/24/2022] Open
Abstract
Simian immunodeficiency virus (SIV) stocks for in vivo nonhuman primate models of AIDS are typically generated by transfection of 293T cells with molecularly cloned viral genomes or by expansion in productively infected T cells. Although titers of stocks are determined for infectivity in vitro prior to in vivo inoculation, virus production methods may differentially affect stock features that are not routinely analyzed but may impact in vivo infectivity, mucosal transmissibility, and early infection events. We performed a detailed analysis of nine SIV stocks, comprising five infection-derived SIVmac251 viral swarm stocks and paired infection- and transfected-293T-cell-derived stocks of both SIVmac239 and SIVmac766. Representative stocks were evaluated for (i) virus content, (ii) infectious titer, (iii) sequence diversity and polymorphism frequency by single-genome amplification and 454 pyrosequencing, (iv) virion-associated Env content, and (v) cytokine and chemokine content by 36-plex Luminex analysis. Regardless of production method, all stocks had comparable particle/infectivity ratios, with the transfected-293T stocks possessing the highest overall virus content and infectivity titers despite containing markedly lower levels of virion-associated Env than infection-derived viruses. Transfected-293T stocks also contained fewer and lower levels of cytokines and chemokines than infection-derived stocks, which had elevated levels of multiple analytes, with substantial variability among stocks. Sequencing of the infection-derived SIVmac251 stocks revealed variable levels of viral diversity between stocks, with evidence of stock-specific selection and expansion of unique viral lineages. These analyses suggest that there may be underappreciated features of SIV in vivo challenge stocks with the potential to impact early infection events, which may merit consideration when selecting virus stocks for in vivo studies.
Collapse
Affiliation(s)
- Gregory Q. Del Prete
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - Laura Newman
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Carolyn Reid
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - James D. Roser
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Kelli Oswald
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Preston A. Marx
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Christopher J. Miller
- Center for Comparative Medicine and California National Primate Research Center, University of California, Davis, California, USA
| | - Ronald C. Desrosiers
- New England Primate Research Center, Department of Microbiology and Molecular Genetics, Harvard Medical School, Southborough, Massachusetts, USA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, and Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - Ranajit Pal
- Advanced Bioscience Laboratories, Inc., Kensington, Maryland, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Elena Chertova
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Luis D. Giavedoni
- Department of Virology and Immunology
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - David H. O'Connor
- Department of Pathology and Laboratory Medicine
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
14
|
Wu H, Mitra M, McCauley MJ, Thomas JA, Rouzina I, Musier-Forsyth K, Williams MC, Gorelick RJ. Aromatic residue mutations reveal direct correlation between HIV-1 nucleocapsid protein's nucleic acid chaperone activity and retroviral replication. Virus Res 2013; 171:263-77. [PMID: 22814429 PMCID: PMC3745225 DOI: 10.1016/j.virusres.2012.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/02/2012] [Accepted: 07/07/2012] [Indexed: 10/28/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) protein plays an essential role in several stages of HIV-1 replication. One important function of HIV-1 NC is to act as a nucleic acid chaperone, in which the protein facilitates nucleic acid rearrangements important for reverse transcription and recombination. NC contains only 55 amino acids, with 15 basic residues and two zinc fingers, each having a single aromatic residue (Phe16 and Trp37). Despite its simple structure, HIV-1 NC appears to have optimal chaperone activity, including the ability to strongly aggregate nucleic acids, destabilize nucleic acid secondary structure, and facilitate rapid nucleic acid annealing. Here we combine single molecule DNA stretching experiments with ensemble solution studies of protein-nucleic acid binding affinity, oligonucleotide annealing, and nucleic acid aggregation to measure the characteristics of wild-type (WT) and aromatic residue mutants of HIV-1 NC that are important for nucleic acid chaperone activity. These in vitro results are compared to in vivo HIV-1 replication for viruses containing the same mutations. This work allows us to directly relate HIV-1 NC structure with its function as a nucleic acid chaperone in vitro and in vivo. We show that replacement of either aromatic residue with another aromatic residue results in a protein that strongly resembles WT NC. In contrast, single amino acid substitutions of either Phe16Ala or Trp37Ala significantly slow down NC's DNA interaction kinetics, while retaining some helix-destabilization capability. A double Phe16Ala/Trp37Ala substitution further reduces the latter activity. Surprisingly, the ensemble nucleic acid binding, annealing, and aggregation properties are not significantly altered for any mutant except the double aromatic substitution with Ala. Thus, elimination of a single aromatic residue from either zinc finger strongly reduces NC's chaperone activity as determined by single molecule DNA stretching experiments without significantly altering its ensemble-averaged biochemical properties. Importantly, the substitution of aromatic residues with Ala progressively decreases NC's nucleic acid chaperone activity while also progressively inhibiting viral replication. Taken together, these data support the critical role of HIV-1 NC's aromatic residues, and establish a direct and statistically significant correlation between nucleic acid chaperone activity and viral replication.
Collapse
Affiliation(s)
- Hao Wu
- Northeastern University, Department of Physics, Boston, MA 02115, USA
| | - Mithun Mitra
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Columbus, OH 43210, USA
| | - Micah J. McCauley
- Northeastern University, Department of Physics, Boston, MA 02115, USA
| | - James A. Thomas
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ioulia Rouzina
- University of Minnesota, Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN 55455, USA
| | - Karin Musier-Forsyth
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Columbus, OH 43210, USA
| | - Mark C. Williams
- Northeastern University, Department of Physics, Boston, MA 02115, USA
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
15
|
Waheed AA, Freed EO. HIV type 1 Gag as a target for antiviral therapy. AIDS Res Hum Retroviruses 2012; 28:54-75. [PMID: 21848364 DOI: 10.1089/aid.2011.0230] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Gag proteins of HIV-1 are central players in virus particle assembly, release, and maturation, and also function in the establishment of a productive infection. Despite their importance throughout the replication cycle, there are currently no approved antiretroviral therapies that target the Gag precursor protein or any of the mature Gag proteins. Recent progress in understanding the structural and cell biology of HIV-1 Gag function has revealed a number of potential Gag-related targets for possible therapeutic intervention. In this review, we summarize our current understanding of HIV-1 Gag and suggest some approaches for the development of novel antiretroviral agents that target Gag.
Collapse
Affiliation(s)
- Abdul A. Waheed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland
| |
Collapse
|
16
|
Thomas JA, Shatzer TL, Gorelick RJ. Blocking premature reverse transcription fails to rescue the HIV-1 nucleocapsid-mutant replication defect. Retrovirology 2011; 8:46. [PMID: 21682883 PMCID: PMC3141651 DOI: 10.1186/1742-4690-8-46] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/17/2011] [Indexed: 02/06/2023] Open
Abstract
Background The nucleocapsid (NC) protein of HIV-1 is critical for viral replication. Mutational analyses have demonstrated its involvement in viral assembly, genome packaging, budding, maturation, reverse transcription, and integration. We previously reported that two conservative NC mutations, His23Cys and His44Cys, cause premature reverse transcription such that mutant virions contain approximately 1,000-fold more DNA than wild-type virus, and are replication defective. In addition, both mutants show a specific defect in integration after infection. Results In the present study we investigated whether blocking premature reverse transcription would relieve the infectivity defects, which we successfully performed by transfecting proviral plasmids into cells cultured in the presence of high levels of reverse transcriptase inhibitors. After subsequent removal of the inhibitors, the resulting viruses showed no significant difference in single-round infective titer compared to viruses where premature reverse transcription did occur; there was no rescue of the infectivity defects in the NC mutants upon reverse transcriptase inhibitor treatment. Surprisingly, time-course endogenous reverse transcription assays demonstrated that the kinetics for both the NC mutants were essentially identical to wild-type when premature reverse transcription was blocked. In contrast, after infection of CD4+ HeLa cells, it was observed that while the prevention of premature reverse transcription in the NC mutants resulted in lower quantities of initial reverse transcripts, the kinetics of reverse transcription were not restored to that of untreated wild-type HIV-1. Conclusions Premature reverse transcription is not the cause of the replication defect but is an independent side-effect of the NC mutations.
Collapse
Affiliation(s)
- James A Thomas
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc,, NCI at Frederick, Frederick, MD 21702, USA
| | | | | |
Collapse
|
17
|
Song M, Balakrishnan M, Gorelick RJ, Bambara RA. A succession of mechanisms stimulate efficient reconstituted HIV-1 minus strand strong stop DNA transfer. Biochemistry 2010; 48:1810-9. [PMID: 19192967 DOI: 10.1021/bi802149j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Donor-acceptor template systems in vitro were designed to test mechanisms of minus strand transfer of human immunodeficiency virus 1 (HIV-1). Donor RNA D199, extending from the 5' end of the HIV-1 genome to the primer binding site (PBS), promoted transfer to only 35% with an acceptor RNA representing the 3' terminal 97 nucleotides, whereas donor RNA D520, including an additional 321 nucleotides 3' of PBS, exhibited 75% transfer. Both donors transferred through an invasion-driven pathway, but transfer was stimulated by the folding structure resulting from the extra segment in D520. In this study, the significance of interaction between the tRNA(lys3) primer and U3 was examined. Measurements utilizing acceptors having or lacking the U3 region complementary with tRNA(lys3) indicated that a tRNA(lys3)-U3 interaction compensated for inefficient acceptor invasion observed with D199. Stimulation presumably occurred because binding to tRNA(lys3) increased the proximity of the acceptor to elongated cDNA, improving transfer to 78% efficiency with D199, and even higher to 85% with D520. The stimulation did not require natural viral sequences but could be achieved by substituting the original U3 sequence with an equal length sequence that binds a different region of tRNA(lys3). Comparison between acceptors sharing the natural region for tRNA(lys3)-U3 interaction but having or lacking the acceptor invasion site demonstrated that tRNA(lys3)-U3 interaction and acceptor invasion cooperate for maximal stimulation. Overall, observations suggest that both proximity and invasion mechanisms are applied successively by HIV-1 for efficient minus strand transfer.
Collapse
Affiliation(s)
- Min Song
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
18
|
Adamson CS, Freed EO. Novel approaches to inhibiting HIV-1 replication. Antiviral Res 2010; 85:119-41. [PMID: 19782103 PMCID: PMC2815006 DOI: 10.1016/j.antiviral.2009.09.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 09/09/2009] [Accepted: 09/12/2009] [Indexed: 01/17/2023]
Abstract
Considerable success has been achieved in the treatment of HIV-1 infection, and more than two-dozen antiretroviral drugs are available targeting several distinct steps in the viral replication cycle. However, resistance to these compounds emerges readily, even in the context of combination therapy. Drug toxicity, adverse drug-drug interactions, and accompanying poor patient adherence can also lead to treatment failure. These considerations make continued development of novel antiretroviral therapeutics necessary. In this article, we highlight a number of steps in the HIV-1 replication cycle that represent promising targets for drug discovery. These include lipid raft microdomains, the RNase H activity of the viral enzyme reverse transcriptase, uncoating of the viral core, host cell machinery involved in the integration of the viral DNA into host cell chromatin, virus assembly, maturation, and budding, and the functions of several viral accessory proteins. We discuss the relevant molecular and cell biology, and describe progress to date in developing inhibitors against these novel targets. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010.
Collapse
Affiliation(s)
- Catherine S. Adamson
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Maryland, 21702-1201
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Maryland, 21702-1201
| |
Collapse
|
19
|
Rigby ST, Van Nostrand KP, Rose AE, Gorelick RJ, Mathews DH, Bambara RA. Factors that determine the efficiency of HIV-1 strand transfer initiated at a specific site. J Mol Biol 2009; 394:694-707. [PMID: 19853618 DOI: 10.1016/j.jmb.2009.10.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/01/2009] [Accepted: 10/14/2009] [Indexed: 10/20/2022]
Abstract
Human immunodeficiency virus-1 employs strand transfer for recombination between two viral genomes. We have previously provided evidence that strand transfer proceeds by an invasion-mediated mechanism in which a DNA segment on the original RNA template is invaded by a second RNA template at a gap site. The initial RNA-DNA hybrid then expands until the DNA is fully transferred. Ribonuclease H (RNase H) cleavages and nucleocapsid protein (NC) were required for long-distance propagation of the hybrid. Evaluation was performed on a unique substrate, with a short gap serving as a precreated invasion site. In our current work, this substrate provided an opportunity for us to test what factors influence a specific invasion site to support transfer, and to distinguish factors that influence invasion site creation from those that impact later steps. RNase H can act in a polymerization-dependent or polymerization-independent mode. Polymerization-dependent and polymerization-independent RNase H were found to be important in creating efficiently used invasion sites in the primer-donor complex, with or without NC. Propagation and terminus transfer steps, emanating from a precreated invasion site in the presence of NC, were stimulated by polymerization-dependent, but not polymerization-independent, RNase H. RNase H can carry out primary and secondary cleavages during synthesis. While both modes of cleavage promoted invasion, only primary cleavage promoted propagation in the presence of NC in our system. These observations suggest that once invasion is initiated at a short gap, it can propagate through an adjacent region interrupted only by nicks, with help by NC. We considered the possibility that propagation solely by strand exchange was a significant contributor to transfers. However, it did not promote transfer even if synthetic progress of reverse transcriptase was intentionally slowed, consistent with strand exchange by random walk in which rate declines precipitously with distance.
Collapse
Affiliation(s)
- Sean T Rigby
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|