1
|
Korkulu E, Şenlik Eİ, Adıgüzel E, Artut FG, Çetinaslan HD, Erdem-Şahinkesen E, Oğuzoğlu TÇ. Status Quo of Feline Leukaemia Virus Infection in Turkish Cats and Their Antigenic Prevalence. Animals (Basel) 2024; 14:385. [PMID: 38338028 PMCID: PMC10854556 DOI: 10.3390/ani14030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Feline leukaemia virus (FeLV) is a member of the Gammaretrovirus genus, which has two genotypes in cats: endogenous (replication-defective provirus) and exogenous (replication-competent). In this study, 550 cats were examined, and 112 of them (20.36%) were found to have the endogenous FeLV (enFeLV) genotype. EnFeLV-positive animals were also tested for additional viral infections, and 48 cats (42.85%) were discovered to be co-infected with other viruses. According to co-infection data, these cats were infected with feline coronavirus (FCoV) (27/112, 24.1%), feline panleukopenia virus (FPV) (14/112, 12.5%), feline immunodeficiency virus (FIV) (0/112, 0%), and domestic cat hepadnavirus (DCH) (13/112, 11.6%). Their age, sex, breed, clinical state, lifestyle (in/outdoor), and immunization data against FeLV were also evaluated. In line with our results, the prevalence of enFeLV and co-infection with other pathogens in cats admitted to the clinic for various reasons were discussed. The majority of positive animals in terms of FeLV (94/112, 83.93%) had clinical findings. We emphasized that the FeLV-positive situation of cats should be taken into consideration by veterinarians when planning treatment and vaccination programs. Additionally, in this study, we questioned the group in which our enFeLVs were phylogenetically located. Therefore, we performed a phylogenetic analysis based on a comparison with global FeLV sequences obtained from the GenBank database. The sequenced positive samples were in the AGTT subgroup within Group-II.
Collapse
Affiliation(s)
- Emrah Korkulu
- Institute of Health Sciences, Ankara University, Ankara 06110, Türkiye; (E.K.); (E.İ.Ş.); (H.D.Ç.)
| | - Elif İrem Şenlik
- Institute of Health Sciences, Ankara University, Ankara 06110, Türkiye; (E.K.); (E.İ.Ş.); (H.D.Ç.)
| | - Ece Adıgüzel
- Republic of Türkiye Ministry of Agriculture and Forestry, Atkaracalar District Directorate, Çankırı 18310, Türkiye;
| | | | | | - Eda Erdem-Şahinkesen
- Institute of Health Sciences, Ankara University, Ankara 06110, Türkiye; (E.K.); (E.İ.Ş.); (H.D.Ç.)
| | - Tuba Çiğdem Oğuzoğlu
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara 06110, Türkiye
| |
Collapse
|
2
|
Acevedo-Jiménez GE, Sarmiento-Silva RE, Alonso-Morales RA, Córdova-Ponce R, Ramírez-Álvarez H. Detection and genetic characterization of feline retroviruses in domestic cats with different clinical signs and hematological alterations. Arch Virol 2023; 168:2. [DOI: https:/doi.org/10.1007/s00705-022-05627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/17/2022] [Indexed: 01/16/2023]
|
3
|
Acevedo-Jiménez GE, Sarmiento-Silva RE, Alonso-Morales RA, Córdova-Ponce R, Ramírez-Álvarez H. Detection and genetic characterization of feline retroviruses in domestic cats with different clinical signs and hematological alterations. Arch Virol 2022; 168:2. [PMID: 36534205 DOI: 10.1007/s00705-022-05627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/17/2022] [Indexed: 12/23/2022]
Abstract
Feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) are globally distributed retroviruses that infect domestic cats and cause various syndromes that can lead to death. The aim of this study was to detect and genotype feline retroviruses in Mexican domestic cats. We used PCR assays to identify proviral DNA and viral RNA in 50 domestic cats with different clinical signs and hematological alterations. Endogenous FeLV (enFeLV) was identified in the genomic DNA of all cats in the study, and we detected transcripts of the LTR region of enFeLV in 48 individuals. Exogenous FeLV (exFeLV) was found in 13 cats. Furthermore, we detected FIV proviral DNA in 10 cats. The enFeLV sequences were shown to be the most variable, while the exFeLV sequences were highly conserved and related to previously reported subgroup A sequences. Sequencing of the FIV gag gene revealed the presence of subtype B in the infected cats.
Collapse
Affiliation(s)
- Gabriel Eduardo Acevedo-Jiménez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Studies, Veterinary Medicine, Campus 4. National Autonomous University of Mexico, 54714, Cuautitlan Izcalli, Mexico, Mexico
| | - Rosa Elena Sarmiento-Silva
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, University City, 04510, Mexico City, Mexico
| | - Rogelio Alejandro Alonso-Morales
- Department of Genetics and Biostatistics, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, University City, 04510, Mexico City, Mexico
| | - Rodolfo Córdova-Ponce
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Studies, Veterinary Medicine, Campus 4. National Autonomous University of Mexico, 54714, Cuautitlan Izcalli, Mexico, Mexico
| | - Hugo Ramírez-Álvarez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Studies, Veterinary Medicine, Campus 4. National Autonomous University of Mexico, 54714, Cuautitlan Izcalli, Mexico, Mexico.
| |
Collapse
|
4
|
Molina VM, Orjuela M. Frecuencia de la leucemia felina (vilef): refugio municipal Rionegro, Colombia 2020. REVISTA DE LA FACULTAD DE MEDICINA VETERINARIA Y DE ZOOTECNIA 2022. [DOI: 10.15446/rfmvz.v69n1.101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
La leucemia viral felina (ViLeF) es una enfermedad retroviral letal, de una elevada prevalencia en Colombia, que afecta a felinos de diferentes edades y sexos. El objetivo de esta investigación fue determinar la frecuencia por serodiagnóstico de ViLeF en felinos del centro integral de bienestar animal Ceiba, ubicado en Rionegro, Antioquia (Colombia), en 2020. Para ello, se realizó un estudio descriptivo longitudinal de serofrecuencia de ViLeF desde enero hasta diciembre de 2020. Fueron muestreados 92 gatos, a los cuales se les efectuó una prueba p27 por inmunoensayo comercial Elisa (Idexx©, Snap Combo Plus®, Maine, EE. UU.). La frecuencia de felinos positivos fue 30/92 (32,60%) y el mes de mayo fue el de mayor frecuencia (9,78%). Los machos positivos fueron 17/92 (18,47%) y las hembras 13/92 (14,13%). La edad promedio de seropositividad fue 2,14 años. La frecuencia de ViLeF en 2020 para Ceiba, Rionegro (Colombia) es de 32,60%, un valor elevado con respecto a descripciones en otros albergues para felinos. ViLeF es una enfermedad que está siendo reportada con mayor frecuencia en Colombia, debido a que las medidas de prevención no se están adoptando rutinariamente.
Collapse
|
5
|
Could Phylogenetic Analysis Be Used for Feline Leukemia Virus (FeLV) Classification? Viruses 2022; 14:v14020249. [PMID: 35215842 PMCID: PMC8876432 DOI: 10.3390/v14020249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 12/21/2022] Open
Abstract
The surface envelope (SU) protein determines the cell tropism and consequently the pathogenesis of the feline leukemia virus (FeLV) in felids. Recombination of exogenous FeLV (exFeLV) with endogenous retroviruses (enFeLV) allows the emergence of more pathogenic variants. Currently, phenotypic testing through interference assays is the only method to distinguish among subgroups-namely, FeLV-A, -B, -C, -E, and -T. This study proposes a new method for FeLV classification based on molecular analysis of the SU gene. A total of 404 publicly available SU sequences were used to reconstruct a maximum likelihood tree. However, only 63 of these sequences had available information about phenotypic tests or subgroup assignments. Two major clusters were observed: (a) clade FeLV-A, which includes FeLV-A, FeLV-C, FeLV-E, and FeLV-T sequences, and (b) clade enFeLV, which includes FeLV-B and enFeLV strains. We found that FeLV-B, FeLV-C, FeLV-E, and FeLV-T SU sequences share similarities to FeLV-A viruses and most likely arose independently through mutation or recombination from this strain. FeLV-B and FeLV-C arose from recombination between FeLV-A and enFeLV viruses, whereas FeLV-T is a monophyletic subgroup that has probably originated from FeLV-A through combined events of deletions and insertions. Unfortunately, this study could not identify polymorphisms that are specifically linked to the FeLV-E subgroup. We propose that phylogenetic and recombination analysis together can explain the current phenotypic classification of FeLV viruses.
Collapse
|
6
|
Zheng J, Wei Y, Han GZ. The diversity and evolution of retroviruses: perspectives from viral “fossils”. Virol Sin 2022; 37:11-18. [PMID: 35234634 PMCID: PMC8922424 DOI: 10.1016/j.virs.2022.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/12/2021] [Indexed: 01/19/2023] Open
Abstract
Retroviruses exclusively infect vertebrates, causing a variety of diseases. The replication of retroviruses requires reverse transcription and integration into host genomes. When infecting germline cells, retroviruses become inherited vertically, forming endogenous retroviruses (ERVs). ERVs document past viral infections, providing molecular fossils for studying the evolutionary history of retroviruses. In this review, we summarize the recent advances in understanding the diversity and evolution of retroviruses from the perspectives of viral fossils, and discuss the effects of ERVs on the evolution of host biology. Recent advances in understanding the diversity and evolution of retroviruses. Methods to analyze ERVs. The effects of ERVs on the evolution of host biology.
Collapse
Affiliation(s)
- Jialu Zheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yutong Wei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
7
|
Endogenous Feline Leukemia Virus (FeLV) siRNA Transcription May Interfere with Exogenous FeLV Infection. J Virol 2021; 95:e0007021. [PMID: 34495702 DOI: 10.1128/jvi.00070-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endogenous retroviruses (ERVs) are increasingly recognized for biological impacts on host cell function and susceptibility to infectious agents, particularly in relation to interactions with exogenous retroviral progenitors (XRVs). ERVs can simultaneously promote and restrict XRV infections using mechanisms that are virus and host specific. The majority of endogenous-exogenous retroviral interactions have been evaluated in experimental mouse or chicken systems, which are limited in their ability to extend findings to naturally infected outbred animals. Feline leukemia virus (FeLV) has a relatively well-characterized endogenous retrovirus with a coexisting virulent exogenous counterpart and is endemic worldwide in domestic cats. We have previously documented an association between endogenous FeLV (enFeLV) long terminal repeat (LTR) copy number and abrogated exogenous FeLV in naturally infected cats and experimental infections in tissue culture. Analyses described here examine limited FeLV replication in experimentally infected peripheral blood mononuclear cells, which correlates with higher enFeLV transcripts in these cells compared to fibroblasts. We further examine NCBI Sequence Read Archive RNA transcripts to evaluate enFeLV transcripts and RNA interference (RNAi) precursors. We find that lymphoid-derived tissues, which are experimentally less permissive to exogenous FeLV infection, transcribe higher levels of enFeLV under basal conditions. Transcription of enFeLV-LTR segments is significantly greater than that of other enFeLV genes. We documented transcription of a 21-nucleotide (nt) microRNA (miRNA) just 3' to the enFeLV 5'-LTR in the feline miRNAome of all data sets evaluated (n = 27). Our findings point to important biological functions of enFeLV transcription linked to solo LTRs distributed within the domestic cat genome, with potential impacts on domestic cat exogenous FeLV susceptibility and pathogenesis. IMPORTANCE Endogenous retroviruses (ERVs) are increasingly implicated in host cellular processes and susceptibility to infectious agents, specifically regarding interactions with exogenous retroviral progenitors (XRVs). Exogenous feline leukemia virus (FeLV) and its endogenous counterpart (enFeLV) represent a well-characterized, naturally occurring XRV-ERV dyad. We have previously documented an abrogated FeLV infection in both naturally infected cats and experimental fibroblast infections that harbor higher enFeLV proviral loads. Using an in silico approach, we provide evidence of miRNA transcription that is produced in tissues that are most important for FeLV infection, replication, and transmission. Our findings point to important biological functions of enFeLV transcription linked to solo-LTRs distributed within the feline genome, with potential impacts on domestic cat exogenous FeLV susceptibility and pathogenesis. This body of work provides additional evidence of RNA interference (RNAi) as a mechanism of viral interference and is a demonstration of ERV exaptation by the host to defend against related XRVs.
Collapse
|
8
|
Feline Leukemia Virus (FeLV) Endogenous and Exogenous Recombination Events Result in Multiple FeLV-B Subtypes during Natural Infection. J Virol 2021; 95:e0035321. [PMID: 34232703 DOI: 10.1128/jvi.00353-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Feline leukemia virus (FeLV) is associated with a range of clinical signs in felid species. Differences in disease processes are closely related to genetic variation in the envelope (env) region of the genome of six defined subgroups. The primary hosts of FeLV are domestic cats of the Felis genus that also harbor endogenous FeLV (enFeLV) elements stably integrated in their genomes. EnFeLV elements display 86% nucleotide identity to exogenous, horizontally transmitted FeLV (FeLV-A). Variation between enFeLV and FeLV-A is primarily in the long terminal repeat (LTR) and env regions, which potentiates generation of the FeLV-B recombinant subgroup during natural infection. The aim of this study was to examine recombination behavior of exogenous FeLV (exFeLV) and enFeLV in a natural FeLV epizootic. We previously described that of 65 individuals in a closed colony, 32 had productive FeLV-A infection, and 22 of these individuals had detectable circulating FeLV-B. We cloned and sequenced the env gene of FeLV-B, FeLV-A, and enFeLV spanning known recombination breakpoints and examined between 1 and 13 clones in 22 animals with FeLV-B to assess sequence diversity and recombination breakpoints. Our analysis revealed that FeLV-A sequences circulating in the population, as well as enFeLV env sequences, are highly conserved. We documented many recombination breakpoints resulting in the production of unique FeLV-B genotypes. More than half of the cats harbored more than one FeLV-B variant, suggesting multiple recombination events between enFeLV and FeLV-A. We concluded that FeLV-B was predominantly generated de novo within each host, although we could not definitively rule out horizontal transmission, as nearly all cats harbored FeLV-B sequences that were genetically highly similar to those identified in other individuals. This work represents a comprehensive analysis of endogenous-exogenous retroviral interactions with important insights into host-virus interactions that underlie disease pathogenesis in a natural setting. IMPORTANCE Feline leukemia virus (FeLV) is a felid retrovirus with a variety of disease outcomes. Exogenous FeLV-A is the virus subgroup almost exclusively transmitted between cats. Recombination between FeLV-A and endogenous FeLV analogues in the cat genome may result in emergence of largely replication-defective but highly virulent subgroups. FeLV-B is formed when the 3' envelope (env) region of endogenous FeLV (enFeLV) recombines with that of the exogenous FeLV (exFeLV) during viral reverse transcription and integration. Both domestic cats and wild relatives of the Felis genus harbor enFeLV, which has been shown to limit FeLV-A disease outcome. However, enFeLV also contributes genetic material to the recombinant FeLV-B subgroup. This study evaluates endogenous-exogenous recombination outcomes in a naturally infected closed colony of cats to determine mechanisms and risk of endogenous retroviral recombination during exogenous virus exposure that leads to enhanced virulence. While FeLV-A and enFeLV env regions were highly conserved from cat to cat, nearly all individuals with emergent FeLV-B had unique combinations of genotypes, representative of a wide range of recombination sites within env. The findings provide insight into unique recombination patterns for emergence of new pathogens and can be related to similar viruses across species.
Collapse
|
9
|
Muz D, Can H, Karakavuk M, Döşkaya M, Özdemir HG, Değirmenci Döşkaya A, Atalay Şahar E, Pektaş B, Karakuş M, Töz S, Özbel Y, Gürüz AY, Muz MN. The molecular and serological investigation of Feline immunodeficiency virus and Feline leukemia virus in stray cats of Western Turkey. Comp Immunol Microbiol Infect Dis 2021; 78:101688. [PMID: 34229197 DOI: 10.1016/j.cimid.2021.101688] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/11/2021] [Accepted: 06/27/2021] [Indexed: 11/18/2022]
Abstract
This study aimed to investigate the Feline immunodeficiency virus (FIV) / Feline leukemia virus (FeLV) infection prevalence among looking healthy stray cats in Western Turkey by serologic and molecular-based tests. A total of 1008 blood samples from the stray cats were used in this study. All samples were tested for FIV antibodies / proviral DNA and FeLV antibodies / antigens / proviral DNA. The genetic characterization and phylogenetic analysis of FeLV and FIV were carried out in this study. These cats also tested for Leishmaniasis and Toxoplasmosis previously. FIV Ab and proviral DNA detected in 25.2 % and 25.5 % of samples, respectively. FeLV Ab, Ag, proviral DNA positivity was in 45.2 %, in 3.3 %, in 69.7 %, respectively. The molecular detection and phylogenetic analysis of the current FeLV pol gene and FIV gag gene performed. The molecular characterization for the pol gene of FeLV (enFeLV and exFeLV) among Turkey's cat population was reported for the first time. The exFeLV pol sequences closer to the FeLV-A genotype, and the enFeLV pol sequences overlapped with other enFeLV. The current FIV gag sequences were clustered within the subtypes A, B, and C. The findings revealed FeLV subtype A and FIV subtype-A, subtype-B, subtype-C circulate among Turkish stray cats. Single and multiple co-infection positivity was found higher compared to previous reports.
Collapse
Affiliation(s)
- Dilek Muz
- Department of Virology, Tekirdag Namik Kemal University, Faculty of Veterinary Medicine, Tekirdag 59030, Turkey.
| | - Hüseyin Can
- Department of Molecular Biology, Ege University Faculty of Sciences, Bornova, Izmir, 35100, Turkey
| | - Muhammet Karakavuk
- Department of Parasitology, Ege University Medical School, Bornova, Izmir, 35100, Turkey; Odemiş Training Collage, Ege University, Odemiş, İzmir, 35400, Turkey
| | - Mert Döşkaya
- Department of Parasitology, Ege University Medical School, Bornova, Izmir, 35100, Turkey
| | | | | | - Esra Atalay Şahar
- Department of Molecular Biology, Ege University Faculty of Sciences, Bornova, Izmir, 35100, Turkey
| | - Bayram Pektaş
- Izmir Atatürk Training and Research Hospital, Department of Microbiology, Yeşilyurt, Izmir, Turkey
| | - Mehmet Karakuş
- Department of Medical Microbiology, Hamidiye Faculty of Medicine, University of Health Sciences, İstanbul, Turkey
| | - Seray Töz
- Department of Parasitology, Ege University Medical School, Bornova, Izmir, 35100, Turkey
| | - Yusuf Özbel
- Department of Parasitology, Ege University Medical School, Bornova, Izmir, 35100, Turkey
| | - Adnan Yüksel Gürüz
- Department of Parasitology, Ege University Medical School, Bornova, Izmir, 35100, Turkey
| | - Mustafa Necati Muz
- Department of Parasitology, Tekirdag Namik Kemal University, Faculty of Veterinary Medicine, Tekirdag 59030, Turkey
| |
Collapse
|
10
|
Sacristán I, Acuña F, Aguilar E, García S, José López M, Cabello J, Hidalgo‐Hermoso E, Sanderson J, Terio KA, Barrs V, Beatty J, Johnson WE, Millán J, Poulin E, Napolitano C. Cross-species transmission of retroviruses among domestic and wild felids in human-occupied landscapes in Chile. Evol Appl 2021; 14:1070-1082. [PMID: 33897821 PMCID: PMC8061269 DOI: 10.1111/eva.13181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 01/11/2023] Open
Abstract
Human transformation of natural habitats facilitates pathogen transmission between domestic and wild species. The guigna (Leopardus guigna), a small felid found in Chile, has experienced habitat loss and an increased probability of contact with domestic cats. Here, we describe the interspecific transmission of feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) between domestic cats and guignas and assess its correlation with human landscape perturbation. Blood and tissue samples from 102 free-ranging guignas and 262 domestic cats were collected and analyzed by PCR and sequencing. Guigna and domestic cat FeLV and FIV prevalence were very similar. Phylogenetic analysis showed guigna FeLV and FIV sequences are positioned within worldwide domestic cat virus clades with high nucleotide similarity. Guigna FeLV infection was significantly associated with fragmented landscapes with resident domestic cats. There was little evidence of clinical signs of disease in guignas. Our results contribute to the understanding of the implications of landscape perturbation and emerging diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Vanessa Barrs
- University of SydneySydneyNew South WalesAustralia
- Department of Infectious Diseases and Public HealthCity University of Hong KongKowloonHong Kong
| | - Julia Beatty
- University of SydneySydneyNew South WalesAustralia
- Department of Infectious Diseases and Public HealthCity University of Hong KongKowloonHong Kong
| | - Warren E. Johnson
- Smithsonian Conservation Biology InstituteNational Zoological ParkWashintonDistrict of ColumbiaUSA
- The Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
- Present address:
The Walter Reed Biosystematics UnitSmithsonian InstitutionSuitlandMarylandUSA
| | - Javier Millán
- Universidad Andres BelloSantiagoChile
- Instituto Agroalimentario de Aragón‐IA2University of Zaragoza‐CITAZaragozaSpain
- Fundación ARAIDZaragozaSpain
| | - Elie Poulin
- Universidad de ChileSantiagoChile
- Instituto de Ecología y Biodiversidad (IEB)SantiagoChile
| | - Constanza Napolitano
- Instituto de Ecología y Biodiversidad (IEB)SantiagoChile
- Departamento de Ciencias Biológicas y BiodiversidadUniversidad de Los LagosOsornoChile
| |
Collapse
|
11
|
Chiu ES, VandeWoude S. Endogenous Retroviruses Drive Resistance and Promotion of Exogenous Retroviral Homologs. Annu Rev Anim Biosci 2020; 9:225-248. [PMID: 33290087 DOI: 10.1146/annurev-animal-050620-101416] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endogenous retroviruses (ERVs) serve as markers of ancient viral infections and provide invaluable insight into host and viral evolution. ERVs have been exapted to assist in performing basic biological functions, including placentation, immune modulation, and oncogenesis. A subset of ERVs share high nucleotide similarity to circulating horizontally transmitted exogenous retrovirus (XRV) progenitors. In these cases, ERV-XRV interactions have been documented and include (a) recombination to result in ERV-XRV chimeras, (b) ERV induction of immune self-tolerance to XRV antigens, (c) ERV antigen interference with XRV receptor binding, and (d) interactions resulting in both enhancement and restriction of XRV infections. Whereas the mechanisms governing recombination and immune self-tolerance have been partially determined, enhancement and restriction of XRV infection are virus specific and only partially understood. This review summarizes interactions between six unique ERV-XRV pairs, highlighting important ERV biological functions and potential evolutionary histories in vertebrate hosts.
Collapse
Affiliation(s)
- Elliott S Chiu
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA; ,
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA; ,
| |
Collapse
|
12
|
Presence of Endogenous Viral Elements Negatively Correlates with Feline Leukemia Virus Susceptibility in Puma and Domestic Cat Cells. J Virol 2020; 94:JVI.01274-20. [PMID: 32817213 DOI: 10.1128/jvi.01274-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
While feline leukemia virus (FeLV) has been shown to infect felid species other than the endemic domestic cat host, differences in FeLV susceptibility among species has not been evaluated. Previous reports have noted a negative correlation between endogenous FeLV (enFeLV) copy number and exogenous FeLV (exFeLV) infection outcomes in domestic cats. Since felids outside the genus Felis do not harbor enFeLV genomes, we hypothesized absence of enFeLV results in more severe disease consequences in felid species lacking these genomic elements. We infected primary fibroblasts isolated from domestic cats (Felis catus) and pumas (Puma concolor) with FeLV and quantitated proviral and viral antigen loads. Domestic cat enFeLV env and long terminal repeat (LTR) copy numbers were determined for each individual and compared to FeLV viral outcomes. FeLV proviral and antigen levels were also measured in 6 naturally infected domestic cats and 11 naturally infected Florida panthers (P. concolor coryi). We demonstrated that puma fibroblasts are more permissive to FeLV than domestic cat cells, and domestic cat FeLV restriction was highly related to enFeLV-LTR copy number. Terminal tissues from FeLV-infected Florida panthers and domestic cats had similar exFeLV proviral copy numbers, but Florida panther tissues have higher FeLV antigen loads. Our work indicates that enFeLV-LTR elements negatively correlate with exogenous FeLV replication. Further, Puma concolor samples lacking enFeLV are more permissive to FeLV infection than domestic cat samples, suggesting that endogenization can play a beneficial role in mitigating exogenous retroviral infections. Conversely, presence of endogenous retroelements may relate to new host susceptibility during viral spillover events.IMPORTANCE Feline leukemia virus (FeLV) can infect a variety of felid species. Only the primary domestic cat host and related small cat species harbor a related endogenous virus in their genomes. Previous studies noted a negative association between the endogenous virus copy number and exogenous virus infection in domestic cats. This report shows that puma cells, which lack endogenous FeLV, produce more virus more rapidly than domestic cat fibroblasts following cell culture challenge. We document a strong association between domestic cat cell susceptibility and FeLV long terminal repeat (LTR) copy number, similar to observations in natural FeLV infections. Viral replication does not, however, correlate with FeLV env copy number, suggesting that this effect is specific to FeLV-LTR elements. This discovery indicates a protective capacity of the endogenous virus against the exogenous form, either via direct interference or indirectly via gene regulation, and may suggest evolutionary outcomes of retroviral endogenization.
Collapse
|
13
|
Abstract
PRACTICAL RELEVANCE Feline leukaemia virus (FeLV) is a retrovirus of domestic cats worldwide. Cats lacking strong FeLV-specific immunity and undergoing progressive infection commonly develop fatal FeLV-associated disease. Many aspects of FeLV infection pathogenesis have been elucidated, some during more recent years using molecular techniques. It is recommended that the FeLV status of every cat is known, since FeLV infection can influence the prognosis and clinical management of every sick cat. Moreover, knowledge of a cat's FeLV status is of epidemiological importance to prevent further spread of the infection. CLINICAL CHALLENGES Diagnosing FeLV infection remains challenging due to different outcomes of infection, which can vary over time depending on the balance between the virus and the host's immune system. Furthermore, testing for FeLV infection has become more refined over the years and now includes diagnostic assays for different viral and immunological parameters. Knowledge of FeLV infection pathogenesis, as well as the particulars of FeLV detection methods, is an important prerequisite for correct interpretation of any test results and accurate determination of a cat's FeLV status. AIMS The current review presents recent knowledge on FeLV pathogenesis, key features to be determined in FeLV infection, and frequently used FeLV detection methods, and their characteristics and interpretation. An algorithm for the diagnosis of FeLV infection in a single cat, developed by the European Advisory Board on Cat Diseases, is included, and FeLV testing in specific situations is addressed. As well as increasing awareness of this deadly infection in domestic cats, the aim is to contribute diagnostic expertise to allow veterinarians in practice to improve their recognition, and further reduce the prevalence, of FeLV infection.
Collapse
Affiliation(s)
- Regina Hofmann-Lehmann
- Prof, Dr med vet, FVH Professor of Laboratory Medicine, Director of Department of Clinical Diagnostics and Services, Head of Clinical Laboratory and Centre for Clinical Studies, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Katrin Hartmann
- Prof, Dr med vet, Dr habil, Dip ECVIM-CA (Internal Medicine) Professor of Internal Medicine, Head of Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| |
Collapse
|
14
|
Hartmann K, Hofmann-Lehmann R. What's New in Feline Leukemia Virus Infection. Vet Clin North Am Small Anim Pract 2020; 50:1013-1036. [PMID: 32680664 DOI: 10.1016/j.cvsm.2020.05.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Feline leukemia virus (FeLV) is a retrovirus with global impact on the health of domestic cats that causes tumors (mainly lymphoma), bone marrow disorders, and immunosuppression. The importance of FeLV is underestimated due to complacency associated with previous decline in prevalence. However, with this comes lowered vigilance, which, along with potential for regressively infected cats to reactivate viremia and shed the virus or develop clinical signs, can pose a risk to feline health. This article summarizes knowledge on FeLV pathogenesis, courses of infection, and factors affecting prevalance, infection outcome, and development of FeLV-associated diseases, with special focus on regressive FeLV infection.
Collapse
Affiliation(s)
- Katrin Hartmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine LMU Munich, Veterinaerstrasse 13, Munich 80539, Germany.
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department for Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich 8057, Switzerland
| |
Collapse
|
15
|
Tracking the Fate of Endogenous Retrovirus Segregation in Wild and Domestic Cats. J Virol 2019; 93:JVI.01324-19. [PMID: 31534037 DOI: 10.1128/jvi.01324-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/09/2019] [Indexed: 12/26/2022] Open
Abstract
Endogenous retroviruses (ERVs) of domestic cats (ERV-DCs) are one of the youngest feline ERV groups in domestic cats (Felis silvestris catus); some members are replication competent (ERV-DC10, ERV-DC18, and ERV-DC14), produce the antiretroviral soluble factor Refrex-1 (ERV-DC7 and ERV-DC16), or can generate recombinant feline leukemia virus (FeLV). Here, we investigated ERV-DC in European wildcats (Felis silvestris silvestris) and detected four loci: ERV-DC6, ERV-DC7, ERV-DC14, and ERV-DC16. ERV-DC14 was detected at a high frequency in European wildcats; however, it was replication defective due to a single G → A nucleotide substitution, resulting in an E148K substitution in the ERV-DC14 envelope (Env). This mutation results in a cleavage-defective Env that is not incorporated into viral particles. Introduction of the same mutation into feline and murine infectious gammaretroviruses resulted in a similar Env dysfunction. Interestingly, the same mutation was found in an FeLV isolate from naturally occurring thymic lymphoma and a mouse ERV, suggesting a common mechanism of virus inactivation. Refrex-1 was present in European wildcats; however, ERV-DC16, but not ERV-DC7, was unfixed in European wildcats. Thus, Refrex-1 has had an antiviral role throughout the evolution of the genus Felis, predating cat exposure to feline retroviruses. ERV-DC sequence diversity was present across wild and domestic cats but was locus dependent. In conclusion, ERVs have evolved species-specific phenotypes through the interplay between ERVs and their hosts. The mechanism of viral inactivation may be similar irrespective of the evolutionary history of retroviruses. The tracking of ancestral retroviruses can shed light on their roles in pathogenesis and host-virus evolution.IMPORTANCE Domestic cats (Felis silvestris catus) were domesticated from wildcats approximately 9,000 years ago via close interaction between humans and cats. During cat evolution, various exogenous retroviruses infected different cat lineages and generated numerous ERVs in the host genome, some of which remain replication competent. Here, we detected several ERV-DC loci in Felis silvestris silvestris Notably, a species-specific single nucleotide polymorphism in the ERV-DC14 env gene, which results in a replication-defective product, is highly prevalent in European wildcats, unlike the replication-competent ERV-DC14 that is commonly present in domestic cats. The presence of the same lethal mutation in the env genes of both FeLV and murine ERV provides a common mechanism shared by endogenous and exogenous retroviruses by which ERVs can be inactivated after endogenization. The antiviral role of Refrex-1 predates cat exposure to feline retroviruses. The existence of two ERV-DC14 phenotypes provides a unique model for understanding both ERV fate and cat domestication.
Collapse
|
16
|
Ngo MH, Soma T, Youn HY, Endo T, Makundi I, Kawasaki J, Miyake A, Nga BTT, Nguyen H, Arnal M, Fernández de Luco D, Deshapriya RMC, Hatoya S, Nishigaki K. Distribution of infectious endogenous retroviruses in mixed-breed and purebred cats. Arch Virol 2019; 165:157-167. [PMID: 31748876 DOI: 10.1007/s00705-019-04454-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/02/2019] [Indexed: 11/24/2022]
Abstract
Endogenous retroviruses of domestic cats (ERV-DCs) are members of the genus Gammaretrovirus that infect domestic cats (Felis silvestris catus). Uniquely, domestic cats harbor replication-competent proviruses such as ERV-DC10 (ERV-DC18) and ERV-DC14 (xenotropic and nonecotropic viruses, respectively). The purpose of this study was to assess invasion by two distinct infectious ERV-DCs, ERV-DC10 and ERV-DC14, in domestic cats. Of a total sample of 1646 cats, 568 animals (34.5%) were positive for ERV-DC10 (heterozygous: 377; homozygous: 191), 68 animals (4.1%) were positive for ERV-DC14 (heterozygous: 67; homozygous: 1), and 10 animals (0.6%) were positive for both ERV-DC10 and ERV-DC14. ERV-DC10 and ERV-DC14 were detected in domestic cats in Japan as well as in Tanzania, Sri Lanka, Vietnam, South Korea and Spain. Breeding cats, including Singapura, Norwegian Forest and Ragdoll cats, showed high frequencies of ERV-DC10 (60-100%). By contrast, ERV-DC14 was detected at low frequency in breeding cats. Our results suggest that ERV-DC10 is widely distributed while ERV-DC14 is maintained in a minor population of cats. Thus, ERV-DC10 and ERV-DC14 have invaded cat populations independently.
Collapse
Affiliation(s)
- Minh Ha Ngo
- Laboratory of Molecular Immunology and Infectious Disease, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Takehisa Soma
- Veterinary Diagnostic Laboratory, Marupi Lifetech Co., Ltd., 103 Fushiocho, Ikeda, Osaka, 563-0011, Japan
| | - Hwa-Young Youn
- Department of Veterinary Internal Medicine, Seoul National University Hospital for Animals, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Taiji Endo
- Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Isaac Makundi
- Laboratory of Molecular Immunology and Infectious Disease, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Junna Kawasaki
- Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Ariko Miyake
- Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Bui Thi To Nga
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, 100000, Vietnam
| | - Huyen Nguyen
- Animal Care Clinic, 20/424 Thuy Khue Street, Tay Ho District, Hanoi, 100000, Vietnam
| | - MaríaCruz Arnal
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Daniel Fernández de Luco
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - R M C Deshapriya
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Shingo Hatoya
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, 598-8531, Japan
| | - Kazuo Nishigaki
- Laboratory of Molecular Immunology and Infectious Disease, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan.
- Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
17
|
Chiu ES, Fox K, Wolfe L, Vandewoude S. A novel test for determination of wild felid-domestic cat hybridization. Forensic Sci Int Genet 2019; 44:102160. [PMID: 31683165 DOI: 10.1016/j.fsigen.2019.102160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/23/2019] [Accepted: 09/04/2019] [Indexed: 12/22/2022]
Abstract
In October 2018, Colorado Parks and Wildlife seized an animal believed to be an illegally possessed bobcat. The owner claimed the animal was a bobcat/domestic cat hybrid, exempted from license requirements. Burden of proof lay with CPW to determine the lineage of the animal. Commercial microsatellite arrays and DNA barcoding have not been developed for identification of bobcat/domestic cat hybrids, and limited time and resources prevented development of such tests for this application. Instead, we targeted endogenous feline leukemia virus (enFeLV) to quickly and inexpensively demonstrate the absence of domestic cat DNA in the contested animal. Using this assay, we were able to confirm that the contested animal lacked enFeLV, and therefore was not a domestic cat hybrid.
Collapse
Affiliation(s)
- E S Chiu
- Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523 USA
| | - K Fox
- Colorado Parks and Wildlife, 317 W Prospect Rd, Fort Collins, CO 80526 USA
| | - L Wolfe
- Colorado Parks and Wildlife, 317 W Prospect Rd, Fort Collins, CO 80526 USA
| | - S Vandewoude
- Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523 USA.
| |
Collapse
|
18
|
Koç BT, Oğuzoğlu TÇ. First report on the prevalence and genetic relatedness of Feline Foamy Virus (FFV) from Turkish domestic cats. Virus Res 2019; 274:197768. [PMID: 31562905 DOI: 10.1016/j.virusres.2019.197768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
Feline Foamy Virus (FFV) is an important retroviral agent affecting domestic cats in Turkey that has been studied less intensively than Feline Immunodeficiency Virus (FIV) and Feline Leukemia Virus (FeLV). Accordingly, we aimed to investigate the presence and prevalence of FFV among domestic cats by molecular techniques. PCR was used to amplify the gag-pol gene overlap in order to detect the presence of FFV. The gene encoding bet, an important accessory gene, was also characterized. Molecular characteristics were analyzed and phylogenetic trees were constructed. We determined the positivity rate as 10% in all samples (20/200) based on the gag-pol test. The phylogenetic analysis indicated that the Turkish FFV sequences form a separate cluster among other isolates in the constructed maximum likelihood (ML) tree. bet-based products were obtained for two samples (1%; 2/200) that were also positive for gag-pol. These bet gene sequences confirm the presence of a separate cluster for the Turkish FFV isolates. The results suggest that FFV is prevalent and widespread in Turkish domestic cats. Additionally, these new FFV sequences represent the first FFV sequences from Turkey to be submitted to GenBank. This study paves the way for studies on the pathogenicity of FFV.
Collapse
Affiliation(s)
- B Taylan Koç
- Aydın Adnan Menderes University, Faculty of Veterinary Medicine, Department of Virology, Section "C", Isikli-Efeler, 09016, Aydin, Turkey.
| | - T Çiğdem Oğuzoğlu
- Ankara University, Faculty of Veterinary Medicine, Department of Virology, 06110, Dışkapı, Ankara, Turkey
| |
Collapse
|
19
|
Chiu ES, Kraberger S, Cunningham M, Cusack L, Roelke M, VandeWoude S. Multiple Introductions of Domestic Cat Feline Leukemia Virus in Endangered Florida Panthers. Emerg Infect Dis 2019; 25:92-101. [PMID: 30561312 PMCID: PMC6302599 DOI: 10.3201/eid2501.181347] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The endangered Florida panther (Puma concolor coryi) had an outbreak of infection with feline leukemia virus (FeLV) in the early 2000s that resulted in the deaths of 3 animals. A vaccination campaign was instituted during 2003-2007 and no additional cases were recorded until 2010. During 2010-2016, six additional FeLV cases were documented. We characterized FeLV genomes isolated from Florida panthers from both outbreaks and compared them with full-length genomes of FeLVs isolated from contemporary Florida domestic cats. Phylogenetic analyses identified at least 2 circulating FeLV strains in panthers, which represent separate introductions from domestic cats. The original FeLV virus outbreak strain is either still circulating or another domestic cat transmission event has occurred with a closely related variant. We also report a case of a cross-species transmission event of an oncogenic FeLV recombinant (FeLV-B). Evidence of multiple FeLV strains and detection of FeLV-B indicate Florida panthers are at high risk for FeLV infection.
Collapse
|
20
|
Chiu ES, Hoover EA, VandeWoude S. A Retrospective Examination of Feline Leukemia Subgroup Characterization: Viral Interference Assays to Deep Sequencing. Viruses 2018; 10:E29. [PMID: 29320424 PMCID: PMC5795442 DOI: 10.3390/v10010029] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 01/10/2023] Open
Abstract
Feline leukemia virus (FeLV) was the first feline retrovirus discovered, and is associated with multiple fatal disease syndromes in cats, including lymphoma. The original research conducted on FeLV employed classical virological techniques. As methods have evolved to allow FeLV genetic characterization, investigators have continued to unravel the molecular pathology associated with this fascinating agent. In this review, we discuss how FeLV classification, transmission, and disease-inducing potential have been defined sequentially by viral interference assays, Sanger sequencing, PCR, and next-generation sequencing. In particular, we highlight the influences of endogenous FeLV and host genetics that represent FeLV research opportunities on the near horizon.
Collapse
Affiliation(s)
- Elliott S Chiu
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80524, USA.
| | - Edward A Hoover
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80524, USA.
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80524, USA.
| |
Collapse
|
21
|
Ramírez H, Autran M, García MM, Carmona MÁ, Rodríguez C, Martínez HA. Genotyping of feline leukemia virus in Mexican housecats. Arch Virol 2016; 161:1039-1045. [PMID: 26747244 PMCID: PMC4819734 DOI: 10.1007/s00705-015-2740-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/21/2015] [Indexed: 02/05/2023]
Abstract
Feline leukemia virus (FeLV) is a retrovirus with variable rates of infection globally. DNA was obtained from cats' peripheral blood mononuclear cells, and proviral DNA of pol and env genes was detected using PCR. Seventy-six percent of cats scored positive for FeLV using env-PCR; and 54 %, by pol-PCR. Phylogenetic analysis of both regions identified sequences that correspond to a group that includes endogenous retroviruses. They form an independent branch and, therefore, a new group of endogenous viruses. Cat gender, age, outdoor access, and cohabitation with other cats were found to be significant risk factors associated with the disease. This strongly suggests that these FeLV genotypes are widely distributed in the studied feline population in Mexico.
Collapse
Affiliation(s)
- Hugo Ramírez
- Facultad de Estudios Superiores Cuautitlán, Veterinary Medicine, Virology, Genetics and Molecular Biology Laboratory, Campus 4, Cuautitlán Izcalli Estado de México, Universidad Nacional Autónoma de México, Km 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastián Xhala, CP. 54714, Cuautitlán Izcalli, Estado de México, México.
| | - Marcela Autran
- Facultad de Estudios Superiores Cuautitlán, Veterinary Medicine, Virology, Genetics and Molecular Biology Laboratory, Campus 4, Cuautitlán Izcalli Estado de México, Universidad Nacional Autónoma de México, Km 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastián Xhala, CP. 54714, Cuautitlán Izcalli, Estado de México, México
| | - M Martha García
- Immuno-Virology Laboratory, Department of Immunological Research, UMAE Pediatrics Hospital, XXI Century National Medical Center, IMSS, Av. Cuauhtémoc 330, Col. Doctores, CP. 06725, Ciudad de México, México
| | - M Ángel Carmona
- Facultad de Estudios Superiores Cuautitlán, Veterinary Medicine, Virology, Genetics and Molecular Biology Laboratory, Campus 4, Cuautitlán Izcalli Estado de México, Universidad Nacional Autónoma de México, Km 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastián Xhala, CP. 54714, Cuautitlán Izcalli, Estado de México, México
| | - Cecilia Rodríguez
- Facultad de Estudios Superiores Cuautitlán, Veterinary Medicine, Virology, Genetics and Molecular Biology Laboratory, Campus 4, Cuautitlán Izcalli Estado de México, Universidad Nacional Autónoma de México, Km 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastián Xhala, CP. 54714, Cuautitlán Izcalli, Estado de México, México
| | - H Alejandro Martínez
- Facultad de Estudios Superiores Cuautitlán, Veterinary Medicine, Virology, Genetics and Molecular Biology Laboratory, Campus 4, Cuautitlán Izcalli Estado de México, Universidad Nacional Autónoma de México, Km 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastián Xhala, CP. 54714, Cuautitlán Izcalli, Estado de México, México
| |
Collapse
|
22
|
Ishida Y, Zhao K, Greenwood AD, Roca AL. Proliferation of endogenous retroviruses in the early stages of a host germ line invasion. Mol Biol Evol 2014; 32:109-20. [PMID: 25261407 DOI: 10.1093/molbev/msu275] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Endogenous retroviruses (ERVs) comprise 8% of the human genome and are common in all vertebrate genomes. The only retrovirus known to be currently transitioning from exogenous to endogenous form is the koala retrovirus (KoRV), making koalas (Phascolarctos cinereus) ideal for examining the early stages of retroviral endogenization. To distinguish endogenous from exogenous KoRV proviruses, we isolated koala genomic regions flanking KoRV integration sites. In three wild southern Australian koalas, there were fewer KoRV loci than in three captive Queensland koalas, consistent with reports that southern Australian koalas carry fewer KoRVs. Of 39 distinct KoRV proviral loci examined in a sire-dam-progeny triad, all proved to be vertically transmitted and endogenous; none was exogenous. Of the 39 endogenous KoRVs (enKoRVs), only one was present in the genomes of both the sire and the dam, suggesting that, at this early stage in the retroviral invasion of a host germ line, very large numbers of ERVs have proliferated at very low frequencies in the koala population. Sequence divergence between the 5'- and 3'-long terminal repeats (LTRs) of a provirus can be used as a molecular clock. Within each of ten enKoRVs, the 5'-LTR sequence was identical to the 3'-LTR sequence, suggesting a maximum age for enKoRV invasion of the koala germ line of approximately 22,200-49,900 years ago, although a much younger age is possible. Across the ten proviruses, seven LTR haplotypes were detected, indicating that at least seven different retroviral sequences had entered the koala germ line.
Collapse
Affiliation(s)
- Yasuko Ishida
- Department of Animal Sciences, University of Illinois at Urbana-Champaign
| | - Kai Zhao
- Department of Animal Sciences, University of Illinois at Urbana-Champaign
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign The Institute for Genomic Biology, University of Illinois at Urbana-Champaign
| |
Collapse
|
23
|
Garcia-Etxebarria K, Sistiaga-Poveda M, Jugo BM. Endogenous retroviruses in domestic animals. Curr Genomics 2014; 15:256-65. [PMID: 25132796 PMCID: PMC4133949 DOI: 10.2174/1389202915666140520003503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 01/15/2023] Open
Abstract
Endogenous retroviruses (ERVs) are genomic elements that are present in a wide range of vertebrates. Although the study of ERVs has been carried out mainly in humans and model organisms, recently, domestic animals have become important, and some species have begun to be analyzed to gain further insight into ERVs. Due to the availability of complete genomes and the development of new computer tools, ERVs can now be analyzed from a genome-wide viewpoint. In addition, more experimental work is being carried out to analyze the distribution, expression and interplay of ERVs within a host genome. Cats, cattle, chicken, dogs, horses, pigs and sheep have been scrutinized in this manner, all of which are interesting species in health and economic terms. Furthermore, several studies have noted differences in the number of endogenous retroviruses and in the variability of these elements among different breeds, as well as their expression in different tissues and the effects of their locations, which, in some cases, are near genes. These findings suggest a complex, intriguing relationship between ERVs and host genomes. In this review, we summarize the most important in silico and experimental findings, discuss their implications and attempt to predict future directions for the study of these genomic elements.
Collapse
Affiliation(s)
- Koldo Garcia-Etxebarria
- Genetika, Antropologia Fisikoa eta Animalien Fisiologia Saila. Zientzia eta Teknologia Fakultatea. Euskal Herriko Unibertsitatea (UPV/EHU). 644 Postakutxa , E-48080 Bilbao, Spain
| | - Maialen Sistiaga-Poveda
- Genetika, Antropologia Fisikoa eta Animalien Fisiologia Saila. Zientzia eta Teknologia Fakultatea. Euskal Herriko Unibertsitatea (UPV/EHU). 644 Postakutxa , E-48080 Bilbao, Spain
| | - Begoña Marina Jugo
- Genetika, Antropologia Fisikoa eta Animalien Fisiologia Saila. Zientzia eta Teknologia Fakultatea. Euskal Herriko Unibertsitatea (UPV/EHU). 644 Postakutxa , E-48080 Bilbao, Spain
| |
Collapse
|
24
|
Sistiaga-Poveda M, Jugo BM. Evolutionary dynamics of endogenous Jaagsiekte sheep retroviruses proliferation in the domestic sheep, mouflon and Pyrenean chamois. Heredity (Edinb) 2014; 112:571-8. [PMID: 24690757 DOI: 10.1038/hdy.2013.136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 10/22/2013] [Accepted: 11/13/2013] [Indexed: 11/10/2022] Open
Abstract
The oncogenic exogenous Jaagsiekte sheep retrovirus (JSRV), responsible for ovine pulmonary adenocarcinoma, has several endogenous counterparts termed enJSRVs. Although many of these elements have been inactivated over time by the accumulation of deleterious mutations or internal recombination leading to solo long terminal repeat (LTR) formation, several members of enJSRVs have been identified as nearly intact and probably represent recent integration events. To determine the level of enJSRV polymorphism in the sheep population and related species, we have undertaken a study by characterizing enJSRVs copies and independent integration sites in six domestic sheep and two wild species of the sheep lineage. enJSRVs copies were detected by amplifying the env-LTR region by PCR, and for the detection of the insertion sites, we used two approaches: (1) an in silico approach based on the recently published Sheep Reference Genome Assembly (OARv3.0) and (2) an experimental approach based on PCR suppression and inverse PCR techniques. In total, 103 enJSRV sequences were generated across 10 individuals and enJSRV integrations were found on 11 of the 28 sheep chromosomes. These findings suggest that there are still uncharacterized enJSRVs, and that some of the integration sites are variable among the different species, breeds of the same species, subspecies and geographic locations.
Collapse
Affiliation(s)
- M Sistiaga-Poveda
- Genetics, Physical Anthropology and Animal Physiology Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - B M Jugo
- Genetics, Physical Anthropology and Animal Physiology Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
25
|
Lichter-Peled A, Polani S, Stanyon R, Rocchi M, Kahila Bar-Gal G. Role of KCNQ2 and KCNQ3 genes in juvenile idiopathic epilepsy in Arabian foals. Vet J 2013. [DOI: 10.1016/j.tvjl.2012.08.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Abstract
Endogenous retroviruses (ERVs) comprise a significant percentage of the mammalian genome, and it is poorly understood whether they will remain as inactive genomes or emerge as infectious retroviruses. Although several types of ERVs are present in domestic cats, infectious ERVs have not been demonstrated. Here, we report a previously uncharacterized class of endogenous gammaretroviruses, termed ERV-DCs, that is present and hereditary in the domestic cat genome. We have characterized a subset of ERV-DC proviral clones, which are numbered according to their genomic insertions. One of these, ERV-DC10, located in the q12-q21 region on chromosome C1, is an infectious gammaretrovirus capable of infecting a broad range of cells, including human. Our studies indicate that ERV-DC10 entered the genome of domestic cats in the recent past and appeared to translocate to or reintegrate at a distinct locus as infectious ERV-DC18. Insertional polymorphism analysis revealed that 92 of 244 domestic cats had ERV-DC10 on a homozygous or heterozygous locus. ERV-DC-like sequences were found in primate and rodent genomes, suggesting that these ERVs, and recombinant viruses such as RD-114 and BaEV, originated from an ancestor of ERV-DC. We also found that a novel recombinant virus, feline leukemia virus subgroup D (FeLV-D), was generated by ERV-DC env transduction into feline leukemia virus in domestic cats. Our results indicate that ERV-DCs behave as donors and/or acceptors in the generation of infectious, recombinant viruses. The presence of such infectious endogenous retroviruses, which could be harmful or beneficial to the host, may affect veterinary medicine and public health.
Collapse
|
27
|
Fadel HJ, Poeschla EM. Retroviral restriction and dependency factors in primates and carnivores. Vet Immunol Immunopathol 2011; 143:179-89. [PMID: 21715018 DOI: 10.1016/j.vetimm.2011.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent studies have extended the rapidly developing retroviral restriction factor field to cells of carnivore species. Carnivoran genomes, and the domestic cat genome in particular, are revealing intriguing properties vis-à-vis the primate and feline lentiviruses, not only with respect to their repertoires of virus-blocking restriction factors but also replication-enabling dependency factors. Therapeutic application of restriction factors is envisioned for human immunodeficiency virus (HIV) disease and the feline immunodeficiency virus (FIV) model has promise for testing important hypotheses at the basic and translational level. Feline cell-tropic HIV-1 clones have also been generated by a strategy of restriction factor evasion. We review progress in this area in the context of what is known about retroviral restriction factors such as TRIM5α, TRIMCyp, APOBEC3 proteins and BST-2/Tetherin.
Collapse
Affiliation(s)
- Hind J Fadel
- Department of Molecular Medicine and Division of Infectious Diseases, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | |
Collapse
|
28
|
Lefeuvre P, Harkins GW, Lett JM, Briddon RW, Chase MW, Moury B, Martin DP. Evolutionary time-scale of the begomoviruses: evidence from integrated sequences in the Nicotiana genome. PLoS One 2011; 6:e19193. [PMID: 21603653 PMCID: PMC3095596 DOI: 10.1371/journal.pone.0019193] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 03/29/2011] [Indexed: 01/21/2023] Open
Abstract
Despite having single stranded DNA genomes that are replicated by host DNA polymerases, viruses in the family Geminiviridae are apparently evolving as rapidly as some RNA viruses. The observed substitution rates of geminiviruses in the genera Begomovirus and Mastrevirus are so high that the entire family could conceivably have originated less than a million years ago (MYA). However, the existence of geminivirus related DNA (GRD) integrated within the genomes of various Nicotiana species suggests that the geminiviruses probably originated >10 MYA. Some have even suggested that a distinct New-World (NW) lineage of begomoviruses may have arisen following the separation by continental drift of African and American proto-begomoviruses ∼110 MYA. We evaluate these various geminivirus origin hypotheses using Bayesian coalescent-based approaches to date firstly the Nicotiana GRD integration events, and then the divergence of the NW and Old-World (OW) begomoviruses. Besides rejecting the possibility of a<2 MYA OW-NW begomovirus split, we could also discount that it may have occurred concomitantly with the breakup of Gondwanaland 110 MYA. Although we could only confidently narrow the date of the split down to between 2 and 80 MYA, the most plausible (and best supported) date for the split is between 20 and 30 MYA--a time when global cooling ended the dispersal of temperate species between Asia and North America via the Beringian land bridge.
Collapse
Affiliation(s)
- Pierre Lefeuvre
- CIRAD, UMR 53 PVBMT CIRAD-Université de la Réunion, Pôle de Protection des Plantes, Saint Pierre, La Réunion, France.
| | | | | | | | | | | | | |
Collapse
|