1
|
Ashmore-Harris C, Fruhwirth GO. The clinical potential of gene editing as a tool to engineer cell-based therapeutics. Clin Transl Med 2020; 9:15. [PMID: 32034584 PMCID: PMC7007464 DOI: 10.1186/s40169-020-0268-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
The clinical application of ex vivo gene edited cell therapies first began a decade ago with zinc finger nuclease editing of autologous CD4+ T-cells. Editing aimed to disrupt expression of the human immunodeficiency virus co-receptor gene CCR5, with the goal of yielding cells resistant to viral entry, prior to re-infusion into the patient. Since then the field has substantially evolved with the arrival of the new editing technologies transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR), and the potential benefits of gene editing in the arenas of immuno-oncology and blood disorders were quickly recognised. As the breadth of cell therapies available clinically continues to rise there is growing interest in allogeneic and off-the-shelf approaches and multiplex editing strategies are increasingly employed. We review here the latest clinical trials utilising these editing technologies and consider the applications on the horizon.
Collapse
Affiliation(s)
- Candice Ashmore-Harris
- Imaging Therapy and Cancer Group, Dept of Imaging Chemistry & Biology, School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London (KCL), London, SE1 7EH, UK
- Centre for Stem Cells & Regenerative Medicine, School of Basic and Medical Biosciences, Guy's Hospital, KCL, London, SE1 9RT, UK
| | - Gilbert O Fruhwirth
- Imaging Therapy and Cancer Group, Dept of Imaging Chemistry & Biology, School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London (KCL), London, SE1 7EH, UK.
| |
Collapse
|
2
|
Tajbakhsh A, Fazeli M, Rezaee M, Ghasemi F, Heravi MM, Gholoobi A, Meshkat Z. Prevalence of CCR5delta32 in Northeastern Iran. BMC MEDICAL GENETICS 2019; 20:184. [PMID: 31730458 PMCID: PMC6858674 DOI: 10.1186/s12881-019-0913-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/25/2019] [Indexed: 12/16/2022]
Abstract
Background A 32-base pair deletion (∆32) in the open reading frame (ORF) of C-C motif chemokine receptor 5 (CCR5) seems to be a protective variant against immune system diseases, especially human immunodeficiency virus type 1 (HIV-1). We aimed to assess the frequency of CCR5∆32 in the healthy Iranian population. Methods In this study, 400 normal samples from Khorasan, northeastern Iran, were randomly selected. The frequency of CCR5∆32 carriers was investigated using PCR analysis. Allele prevalence and the fit to the Hardy-Weinberg equilibrium were analyzed. Results The prevalence of CCR5∆32 in the northeastern population of Iran was 0.016. Four hundred samples were studied, among which one with CCR5∆32/∆32 and 11 with CCR5Wild/∆32 genotype were detected. Conclusion This study was the first investigation for an assessment of the prevalence of CCR5∆32 in northeastern Iran. The low prevalence of CCR5∆32 allele in the Iranian population may result in the increased susceptibility to HIV-1. In addition, this prevalence is the same as that of reported in East Asia, while is lower than that in the Europeans.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Department of Modern Sciences & Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Fazeli
- Department of Modern Sciences & Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Rezaee
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mastoureh Momen Heravi
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, P.O Box: 9196773117, Mashhad, IR, Iran
| | - Aida Gholoobi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, P.O Box: 9196773117, Mashhad, IR, Iran.
| |
Collapse
|
3
|
Phenotypic co-receptor tropism and Maraviroc sensitivity in HIV-1 subtype C from East Africa. Sci Rep 2018; 8:2363. [PMID: 29403064 PMCID: PMC5799384 DOI: 10.1038/s41598-018-20814-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/24/2018] [Indexed: 11/08/2022] Open
Abstract
Genotypic tropism testing (GTT) for co-receptor usage is a recommended tool for clinical practice before administration of the CCR5-antagonist maraviroc. For some isolates, phenotypic tropism testing (PTT) revealed discordant results with GTT. In this study, we performed a comparative study between GTT and PTT in HIV-1C from East Africa (HIV-1CEA) and compared the data with HIV-1B and 01_AE and described the maraviroc susceptibility in the CCR5-tropic strains. Patient-derived HIV-1 envgp120 region was cloned into a modified pNL4-3 plasmid expressing the luciferase gene. rPhenotyping dissected single clones from 31 HIV-1CEA infected patients and four strains with known phenotype. Additionally, 68 clones from 18 patients (HIV-1B: 5, 01_AE: 7, HIV-1CEA: 6) were used to determine the PTT in GHOST cell line. The respective V3-sequences were used for GTT. R5-tropic strains from HIV-1CEA (n = 20) and non-C (n = 12) were tested for maraviroc sensitivity in TZMbl cell line. The GTT falsely called a higher proportion of X4-tropic strains in HIV-1CET compared to PTT by both rPhenotyping and the GHOST-cell assay. When multiple clones were tested in a subset of patients’ samples, both dual-tropic and R5-tropic strains were identified for HIV-1C. Relatively higher EC50 values were observed in HIV-1C strains than the non-C strains (p = 0.002).
Collapse
|
4
|
Flynn JK, Ellenberg P, Duncan R, Ellett A, Zhou J, Sterjovski J, Cashin K, Borm K, Gray LR, Lewis M, Jubb B, Westby M, Lee B, Lewin SR, Churchill M, Roche M, Gorry PR. Analysis of Clinical HIV-1 Strains with Resistance to Maraviroc Reveals Strain-Specific Resistance Mutations, Variable Degrees of Resistance, and Minimal Cross-Resistance to Other CCR5 Antagonists. AIDS Res Hum Retroviruses 2017; 33:1220-1235. [PMID: 28797170 DOI: 10.1089/aid.2017.0097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Maraviroc (MVC) is an allosteric inhibitor of human immunodeficiency virus type 1 (HIV-1) entry, and is the only CCR5 antagonist licensed for use as an anti-HIV-1 therapeutic. It acts by altering the conformation of the CCR5 extracellular loops, rendering CCR5 unrecognizable by the HIV-1 envelope (Env) glycoproteins. This study aimed to understand the mechanisms underlying the development of MVC resistance in HIV-1-infected patients. To do this, we obtained longitudinal plasma samples from eight subjects who experienced treatment failure with phenotypically verified, CCR5-tropic MVC resistance. We then cloned and characterized HIV-1 Envs (n = 77) from plasma of pretreatment (n = 36) and treatment failure (n = 41) samples. Our results showed variation in the magnitude of MVC resistance as measured by reductions in maximal percent inhibition of Env-pseudotyped viruses, which was more pronounced in 293-Affinofile cells compared to other cells with similar levels of CCR5 expression. Amino acid determinants of MVC resistance localized to the V3 Env region and were strain specific. We also observed minimal cross-resistance to other CCR5 antagonists by MVC-resistant strains. We conclude that 293-Affinofile cells are highly sensitive for detecting and measuring MVC resistance through a mechanism that is CCR5-dependent yet independent of CCR5 expression levels. The strain-specific nature of resistance mutations suggests that sequence-based diagnostics and prognostics will need to be more sophisticated than simple position scoring to be useful for managing resistance in subjects taking MVC. Finally, the minimal levels of cross-resistance suggests that recognition of the MVC-modified form of CCR5 does not necessarily lead to recognition of other antagonist-modified forms of CCR5.
Collapse
Affiliation(s)
- Jacqueline K. Flynn
- School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - Paula Ellenberg
- School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - Renee Duncan
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - Anne Ellett
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - Jingling Zhou
- School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - Jasminka Sterjovski
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Kieran Cashin
- School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - Katharina Borm
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Microbiology, La Trobe University, Melbourne, Australia
| | - Lachlan R Gray
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - Marilyn Lewis
- Pfizer Global Research and Development, Sandwich, United Kingdom
| | - Becky Jubb
- Pfizer Global Research and Development, Sandwich, United Kingdom
| | - Mike Westby
- Centauri Therapeutics, Ltd., Sandwich, United Kingdom
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Melissa Churchill
- School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Microbiology, Monash University, Melbourne, Australia
| | - Michael Roche
- School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Paul R. Gorry
- School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| |
Collapse
|
5
|
Espy N, Pacheco B, Sodroski J. Adaptation of HIV-1 to cells with low expression of the CCR5 coreceptor. Virology 2017; 508:90-107. [PMID: 28521215 DOI: 10.1016/j.virol.2017.04.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 11/19/2022]
Abstract
The binding of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer ((gp120/gp41)3) to the receptors CD4 and CCR5 triggers virus entry into host cells. To identify Env regions that respond to CCR5 binding, HIV-1 was serially passaged on a CD4-positive canine cell line expressing progressively lower levels of CCR5. HIV-1 replication was observed in cells expressing ~1300 CCR5 molecules/cell. Env changes that conferred this low-CCR5 replication phenotype were located outside of the known CCR5-binding region of the gp120 Env subunit and did not apparently increase CCR5 binding affinity. The adaptation-associated changes, located in the gp120 α1 helix and in the gp41 HR1 heptad repeat and membrane-proximal external region (MPER), enhanced HIV-1 replication in cells at all levels of CCR5 expression. The adapted Envs exhibited a greater propensity to undergo conformational changes, as evidenced by increased exposure of conserved regions near the CD4- and CCR5-binding sites.
Collapse
Affiliation(s)
- Nicole Espy
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Beatriz Pacheco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Joseph Sodroski
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Tebit DM, Patel H, Ratcliff A, Alessandri E, Liu J, Carpenter C, Plantier JC, Arts EJ. HIV-1 Group O Genotypes and Phenotypes: Relationship to Fitness and Susceptibility to Antiretroviral Drugs. AIDS Res Hum Retroviruses 2016; 32:676-88. [PMID: 26861573 DOI: 10.1089/aid.2015.0318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite only 30,000 group O HIV-1 infections, a similar genetic diversity is observed among the O subgroups H (head) and T (tail) (previously described as subtypes A, B) as in the 9 group M subtypes (A-K). Group O isolates bearing a cysteine at reverse transcriptase (RT) position 181, predominantly the H strains are intrinsically resistant to non-nucleoside reverse transcriptase inhibitors (NNRTIs). However, their susceptibility to newer antiretroviral drugs such as etravirine, maraviroc, raltegravir (RAL), and elvitegravir (EVG) remains relatively unknown. We tested a large collection of HIV-1 group O strains for their susceptibility to four classes of antiretroviral drugs namely nucleoside RT, non-nucleoside RT, integrase, and entry inhibitors knowing in advance the intrinsic resistance to NNRTIs. Drug target regions were sequenced to determine various polymorphisms and were phylogenetically analyzed. Replication kinetics and fitness assays were performed in U87-CD4(+)CCR5 and CXCR4 cells and peripheral blood mononuclear cells. With all antiretroviral drugs, group O HIV-1 showed higher variability in IC50 values than group M HIV-1. The mean IC50 values for entry and nucleoside reverse transcriptase inhibitor (NRTI) were similar for group O and M HIV-1 isolates. Despite similar susceptibility to maraviroc, the various phenotypic algorithms failed to predict CXCR4 usage based on the V3 Env sequences of group O HIV-1 isolates. Decreased sensitivity of group O HIV-1 to integrase or NNRTIs had no relation to replicative fitness. Group O HIV-1 isolates were 10-fold less sensitive to EVG inhibition than group M HIV-1. These findings suggest that in regions where HIV-1 group O is endemic, first line treatment regimens combining two NRTIs with RAL may provide more sustained virologic responses than the standard regimens involving an NNRTI or protease inhibitors.
Collapse
Affiliation(s)
- Denis M. Tebit
- Division of Infectious Diseases, Case Western Reserve University, Cleveland, Ohio
| | - Hamish Patel
- Division of Infectious Diseases, Case Western Reserve University, Cleveland, Ohio
| | - Annette Ratcliff
- Division of Infectious Diseases, Case Western Reserve University, Cleveland, Ohio
| | | | - Joseph Liu
- Division of Infectious Diseases, Case Western Reserve University, Cleveland, Ohio
| | - Crystal Carpenter
- Division of Infectious Diseases, Case Western Reserve University, Cleveland, Ohio
| | | | - Eric J. Arts
- Division of Infectious Diseases, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
7
|
Garg H, Lee RT, Maurer-Stroh S, Joshi A. HIV-1 adaptation to low levels of CCR5 results in V3 and V2 loop changes that increase envelope pathogenicity, CCR5 affinity and decrease susceptibility to Maraviroc. Virology 2016; 493:86-99. [DOI: 10.1016/j.virol.2016.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 11/26/2022]
|
8
|
Incompatible Natures of the HIV-1 Envelope in Resistance to the CCR5 Antagonist Cenicriviroc and to Neutralizing Antibodies. Antimicrob Agents Chemother 2015; 60:437-50. [PMID: 26525792 DOI: 10.1128/aac.02285-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/26/2015] [Indexed: 11/20/2022] Open
Abstract
Cenicriviroc is a CCR5 antagonist which prevents human immunodeficiency virus type 1 (HIV-1) from cellular entry. The CCR5-binding regions of the HIV-1 envelope glycoprotein are important targets for neutralizing antibodies (NAbs), and mutations conferring cenicriviroc resistance may therefore affect sensitivity to NAbs. Here, we used the in vitro induction of HIV-1 variants resistant to cenicriviroc or NAbs to examine the relationship between resistance to cenicriviroc and resistance to NAbs. The cenicriviroc-resistant variant KK652-67 (strain KK passaged 67 times in the presence of increasing concentrations of cenicriviroc) was sensitive to neutralization by NAbs against the V3 loop, the CD4-induced (CD4i) region, and the CD4-binding site (CD4bs), whereas the wild-type (WT) parental HIV-1 strain KKWT from which cenicriviroc-resistant strain KK652-67 was obtained was resistant to these NAbs. The V3 region of KK652-67 was important for cenicriviroc resistance and critical to the high sensitivity of the V3, CD4i, and CD4bs epitopes to NAbs. Moreover, induction of variants resistant to anti-V3 NAb 0.5γ and anti-CD4i NAb 4E9C from cenicriviroc-resistant strain KK652-67 resulted in reversion to the cenicriviroc-sensitive phenotype comparable to that of the parental strain, KKWT. Resistance to 0.5γ and 4E9C was caused by the novel substitutions R315K, G324R, and E381K in the V3 and C3 regions near the substitutions conferring cenicriviroc resistance. Importantly, these amino acid changes in the CCR5-binding region were also responsible for reversion to the cenicriviroc-sensitive phenotype. These results suggest the presence of key amino acid residues where resistance to cenicriviroc is incompatible with resistance to NAbs. This implies that cenicriviroc and neutralizing antibodies may restrict the emergence of variants resistant to each other.
Collapse
|
9
|
Abstract
The human immunodeficiency virus-1 (HIV-1) enters target cells by binding its envelope glycoprotein gp120 to the CD4 receptor and/or coreceptors such as C-C chemokine receptor type 5 (CCR5; R5) and C-X-C chemokine receptor type 4 (CXCR4; X4), and R5-tropic viruses predominate during the early stages of infection. CCR5 antagonists bind to CCR5 to prevent viral entry. Maraviroc (MVC) is the only CCR5 antagonist currently approved by the United States Food and Drug Administration, the European Commission, Health Canada, and several other countries for the treatment of patients infected with R5-tropic HIV-1. MVC has been shown to be effective at inhibiting HIV-1 entry into cells and is well tolerated. With expanding MVC use by HIV-1-infected humans, different clinical outcomes post-approval have been observed with MVC monotherapy or combination therapy with other antiretroviral drugs, with MVC use in humans infected with dual-R5- and X4-tropic HIV-1, infected with different HIV-1 genotype or infected with HIV-2. This review discuss the role of CCR5 in HIV-1 infection, the development of the CCR5 antagonist MVC, its pharmacokinetics, pharmacodynamics, drug-drug interactions, and the implications of these interactions on treatment outcomes, including viral mutations and drug resistance, and the mechanisms associated with the development of resistance to MVC. This review also discusses available studies investigating the use of MVC in the treatment of other diseases such as cancer, graft-versus-host disease, and inflammatory diseases.
Collapse
Affiliation(s)
- Shawna M Woollard
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Georgette D Kanmogne
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
10
|
Boonchawalit S, Harada S, Shirai N, Gatanaga H, Oka S, Matsushita S, Yoshimura K. Impact of the Maraviroc-Resistant Mutation M434I in the C4 Region of HIV-1 gp120 on Sensitivity to Antibody-Mediated Neutralization. Jpn J Infect Dis 2015; 69:236-43. [PMID: 26166507 DOI: 10.7883/yoken.jjid.2015.310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We previously reported that a maraviroc (MVC)-resistant human immunodeficiency virus type 1variant, generated using in vitro selection, exhibited high sensitivity to several neutralizing monoclonal antibodies (NMAbs) and autologous plasma IgGs. The MVC-resistant variant acquired 4 sequential mutations in gp120: T297I, M434I, V200I, and K305R. In this study, we examined the mutation most responsible for conferring enhanced neutralization sensitivity of the MVC-resistant variant to several NMAbs and autologous plasma IgGs. The virus with the first resistant mutation, T297I, was sensitive to all NMAbs, whereas the passage control virus was not. The neutralization sensitivity of the variant greatly increased following its acquisition of the second mutation, M434I, in the C4 region. The M434I mutation conferred the greatest neutralizing sensitivity among the 4 MVC-resistant mutations. Additionally, the single M434I mutation was sufficient for the enhanced neutralization of the virus by NMAbs, autologous plasma IgGs, and heterologous sera relative to that of the parental virus.
Collapse
|
11
|
Garcia-Perez J, Staropoli I, Azoulay S, Heinrich JT, Cascajero A, Colin P, Lortat-Jacob H, Arenzana-Seisdedos F, Alcami J, Kellenberger E, Lagane B. A single-residue change in the HIV-1 V3 loop associated with maraviroc resistance impairs CCR5 binding affinity while increasing replicative capacity. Retrovirology 2015; 12:50. [PMID: 26081316 PMCID: PMC4470041 DOI: 10.1186/s12977-015-0177-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/22/2015] [Indexed: 01/03/2023] Open
Abstract
Background Maraviroc (MVC) is an allosteric CCR5 inhibitor used against HIV-1 infection. While MVC-resistant viruses have been identified in patients, it still remains incompletely known how they adjust their CD4 and CCR5 binding properties to resist MVC inhibition while preserving their replicative capacity. It is thought that they maintain high efficiency of receptor binding. To date however, information about the binding affinities to receptors for inhibitor-resistant HIV-1 remains limited. Results Here, we show by means of viral envelope (gp120) binding experiments and virus-cell fusion kinetics that a MVC-resistant virus (MVC-Res) that had emerged as a dominant viral quasispecies in a patient displays reduced affinities for CD4 and CCR5 either free or bound to MVC, as compared to its MVC-sensitive counterpart isolated before MVC therapy. An alanine insertion within the GPG motif (G310_P311insA) of the MVC-resistant gp120 V3 loop is responsible for the decreased CCR5 binding affinity, while impaired binding to CD4 is due to sequence changes outside V3. Molecular dynamics simulations of gp120 binding to CCR5 further emphasize that the Ala insertion alters the structure of the V3 tip and weakens interaction with CCR5 ECL2. Paradoxically, infection experiments on cells expressing high levels of CCR5 also showed that Ala allows MVC-Res to use CCR5 efficiently, thereby improving viral fusion and replication efficiencies. Actually, although we found that the V3 loop of MVC-Res is required for high levels of MVC resistance, other regions outside V3 are sufficient to confer a moderate level of resistance. These sequence changes outside V3, however, come with a replication cost, which is compensated for by the Ala insertion in V3. Conclusion These results indicate that changes in the V3 loop of MVC-resistant viruses can augment the efficiency of CCR5-dependent steps of viral entry other than gp120 binding, thereby compensating for their decreased affinity for entry receptors and improving their fusion and replication efficiencies. This study thus sheds light on unsuspected mechanisms whereby MVC-resistant HIV-1 could emerge and grow in treated patients. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0177-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Javier Garcia-Perez
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - Isabelle Staropoli
- INSERM U1108, Institut Pasteur, 75015, Paris, France. .,Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015, Paris, France.
| | | | | | - Almudena Cascajero
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - Philippe Colin
- INSERM U1108, Institut Pasteur, 75015, Paris, France. .,Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015, Paris, France. .,Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Rue du Docteur Roux, 75015, Paris, France.
| | - Hugues Lortat-Jacob
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), 38027, Grenoble, France. .,CNRS, IBS, 38027, Grenoble, France. .,CEA, DSV, IBS, 38027, Grenoble, France.
| | - Fernando Arenzana-Seisdedos
- INSERM U1108, Institut Pasteur, 75015, Paris, France. .,Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015, Paris, France.
| | - Jose Alcami
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | | | - Bernard Lagane
- INSERM U1108, Institut Pasteur, 75015, Paris, France. .,Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015, Paris, France.
| |
Collapse
|
12
|
Veljkovic N, Vucicevic J, Tassini S, Glisic S, Veljkovic V, Radi M. Preclinical discovery and development of maraviroc for the treatment of HIV. Expert Opin Drug Discov 2015; 10:671-84. [PMID: 25927601 DOI: 10.1517/17460441.2015.1041497] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Maraviroc is a first-in-class antiretroviral (ARV) drug acting on a host cell target (CCR5), which blocks the entry of the HIV virus into the cell. Maraviroc is currently indicated for combination ARV treatment in adults infected only with CCR5-tropic HIV-1. AREAS COVERED This drug discovery case history focuses on the key studies that led to the discovery and approval of maraviroc, as well as on post-launch clinical reports. The article is based on the data reported in published preclinical and clinical studies, conference posters and on drug package data. EXPERT OPINION The profound understanding of HIV's entry mechanisms has provided a strong biological rationale for targeting the chemokine receptor CCR5. The CCR5-antagonist mariviroc, with its unique mode of action and excellent safety profile, is an important therapeutic option for HIV patients. In general, the authors believe that targeting host factors is a useful approach for combating new and re-emerging transmissible diseases, as well as pathogens that easily become resistant to common antiviral drugs. Maraviroc, offering a potent and safe cellular receptor-mediated pharmacological response to HIV, has paved the way for the development of a new generation of host-targeting antivirals.
Collapse
Affiliation(s)
- Nevena Veljkovic
- University of Belgrade, Institute of Nuclear Sciences VINCA, Center for Multidisciplinary Research , P.O. Box 522, Belgrade , Serbia +381 11 3408154 ; + 381 11 7440100 ;
| | | | | | | | | | | |
Collapse
|
13
|
Raymond S, Maillard A, Amiel C, Peytavin G, Trabaud MA, Desbois D, Bellecave P, Delaugerre C, Soulie C, Marcelin AG, Descamps D, Izopet J, the ANRS ACll Resistance Study Group, Reigadas S, Bellecave P, Pinson-Recordon P, Fleury H, Masquelier B, Signori-Schmuck A, Morand P, Bocket L, Mouna L, Andre P, Tardy JC, Trabaud MA, Descamps D, Charpentier C, Peytavin G, Brun-Vezinet F, Haim-Boukobza S, Roques AM, Soulie C, Lambert-Niclot S, Malet I, Wirden M, Fourati S, Marcelin AG, Calvez V, Flandre P, Assoumou L, Costagliola D, Morand-Joubert L, Delaugerre C, Schneider V, Amiel C, Giraudeau G, Maillard A, Nicot F, Izopet J. Virological failure of patients on maraviroc-based antiretroviral therapy. J Antimicrob Chemother 2015; 70:1858-64. [DOI: 10.1093/jac/dkv026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/25/2015] [Indexed: 11/14/2022] Open
|
14
|
Cavarelli M, Mainetti L, Pignataro AR, Bigoloni A, Tolazzi M, Galli A, Nozza S, Castagna A, Sampaolo M, Boeri E, Scarlatti G. Complexity and dynamics of HIV-1 chemokine receptor usage in a multidrug-resistant adolescent. AIDS Res Hum Retroviruses 2014; 30:1243-50. [PMID: 25275490 DOI: 10.1089/aid.2014.0124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Maraviroc (MVC) is licensed in clinical practice for patients with R5 virus and virological failure; however, in anecdotal reports, dual/mixed viruses were also inhibited. We retrospectively evaluated the evolution of HIV-1 coreceptor tropism in plasma and peripheral blood mononuclear cells (PBMCs) of an infected adolescent with a CCR5/CXCR4 Trofile profile who experienced an important but temporary immunological and virological response during a 16-month period of MVC-based therapy. Coreceptor usage of biological viral clones isolated from PBMCs was investigated in U87.CD4 cells expressing wild-type or chimeric CCR5 and CXCR4. Plasma and PBMC-derived viral clones were sequenced to predict coreceptor tropism using the geno2pheno algorithm from the V3 envelope sequence and pol gene-resistant mutations. From start to 8.5 months of MVC treatment only R5X4 viral clones were observed, whereas at 16 months the phenotype enlarged to also include R5 and X4 clones. Chimeric receptor usage suggested the preferential usage of the CXCR4 coreceptor by the R5X4 biological clones. According to phenotypic data, R5 viruses were susceptible, whereas R5X4 and X4 viruses were resistant to RANTES and MVC in vitro. Clones at 16 months, but not at baseline, showed an amino acidic resistance pattern in protease and reverse transcription genes, which, however, did not drive their tropisms. The geno2pheno algorithm predicted at baseline R5 viruses in plasma, and from 5.5 months throughout follow-up only CXCR4-using viruses. An extended methodological approach is needed to unravel the complexity of the phenotype and variation of viruses resident in the different compartments of an infected individual. The accurate evaluation of the proportion of residual R5 viruses may guide therapeutic intervention in highly experienced patients with limited therapeutic options.
Collapse
Affiliation(s)
- Mariangela Cavarelli
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lara Mainetti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Rosa Pignataro
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita Salute San Raffaele, Milan, Italy
| | - Alba Bigoloni
- Vaccine and Immunotherapy Research Center, Department of Infectious and Tropical Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Tolazzi
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Galli
- Vaccine and Immunotherapy Research Center, Department of Infectious and Tropical Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Nozza
- Vaccine and Immunotherapy Research Center, Department of Infectious and Tropical Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonella Castagna
- Vaccine and Immunotherapy Research Center, Department of Infectious and Tropical Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michela Sampaolo
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Enzo Boeri
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
15
|
Role of 3D Structures in Understanding, Predicting, and Designing Molecular Interactions in the Chemokine Receptor Family. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/7355_2014_77] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Iyidogan P, Anderson KS. Current perspectives on HIV-1 antiretroviral drug resistance. Viruses 2014; 6:4095-139. [PMID: 25341668 PMCID: PMC4213579 DOI: 10.3390/v6104095] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/08/2014] [Accepted: 10/20/2014] [Indexed: 11/18/2022] Open
Abstract
Current advancements in antiretroviral therapy (ART) have turned HIV-1 infection into a chronic and manageable disease. However, treatment is only effective until HIV-1 develops resistance against the administered drugs. The most recent antiretroviral drugs have become superior at delaying the evolution of acquired drug resistance. In this review, the viral fitness and its correlation to HIV-1 mutation rates and drug resistance are discussed while emphasizing the concept of lethal mutagenesis as an alternative therapy. The development of resistance to the different classes of approved drugs and the importance of monitoring antiretroviral drug resistance are also summarized briefly.
Collapse
Affiliation(s)
- Pinar Iyidogan
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06520, USA.
| | - Karen S Anderson
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
17
|
Synergistic combinations of the CCR5 inhibitor VCH-286 with other classes of HIV-1 inhibitors. Antimicrob Agents Chemother 2014; 58:7565-9. [PMID: 25267674 DOI: 10.1128/aac.03630-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Here, we evaluated the in vitro anti-HIV-1 activity of the experimental CCR5 inhibitor VCH-286 as a single agent or in combination with various classes of HIV-1 inhibitors. Although VCH-286 used alone had highly inhibitory activity, paired combinations with different drug classes led to synergistic or additive interactions. However, combinations with other CCR5 inhibitors led to effects ranging from synergy to antagonism. We suggest that caution should be exercised when combining CCR5 inhibitors in vivo.
Collapse
|
18
|
Yuan Y, Yokoyama M, Maeda Y, Terasawa H, Harada S, Sato H, Yusa K. Structure and dynamics of the gp120 V3 loop that confers noncompetitive resistance in R5 HIV-1(JR-FL) to maraviroc. PLoS One 2013; 8:e65115. [PMID: 23840315 PMCID: PMC3695986 DOI: 10.1371/journal.pone.0065115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/21/2013] [Indexed: 12/22/2022] Open
Abstract
Maraviroc, an (HIV-1) entry inhibitor, binds to CCR5 and efficiently prevents R5 human immunodeficiency virus type 1 (HIV-1) from using CCR5 as a coreceptor for entry into CD4(+) cells. However, HIV-1 can elude maraviroc by using the drug-bound form of CCR5 as a coreceptor. This property is known as noncompetitive resistance. HIV-1(V3-M5) derived from HIV-1(JR-FLan) is a noncompetitive-resistant virus that contains five mutations (I304V/F312W/T314A/E317D/I318V) in the gp120 V3 loop alone. To obtain genetic and structural insights into maraviroc resistance in HIV-1, we performed here mutagenesis and computer-assisted structural study. A series of site-directed mutagenesis experiments demonstrated that combinations of V3 mutations are required for HIV-1(JR-FLan) to replicate in the presence of 1 µM maraviroc, and that a T199K mutation in the C2 region increases viral fitness in combination with V3 mutations. Molecular dynamic (MD) simulations of the gp120 outer domain V3 loop with or without the five mutations showed that the V3 mutations induced (i) changes in V3 configuration on the gp120 outer domain, (ii) reduction of an anti-parallel β-sheet in the V3 stem region, (iii) reduction in fluctuations of the V3 tip and stem regions, and (iv) a shift of the fluctuation site at the V3 base region. These results suggest that the HIV-1 gp120 V3 mutations that confer maraviroc resistance alter structure and dynamics of the V3 loop on the gp120 outer domain, and enable interactions between gp120 and the drug-bound form of CCR5.
Collapse
Affiliation(s)
- Yuzhe Yuan
- Transfusion Transmitted Diseases Center, Institute of Blood Transfusion, Chinese Academy of Medical Science, Chenghua District, Chengdu, Sichuan Province, P. R. China
| | - Masaru Yokoyama
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashi Murayama, Tokyo, Japan
| | - Yosuke Maeda
- Department of Medical Virology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiromi Terasawa
- Department of Medical Virology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinji Harada
- Department of Medical Virology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hironori Sato
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashi Murayama, Tokyo, Japan
| | - Keisuke Yusa
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Setagaya, Tokyo, Japan
| |
Collapse
|
19
|
Guo H, Liu C, Liu B, Wood C, Kong X. Analysis of primary resistance mutations to HIV-1 entry inhibitors in therapy naive subtype C HIV-1 infected mother-infant pairs from Zambia. J Clin Virol 2013; 58:233-9. [PMID: 23809473 DOI: 10.1016/j.jcv.2013.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/13/2013] [Accepted: 05/28/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Small molecular CCR5 inhibitors represent a new class of drugs for treating HIV-1 infection. The evaluation of the primary resistance mutations associated with entry inhibitors during HIV-1 perinatal transmission is required because they may have a profound impact on the clinical management in MTCT. OBJECTIVES To evaluate the primary resistance mutations to maraviroc and vicriviroc during perinatal transmission and analyze the sensitivity of Env derived from mother-infant pairs to maraviroc. STUDY DESIGN Nine MIPs infected by subtype C HIV-1 were recruited to analyze the prevalence and transmission of primary resistance mutations to maraviroc and vicriviroc. Moreover, Env derived from six MIPs were employed to construct provirus clones and to analyze the sensitivity to maraviroc. RESULTS Mutations A316T, conferring partial resistance to maraviroc, T307I and R315Q, both conferring partial resistance to vicriviroc are prevalent in mother and infant cohorts, indicating the transmission of primary resistance mutations during HIV-1 perinatal transmission. However, the mutations of acutely infected mothers seem to directly transmit to their corresponding infants, while some mutations at low frequency of chronically infected mothers would be lost during transmission. Moreover, provirus clones derived from acutely infected MIPs are less susceptible to maraviroc than those from chronically infected MIPs. CONCLUSIONS Our study suggests that the transmission mode of primary resistance mutations and the sensitivity to maraviroc are dependent on infection status of MIPs either acutely or chronically infected. These results may indicate that higher dose of maraviroc could be needed for treatment of acutely infected MIPs compared to chronically infected MIPs.
Collapse
Affiliation(s)
- Hongyan Guo
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, China
| | | | | | | | | |
Collapse
|
20
|
Delobel P, Cazabat M, Saliou A, Loiseau C, Coassin L, Raymond S, Requena M, Marchou B, Massip P, Izopet J. Primary resistance of CCR5-tropic HIV-1 to maraviroc cannot be predicted by the V3 sequence. J Antimicrob Chemother 2013; 68:2506-14. [DOI: 10.1093/jac/dkt249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
21
|
Asin-Milan O, Chamberland A, Wei Y, Haidara A, Sylla M, Tremblay CL. Mutations in variable domains of the HIV-1 envelope gene can have a significant impact on maraviroc and vicriviroc resistance. AIDS Res Ther 2013; 10:15. [PMID: 23758814 PMCID: PMC3700831 DOI: 10.1186/1742-6405-10-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/04/2013] [Indexed: 01/16/2023] Open
Abstract
Background Resistance to CCR5 inhibitors, such as maraviroc and vicriviroc is characterized by reduction of maximal percent inhibition which indicates the use of an inhibitor-bound conformation of CCR5 for human immunodeficiency virus-1(HIV-1) entry. It is accompanied by substitutions in gp120 and gp41. Variable domain 3 (V3) plays the most important role, but substitutions outside V3 could also be involved in phenotype resistance. In this work, we investigated how mutations in variable regions of the viral envelope protein gp120 can contribute to CCR5 inhibitor resistance. Methods Resistant isolates were selected by passaging CC1/85 and BaL viruses with sub-inhibitory MVC and VCV concentrations. Mutations in gp160 were identified and mutants containing V2 (V169M), V3 (L317W) and V4 (I408T) were constructed. Results MVC and VCV susceptibility and viral tropism were assessed by single cycle assay. Mutant I408T showed 4-fold change (FC) increase in the half maximal inhibitory concentration (IC50) to MVC, followed by L317W (1.52-FC), V169M (1.23-FC), V169M/I408T (4-FC) L317W/I408T (3-FC), V169M/L317W (1.30-FC), and V169M/L317W/I408T (3.31-FC). MPI reduction was observed for mutants I408T (85%), L317W (95%), V169M/I408T (84%), L317W/I408T (85%) and V169M/L317W/I408T (83%). For VCV, I408T increased the IC50 by 2-FC and few mutants showed MPI reduction less than 95%: I408T (94%), L317W/I408T (94%) and V169M/L317W/I408T (94%). All mutants remained R5-tropic and presented decreased infectivity. Conclusions These results suggest that mutations in the V4 loop of HIV-1 may contribute to MVC and VCV resistance alone or combined with mutations in V2 and V3 loops.
Collapse
|
22
|
Thirty years on: HIV receptor gymnastics and the prevention of infection. BMC Biol 2013; 11:57. [PMID: 23692808 PMCID: PMC3660199 DOI: 10.1186/1741-7007-11-57] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/10/2013] [Indexed: 11/10/2022] Open
Abstract
During 30 years of research on human immunodeficiency virus (HIV), our knowledge of its cellular receptors - CD4, CCR5 and CXCR4 - has illuminated aspects of the pathogenesis of the acquired immune deficiency syndrome (AIDS). Studying how the HIV envelope glycoproteins interact with the receptors led to anti-retroviral drugs based on blocking the docking or fusion of virus to the host cell. Genetic polymorphisms of CCR5 determine resistance to HIV infection and the rate of progression to AIDS. Eliciting neutralizing antibodies to the sites of receptor interaction on HIV glycoproteins is a promising approach to HIV vaccine development.
Collapse
|
23
|
Roche M, Salimi H, Duncan R, Wilkinson BL, Chikere K, Moore MS, Webb NE, Zappi H, Sterjovski J, Flynn JK, Ellett A, Gray LR, Lee B, Jubb B, Westby M, Ramsland PA, Lewin SR, Payne RJ, Churchill MJ, Gorry PR. A common mechanism of clinical HIV-1 resistance to the CCR5 antagonist maraviroc despite divergent resistance levels and lack of common gp120 resistance mutations. Retrovirology 2013; 10:43. [PMID: 23602046 PMCID: PMC3648390 DOI: 10.1186/1742-4690-10-43] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 04/17/2013] [Indexed: 12/02/2022] Open
Abstract
Background The CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such that the gp120 envelope glycoproteins (Env) no longer recognize CCR5. The mechanisms of HIV-1 resistance to MVC, the only CCR5 antagonist licensed for clinical use are poorly understood, with insights into MVC resistance almost exclusively limited to knowledge obtained from in vitro studies or from studies of resistance to other CCR5 antagonists. To more precisely understand mechanisms of resistance to MVC in vivo, we characterized Envs isolated from 2 subjects who experienced virologic failure on MVC. Results Envs were cloned from subjects 17 and 24 before commencement of MVC (17-Sens and 24-Sens) and after virologic failure (17-Res and 24-Res). The Envs cloned during virologic failure showed broad divergence in resistance levels, with 17-Res Env exhibiting a relatively high maximal percent inhibition (MPI) of ~90% in NP2-CD4/CCR5 cells and peripheral blood mononuclear cells (PBMC), and 24-Res Env exhibiting a very low MPI of ~0 to 12% in both cell types, indicating relatively “weak” and “strong” resistance, respectively. Resistance mutations were strain-specific and mapped to the gp120 V3 loop. Affinity profiling by the 293-Affinofile assay and mathematical modeling using VERSA (Viral Entry Receptor Sensitivity Analysis) metrics revealed that 17-Res and 24-Res Envs engaged MVC-bound CCR5 inefficiently or very efficiently, respectively. Despite highly divergent phenotypes, and a lack of common gp120 resistance mutations, both resistant Envs exhibited an almost superimposable pattern of dramatically increased reliance on sulfated tyrosine residues in the CCR5 N-terminus, and on histidine residues in the CCR5 ECLs. This altered mechanism of CCR5 engagement rendered both the resistant Envs susceptible to neutralization by a sulfated peptide fragment of the CCR5 N-terminus. Conclusions Clinical resistance to MVC may involve divergent Env phenotypes and different genetic alterations in gp120, but the molecular mechanism of resistance of the Envs studied here appears to be related. The increased reliance on sulfated CCR5 N-terminus residues suggests a new avenue to block HIV-1 entry by CCR5 N-terminus sulfopeptidomimetic drugs.
Collapse
Affiliation(s)
- Michael Roche
- Center for Virology, Monash University, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The human immunodeficiency virus (HIV) enters cells through a series of molecular interactions between the HIV envelope protein and cellular receptors, thus providing many opportunities to block infection. Entry inhibitors are currently being used in the clinic, and many more are under development. Unfortunately, as is the case for other classes of antiretroviral drugs that target later steps in the viral life cycle, HIV can become resistant to entry inhibitors. In contrast to inhibitors that block viral enzymes in intracellular compartments, entry inhibitors interfere with the function of the highly variable envelope glycoprotein as it continuously adapts to changing immune pressure and available target cells in the extracellular environment. Consequently, pathways and mechanisms of resistance for entry inhibitors are varied and often involve mutations across the envelope gene. This review provides a broad overview of entry inhibitor resistance mechanisms that inform our understanding of HIV entry and the design of new inhibitors and vaccines.
Collapse
Affiliation(s)
- Christopher J De Feo
- Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892, USA.
| | | |
Collapse
|
25
|
Haqqani AA, Tilton JC. Entry inhibitors and their use in the treatment of HIV-1 infection. Antiviral Res 2013; 98:158-70. [PMID: 23541872 DOI: 10.1016/j.antiviral.2013.03.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 12/20/2022]
Abstract
Entry of HIV into target cells is a complex, multi-stage process involving sequential attachment and CD4 binding, coreceptor binding, and membrane fusion. HIV entry inhibitors are a complex group of drugs with multiple mechanisms of action depending on the stage of the viral entry process they target. Two entry inhibitors are currently approved for the treatment of HIV-infected patients. Maraviroc, a CCR5 antagonist, blocks interactions between the viral envelope proteins and the CCR5 coreceptor. Enfuvirtide, a fusion inhibitor, disrupts conformational changes in gp41 that drive membrane fusion. A wide array of additional agents are in various stages of development. This review covers the entry inhibitors and their use in the treatment of HIV-infected patients.
Collapse
Affiliation(s)
- Aiman A Haqqani
- Case Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
26
|
Use of G-protein-coupled and -uncoupled CCR5 receptors by CCR5 inhibitor-resistant and -sensitive human immunodeficiency virus type 1 variants. J Virol 2013; 87:6569-81. [PMID: 23468486 DOI: 10.1128/jvi.00099-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Small-molecule CCR5 inhibitors such as vicriviroc (VVC) and maraviroc (MVC) are allosteric modulators that impair HIV-1 entry by stabilizing a CCR5 conformation that the virus recognizes inefficiently. Viruses resistant to these compounds are able to bind the inhibitor-CCR5 complex while also interacting with the free coreceptor. CCR5 also interacts intracellularly with G proteins, as part of its signal transduction functions, and this process alters its conformation. Here we investigated whether the action of VVC against inhibitor-sensitive and -resistant viruses is affected by whether or not CCR5 is coupled to G proteins such as Gαi. Treating CD4(+) T cells with pertussis toxin to uncouple the Gαi subunit from CCR5 increased the potency of VVC against the sensitive viruses and revealed that VVC-resistant viruses use the inhibitor-bound form of Gαi-coupled CCR5 more efficiently than they use uncoupled CCR5. Supportive evidence was obtained by expressing a signaling-deficient CCR5 mutant with an impaired ability to bind to G proteins, as well as two constitutively active mutants that activate G proteins in the absence of external stimuli. The implication of these various studies is that the association of intracellular domains of CCR5 with the signaling machinery affects the conformation of the external and transmembrane domains and how they interact with small-molecule inhibitors of HIV-1 entry.
Collapse
|
27
|
Menéndez-Arias L. Molecular basis of human immunodeficiency virus type 1 drug resistance: overview and recent developments. Antiviral Res 2013; 98:93-120. [PMID: 23403210 DOI: 10.1016/j.antiviral.2013.01.007] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 01/26/2013] [Accepted: 01/29/2013] [Indexed: 12/15/2022]
Abstract
The introduction of potent combination therapies in the mid-90s had a tremendous effect on AIDS mortality. However, drug resistance has been a major factor contributing to antiretroviral therapy failure. Currently, there are 26 drugs approved for treating human immunodeficiency virus (HIV) infections, although some of them are no longer prescribed. Most of the available antiretroviral drugs target HIV genome replication (i.e. reverse transcriptase inhibitors) and viral maturation (i.e. viral protease inhibitors). Other drugs in clinical use include a viral coreceptor antagonist (maraviroc), a fusion inhibitor (enfuvirtide) and two viral integrase inhibitors (raltegravir and elvitegravir). Elvitegravir and the nonnucleoside reverse transcriptase inhibitor rilpivirine have been the most recent additions to the antiretroviral drug armamentarium. An overview of the molecular mechanisms involved in antiretroviral drug resistance and the role of drug resistance-associated mutations was previously presented (Menéndez-Arias, L., 2010. Molecular basis of human immunodeficiency virus drug resistance: an update. Antiviral Res. 85, 210-231). This article provides now an updated review that covers currently approved drugs, new experimental agents (e.g. neutralizing antibodies) and selected drugs in preclinical or early clinical development (e.g. experimental integrase inhibitors). Special attention is dedicated to recent research on resistance to reverse transcriptase and integrase inhibitors. In addition, recently discovered interactions between HIV and host proteins and novel strategies to block HIV assembly or viral entry emerge as promising alternatives for the development of effective antiretroviral treatments.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa"-Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid, c/ Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
28
|
McNicholas P, Vilchez RA, Greaves W, Kumar S, Onyebuchi C, Black T, Strizki JM. Detection of HIV-1 CXCR4 tropism and resistance in treatment experienced subjects receiving CCR5 antagonist-Vicriviroc. J Clin Virol 2012; 55:134-9. [PMID: 22824230 DOI: 10.1016/j.jcv.2012.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 06/22/2012] [Accepted: 06/28/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Vicriviroc (VCV), a small-molecule antagonist of the C-C chemokine receptor 5 (CCR5), blocks HIV's entry into CD4+ cells. Small studies have suggested that resistance to CCR5 antagonists is slow to develop. OBJECTIVES To examine resistance to VCV in isolates from treatment experienced patients who experienced virologic failure in two phase 3 trials. STUDY DESIGN Genotypic and phenotypic susceptibility to VCV, and other antiretroviral drugs were evaluated at baseline and at defined intervals during the study. In a post hoc analysis, viral tropism at baseline was evaluated using the Trofile-ES assay. Only subjects with R5-tropic virus were included in the analysis. Viral envelope sequencing was performed on samples from subjects with emergent VCV resistance defined using a relative MPI cutoff. RESULTS 71/486 subjects treated with VCV for 48 weeks met the protocol-defined virologic failure criteria. 7/71 (10%) had DM/X4 virus at the time of virologic failure; VCV resistance was identified in 4/486 treated subjects (1%). No control subject had detectable DM/X4 virus or VCV resistance at virologic failure. Clonal analysis of envelope sequences from VCV-resistant virus identified 2-5 amino acid substitutions at or near the crown of the V3 loop; however, no signature V3 mutations were identified. Changes outside the V3 loop were also observed in resistant clones; no consistent variant pattern was observed. CONCLUSIONS In these trials, use of a sensitive tropism assay and potent antiretroviral drug combinations contributed to the infrequent detection of X4-tropic virus and VCV resistance. Substitutions in the V3 loop were associated with VCV resistance, however, no specific pattern of amino acid changes were sufficient to reliably predict VCV susceptibility.
Collapse
|
29
|
Anastassopoulou CG, Ketas TJ, Sanders RW, Klasse PJ, Moore JP. Effects of sequence changes in the HIV-1 gp41 fusion peptide on CCR5 inhibitor resistance. Virology 2012; 428:86-97. [PMID: 22520838 DOI: 10.1016/j.virol.2012.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/02/2012] [Accepted: 03/18/2012] [Indexed: 11/26/2022]
Abstract
A rare pathway of HIV-1 resistance to small molecule CCR5 inhibitors such as Vicriviroc (VCV) involves changes solely in the gp41 fusion peptide (FP). Here, we show that the G516V change is critical to VCV resistance in PBMC and TZM-bl cells, although it must be accompanied by either M518V or F519I to have a substantial impact. Modeling VCV inhibition data from the two cell types indicated that G516V allows both double mutants to use VCV-CCR5 complexes for entry. The model further identified F519I as an independent determinant of preference for the unoccupied, high-VCV affinity form of CCR5. From inhibitor-free reversion cultures, we also identified a substitution in the inner domain of gp120, T244A, which appears to counter the resistance phenotype created by the FP substitutions. Examining the interplay of these changes will enhance our understanding of Env complex interactions that influence both HIV-1 entry and resistance to CCR5 inhibitors.
Collapse
Affiliation(s)
- Cleo G Anastassopoulou
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|