1
|
Tian X, Zhang R, Yi S, Chen Y, Jiang Y, Zhang X, Zhang Z, Li Y. Non-Structural Protein V of Canine Distemper Virus Induces Autophagy via PI3K/AKT/mTOR Pathway to Facilitate Viral Replication. Int J Mol Sci 2024; 26:84. [PMID: 39795943 PMCID: PMC11720535 DOI: 10.3390/ijms26010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Canine distemper (CD) is a highly infectious disease of dogs which is caused by canine distemper virus (CDV). Previous studies have demonstrated that CDV infection can induce autophagy in cells. However, the mechanism underlying CDV-induced autophagy remains not fully understood. The CDV non-structural protein V plays a vital role in viral replication and pathogenicity in the host. In this study, we investigated the relationship between the CDV-V protein and autophagy induction and further explored its impact on the viral replication and the mechanism behind this. Our results showed that the V protein induced autophagy via inhibiting the phosphorylation of PI3K, AKT, and mTOR to promote viral replication. The activation or inhibition of PI3K phosphorylation resulted in enhancing or reducing viral replication, respectively. Further studies revealed that the V protein interacted with PI3K to induce cellular autophagy. The present study demonstrated that the CDV-V protein can induce cellular autophagy by inhibiting the PI3K/AKT signaling pathway to enhance viral replication. The results improve the understanding of the molecular mechanism of CDV infection and offer new perspectives for the development of effective treatment and prevention strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhidong Zhang
- Key Laboratory of Veterinary Medicine in Universities of Sichuan Province, College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, 16 Yihuan Rd., Chengdu 610041, China
| | - Yanmin Li
- Key Laboratory of Veterinary Medicine in Universities of Sichuan Province, College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, 16 Yihuan Rd., Chengdu 610041, China
| |
Collapse
|
2
|
Chen Q, Li L, Liu L, Liu Z, Guo S, Tan C, Chen H, Wang X. African Swine Fever Virus pF778R Attenuates Type I Interferon Response by Impeding STAT1 Nuclear Translocation. Virus Res 2023; 335:199190. [PMID: 37536381 PMCID: PMC10424126 DOI: 10.1016/j.virusres.2023.199190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/15/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
African swine fever virus (ASFV) is an extensive and intricate double-stranded DNA virus with approximately 100% lethality in domestic swine. There is no effective vaccine to combat this virus, and this has led to substantial economic losses in the swine industry. ASFV encodes various proteins that impede interferon-based immune defenses in the host by employing diverse mechanisms. However, the roles of most of these proteins remain unknown. Therefore, understanding the immune evasion mechanisms employed by ASFV may facilitate the development of effective measures against the virus. In this study, we discovered a negative regulation of the type I interferon (IFN) response by the ASFV ribonuclease reductase large subunit pF778R. This novel type Ⅰ IFN response antagonist significantly inhibits IFN-α-induced interferon-stimulated response element promoter activation, precludes the upregulation of various interferon-stimulated genes, and prevents STAT1 nuclear translocation. Mechanistically, pF778R did not affect the protein levels of crucial molecules in the JAK/STAT signaling pathway or engage in direct interactions. However, pF778R expression impedes type I IFN responses mediated by the JAK/STAT signaling pathway. Further investigations revealed that pF778R did not interfere with STAT1 phosphorylation or dimerization, but it inhibited IFN signaling by weakening the nuclear accumulation of activated STAT1. The critical role of the ASFV protein pF778R in evading IFN-I-mediated innate immunity highlights a unique mode of ASFV evasion and provides insights into the pathogenic mechanism of the virus.
Collapse
Affiliation(s)
- Qichao Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lixinjie Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhankui Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shibang Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China.
| |
Collapse
|
3
|
Li Y, Li C. Porcine Respirovirus 1 Suppresses Host Type I Interferon Production and the JAK-STAT Signaling Pathway. Viruses 2023; 15:v15051176. [PMID: 37243262 DOI: 10.3390/v15051176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Porcine respirovirus 1 (PRV1), first reported in Hong Kong, is currently widely spread in several countries. Our knowledge of the clinical significance and the pathogenicity of this virus is still limited. In this study, we studied the interactions between PRV1 and host innate immune responses. PRV1 exhibited strong inhibitory effects on the production of interferon (IFN), ISG15, and RIG-I induced by SeV infection. Our data generated in vitro suggest that multiple viral proteins can suppress host type I interferon production and signaling, including N, M, and P/C/V/W. The P gene products disrupt both IRF3 and NF-κB dependent type I IFN production and block type I IFN signaling pathway by sequestering STAT1 in the cytoplasm. The V protein disrupts both MDA5 signaling and RIG-I signaling through interaction with TRIM25 and RIG-I, V protein blocks RIG-I polyubiquitination, which is required for RIG-I activation. V protein also binds to MDA5, which may contribute to its inhibitory effect on MDA5 signaling. These findings indicate that PRV1 antagonizes host innate immune responses using various mechanisms, which provides important insights into the pathogenicity of PRV1.
Collapse
Affiliation(s)
- Yanhua Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Department of Diagnostic Medicine & Pathobiology, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Chenxi Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
4
|
DIK I, HATIPOGLU D, GULERSOY E. Comparison of some cytokines, acute phase proteins and citrulline levels in healthy and canine distemper infected dogs. J Vet Med Sci 2023; 85:76-82. [PMID: 36418074 PMCID: PMC9887225 DOI: 10.1292/jvms.22-0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Canine distemper virus (CDV) is the etiological agent of severe disease in domestic and wild carnivores. Clinical diagnosis of CDV is challenging because of its similarity to other canine respiratory and intestinal diseases. We aimed to determine certain cytokine (interleukin [IL]-1β, IL-2, IL-4, IL-6, IL-10, and tumor necrosis factor-α [TNF-α]), interferon (IFN)-γ, canine serum amyloid A (SAA), and canine citrulline (CIT) levels for the first time in CDV-positive dogs. For this purpose, 10 CDV-positive dogs with compatible clinical findings (i.e., neurological symptoms such as tremors and myoclonus, ocular and nasal discharge, and wheezing) and 10 healthy dogs based on the clinical examinations and rapid test results were enrolled. It was observed that the CIT, INF-γ, IL-1β, IL-2, IL-6, and TNF-α levels were significantly decreased in the CDV-positive dogs than that of the healthy ones (P<0.05). As a result, it was observed that CDV causes immunosuppression and accordingly, the inflammatory response might cause decreased cytokine and acute-phase protein synthesis. Therefore, it was concluded that further investigation of inflammatory pathways and CIT interactions may provide crucial clinical information at different stages of CDV, and aforementioned parameters may serve as important biomarkers for CDV in terms of demonstrating the presence of immunosuppression.
Collapse
Affiliation(s)
- Irmak DIK
- Department of Virology, Faculty of Veterinary Medicine, University of Selcuk, Konya, Türkiye
| | - Durmus HATIPOGLU
- Department of Physiology, Faculty of Veterinary Medicine, University of Selcuk, Konya, Türkiye,Correspondence to: Hatıpoglu D: , Department of Virology, Faculty of Veterinary Medicine, University of Selcuk, 42075, Konya, Türkiye
| | - Erdem GULERSOY
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Harran, Şanlıurfa, Türkiye
| |
Collapse
|
5
|
Type I and Type II Interferon Antagonism Strategies Used by Paramyxoviridae: Previous and New Discoveries, in Comparison. Viruses 2022; 14:v14051107. [PMID: 35632848 PMCID: PMC9145045 DOI: 10.3390/v14051107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Paramyxoviridae is a viral family within the order of Mononegavirales; they are negative single-strand RNA viruses that can cause significant diseases in both humans and animals. In order to replicate, paramyxoviruses–as any other viruses–have to bypass an important protective mechanism developed by the host’s cells: the defensive line driven by interferon. Once the viruses are recognized, the cells start the production of type I and type III interferons, which leads to the activation of hundreds of genes, many of which encode proteins with the specific function to reduce viral replication. Type II interferon is produced by active immune cells through a different signaling pathway, and activates a diverse range of genes with the same objective to block viral replication. As a result of this selective pressure, viruses have evolved different strategies to avoid the defensive function of interferons. The strategies employed by the different viral species to fight the interferon system include a number of sophisticated mechanisms. Here we analyzed the current status of the various strategies used by paramyxoviruses to subvert type I, II, and III interferon responses.
Collapse
|
6
|
Wang Z, Chen J, Zhang QG, Huang K, Ma D, Du Q, Tong D, Huang Y. Porcine circovirus type 2 infection inhibits the activation of type I interferon signaling via capsid protein and host gC1qR. Vet Microbiol 2022; 266:109354. [DOI: 10.1016/j.vetmic.2022.109354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
|
7
|
Pei J, Beri NR, Zou AJ, Hubel P, Dorando HK, Bergant V, Andrews RD, Pan J, Andrews JM, Sheehan KCF, Pichlmair A, Amarasinghe GK, Brody SL, Payton JE, Leung DW. Nuclear-localized human respiratory syncytial virus NS1 protein modulates host gene transcription. Cell Rep 2021; 37:109803. [PMID: 34644581 PMCID: PMC8609347 DOI: 10.1016/j.celrep.2021.109803] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 04/28/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is a common cause of lower respiratory tract infections in the pediatric, elderly, and immunocompromised individuals. RSV non-structural protein NS1 is a known cytosolic immune antagonist, but how NS1 modulates host responses remains poorly defined. Here, we observe NS1 partitioning into the nucleus of RSV-infected cells, including the human airway epithelium. Nuclear NS1 coimmunoprecipitates with Mediator complex and is chromatin associated. Chromatin-immunoprecipitation demonstrates enrichment of NS1 that overlaps Mediator and transcription factor binding within the promoters and enhancers of differentially expressed genes during RSV infection. Mutation of the NS1 C-terminal helix reduces NS1 impact on host gene expression. These data suggest that nuclear NS1 alters host responses to RSV infection by binding at regulatory elements of immune response genes and modulating host gene transcription. Our study identifies another layer of regulation by virally encoded proteins that shapes host response and impacts immunity to RSV.
Collapse
Affiliation(s)
- Jingjing Pei
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nina R Beri
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Angela J Zou
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philipp Hubel
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich 82152, Germany
| | - Hannah K Dorando
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Valter Bergant
- Institute for Virology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Rebecca D Andrews
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jiehong Pan
- Department of Medicine, Division of Pulmonary and Critical Care, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jared M Andrews
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kathleen C F Sheehan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andreas Pichlmair
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich 82152, Germany; Institute for Virology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven L Brody
- Department of Medicine, Division of Pulmonary and Critical Care, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jacqueline E Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Daisy W Leung
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
8
|
Mara K, Dai M, Brice AM, Alexander MR, Tribolet L, Layton DS, Bean AGD. Investigating the Interaction between Negative Strand RNA Viruses and Their Hosts for Enhanced Vaccine Development and Production. Vaccines (Basel) 2021; 9:vaccines9010059. [PMID: 33477334 PMCID: PMC7830660 DOI: 10.3390/vaccines9010059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/13/2021] [Indexed: 11/30/2022] Open
Abstract
The current pandemic has highlighted the ever-increasing risk of human to human spread of zoonotic pathogens. A number of medically-relevant zoonotic pathogens are negative-strand RNA viruses (NSVs). NSVs are derived from different virus families. Examples like Ebola are known for causing severe symptoms and high mortality rates. Some, like influenza, are known for their ease of person-to-person transmission and lack of pre-existing immunity, enabling rapid spread across many countries around the globe. Containment of outbreaks of NSVs can be difficult owing to their unpredictability and the absence of effective control measures, such as vaccines and antiviral therapeutics. In addition, there remains a lack of essential knowledge of the host–pathogen response that are induced by NSVs, particularly of the immune responses that provide protection. Vaccines are the most effective method for preventing infectious diseases. In fact, in the event of a pandemic, appropriate vaccine design and speed of vaccine supply is the most critical factor in protecting the population, as vaccination is the only sustainable defense. Vaccines need to be safe, efficient, and cost-effective, which is influenced by our understanding of the host–pathogen interface. Additionally, some of the major challenges of vaccines are the establishment of a long-lasting immunity offering cross protection to emerging strains. Although many NSVs are controlled through immunisations, for some, vaccine design has failed or efficacy has proven unreliable. The key behind designing a successful vaccine is understanding the host–pathogen interaction and the host immune response towards NSVs. In this paper, we review the recent research in vaccine design against NSVs and explore the immune responses induced by these viruses. The generation of a robust and integrated approach to development capability and vaccine manufacture can collaboratively support the management of outbreaking NSV disease health risks.
Collapse
|
9
|
Li P, Zhu Z, Zhang X, Dang W, Li L, Du X, Zhang M, Wu C, Xue Q, Liu X, Zheng H, Nan Y. The Nucleoprotein and Phosphoprotein of Peste des Petits Ruminants Virus Inhibit Interferons Signaling by Blocking the JAK-STAT Pathway. Viruses 2019; 11:v11070629. [PMID: 31288481 PMCID: PMC6669484 DOI: 10.3390/v11070629] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 12/24/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) is associated with global peste des petits ruminants resulting in severe economic loss. Peste des petits ruminants virus dampens host interferon-based signaling pathways through multiple mechanisms. Previous studies deciphered the role of V and C in abrogating IFN-β production. Moreover, V protein directly interacted with signal transducers and activators of transcription 1 (STAT1) and STAT2 resulting in the impairment of host IFN responses. In our present study, PPRV infection inhibited both IFN-β- and IFN-γ-induced activation of IFN-stimulated response element (ISRE) and IFN-γ-activated site (GAS) element, respectively. Both N and P proteins, functioning as novel IFN response antagonists, markedly suppressed IFN-β-induced ISRE and IFN-γ-induced GAS promoter activation to impair downstream upregulation of various interferon-stimulated genes (ISGs) and prevent STAT1 nuclear translocation. Specifically, P protein interacted with STAT1 and subsequently inhibited STAT1 phosphorylation, whereas N protein neither interacted with STAT1 nor inhibited STAT1 phosphorylation as well as dimerization, suggesting that the N and P protein antagonistic effects were different. Though they differed in their relationship to STAT1, both proteins blocked JAK-STAT signaling, severely negating the host antiviral immune response. Our study revealed a new mechanism employed by PPRV to evade host innate immune response, providing a platform to study the interaction of paramyxoviruses and host response.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Xiangle Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Wen Dang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Linlin Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Xiaoli Du
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Miaotao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing100081, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
10
|
Abstract
Outbreaks of severe virus infections with the potential to cause global pandemics are increasing. In many instances these outbreaks have been newly emerging (SARS coronavirus), re-emerging (Ebola virus, Zika virus) or zoonotic (avian influenza H5N1) virus infections. In the absence of a targeted vaccine or a pathogen-specific antiviral, broad-spectrum antivirals would function to limit virus spread. Given the direct antiviral effects of type I interferons (IFNs) in inhibiting the replication of both DNA and RNA viruses at different stages of their replicative cycles, and the effects of type I IFNs on activating immune cell populations to clear virus infections, IFNs-α/β present as ideal candidate broad-spectrum antivirals.
Collapse
Affiliation(s)
- Ben X Wang
- Princess Margaret Cancer Center, Tumor Immunotherapy Program, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Eleanor N Fish
- Toronto General Hospital Research Institute, University Health Network, 67 College Street, Toronto, ON M5G 2M1, Canada; Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
11
|
Song Y, Pei Y, Yang YL, Xue J, Zhang GZ. The Ntail region of nucleocapsid protein is associated with the pathogenicity of pigeon paramyxovirus type 1 in chickens. J Gen Virol 2019; 100:950-957. [PMID: 31050626 DOI: 10.1099/jgv.0.001264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The nucleoprotein (NP) of pigeon paramyxovirus type 1 (PPMV-1) and other paramyxoviruses plays an important role in virus proliferation. A previous study found that NP is associated with the low pathogenicity of PPMV-1 strains in chickens. Here, we investigated which domain of NP is responsible for regulating the pathogenicity of PPMV-1. We found that the Ntail sequences were more diverse for different viral genotypes compared to Ncore sequences. The chimeric rBJ-SG10Ntail strain caused more severe clinical symptoms than the parental rBJ strain, increased the viral copy number in sampled tissues and induced higher IFN-γ gene expression. This demonstrated that the Ntail sequence plays a role in regulating viral virulence. These findings increase our understanding of the Ntail of NP protein and the virulence factors associated with PPMV-1.
Collapse
Affiliation(s)
- Yang Song
- 1 Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Yu Pei
- 1 Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Yan-Ling Yang
- 1 Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Jia Xue
- 1 Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Guo-Zhong Zhang
- 1 Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
12
|
Økland AL, Nylund A, Øvergård AC, Skoge RH, Kongshaug H. Genomic characterization, phylogenetic position and in situ localization of a novel putative mononegavirus in Lepeophtheirus salmonis. Arch Virol 2019; 164:675-689. [PMID: 30535526 PMCID: PMC6394706 DOI: 10.1007/s00705-018-04119-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 11/15/2018] [Indexed: 11/28/2022]
Abstract
The complete genome sequence of a novel mononegavirus, Lepeophtheirus salmonis negative-stranded RNA virus 1 (LsNSRV-1), obtained from a salmonid ectoparasite, Lepeophtheirus salmonis was determined. The viral genome contains five open reading frames encoding three unknown proteins (ORF I, II and III), a putative glycoprotein (G), and a large (L) protein. Phylogenetic analysis placed LsNSRV-1 in the recently established mononegaviral family Artoviridae. LsNSRV-1 showed a prevalence of around 97% and was detected in all L. salmonis developmental stages. Viral genomic and antigenomic RNA was localized to nerve tissue, connective tissue, epithelial cells of the gut, subepidermal tissue, exocrine and cement glands, as well as the testis, vas deferens and spermatophore sac of male L. salmonis and the ovaries and oocytes of females. Viral RNA was detected in both the cytoplasm and the nucleoli of infected cells, and putative nuclear export and localization signals were found within the ORF I, III and L proteins, suggesting nuclear replication of LsNSRV-1. RNA interference (RNAi) was induced twice during development by the introduction of a double-stranded RNA fragment of ORF I, resulting in a transient knockdown of viral RNA. A large variation in the knockdown level was seen in adult males and off springs of knockdown animals, whereas the RNA level was more stable in adult females. Together with the localization of viral RNA within the male spermatophore and female oocytes and the amplification of viral RNA in developing embryos, this suggests that LsNSRV-1 is transmitted both maternally and paternally. Small amounts of viral RNA were detected at the site where chalimi were attached to the skin of Atlantic salmon (Salmo salar). However, as the RNAi-mediated treatment did not result in LsNSRV-1-negative offspring and the virus failed to replicate in the tested fish cell cultures, it is difficult to investigate the influence of secreted LsNSRV-1 on the salmon immune response.
Collapse
Affiliation(s)
- Arnfinn Lodden Økland
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway.
| | - Are Nylund
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway
| | - Aina-Cathrine Øvergård
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway
| | - Renate Hvidsten Skoge
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway
| | - Heidi Kongshaug
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway
| |
Collapse
|
13
|
Abstract
Measles is an acute systemic viral disease with initial amplification of infection in lymphoid tissue and subsequent spread over 10–14 days to multiple organs. Failure of the innate response to control initial measles virus (MeV) replication is associated with the ability of MeV to inhibit the induction of type I interferon and interferon-stimulated antiviral genes. Rather, the innate response is characterized by the expression of proteins regulated by nuclear factor kappa B and the inflammasome. With eventual development of the adaptive response, the rash appears with immune cell infiltration into sites of virus replication to initiate the clearance of infectious virus. However, MeV RNA is cleared much more slowly than recoverable infectious virus and remains present in lymphoid tissue for at least 6 months after infection. Persistence of viral RNA and protein suggests persistent low-level replication in lymphoid tissue that may facilitate maturation of the immune response, resulting in lifelong protection from reinfection, while persistence in other tissues (for example, the nervous system) may predispose to development of late disease such as subacute sclerosing panencephalitis. Further studies are needed to identify mechanisms of viral clearance and to understand the relationship between persistence and development of lifelong immunity.
Collapse
Affiliation(s)
- Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Wen-Hsuan W Lin
- Department of Pathology, Columbia University School of Medicine, New York, NY, 10032, USA
| | - Ashley N Nelson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
14
|
Pfeffermann K, Dörr M, Zirkel F, von Messling V. Morbillivirus Pathogenesis and Virus-Host Interactions. Adv Virus Res 2018; 100:75-98. [PMID: 29551144 DOI: 10.1016/bs.aivir.2017.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite the availability of safe and effective vaccines against measles and several animal morbilliviruses, they continue to cause regular outbreaks and epidemics in susceptible populations. Morbilliviruses are highly contagious and share a similar pathogenesis in their respective hosts. This review provides an overview of morbillivirus history and the general replication cycle and recapitulates Morbillivirus pathogenesis focusing on common and unique aspects seen in different hosts. It also summarizes the state of knowledge regarding virus-host interactions on the cellular level with an emphasis on viral interference with innate immune response activation, and highlights remaining knowledge gaps.
Collapse
|
15
|
Nipah and Hendra Virus Nucleoproteins Inhibit Nuclear Accumulation of Signal Transducer and Activator of Transcription 1 (STAT1) and STAT2 by Interfering with Their Complex Formation. J Virol 2017; 91:JVI.01136-17. [PMID: 28835499 DOI: 10.1128/jvi.01136-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/16/2017] [Indexed: 12/25/2022] Open
Abstract
Henipaviruses, such as Nipah (NiV) and Hendra (HeV) viruses, are highly pathogenic zoonotic agents within the Paramyxoviridae family. The phosphoprotein (P) gene products of the paramyxoviruses have been well characterized for their interferon (IFN) antagonist activity and their contribution to viral pathogenicity. In this study, we demonstrated that the nucleoprotein (N) of henipaviruses also prevents the host IFN signaling response. Reporter assays demonstrated that the NiV and HeV N proteins (NiV-N and HeV-N, respectively) dose-dependently suppressed both type I and type II IFN responses and that the inhibitory effect was mediated by their core domains. Additionally, NiV-N prevented the nuclear transport of signal transducer and activator of transcription 1 (STAT1) and STAT2. However, NiV-N did not associate with Impα5, Impβ1, or Ran, which are members of the nuclear transport system for STATs. Although P protein is known as a binding partner of N protein and actively retains N protein in the cytoplasm, the IFN antagonist activity of N protein was not abolished by the coexpression of P protein. This suggests that the IFN inhibition by N protein occurs in the cytoplasm. Furthermore, we demonstrated that the complex formation of STATs was hampered in the N protein-expressing cells. As a result, STAT nuclear accumulation was reduced, causing a subsequent downregulation of interferon-stimulated genes (ISGs) due to low promoter occupancy by STAT complexes. This novel route for preventing host IFN responses by henipavirus N proteins provides new insight into the pathogenesis of these viruses.IMPORTANCE Paramyxoviruses are well known for suppressing interferon (IFN)-mediated innate immunity with their phosphoprotein (P) gene products, and the henipaviruses also possess P, V, W, and C proteins for evading host antiviral responses. There are numerous studies providing evidence for the relationship between viral pathogenicity and antagonistic activities against IFN responses by P gene products. Meanwhile, little attention has been paid to the influence of nucleoprotein (N) on host innate immune responses. In this study, we demonstrated that both the NiV and HeV N proteins have antagonistic activity against the JAK/STAT signaling pathway by preventing the nucleocytoplasmic trafficking of STAT1 and STAT2. This inhibitory effect is due to an impairment of the ability of STATs to form complexes. These results provide new insight into the involvement of N protein in viral pathogenicity via its IFN antagonism.
Collapse
|
16
|
Development of CDV-specific monoclonal antibodies for differentiation of variable epitopes of nucleocapsid protein. Vet Microbiol 2017; 211:84-91. [PMID: 29102126 DOI: 10.1016/j.vetmic.2017.09.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/28/2017] [Accepted: 09/30/2017] [Indexed: 11/24/2022]
Abstract
The highly contagious canine distemper viruses (CDVs) are still a major threat to a wide range of natural susceptible hosts. The nucleocapsid (N) protein plays various roles in the virus-induced immune response. But precise mapping of epitopes and antigenic variations in N protein of CDV are still scant. In this study, two monoclonal antibodies (MAbs), designated as F8N and G3N, against the N protein of CDV were generated and characterized. The epitopes recognized by the two MAbs were mapped by truncated N protein fragments expressed in E.coli based on western blotting. The 470ESRYDTQ476 and 385GITKEEAQL393 were identified as the minimal linear epitopes recognized by F8N and G3N, respectively. The amino acid residues of the epitope (385-393aa) were highly conserved in a variety of CDV strains from the databases as well as five CDV strains in this study, indicating that MAb G3N can detect various CDV strains. However, MAb F8N was found not to react with an older CDV 851 strain of the five CDV strains due to both of two amino substitution (S471P and Y473H) in the epitope, whereas either single mutant S471P or Y473H did not eliminate the binding of F8N. Further, the variable epitopes existed in the N protein of six CDV strains resembling CDV3 in phylogenic tree by alignment with sequences from the databases. This is the first record of a precise epitope affecting antigenity of N protein of CDV. These results may facilitate future investigations into the function of NP of CDV and diagnostic methods for CDV infection.
Collapse
|
17
|
Jiang Y, Qin Y, Chen M. Host-Pathogen Interactions in Measles Virus Replication and Anti-Viral Immunity. Viruses 2016; 8:v8110308. [PMID: 27854326 PMCID: PMC5127022 DOI: 10.3390/v8110308] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 12/12/2022] Open
Abstract
The measles virus (MeV) is a contagious pathogenic RNA virus of the family Paramyxoviridae, genus Morbillivirus, that can cause serious symptoms and even fetal complications. Here, we summarize current molecular advances in MeV research, and emphasize the connection between host cells and MeV replication. Although measles has reemerged recently, the potential for its eradication is promising with significant progress in our understanding of the molecular mechanisms of its replication and host-pathogen interactions.
Collapse
Affiliation(s)
- Yanliang Jiang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yali Qin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
18
|
Mu J, Zhang Y, Hu Y, Hu X, Zhou Y, Zhao H, Pei R, Wu C, Chen J, Zhao H, Yang K, van Oers MM, Chen X, Wang Y. Autographa californica Multiple Nucleopolyhedrovirus Ac34 Protein Retains Cellular Actin-Related Protein 2/3 Complex in the Nucleus by Subversion of CRM1-Dependent Nuclear Export. PLoS Pathog 2016; 12:e1005994. [PMID: 27802336 PMCID: PMC5089780 DOI: 10.1371/journal.ppat.1005994] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/12/2016] [Indexed: 12/21/2022] Open
Abstract
Actin, nucleation-promoting factors (NPFs), and the actin-related protein 2/3 complex (Arp2/3) are key elements of the cellular actin polymerization machinery. With nuclear actin polymerization implicated in ever-expanding biological processes and the discovery of the nuclear import mechanisms of actin and NPFs, determining Arp2/3 nucleo-cytoplasmic shuttling mechanism is important for understanding the function of nuclear actin. A unique feature of alphabaculovirus infection of insect cells is the robust nuclear accumulation of Arp2/3, which induces actin polymerization in the nucleus to assist in virus replication. We found that Ac34, a viral late gene product encoded by the alphabaculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), is involved in Arp2/3 nuclear accumulation during virus infection. Further assays revealed that the subcellular distribution of Arp2/3 under steady-state conditions is controlled by chromosomal maintenance 1 (CRM1)-dependent nuclear export. Upon AcMNPV infection, Ac34 inhibits CRM1 pathway and leads to Arp2/3 retention in the nucleus.
Collapse
Affiliation(s)
- Jingfang Mu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongli Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yangyang Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yuan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - He Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Rongjuan Pei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chunchen Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jizheng Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Han Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Yang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | | | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yun Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
19
|
Audsley MD, Jans DA, Moseley GW. Roles of nuclear trafficking in infection by cytoplasmic negative-strand RNA viruses: paramyxoviruses and beyond. J Gen Virol 2016; 97:2463-2481. [PMID: 27498841 DOI: 10.1099/jgv.0.000575] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Genome replication and virion production by most negative-sense RNA viruses (NSVs) occurs exclusively in the cytoplasm, but many NSV-expressed proteins undergo active nucleocytoplasmic trafficking via signals that exploit cellular nuclear transport pathways. Nuclear trafficking has been reported both for NSV accessory proteins (including isoforms of the rabies virus phosphoprotein, and V, W and C proteins of paramyxoviruses) and for structural proteins. Trafficking of the former is thought to enable accessory functions in viral modulation of antiviral responses including the type I IFN system, but the intranuclear roles of structural proteins such as nucleocapsid and matrix proteins, which have critical roles in extranuclear replication and viral assembly, are less clear. Nevertheless, nuclear trafficking of matrix protein has been reported to be critical for efficient production of Nipah virus and Respiratory syncytial virus, and nuclear localization of nucleocapsid protein of several morbilliviruses has been linked to mechanisms of immune evasion. Together, these data point to the nucleus as a significant host interface for viral proteins during infection by NSVs with otherwise cytoplasmic life cycles. Importantly, several lines of evidence now suggest that nuclear trafficking of these proteins may be critical to pathogenesis and thus could provide new targets for vaccine development and antiviral therapies.
Collapse
Affiliation(s)
- Michelle D Audsley
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Gregory W Moseley
- Department of Biochemistry and Molecular Biology, BIO21 Molecular Science and Biotechnology Institute, University of Melbourne, VIC 3000, Australia
| |
Collapse
|
20
|
Matveeva OV, Guo ZS, Shabalina SA, Chumakov PM. Oncolysis by paramyxoviruses: multiple mechanisms contribute to therapeutic efficiency. Mol Ther Oncolytics 2015; 2:15011. [PMID: 26640816 PMCID: PMC4667958 DOI: 10.1038/mto.2015.11] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/08/2015] [Accepted: 05/14/2015] [Indexed: 12/12/2022] Open
Abstract
Oncolytic paramyxoviruses include some strains of Measles, Mumps, Newcastle disease, and Sendai viruses. All these viruses are well equipped for promoting highly specific and efficient malignant cell death, which can be direct and/or immuno-mediated. A number of proteins that serve as natural receptors for oncolytic paramyxoviruses are frequently overexpressed in malignant cells. Therefore, the preferential interaction of paramyxoviruses with malignant cells rather than with normal cells is promoted. Due to specific genetic defects of cancer cells in the interferon (IFN) and apoptotic pathways, viral replication has the potential to be promoted specifically in tumors. Viral mediation of syncytium formation (a polykaryonic structure) promotes intratumoral paramyxo-virus replication and spreading, without exposure to host neutralizing antibodies. So, two related processes: efficient intratumoral infection spread as well as the consequent mass malignant cell death, both are enhanced. In general, the paramyxoviruses elicit strong anticancer innate and adaptive immune responses by triggering multiple danger signals. The paramyxoviruses are powerful inducers of IFN and other immuno-stimulating cytokines. These viruses efficiently promote anticancer activity of natural killer cells, dendritic cells, and cytotoxic T lymphocytes. Moreover, a neuraminidase (sialidase), a component of the viral envelope of Newcastle Disease, Mumps, and Sendai viruses, can cleave sialic acids on the surface of malignant cells thereby unmasking cancer antigens and exposing them to the immune system. These multiple mechanisms contribute to therapeutic efficacy of oncolytic paramyxovi-ruses and are responsible for encouraging results in preclinical and clinical studies.
Collapse
Affiliation(s)
- Olga V Matveeva
- Biopolymer Design LLC, Acton, Massachusetts, USA
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Zong S Guo
- Division of Surgical Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Moscow, Russia
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
21
|
Wulan WN, Heydet D, Walker EJ, Gahan ME, Ghildyal R. Nucleocytoplasmic transport of nucleocapsid proteins of enveloped RNA viruses. Front Microbiol 2015; 6:553. [PMID: 26082769 PMCID: PMC4451415 DOI: 10.3389/fmicb.2015.00553] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/19/2015] [Indexed: 12/25/2022] Open
Abstract
Most viruses with non-segmented single stranded RNA genomes complete their life cycle in the cytoplasm of infected cells. However, despite undergoing replication in the cytoplasm, the structural proteins of some of these RNA viruses localize to the nucleus at specific times in the virus life cycle, primarily early in infection. Limited evidence suggests that this enhances successful viral replication by interfering with or inhibiting the host antiviral response. Nucleocapsid proteins of RNA viruses have a well-established, essential cytoplasmic role in virus replication and assembly. Intriguingly, nucleocapsid proteins of some RNA viruses also localize to the nucleus/nucleolus of infected cells. Their nuclear function is less well understood although significant advances have been made in recent years. This review will focus on the nucleocapsid protein of cytoplasmic enveloped RNA viruses, including their localization to the nucleus/nucleolus and function therein. A greater understanding of the nuclear localization of nucleocapsid proteins has the potential to enhance therapeutic strategies as it can be a target for the development of live-attenuated vaccines or antiviral drugs.
Collapse
Affiliation(s)
- Wahyu N Wulan
- Centre for Research in Therapeutic Solutions, University of Canberra, Bruce, ACT Australia ; Faculty of Education, Science, Technology and Mathematics, University of Canberra, Bruce, ACT Australia
| | - Deborah Heydet
- Centre for Research in Therapeutic Solutions, University of Canberra, Bruce, ACT Australia
| | - Erin J Walker
- Centre for Research in Therapeutic Solutions, University of Canberra, Bruce, ACT Australia
| | - Michelle E Gahan
- Faculty of Education, Science, Technology and Mathematics, University of Canberra, Bruce, ACT Australia
| | - Reena Ghildyal
- Centre for Research in Therapeutic Solutions, University of Canberra, Bruce, ACT Australia ; Faculty of Education, Science, Technology and Mathematics, University of Canberra, Bruce, ACT Australia
| |
Collapse
|
22
|
Du Y, Bi J, Liu J, Liu X, Wu X, Jiang P, Yoo D, Zhang Y, Wu J, Wan R, Zhao X, Guo L, Sun W, Cong X, Chen L, Wang J. 3Cpro of foot-and-mouth disease virus antagonizes the interferon signaling pathway by blocking STAT1/STAT2 nuclear translocation. J Virol 2014; 88:4908-20. [PMID: 24554650 PMCID: PMC3993825 DOI: 10.1128/jvi.03668-13] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/07/2014] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Foot-and-mouth disease virus (FMDV) causes a highly contagious, debilitating disease in cloven-hoofed animals with devastating economic consequences. To survive in the host, FMDV has evolved to antagonize the host type I interferon (IFN) response. Previous studies have reported that the leader proteinase (L(pro)) and 3C(pro) of FMDV are involved in the inhibition of type I IFN production. However, whether the proteins of FMDV can inhibit type I IFN signaling is less well understood. In this study, we first found that 3C(pro) of FMDV functioned to interfere with the JAK-STAT signaling pathway. Expression of 3C(pro) significantly reduced the transcript levels of IFN-stimulated genes (ISGs) and IFN-stimulated response element (ISRE) promoter activity. The protein level, tyrosine phosphorylation of STAT1 and STAT2, and their heterodimerization were not affected. However, the nuclear translocation of STAT1/STAT2 was blocked by the 3C(pro) protein. Further mechanistic studies demonstrated that 3C(pro) induced proteasome- and caspase-independent protein degradation of karyopherin α1 (KPNA1), the nuclear localization signal receptor for tyrosine-phosphorylated STAT1, but not karyopherin α2, α3, or α4. Finally, we showed that the protease activity of 3C(pro) contributed to the degradation of KPNA1 and thus blocked STAT1/STAT2 nuclear translocation. Taken together, results of our experiments describe for the first time a novel mechanism by which FMDV evolves to inhibit IFN signaling and counteract host innate antiviral responses. IMPORTANCE We show that 3C(pro) of FMDV antagonizes the JAK-STAT signaling pathway by blocking STAT1/STAT2 nuclear translocation. Furthermore, 3C(pro) induces KPNA1 degradation, which is independent of proteasome and caspase pathways. The protease activity of 3C(pro) contributes to the degradation of KPNA1 and governs the ability of 3C(pro) to inhibit the JAK-STAT signaling pathway. This study uncovers a novel mechanism evolved by FMDV to antagonize host innate immune responses.
Collapse
Affiliation(s)
- Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jingshan Bi
- Key Laboratory of Animal Diseases Diagnostic and Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, China
| | - Jiyu Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xing Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, China
| | - Xiangju Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Animal Biotechnology and Disease Control and Prevention of Shandong Province, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, China
| | - Dongwan Yoo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yongguang Zhang
- State Key Laboratory of Veterinary Etiological Biology/National Foot and Mouth Disease Reference Laboratory/Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jiaqiang Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Renzhong Wan
- Key Laboratory of Animal Biotechnology and Disease Control and Prevention of Shandong Province, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Xiaomin Zhao
- Key Laboratory of Animal Biotechnology and Disease Control and Prevention of Shandong Province, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Lihui Guo
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wenbo Sun
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaoyan Cong
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lei Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jinbao Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
23
|
Yarbrough ML, Mata MA, Sakthivel R, Fontoura BMA. Viral subversion of nucleocytoplasmic trafficking. Traffic 2013; 15:127-40. [PMID: 24289861 PMCID: PMC3910510 DOI: 10.1111/tra.12137] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/27/2013] [Accepted: 10/31/2013] [Indexed: 12/22/2022]
Abstract
Trafficking of proteins and RNA into and out of the nucleus occurs through the nuclear pore complex (NPC). Because of its critical function in many cellular processes, the NPC and transport factors are common targets of several viruses that disrupt key constituents of the machinery to facilitate viral replication. Many viruses such as poliovirus and severe acute respiratory syndrome (SARS) virus inhibit protein import into the nucleus, whereas viruses such as influenza A virus target and disrupt host mRNA nuclear export. Current evidence indicates that these viruses may employ such strategies to avert the host immune response. Conversely, many viruses co‐opt nucleocytoplasmic trafficking to facilitate transport of viral RNAs. As viral proteins interact with key regulators of the host nuclear transport machinery, viruses have served as invaluable tools of discovery that led to the identification of novel constituents of nuclear transport pathways. This review explores the importance of nucleocytoplasmic trafficking to viral pathogenesis as these studies revealed new antiviral therapeutic strategies and exposed previously unknown cellular mechanisms. Further understanding of nuclear transport pathways will determine whether such therapeutics will be useful treatments for important human pathogens.
Collapse
Affiliation(s)
- Melanie L Yarbrough
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9039, USA
| | | | | | | |
Collapse
|
24
|
Audsley MD, Moseley GW. Paramyxovirus evasion of innate immunity: Diverse strategies for common targets. World J Virol 2013; 2:57-70. [PMID: 24175230 PMCID: PMC3785049 DOI: 10.5501/wjv.v2.i2.57] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/14/2013] [Accepted: 04/10/2013] [Indexed: 02/05/2023] Open
Abstract
The paramyxoviruses are a family of > 30 viruses that variously infect humans, other mammals and fish to cause diverse outcomes, ranging from asymptomatic to lethal disease, with the zoonotic paramyxoviruses Nipah and Hendra showing up to 70% case-fatality rate in humans. The capacity to evade host immunity is central to viral infection, and paramyxoviruses have evolved multiple strategies to overcome the host interferon (IFN)-mediated innate immune response through the activity of their IFN-antagonist proteins. Although paramyxovirus IFN antagonists generally target common factors of the IFN system, including melanoma differentiation associated factor 5, retinoic acid-inducible gene-I, signal transducers and activators of transcription (STAT)1 and STAT2, and IFN regulatory factor 3, the mechanisms of antagonism show remarkable diversity between different genera and even individual members of the same genus; the reasons for this diversity, however, are not currently understood. Here, we review the IFN antagonism strategies of paramyxoviruses, highlighting mechanistic differences observed between individual species and genera. We also discuss potential sources of this diversity, including biological differences in the host and/or tissue specificity of different paramyxoviruses, and potential effects of experimental approaches that have largely relied on in vitro systems. Importantly, recent studies using recombinant virus systems and animal infection models are beginning to clarify the importance of certain mechanisms of IFN antagonism to in vivo infections, providing important indications not only of their critical importance to virulence, but also of their potential targeting for new therapeutic/vaccine approaches.
Collapse
|
25
|
Abstract
Capsid proteins are obligatory components of infectious virions. Their primary structural function is to protect viral genomes during entry and exit from host cells. Evidence suggests that these proteins can also modulate the activity and specificity of viral replication complexes. More recently, it has become apparent that they play critical roles at the virus–host interface. Here, we discuss how capsid proteins of RNA viruses interact with key host cell proteins and pathways to modulate cell physiology in order to benefit virus replication. Capsid–host cell interactions may also have implications for viral disease. Understanding how capsids regulate virus–host interactions may lead to the development of novel antiviral therapies based on targeting the activities of cellular proteins.
Collapse
Affiliation(s)
- Steven Willows
- Department of Cell Biology, University of Alberta, 5–14 Medical Sciences Building, Edmonton, T6G 2H7, Canada
| | - Shangmei Hou
- Department of Cell Biology, University of Alberta, 5–14 Medical Sciences Building, Edmonton, T6G 2H7, Canada
| | - Tom C Hobman
- Department of Li Ka Shing Institute of Virology, University of Alberta, 5–14 Medical Sciences Building, Edmonton, T6G 2H7, Canada
| |
Collapse
|
26
|
Ivancic-Jelecki J, Baricevic M, Santak M, Harcet M, Tešović G, Marusic Della Marina B, Forcic D. The first genetic characterization of a D4 measles virus strain derived from a patient with subacute sclerosing panencephalitis. INFECTION GENETICS AND EVOLUTION 2013; 17:71-8. [PMID: 23542094 DOI: 10.1016/j.meegid.2013.03.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/06/2013] [Accepted: 03/19/2013] [Indexed: 11/30/2022]
Abstract
Measles virus (MV) strains derived from patients with subacute sclerosing panencephalitis (SSPE), SSPE strains, possess numerous mutations when compared to viruses belonging to the same genotype and circulating in similar time period. Although many SSPE strains have been extensively characterized, none of them belongs to D4 genotype which currently predominates in Europe where it has caused a number of recent outbreaks/epidemics. We sequenced an MV derived from a patient with long-term SSPE; the virus was named MVs/Zagreb.CRO/30.06[D4] (SSPE). Initial genetic analysis showed that it belongs to D4 genotype. The sequences of genes encoding matrix and fusion proteins indicate premature protein terminations. Putative hemagglutin (H) protein is lengthened for 20 amino acids, which is the longest H protein elongation so far found in SSPE viruses. Nucleotides 1421 A, 1422 G, 1507 C and 1542 C in nucleoprotein gene open reading frame seem to be specific for this D4 strain, differentiating it from other D4 non-SSPE strains. Besides, a unique mutation at position 543 of H protein was found, histidine instead of tyrosine. As persistent MV infections are initially established by "normal" wild-type MV strains, the presented comparative analyses describe alterations that could be involved in the maintenance of persistent infection, disease development and progression.
Collapse
Affiliation(s)
- Jelena Ivancic-Jelecki
- Molecular Biomedicine Unit, Institute of Immunology Inc, Rockefeller street 10, 10000 Zagreb, Croatia.
| | | | | | | | | | | | | |
Collapse
|
27
|
Delpeut S, Noyce RS, Siu RWC, Richardson CD. Host factors and measles virus replication. Curr Opin Virol 2012; 2:773-83. [PMID: 23146309 DOI: 10.1016/j.coviro.2012.10.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 10/11/2012] [Accepted: 10/16/2012] [Indexed: 12/19/2022]
Abstract
This review takes a general approach to describing host cell factors that facilitate measles virus (MeV) infection and replication. It relates our current understanding of MeV entry receptors, with emphasis on how these host cell surface proteins contribute to pathogenesis within its host. The roles of SLAM/CD150 lymphocyte receptor and the newly discovered epithelial receptor PVRL4/nectin-4 are highlighted. Host cell factors such as HSP72, Prdx1, tubulin, casein kinase, and actin, which are known to impact viral RNA synthesis and virion assembly, are also discussed. Finally the review describes strategies used by measles virus to circumvent innate immunity and confound the effects of interferon within the host cell. Proteomic studies and genome wide RNAi screens will undoubtedly advance our knowledge in the future.
Collapse
Affiliation(s)
- Sebastien Delpeut
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | | | | | |
Collapse
|
28
|
Sekimoto T, Yoneda Y. Intrinsic and extrinsic negative regulators of nuclear protein transport processes. Genes Cells 2012; 17:525-35. [PMID: 22672474 PMCID: PMC3444693 DOI: 10.1111/j.1365-2443.2012.01609.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/27/2012] [Indexed: 12/31/2022]
Abstract
The nuclear-cytoplasmic protein transport is a critical process in cellular events. The identification of transport signals (nuclear localization signal and nuclear export signal) and their receptors has facilitated our understanding of this expanding field. Nuclear transport must be appropriately regulated to deliver proteins through the nuclear pore when their functions are required in the nucleus, and to export them into the cytoplasm when they are not needed in the nucleus. Altered nuclear transport processes have been observed in stressed cells, which would change gene expressions. Some viruses interfere with nuclear transport in host cells to evade immune defense. Moreover, certain transport factors negatively regulate nuclear protein transport in cells. Understanding the regulatory mechanisms of nuclear-cytoplasmic trafficking not only provides important information about cellular processes, but also is of use for developing specific inhibitors for transport pathways.
Collapse
Affiliation(s)
- Toshihiro Sekimoto
- Department of Biochemistry, Graduate School of Medicine, Osaka University, 1-3 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | | |
Collapse
|