1
|
Takata S, Kawano S, Mine A, Mise K, Takano Y, Ohtsu M, Kaido M. Unveiling crucial amino acid residues in the red clover necrotic mosaic virus movement protein for dynamic subcellular localization and viral cell-to-cell movement. Virology 2024; 600:110215. [PMID: 39255728 DOI: 10.1016/j.virol.2024.110215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
Emerging evidence suggests that the localization of viral movement proteins (MPs) to both plasmodesmata (PD) and viral replication complexes (VRCs) is the key to viral cell-to-cell movement. However, the molecular mechanism that establishes the subcellular localization of MPs is not fully understood. Here, we investigated the PD localization pathway of red clover necrotic mosaic virus (RCNMV) MP and the functional regions of MP that are crucial for MP localization to PD and VRCs. Disruption analysis of the transport pathway suggested that RCNMV MP does not rely on the ER-Golgi pathway or the cytoskeleton for the localization to the PD. Furthermore, mutagenesis analysis identified amino acid residues within the alpha helix regions responsible for localization to the PD or VRCs. These α-helix regions were also essential for efficient viral cell-to-cell movement, highlighting the importance of these dynamic localization of the MPs for viral infection.
Collapse
Affiliation(s)
- Shota Takata
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Saho Kawano
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Akira Mine
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Kazuyuki Mise
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yoshitaka Takano
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Mina Ohtsu
- Laboratory of Plant Symbiosis, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
| | - Masanori Kaido
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
2
|
Kamal H, Kotapati KV, Tanaka K, Pappu HR. Investigating the Roles of Coat Protein and Triple Gene Block Proteins of Potato Mop-Top Virus Using a Heterologous Expression System. Int J Mol Sci 2024; 25:6990. [PMID: 39000098 PMCID: PMC11241287 DOI: 10.3390/ijms25136990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Potato mop-top virus (PMTV) is an emerging viral pathogen that causes tuber necrosis in potatoes. PMTV is composed of three single-stranded RNA segments: RNA1 encodes RNA-dependent RNA polymerase, RNA2 contains the coat protein (CP), and RNA3 harbors a triple gene block (TGB 1, TGB2, and TGB3). CP plays a role in viral transmission, while TGB is known to facilitate cell-to-cell and long-distance systemic movement. The role of CP in symptom development, specifically in the presence of TGB genes, was investigated using potato virus X (PVX) as a delivery vehicle to express PMTV genes in the model plant Nicotiana benthamiana. Plants expressing individual genes showed mild symptoms that included leaf curling and crumpling. Interestingly, symptom severity varied among plants infected with three different combinations: CP with TGB1, CP with TGB2, and CP with TGB3. Notably, the combination of CP and TGB3 induced a hypersensitive response, accompanied by stunted growth and downward curling and crumpling. These results suggest the potential role of TGB co-expressed with CP in symptom development during PMTV infection. Additionally, this study demonstrates the use of the PVX-based expression system as a valuable platform for assessing the role of unknown genes in viral pathogenicity.
Collapse
Affiliation(s)
| | | | | | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA; (H.K.); (K.V.K.); (K.T.)
| |
Collapse
|
3
|
Atabekova AK, Lazareva EA, Lezzhov AA, Solovieva AD, Golyshev SA, Skulachev BI, Solovyev ID, Savitsky AP, Heinlein M, Morozov SY, Solovyev AG. Interaction between Movement Proteins of Hibiscus green spot virus. Viruses 2022; 14:v14122742. [PMID: 36560746 PMCID: PMC9780815 DOI: 10.3390/v14122742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Movement proteins (MPs) of plant viruses enable the translocation of viral genomes from infected to healthy cells through plasmodesmata (PD). The MPs functions involve the increase of the PD permeability and routing of viral genome both to the PD entrance and through the modified PD. Hibiscus green spot virus encodes two MPs, termed BMB1 and BMB2, which act in concert to accomplish virus cell-to-cell transport. BMB1, representing an NTPase/helicase domain-containing RNA-binding protein, localizes to the cytoplasm and the nucleoplasm. BMB2 is a small hydrophobic protein that interacts with the endoplasmic reticulum (ER) membranes and induces local constrictions of the ER tubules. In plant cells, BMB2 localizes to PD-associated membrane bodies (PAMBs) consisting of modified ER tubules and directs BMB1 to PAMBs. Here, we demonstrate that BMB1 and BMB2 interact in vitro and in vivo, and that their specific interaction is essential for BMB2-directed targeting of BMB1 to PAMBs. Using mutagenesis, we show that the interaction involves the C-terminal BMB1 region and the N-terminal region of BMB2.
Collapse
Affiliation(s)
- Anastasia K. Atabekova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Ekaterina A. Lazareva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Alexander A. Lezzhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna D. Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Sergei A. Golyshev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Boris I. Skulachev
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Ilya D. Solovyev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Alexander P. Savitsky
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Manfred Heinlein
- Institute for Plant Molecular Biology (IBMP-CNRS), University of Strasbourg, 67000 Strasbourg, France
| | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
- Correspondence: ; Tel.: +7-(495)-939-3198
| |
Collapse
|
4
|
Solovyev AG, Atabekova AK, Lezzhov AA, Solovieva AD, Chergintsev DA, Morozov SY. Distinct Mechanisms of Endomembrane Reorganization Determine Dissimilar Transport Pathways in Plant RNA Viruses. PLANTS (BASEL, SWITZERLAND) 2022; 11:2403. [PMID: 36145804 PMCID: PMC9504206 DOI: 10.3390/plants11182403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
Plant viruses exploit the endomembrane system of infected cells for their replication and cell-to-cell transport. The replication of viral RNA genomes occurs in the cytoplasm in association with reorganized endomembrane compartments induced by virus-encoded proteins and is coupled with the virus intercellular transport via plasmodesmata that connect neighboring cells in plant tissues. The transport of virus genomes to and through plasmodesmata requires virus-encoded movement proteins (MPs). Distantly related plant viruses encode different MP sets, or virus transport systems, which vary in the number of MPs and their properties, suggesting their functional differences. Here, we discuss two distinct virus transport pathways based on either the modification of the endoplasmic reticulum tubules or the formation of motile vesicles detached from the endoplasmic reticulum and targeted to endosomes. The viruses with the movement proteins encoded by the triple gene block exemplify the first, and the potyviral system is the example of the second type. These transport systems use unrelated mechanisms of endomembrane reorganization. We emphasize that the mode of virus interaction with cell endomembranes determines the mechanism of plant virus cell-to-cell transport.
Collapse
Affiliation(s)
- Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Anastasia K. Atabekova
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Alexander A. Lezzhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna D. Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Denis A. Chergintsev
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
5
|
Molecular Characteristics and Incidence of Apple Rubbery Wood Virus 2 and Citrus Virus A Infecting Pear Trees in China. Viruses 2022; 14:v14030576. [PMID: 35336983 PMCID: PMC8952854 DOI: 10.3390/v14030576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 02/05/2023] Open
Abstract
Apple rubbery wood virus 2 (ARWV-2) and citrus virus A (CiVA) belong to a recently approved family Phenuiviridae in the order Bunyavirales and possess negative-sense single-stranded RNA genomes. In this study, the genome sequence of three ARWV-2 isolates (S17E2, LYC2, and LYXS) and a CiVA isolate (CiVA-P) infecting pear trees grown in China were characterized using high-throughput sequencing combined with conventional reverse-transcription PCR (RT-PCR) assays. The genome-wide nt sequence identities were above 93.6% among the ARWV-2 isolates and above 93% among CiVA isolates. Sequence comparisons showed that sequence diversity occurred in the 5′ untranslated region of the ARWV-2 genome and the intergenic region of the CiVA genome. For the first time, this study revealed that ARWV-2 proteins Ma and Mb displayed a plasmodesma subcellular localization, and the MP of CiVA locates in cell periphery and can interact with the viral NP in bimolecular fluorescence complementation assays. RT-PCR tests disclosed that ARWV-2 widely occurs, while CiVA has a low incidence in pear trees grown in China. This study presents the first complete genome sequences and incidences of ARWV-2 and CiVA from pear trees and the obtained results extend our knowledge of the viral pathogens of pear grown in China.
Collapse
|
6
|
Iswanto ABB, Shelake RM, Vu MH, Kim JY, Kim SH. Genome Editing for Plasmodesmal Biology. FRONTIERS IN PLANT SCIENCE 2021; 12:679140. [PMID: 34149780 PMCID: PMC8207191 DOI: 10.3389/fpls.2021.679140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/10/2021] [Indexed: 05/08/2023]
Abstract
Plasmodesmata (PD) are cytoplasmic canals that facilitate intercellular communication and molecular exchange between adjacent plant cells. PD-associated proteins are considered as one of the foremost factors in regulating PD function that is critical for plant development and stress responses. Although its potential to be used for crop engineering is enormous, our understanding of PD biology was relatively limited to model plants, demanding further studies in crop systems. Recently developed genome editing techniques such as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associate protein (CRISPR/Cas) might confer powerful approaches to dissect the molecular function of PD components and to engineer elite crops. Here, we assess several aspects of PD functioning to underline and highlight the potential applications of CRISPR/Cas that provide new insight into PD biology and crop improvement.
Collapse
Affiliation(s)
- Arya Bagus Boedi Iswanto
- Division of Applied Life Sciences (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Rahul Mahadev Shelake
- Division of Applied Life Sciences (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Minh Huy Vu
- Division of Applied Life Sciences (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Jae-Yean Kim
- Division of Applied Life Sciences (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- Division of Applied Life Sciences, Gyeongsang National University, Jinju, South Korea
- Jae-Yean Kim,
| | - Sang Hee Kim
- Division of Applied Life Sciences (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- Division of Applied Life Sciences, Gyeongsang National University, Jinju, South Korea
- *Correspondence: Sang Hee Kim,
| |
Collapse
|
7
|
Morozov SY, Solovyev AG. Small hydrophobic viral proteins involved in intercellular movement of diverse plant virus genomes. AIMS Microbiol 2020; 6:305-329. [PMID: 33134746 PMCID: PMC7595835 DOI: 10.3934/microbiol.2020019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
Most plant viruses code for movement proteins (MPs) targeting plasmodesmata to enable cell-to-cell and systemic spread in infected plants. Small membrane-embedded MPs have been first identified in two viral transport gene modules, triple gene block (TGB) coding for an RNA-binding helicase TGB1 and two small hydrophobic proteins TGB2 and TGB3 and double gene block (DGB) encoding two small polypeptides representing an RNA-binding protein and a membrane protein. These findings indicated that movement gene modules composed of two or more cistrons may encode the nucleic acid-binding protein and at least one membrane-bound movement protein. The same rule was revealed for small DNA-containing plant viruses, namely, viruses belonging to genus Mastrevirus (family Geminiviridae) and the family Nanoviridae. In multi-component transport modules the nucleic acid-binding MP can be viral capsid protein(s), as in RNA-containing viruses of the families Closteroviridae and Potyviridae. However, membrane proteins are always found among MPs of these multicomponent viral transport systems. Moreover, it was found that small membrane MPs encoded by many viruses can be involved in coupling viral replication and cell-to-cell movement. Currently, the studies of evolutionary origin and functioning of small membrane MPs is regarded as an important pre-requisite for understanding of the evolution of the existing plant virus transport systems. This paper represents the first comprehensive review which describes the whole diversity of small membrane MPs and presents the current views on their role in plant virus movement.
Collapse
Affiliation(s)
- Sergey Y Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.,Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia
| | - Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.,Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
8
|
Navarro JA, Sanchez-Navarro JA, Pallas V. Key checkpoints in the movement of plant viruses through the host. Adv Virus Res 2019; 104:1-64. [PMID: 31439146 DOI: 10.1016/bs.aivir.2019.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plant viruses cannot exploit any of the membrane fusion-based routes of entry described for animal viruses. In addition, one of the distinctive structures of plant cells, the cell wall, acts as the first barrier against the invasion of pathogens. To overcome the rigidity of the cell wall, plant viruses normally take advantage of the way of life of different biological vectors. Alternatively, the physical damage caused by environmental stresses can facilitate virus entry. Once inside the cell and taking advantage of the characteristic symplastic continuity of plant cells, viruses need to remodel and/or modify the restricted pore size of the plasmodesmata (channels that connect plant cells). In a successful interaction for the virus, it can reach the vascular tissue to systematically invade the plant. The connections between the different cell types in this path are not designed to allow the passage of molecules with the complexity of viruses. During this process, viruses face different cell barriers that must be overcome to reach the distal parts of the plant. In this review, we highlight the current knowledge about how plant RNA viruses enter plant cells, move between them to reach vascular cells and overcome the different physical and cellular barriers that the phloem imposes. Finally, we update the current research on cellular organelles as key regulator checkpoints in the long-distance movement of plant viruses.
Collapse
Affiliation(s)
- Jose A Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Jesus A Sanchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain.
| |
Collapse
|
9
|
Lazareva EA, Lezzhov AA, Golyshev SA, Morozov SY, Heinlein M, Solovyev AG. Similarities in intracellular transport of plant viral movement proteins BMB2 and TGB3. J Gen Virol 2017; 98:2379-2391. [PMID: 28869000 DOI: 10.1099/jgv.0.000914] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cell-to-cell transport of many plant viruses through plasmodesmata requires viral movement proteins (MPs) encoded by a 'triple gene block' (TGB) and termed TGB1, TGB2 and TGB3. TGB3 is a small integral membrane protein that contains subcellular targeting signals and directs both TGB2 and the helicase domain-containing TGB1 protein to plasmodesmata-associated structures. Recently, we described a 'binary movement block' (BMB) coding for two MPs, BMB1 and BMB2. The BMB2 protein associates with endoplasmic reticulum (ER) membranes, accumulates at plasmodesmata-associated membrane bodies and directs the BMB1 helicase to these structures. TGB3 transport to cell peripheral bodies was previously shown to bypass the secretory pathway and involve a non-conventional mechanism. Here, we provide evidence that the intracellular transport of both poa semilatent virus TGB3 and hibiscus green spot virus BMB2 to plasmodesmata-associated sites can occur via lateral translocation along the ER membranes. Agrobacterium-mediated transient co-expression in Nicotiana benthamiana leaves revealed that green fluorescent protein (GFP)-fused actin-binding domains of Arabidopsis fimbrin (ABD2-GFP) and mouse talin (TAL-GFP) inhibited the subcellular targeting of TGB3 and BMB2 to plasmodesmata-associated bodies, which resulted in TGB3 and BMB2 accumulation in the cytoplasm in association with aberrant ER structures. Inhibition of COPII budding complex formation by the expression of a dominant-negative mutant of the small GTPase Sar1 had no detectable effect on BMB2 subcellular targeting, which therefore could occur without exit from the ER in COPII transport vesicles. Collectively, the presented data support the current view that plant viral MPs exploit the ER:actin network for their intracellular transport.
Collapse
Affiliation(s)
- Ekaterina A Lazareva
- Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia
| | - Alexander A Lezzhov
- Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia
| | - Sergey A Golyshev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Sergey Y Morozov
- Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Manfred Heinlein
- Université de Strasbourg, CNRS, IBMP UPR 2357, F-67000 Strasbourg, France
| | - Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, Russia
| |
Collapse
|
10
|
Mann KS, Bejerman N, Johnson KN, Dietzgen RG. Cytorhabdovirus P3 genes encode 30K-like cell-to-cell movement proteins. Virology 2016; 489:20-33. [PMID: 26700068 DOI: 10.1016/j.virol.2015.11.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 12/13/2022]
Abstract
Plant viruses encode movement proteins (MP) to facilitate cell-to-cell transport through plasmodesmata. In this study, using trans-complementation of a movement-defective turnip vein-clearing tobamovirus (TVCV) replicon, we show for the first time for cytorhabdoviruses (lettuce necrotic yellows virus (LNYV) and alfalfa dwarf virus (ADV)) that their P3 proteins function as MP similar to the TVCV P30 protein. All three MP localized to plasmodesmata when ectopically expressed. In addition, we show that these MP belong to the 30K superfamily since movement was inhibited by mutation of an aspartic acid residue in the critical 30K-specific LxD/N50-70G motif. We also report that Nicotiana benthamiana microtubule-associated VOZ1-like transcriptional activator interacts with LNYV P3 and TVCV P30 but not with ADV P3 or any of the MP point mutants. This host protein, which is known to interact with P3 of sonchus yellow net nucleorhabdovirus, may be involved in aiding the cell-to-cell movement of LNYV and TVCV.
Collapse
Affiliation(s)
- Krin S Mann
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Nicolas Bejerman
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Karyn N Johnson
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
11
|
Abstract
The symplastic communication network established by plasmodesmata (PD) and connected phloem provides an essential pathway for spatiotemporal intercellular signaling in plant development but is also exploited by viruses for moving their genomes between cells in order to infect plants systemically. Virus movement depends on virus-encoded movement proteins (MPs) that target PD and therefore represent important keys to the cellular mechanisms underlying the intercellular trafficking of viruses and other macromolecules. Viruses and their MPs have evolved different mechanisms for intracellular transport and interaction with PD. Some viruses move from cell to cell by interacting with cellular mechanisms that control the size exclusion limit of PD whereas other viruses alter the PD architecture through assembly of specialized transport structures within the channel. Some viruses move between cells in the form of assembled virus particles whereas other viruses may interact with nucleic acid transport mechanisms to move their genomes in a non-encapsidated form. Moreover, whereas several viruses rely on the secretory pathway to target PD, other viruses interact with the cortical endoplasmic reticulum and associated cytoskeleton to spread infection. This chapter provides an introduction into viruses and their role in studying the diverse cellular mechanisms involved in intercellular PD-mediated macromolecular trafficking.
Collapse
Affiliation(s)
- Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes (IBMP), Centre National de la Recherche Scientifique (CNRS), 12 rue du Général Zimmer, 67084, Strasbourg, France,
| |
Collapse
|
12
|
Verchot J. The ER quality control and ER associated degradation machineries are vital for viral pathogenesis. FRONTIERS IN PLANT SCIENCE 2014; 5:66. [PMID: 24653727 DOI: 10.3389/fpls.2014.00066/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/07/2014] [Indexed: 05/24/2023]
Abstract
The endoplasmic reticulum (ER) is central to protein production and membrane lipid synthesis. The unfolded protein response (UPR) supports cellular metabolism by ensuring protein quality control in the ER. Most positive strand RNA viruses cause extensive remodeling of membranes and require active membrane synthesis to promote infection. How viruses interact with the cellular machinery controlling membrane metabolism is largely unknown. Furthermore, there is mounting data pointing to the importance of the UPR and ER associated degradation (ERAD) machineries in viral pathogenesis in eukaryotes emerging topic. For many viruses, the UPR is an early event that is essential for persistent infection and benefits virus replication. In addition, many viruses are reported to commandeer ER resident chaperones to contribute to virus replication and intercellular movement. In particular, calreticulin, the ubiquitin machinery, and the 26S proteasome are most commonly identified components of the UPR and ERAD machinery that also regulate virus infection. In addition, researchers have noted a link between UPR and autophagy. It is well accepted that positive strand RNA viruses use autophagic membranes as scaffolds to support replication and assembly. However this topic has yet to be explored using plant viruses. The goal of research on this topic is to uncover how viruses interact with this ER-related machinery and to use this information for designing novel strategies to boost immune responses to virus infection.
Collapse
Affiliation(s)
- Jeanmarie Verchot
- Department of Entomology and Plant Pathology, Oklahoma State University Stillwater, OK, USA
| |
Collapse
|
13
|
Verchot J. The ER quality control and ER associated degradation machineries are vital for viral pathogenesis. FRONTIERS IN PLANT SCIENCE 2014; 5:66. [PMID: 24653727 PMCID: PMC3949406 DOI: 10.3389/fpls.2014.00066] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/07/2014] [Indexed: 05/19/2023]
Abstract
The endoplasmic reticulum (ER) is central to protein production and membrane lipid synthesis. The unfolded protein response (UPR) supports cellular metabolism by ensuring protein quality control in the ER. Most positive strand RNA viruses cause extensive remodeling of membranes and require active membrane synthesis to promote infection. How viruses interact with the cellular machinery controlling membrane metabolism is largely unknown. Furthermore, there is mounting data pointing to the importance of the UPR and ER associated degradation (ERAD) machineries in viral pathogenesis in eukaryotes emerging topic. For many viruses, the UPR is an early event that is essential for persistent infection and benefits virus replication. In addition, many viruses are reported to commandeer ER resident chaperones to contribute to virus replication and intercellular movement. In particular, calreticulin, the ubiquitin machinery, and the 26S proteasome are most commonly identified components of the UPR and ERAD machinery that also regulate virus infection. In addition, researchers have noted a link between UPR and autophagy. It is well accepted that positive strand RNA viruses use autophagic membranes as scaffolds to support replication and assembly. However this topic has yet to be explored using plant viruses. The goal of research on this topic is to uncover how viruses interact with this ER-related machinery and to use this information for designing novel strategies to boost immune responses to virus infection.
Collapse
Affiliation(s)
- Jeanmarie Verchot
- *Correspondence: Jeanmarie Verchot, Department of Entomology and Plant Pathology, Oklahoma State University, 127 Noble Research Center, Stillwater, OK 74078, USA e-mail:
| |
Collapse
|
14
|
Samuilova O, Santala J, Valkonen JPT. Tyrosine phosphorylation of the triple gene block protein 3 regulates cell-to-cell movement and protein interactions of Potato mop-top virus. J Virol 2013; 87:4313-21. [PMID: 23365450 PMCID: PMC3624400 DOI: 10.1128/jvi.03388-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 01/25/2013] [Indexed: 12/26/2022] Open
Abstract
Functions of viral proteins can be regulated through phosphorylation by serine/threonine kinases in plants, but little is known about the involvement of tyrosine kinases in plant virus infection. In this study, TGBp3, one of the three movement proteins encoded by a triple gene block (TGB) of Potato mop-top virus (PMTV), was detected for the first time in PMTV-infected plants and found to be tyrosine phosphorylated. Phosphorylation sites (Tyr(87-89) and Tyr(120)) were located in two amino acid motifs conserved in the TGB-containing, rod-shaped plant viruses. Substitution of these tyrosine residues in both motifs was needed to abolish tyrosine phosphorylation of TGBp3. Substitution of Tyr(87-89) with alanine residues enhanced the interaction between TGBp3 and TGBp2 and inhibited cell-to-cell movement of PMTV. On the other hand, substitution of Tyr(120) with alanine resulted in no alteration in the interaction of TGBp3 with TGBp2, but the mutant virus was not infectious. The results suggest that tyrosine phosphorylation is a mechanism regulating the functions of plant virus movement proteins.
Collapse
Affiliation(s)
- Olga Samuilova
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
15
|
Nazim Uddin M, Kim JY. Intercellular and systemic spread of RNA and RNAi in plants. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:279-93. [PMID: 23536229 DOI: 10.1002/wrna.1160] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Plants possess dynamic networks of intercellular communication that are crucial for plant development and physiology. In plants, intercellular communication involves a combination of ligand-receptor-based apoplasmic signaling, and plasmodesmata and phloem-mediated symplasmic signaling. The intercellular trafficking of macromolecules, including RNAs and proteins, has emerged as a novel mechanism of intercellular communication in plants. Various forms of regulatory RNAs move over distinct cellular boundaries through plasmodesmata and phloem. This plant-specific, non-cell-autonomous RNA trafficking network is also involved in development, nutrient homeostasis, gene silencing, pathogen defense, and many other physiological processes. However, the mechanism underlying macromolecular trafficking in plants remains poorly understood. Current progress made in RNA trafficking research and its biological relevance to plant development will be summarized. Diverse plant regulatory mechanisms of cell-to-cell and systemic long-distance transport of RNAs, including mRNAs, viral RNAs, and small RNAs, will also be discussed.
Collapse
Affiliation(s)
- Mohammad Nazim Uddin
- Division of Applied Life Science (BK21-WCU Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, South Korea
| | | |
Collapse
|
16
|
Andika IB, Zheng S, Tan Z, Sun L, Kondo H, Zhou X, Chen J. Endoplasmic reticulum export and vesicle formation of the movement protein of Chinese wheat mosaic virus are regulated by two transmembrane domains and depend on the secretory pathway. Virology 2013; 435:493-503. [PMID: 23137810 DOI: 10.1016/j.virol.2012.10.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/10/2012] [Accepted: 10/15/2012] [Indexed: 12/15/2022]
Abstract
The 37K protein of Chinese wheat mosaic virus (CWMV) belongs to the 30K superfamily of plant virus movement proteins. CWMV 37K trans-complemented the cell-to-cell spread of a movement-defective Potato virus X. CWMV 37K fused to enhanced green fluorescent protein localized to plasmodesmata and formed endoplasmic reticulum (ER)-derived vesicular and large aggregate structures. CWMV 37K has two putative N-terminal transmembrane domains (TMDs). Mutations disrupting TMD1 or TMD2 impaired 37K movement function; those mutants were unable to form ER-derived structures but instead accumulated in the ER. Treatment with Brefeldin A or overexpression of the dominant negative mutant of Sar1 retained 37K in the ER, indicating that ER export of 37K is dependent on the secretory pathway. Moreover, CWMV 37K interacted with pectin methylesterases and mutations in TMD1 or TMD2 impaired this interaction in planta. The results suggest that the two TMDs regulate the movement function and intracellular transport of 37K.
Collapse
Affiliation(s)
- Ida Bagus Andika
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | | | | | | | | | | | | |
Collapse
|
17
|
Cowan GH, Roberts AG, Chapman SN, Ziegler A, Savenkov EI, Torrance L. The potato mop-top virus TGB2 protein and viral RNA associate with chloroplasts and viral infection induces inclusions in the plastids. FRONTIERS IN PLANT SCIENCE 2012; 3:290. [PMID: 23269927 PMCID: PMC3529358 DOI: 10.3389/fpls.2012.00290] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/05/2012] [Indexed: 05/27/2023]
Abstract
The potato mop-top virus (PMTV) triple gene block 2 (TGB2) movement proteins fused to monomeric red fluorescent protein (mRFP-TGB2) was expressed under the control of the PMTV subgenomic promoter from a PMTV vector. The subcellular localizations and interactions of mRFP-TGB2 were investigated using confocal imaging [confocal laser-scanning microscope, (CLSM)] and biochemical analysis. The results revealed associations with membranes of the endoplasmic reticulum (ER), mobile granules, small round structures (1-2 μm in diameter), and chloroplasts. Expression of mRFP-TGB2 in epidermal cells enabled cell-to-cell movement of a TGB2 defective PMTV reporter clone, indicating that the mRFP-TGB2 fusion protein was functional and required for cell-to-cell movement. Protein-lipid interaction assays revealed an association between TGB2 and lipids present in chloroplasts, consistent with microscopical observations where the plastid envelope was labeled later in infection. To further investigate the association of PMTV infection with chloroplasts, ultrastructural studies of thin sections of PMTV-infected potato and Nicotiana benthamiana leaves by electron microscopy revealed abnormal chloroplasts with cytoplasmic inclusions and terminal projections. Viral coat protein (CP), genomic RNA and fluorescently-labeled TGB2 were detected in plastid preparations isolated from the infected leaves, and viral RNA was localized to chloroplasts in infected tissues. The results reveal a novel association of TGB2 and vRNA with chloroplasts, and suggest viral replication is associated with chloroplast membranes, and that TGB2 plays a novel role in targeting the virus to chloroplasts.
Collapse
Affiliation(s)
| | | | | | - Angelika Ziegler
- Federal Research Centre for Cultivated Plants, Julius Kühn Institute, Institute for Epidemiology and Pathogen DiagnosticsQuedlinburg, Germany
| | - Eugene I. Savenkov
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural SciencesUppsala, Sweden
| | | |
Collapse
|
18
|
Solovyev AG, Kalinina NO, Morozov SY. Recent advances in research of plant virus movement mediated by triple gene block. FRONTIERS IN PLANT SCIENCE 2012; 3:276. [PMID: 23248633 PMCID: PMC3520053 DOI: 10.3389/fpls.2012.00276] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/23/2012] [Indexed: 05/19/2023]
Abstract
The aim of this short review was to summarize recent advances in the field of viral cell-to-cell movement mediated by the triple gene block (TGB). The growing body of new research has uncovered links between virus cell-to-cell trafficking and replication, silencing suppression, virus spread over the plant, as well as suggested the roles of nucleus/nucleolus in plant virus transport and revealed protein-membrane associations occurring during subcellular targeting and cell-to-cell movement. In this context, our review briefly summarized current views on several potentially important functions of TGB proteins and on the development of new experimental systems that improved understanding of the molecular events during TGB-mediated virus movement.
Collapse
Affiliation(s)
- Andrey G. Solovyev
- Belozersky Institute of Physico-Chemical Biology, Moscow State UniversityMoscow, Russia
| | - Natalia O. Kalinina
- Belozersky Institute of Physico-Chemical Biology, Moscow State UniversityMoscow, Russia
| | - Sergey Y. Morozov
- Belozersky Institute of Physico-Chemical Biology, Moscow State UniversityMoscow, Russia
- *Correspondence: Sergey Y. Morozov, Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia. e-mail:
| |
Collapse
|
19
|
Torrance L, Wright KM, Crutzen F, Cowan GH, Lukhovitskaya NI, Bragard C, Savenkov EI. Unusual features of pomoviral RNA movement. Front Microbiol 2011; 2:259. [PMID: 22203822 PMCID: PMC3244614 DOI: 10.3389/fmicb.2011.00259] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/02/2011] [Indexed: 01/10/2023] Open
Abstract
Potato mop-top pomovirus (PMTV) is one of a few viruses that can move systemically in plants in the absence of the capsid protein (CP). Pomoviruses encode the triple gene block genetic module of movement proteins (TGB 1, 2, and 3) and recent research suggests that PMTV RNA is transported either as ribonucleoprotein (RNP) complexes containing TGB1 or encapsidated in virions containing TGB1. Furthermore, there are different requirements for local or systemic (long-distance) movement. Research suggests that nucleolar passage of TGB1 may be important for the long-distance movement of both RNP and virions. Moreover, and uniquely, the long-distance movement of the CP-encoding RNA requires expression of both major and minor CP subunits and is inhibited when only the major CP sub unit is expressed. This paper reviews pomovirus research and presents a current model for RNA movement.
Collapse
Affiliation(s)
- Lesley Torrance
- Cell and Molecular Sciences, The James Hutton Institute Dundee, UK
| | | | | | | | | | | | | |
Collapse
|
20
|
Slavoff SA, Liu DS, Cohen JD, Ting AY. Imaging protein-protein interactions inside living cells via interaction-dependent fluorophore ligation. J Am Chem Soc 2011; 133:19769-76. [PMID: 22098454 DOI: 10.1021/ja206435e] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We report a new method, Interaction-Dependent PRobe Incorporation Mediated by Enzymes, or ID-PRIME, for imaging protein-protein interactions (PPIs) inside living cells. ID-PRIME utilizes a mutant of Escherichia coli lipoic acid ligase, LplA(W37V), which can catalyze the covalent ligation of a coumarin fluorophore onto a peptide recognition sequence called LAP1. The affinity between the ligase and LAP1 is tuned such that, when each is fused to a protein partner of interest, LplA(W37V) labels LAP1 with coumarin only when the protein partners to which they are fused bring them together. Coumarin labeling in the absence of such interaction is low or undetectable. Characterization of ID-PRIME in living mammalian cells shows that multiple protein-protein interactions can be imaged (FRB-FKBP, Fos-Jun, and neuroligin-PSD-95), with as little as 10 min of coumarin treatment. The signal intensity and detection sensitivity are similar to those of the widely used fluorescent protein complementation technique (BiFC) for PPI detection, without the disadvantage of irreversible complex trapping. ID-PRIME provides a powerful and complementary approach to existing methods for visualization of PPIs in living cells with spatial and temporal resolution.
Collapse
Affiliation(s)
- Sarah A Slavoff
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | |
Collapse
|
21
|
Lu Y, Yan F, Guo W, Zheng H, Lin L, Peng J, Adams MJ, Chen J. Garlic virus X 11-kDa protein granules move within the cytoplasm and traffic a host protein normally found in the nucleolus. MOLECULAR PLANT PATHOLOGY 2011; 12:666-76. [PMID: 21726366 PMCID: PMC6640471 DOI: 10.1111/j.1364-3703.2010.00699.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The subcellular localization of the 11-kDa protein (p11) encoded by ORF3 of Garlic virus X (GarVX; genus Allexivirus, family Alphaflexiviridae) was examined by confocal microscopy. Granules with intense fluorescence were visible on the endoplasmic reticulum when p11 fused with green or red fluorescent protein (GFP or RFP) was expressed in epidermal cells of Nicotiana benthamiana. Moreover, the p11-RFP granules moved in the cytoplasm, along the cell periphery and through the cell membranes to adjacent cells. A 17-kDa protein (p17) of garlic interacting with p11 was identified by yeast two-hybridization and bimolecular fluorescence complementation assay. When p17 fused to GFP was expressed in epidermal cells of N. benthamiana, it localized to the nucleolus. However, in the presence of GarVX p11, the distribution of p17 changed to that of p11, but did not appear to affect the pattern of movement of p11.
Collapse
Affiliation(s)
- Yuwen Lu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, MOA and Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Schoelz JE, Harries PA, Nelson RS. Intracellular transport of plant viruses: finding the door out of the cell. MOLECULAR PLANT 2011; 4:813-31. [PMID: 21896501 PMCID: PMC3183398 DOI: 10.1093/mp/ssr070] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/18/2011] [Indexed: 05/03/2023]
Abstract
Plant viruses are a class of plant pathogens that specialize in movement from cell to cell. As part of their arsenal for infection of plants, every virus encodes a movement protein (MP), a protein dedicated to enlarging the pore size of plasmodesmata (PD) and actively transporting the viral nucleic acid into the adjacent cell. As our knowledge of intercellular transport has increased, it has become apparent that viruses must also use an active mechanism to target the virus from their site of replication within the cell to the PD. Just as viruses are too large to fit through an unmodified plasmodesma, they are also too large to be freely diffused through the cytoplasm of the cell. Evidence has accumulated now for the involvement of other categories of viral proteins in intracellular movement in addition to the MP, including viral proteins originally associated with replication or gene expression. In this review, we will discuss the strategies that viruses use for intracellular movement from the replication site to the PD, in particular focusing on the role of host membranes for intracellular transport and the coordinated interactions between virus proteins within cells that are necessary for successful virus spread.
Collapse
Affiliation(s)
- James E. Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Phillip A. Harries
- Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Richard S. Nelson
- Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., Ardmore, OK 73401, USA
| |
Collapse
|
23
|
Kaido M, Funatsu N, Tsuno Y, Mise K, Okuno T. Viral cell-to-cell movement requires formation of cortical punctate structures containing Red clover necrotic mosaic virus movement protein. Virology 2011; 413:205-15. [PMID: 21377183 DOI: 10.1016/j.virol.2011.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 01/27/2011] [Accepted: 02/05/2011] [Indexed: 01/30/2023]
Abstract
Movement protein (MP) of Red clover necrotic mosaic virus (RCNMV) forms punctate structures on the cortical endoplasmic reticulum (ER) of Nicotiana benthamiana cells, which are associated with viral RNA1 replication (Kaido et al., Virology 395, 232-242. 2009). We investigated the significance of ER-targeting by MP during virus movement from cell to cell, by analyzing the function of a series of MPs with varying length deletions at their C-terminus, either fused or not fused with green fluorescent protein (GFP). The C-terminal 70 amino acids were crucial to ER-localization of MP-GFP and cell-to-cell movement of the recombinant virus encoding it. However, C-terminal deletion did not affect MP functions, such as increasing the size exclusion limit of plasmodesmata, single-stranded RNA binding in vitro, and MP interacting in vivo. We discuss the possible role of this MP region in virus movement from cell to cell.
Collapse
Affiliation(s)
- Masanori Kaido
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | | | | | | | | |
Collapse
|
24
|
Shemyakina EA, Erokhina TN, Gorshkova EN, Schiemann J, Solovyev AG, Morozov SY. Formation of protein complexes containing plant virus movement protein TGBp3 is necessary for its intracellular trafficking. Biochimie 2011; 93:742-8. [PMID: 21251950 DOI: 10.1016/j.biochi.2011.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/11/2011] [Indexed: 12/11/2022]
Abstract
Cell-to-cell movement of Poa semilatent virus (genus Hordeivirus) in infected plants is mediated by three viral 'triple gene block' (TGB) proteins. One of those termed TGBp3 is an integral membrane protein essential for intracellular transport of other TGB proteins and viral genomic RNA to plasmodesmata. TGBp3 targeting to plasmodesmata-associated sites is believed to involve an unconventional mechanism which does not employ endoplasmic reticulum-derived transport vesicles. Previously TGBp3 has been shown to contain a composite transport signal consisting of the central hydrophilic protein region which includes a conserved pentapeptide YQDLN and the C-terminal transmembrane segment. This study demonstrates that these TGBp3 structural elements have distinct functions in protein transport. The YQDLN-containing region is essential for TGBp3 incorporation into high-molecular-mass protein complexes. In transient expression assay formation of such complexes is necessary for entering the TGBp3-specific pathway of intracellular transport and protein delivery to plasmodesmata-associated sites. In virus-infected plants TGBp3 is also found predominantly in the form of high-molecular-mass complexes. When the complex-formation function of YQDLN-containing region is disabled by a mutation, targeting to plasmodesmata-associated sites can be complemented by a heterologous peptide capable of formation multimeric complexes. The C-terminal transmembrane segment is found to be an essential signal of TGBp3 intracellular transport to peripheral sites.
Collapse
Affiliation(s)
- Elena A Shemyakina
- Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
25
|
Shemyakina EA, Solovyev AG, Leonova OG, Popenko VI, Schiemann J, Morozov SY. The Role of Microtubule Association in Plasmodesmal Targeting of Potato mop-top virus Movement Protein TGBp1. Open Virol J 2011; 5:1-11. [PMID: 21660184 PMCID: PMC3109696 DOI: 10.2174/1874357901105010001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/11/2010] [Accepted: 10/25/2010] [Indexed: 12/19/2022] Open
Abstract
Cell-to-cell movement of Potato mop-top virus (PMTV) is mediated by three virus-encoded ‘triple gene block’ (TGB) proteins termed TGBp1, TGBp2 and TGBp3. TGBp1 binds virus RNAs to form viral ribonucleoprotein complexes (vRNPs), the transport form of viral genome. TGBp2 and TGBp3 are necessary for intracellular delivery of TGBp1-containing vRNPs to plasmodesmata. To analyze subcellular localization and transport of TGBp1 we used a single binary vector for agrobacterium-mediated co-expression of PMTV TGBp1 fused to green fluorescent protein and TGBp2/TGBp3. At two days post infiltration (dpi) TGBp1 was found in the nucleus and in association with microtubules (MTs). Similar localization pattern was revealed in cells expressing GFP-TGBp1 alone after particle bombardment. At 3 dpi, in addition to the nucleus and MTs, TGBp1 was detected in numerous granular bodies located both along the MTs and at the cell wall. The latter structures co-localized with plasmodesmata-associated callose depositions. At 4 dpi, GFP-TGBp1 was detected in cell wall-associated bodies and also in residual MTs, the nucleoplasm and large perinuclear inclusions resembling aggresomes. Therefore GFP-TGBp1 association with MTs preceded to its localization to plasmodesmata. Disassembly of cell MTs by colchicine prevented GFP-TGBp1 targeting to plasmodesmata and the MT-dependent aggresome formation. Deletion analysis also revealed a correlation between TGBp1 microtubule association and plasmodesmata targeting. We propose that TGBp1 interaction with MTs may be important for the formation of vRNP bodies destined for the transport to plasmodesmata as well as degradation of the excessive TGBp1.
Collapse
Affiliation(s)
- Elena A Shemyakina
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119992, Russia
| | | | | | | | | | | |
Collapse
|
26
|
Hyun TK, Uddin MN, Rim Y, Kim JY. Cell-to-cell trafficking of RNA and RNA silencing through plasmodesmata. PROTOPLASMA 2011; 248:101-16. [PMID: 21042816 DOI: 10.1007/s00709-010-0225-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 10/14/2010] [Indexed: 05/05/2023]
Abstract
Plasmodesmata (PD) are plasma membrane-lined cytoplasmic channels that cross the cell wall and establish symplasmic continuity between neighboring cells in plants. Recently, a wide range of cellular RNAs (including mRNAs and small RNAs (sRNAs)) have been reported to move from cell to cell through PD trafficking pathways. sRNAs are key molecules that function in transcriptional and post-transcriptional RNA silencing, which is a gene expression regulatory mechanism that is conserved among eukaryotes and is important for protection against invading nucleic acids (such as viruses and transposons) and for developmental and physiological regulation. One of the most intriguing aspects of RNA silencing is that it can function either cell autonomously or non-cell autonomously in post-transcriptional RNA silencing pathways. Although the mechanisms underlying cell-to-cell trafficking of RNA and RNA silencing signals are not fully understood, the movement of specific RNAs seems to play a critical role in cell-to-cell and long-distance regulation of gene expression, thereby coordinating growth and developmental processes, gene silencing, and stress responses. In this review, we summarize the current knowledge regarding cell-to-cell trafficking of RNA molecules (including small RNAs), and we discuss potential molecular mechanisms of cell-to-cell trafficking that are mediated by complex networks.
Collapse
Affiliation(s)
- Tae Kyung Hyun
- Department of Biochemistry, Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, South Korea
| | | | | | | |
Collapse
|
27
|
Tilsner J, Amari K, Torrance L. Plasmodesmata viewed as specialised membrane adhesion sites. PROTOPLASMA 2011; 248:39-60. [PMID: 20938697 DOI: 10.1007/s00709-010-0217-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 09/27/2010] [Indexed: 05/20/2023]
Abstract
A significant amount of work has been expended to identify the elusive components of plasmodesmata (PD) to help understand their structure, as well as how proteins are targeted to them. This review focuses on the role that lipid membranes may play in defining PD both structurally and as subcellular targeting addresses. Parallels are drawn to findings in other areas of research which focus on the lateral segregation of membrane domains and the generation of three-dimensional organellar shapes from flat lipid bilayers. We conclude that consideration of the protein-lipid interactions in cell biological studies of PD components and PD-targeted proteins may yield new insights into some of the many open questions regarding these unique structures.
Collapse
Affiliation(s)
- Jens Tilsner
- Institute of Molecular Plant Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JH, UK.
| | | | | |
Collapse
|
28
|
Niehl A, Heinlein M. Cellular pathways for viral transport through plasmodesmata. PROTOPLASMA 2011; 248:75-99. [PMID: 21125301 DOI: 10.1007/s00709-010-0246-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/16/2010] [Indexed: 05/03/2023]
Abstract
Plant viruses use plasmodesmata (PD) to spread infection between cells and systemically. Dependent on viral species, movement through PD can occur in virion or non-virion form, and requires different mechanisms for targeting and modification of the pore. These mechanisms are supported by viral movement proteins and by other virus-encoded factors that interact among themselves and with plant cellular components to facilitate virus movement in a coordinated and regulated fashion.
Collapse
Affiliation(s)
- Annette Niehl
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | | |
Collapse
|
29
|
Harries PA, Schoelz JE, Nelson RS. Intracellular transport of viruses and their components: utilizing the cytoskeleton and membrane highways. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1381-93. [PMID: 20653412 DOI: 10.1094/mpmi-05-10-0121] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Plant viruses are obligate organisms that require host components for movement within and between cells. A mechanistic understanding of virus movement will allow the identification of new methods to control virus systemic spread and serve as a model system for understanding host macromolecule intra- and intercellular transport. Recent studies have moved beyond the identification of virus proteins involved in virus movement and their effect on plasmodesmal size exclusion limits to the analysis of their interactions with host components to allow movement within and between cells. It is clear that individual virus proteins and replication complexes associate with and, in some cases, traffic along the host cytoskeleton and membranes. Here, we review these recent findings, highlighting the diverse associations observed between these components and their trafficking capacity. Plant viruses operate individually, sometimes within virus species, to utilize unique interactions between their proteins or complexes and individual host cytoskeletal or membrane elements over time or space for their movement. However, there is not sufficient information for any plant virus to create a complete model of its intracellular movement; thus, more research is needed to achieve that goal.
Collapse
Affiliation(s)
- Phillip A Harries
- Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA
| | | | | |
Collapse
|
30
|
Wright KM, Cowan GH, Lukhovitskaya NI, Tilsner J, Roberts AG, Savenkov EI, Torrance L. The N-terminal domain of PMTV TGB1 movement protein is required for nucleolar localization, microtubule association, and long-distance movement. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1486-97. [PMID: 20923354 DOI: 10.1094/mpmi-05-10-0105] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The triple-gene-block (TGB)1 protein of Potato mop-top virus (PMTV) was fused to fluorescent proteins and expressed in epidermal cells of Nicotiana benthamiana under the control of the 35S promoter. TGB1 fluorescence was observed in the cytoplasm, nucleus, and nucleolus and occasionally associated with microtubules. When expressed from a modified virus (PMTV.YFP-TGB1) which formed local lesions but was not competent for systemic movement, yellow fluorescent protein (YFP)-TGB1 labeled plasmodesmata in cells at the leading edge of the lesion and plasmodesmata, microtubules, nuclei, and nucleoli in cells immediately behind the leading edge. Deletion of 84 amino acids from the N-terminus of unlabeled TGB1 within the PMTV genome abolished movement of viral RNA to noninoculated leaves. When the same deletion was introduced into PMTV.YFP-TGB1, labeling of microtubules and nucleoli was abolished. The N-terminal 84 amino acids of TGB1 were fused to green fluorescent protein (GFP) and expressed in epidermal cells where GFP localized strongly to the nucleolus (not seen with unfused GFP), indicating that these amino acids contain a nucleolar localization signal; the fusion protein did not label microtubules. This is the first report of nucleolar and microtubule association of a TGB movement protein. The results suggest that PMTV TGB1 requires interaction with nuclear components and, possibly, microtubules for long-distance movement of viral RNA.
Collapse
Affiliation(s)
- Kathryn M Wright
- Plant Pathology Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | | | | | | | | | | | | |
Collapse
|
31
|
Verchot-Lubicz J, Torrance L, Solovyev AG, Morozov SY, Jackson AO, Gilmer D. Varied movement strategies employed by triple gene block-encoding viruses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1231-47. [PMID: 20831404 DOI: 10.1094/mpmi-04-10-0086] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Several RNA virus genera belonging to the Virgaviridae and Flexiviridae families encode proteins organized in a triple gene block (TGB) that facilitate cell-to-cell and long-distance movement. The TGB proteins have been traditionally classified as hordei-like or potex-like based on phylogenetic comparisons and differences in movement mechanisms of the Hordeivirus and Potexvirus spp. However, accumulating data from other model viruses suggests that a revised framework is needed to accommodate the profound differences in protein interactions occurring during infection and ancillary capsid protein requirements for movement. The goal of this article is to highlight common features of the TGB proteins and salient differences in movement properties exhibited by individual viruses encoding these proteins. We discuss common and divergent aspects of the TGB transport machinery, describe putative nucleoprotein movement complexes, highlight recent data on TGB protein interactions and topological properties, and review membrane associations occurring during subcellular targeting and cell-to-cell movement. We conclude that the existing models cannot be used to explain all TGB viruses, and we propose provisional Potexvirus, Hordeivirus, and Pomovirus models. We also suggest areas that might profit from future research on viruses harboring this intriguing arrangement of movement proteins.
Collapse
Affiliation(s)
- Jeanmarie Verchot-Lubicz
- Oklahoma State University, Department of Entomology and Plant Pathology, Stillwater, OK 74078, USA.
| | | | | | | | | | | |
Collapse
|