1
|
Przybylski M, Guzowska M, Gazi O, Urbański J, Bieganowski P. Curcumin dispersed with colloidal nano-particles inhibits enteric viruses replication. Antiviral Res 2025; 237:106140. [PMID: 40057049 DOI: 10.1016/j.antiviral.2025.106140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/15/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
Acute gastroenteritis remains one of the most common health problems despite the progress in prevention and vaccination. The options for viral diarrhea therapy are limited and there is the need for effective treatment. Recently a novel form of the nano-dispersed curcumin that is highly bioavailable was described. This form of curcumin was well tolerated by the cells in culture and was rapidly absorbed into the blood plasma after oral administration. We tested the antiviral activity of this curcumin formulation in vitro using several viruses associated with gastrointestinal infections, like astrovirus, norovirus rotavirus, adenovirus, echovirus, and coxackievirus. We did observe strong replication inhibition of all tested viruses. These results suggest that the tested form of curcumin is a promising candidate for a broad-spectrum antiviral drug.
Collapse
Affiliation(s)
- Maciej Przybylski
- Chair and Department of Medical Microbiology, Medical University of Warsaw, Poland.
| | - Magdalena Guzowska
- Division of Biochemistry and Dietetics, Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland.
| | - Olga Gazi
- Chair and Department of Medical Microbiology, Medical University of Warsaw, Poland.
| | - Jakub Urbański
- Food Studies, SWPS University, Warsaw, Poland; Dairy Biotechnologies Ltd., Puławy, Poland.
| | - Pawel Bieganowski
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
2
|
Ren M, Zhou H, Wu JE, Wang JN, Wang X, Abdullah SW, Guo H, Sun S. Heat shock protein A1 inhibits the replication of foot-and-mouth disease virus by degrading viral RNA polymerase 3D through chaperone-mediated autophagy. J Virol 2025:e0016825. [PMID: 40162788 DOI: 10.1128/jvi.00168-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
Foot-and-mouth disease virus (FMDV), a member of the Picornaviridae family, is a single-stranded, positive-sense RNA virus. Heat shock protein A1 (HSPA1) has been shown to influence the entry, translation, assembly, and release of enterovirus A71 (EV-A71), another Picornaviridae family member. In this study, we demonstrate that HSPA1 plays a different role in the replication of FMDV. By investigating various stages of virus replication, we found that HSPA1 specifically inhibits the RNA replication stage in which HSPA1 inhibits viral RNA replication by degrading the viral RNA-dependent RNA polymerase (RdRp), 3D protein. In the presence of specific inhibitors, we find out that this degradation occurs through the autophagy pathway. Activation and blockage of chaperone-mediated autophagy (CMA) demonstrate that HSPA1 degrades 3D through the CMA pathway. Mutation analysis reveals that 421QEKLI425 is the key motif in 3D responsible for HSPA1-mediated CMA degradation. In summary, this study shows that HSPA1 can degrade the viral 3D protein through the CMA pathway, thereby inhibiting the RNA replication of FMDV and interfering with virus infection. This study, for the first time, demonstrates that HSPA1 employs its chaperone function to mediate the degradation of the FMDV RdRp, revealing the crucial role of HSPA1 in the FMDV infection process and suggesting that HSPA1 could be a potential target for the prevention and treatment of FMDV infection. IMPORTANCE Viral RNA replication is the key stage in understanding the pathogenic mechanisms of foot-and-mouth disease virus (FMDV). During this process, the viral non-structural protein 3D serves as an RNA-dependent RNA polymerase (RdRp) to synthesize progeny RNA using the viral genomic RNA as a template. However, the regulatory effect of host cells on FMDV 3D proteins has not yet been studied. In this study, we find that heat shock protein A1 (HSPA1) degrades the viral 3D protein through the chaperone-mediated autophagy (CMA) pathway, thereby inhibiting the RNA replication of FMDV and interfering with virus infection. This study, for the first time, demonstrates that HSPA1 employs its chaperone function to mediate the degradation of the FMDV RdRp.
Collapse
Affiliation(s)
- Mei Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gembloux Agro-Biotech, University of Liege, Gembloux, Belgium
| | - Haiqian Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jin-En Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jia-Ning Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuefei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Sahibzada Waheed Abdullah
- Livestock and Dairy Development Department Peshawar, Government of Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
3
|
Wang H, Li K, Cui B, Yan H, Wu S, Wang K, Yang G, Jiang J, Li Y. Tribbles pseudokinase 3 promotes enterovirus A71 infection via dual mechanisms. Emerg Microbes Infect 2024; 13:2307514. [PMID: 38240287 PMCID: PMC10829831 DOI: 10.1080/22221751.2024.2307514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Enterovirus A71 (EV-A71) is the main pathogen causing hand, foot and mouth disease (HFMD) in children and occasionally associated with neurological diseases such as aseptic meningitis, brainstem encephalitis (BE) and acute flaccid paralysis. We report here that cellular pseudokinase tribbles 3 (TRIB3) facilitates the infection of EV-A71 via dual mechanisms. In one hand, TRIB3 maintains the metabolic stability of scavenger receptor class B member 2 (SCARB2), the bona fide receptor of EV-A71, to enhance the infectious entry and spreading of the virus. On the other hand, TRIB3 facilitates the replication of EV-A71 RNA in a SCARB2-independent manner. The critical role of TRIB3 in EV-A71 infection and pathogenesis was further demonstrated in vivo in mice. In comparison to wild-type C57BL/6 mice, EV-A71 infection in TRIB3 knockdown mice (Trib3+/-) resulted in significantly lower viral loads in muscular tissues and reduced lethality and severity of clinical scores and tissue pathology. In addition, TRIB3 also promoted the replication of coxsackievirus B3 (CVB3) and coxsackievirus A16 (CVA16) in vitro. In conclusion, our results suggest that TRIB3 is one of key host cellular proteins required for the infection and pathogenesis of EV-A71 and some other human enteroviruses and may thus be a potential therapeutic target for combating the infection of those viruses.
Collapse
Affiliation(s)
- Huiqiang Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ke Li
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Boming Cui
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Haiyan Yan
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Shuo Wu
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Kun Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ge Yang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jiandong Jiang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yuhuan Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Ng QY, Mahendran V, Lim ZQ, Tan JHY, Wong JJF, Chu JJH, Chow VTK, Sze NSK, Alonso S. Enterovirus-A71 exploits RAB11 to recruit chaperones for virus morphogenesis. J Biomed Sci 2024; 31:65. [PMID: 38943128 PMCID: PMC11212238 DOI: 10.1186/s12929-024-01053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Enterovirus 71 (EV-A71) causes Hand, Foot and Mouth Disease (HFMD) in children and has been associated with neurological complications. The molecular mechanisms involved in EV-A71 pathogenesis have remained elusive. METHODS A siRNA screen in EV-A71 infected-motor neurons was performed targeting 112 genes involved in intracellular membrane trafficking, followed by validation of the top four hits using deconvoluted siRNA. Downstream approaches including viral entry by-pass, intracellular viral genome quantification by qPCR, Western blot analyses, and Luciferase reporter assays allowed determine the stage of the infection cycle the top candidate, RAB11A was involved in. Proximity ligation assay, co-immunoprecipitation and multiplex confocal imaging were employed to study interactions between viral components and RAB11A. Dominant negative and constitutively active RAB11A constructs were used to determine the importance of the protein's GTPase activity during EV-A71 infection. Mass spectrometry and protein interaction analyses were employed for the identification of RAB11A's host interacting partners during infection. RESULTS Small GTPase RAB11A was identified as a novel pro-viral host factor during EV-A71 infection. RAB11A and RAB11B isoforms were interchangeably exploited by strains from major EV-A71 genogroups and by Coxsackievirus A16, another major causative agent of HFMD. We showed that RAB11A was not involved in viral entry, IRES-mediated protein translation, viral genome replication, and virus exit. RAB11A co-localized with replication organelles where it interacted with structural and non-structural viral components. Over-expression of dominant negative (S25N; GDP-bound) and constitutively active (Q70L; GTP-bound) RAB11A mutants had no effect on EV-A71 infection outcome, ruling out RAB11A's involvement in intracellular trafficking of viral or host components. Instead, decreased ratio of intracellular mature viral particles to viral RNA copies and increased VP0:VP2 ratio in siRAB11-treated cells supported a role in provirion maturation hallmarked by VP0 cleavage into VP2 and VP4. Finally, chaperones, not trafficking and transporter proteins, were found to be RAB11A's top interacting partners during EV-A71 infection. Among which, CCT8 subunit from the chaperone complex TRiC/CCT was further validated and shown to interact with viral structural proteins specifically, representing yet another novel pro-viral host factor during EV-A71 infection. CONCLUSIONS This study describes a novel, unconventional role for RAB11A during viral infection where it participates in the complex process of virus morphogenesis by recruiting essential chaperone proteins.
Collapse
Affiliation(s)
- Qing Yong Ng
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Vikneswari Mahendran
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Ze Qin Lim
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Jasmine Hwee Yee Tan
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Joel Jie Feng Wong
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Justin Jang Hann Chu
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vincent T K Chow
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Newman Siu Kwan Sze
- Proteomics and Mass Spectrometry Services Core Facility, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St Catharines, ON, L2S 3A1, Canada
| | - Sylvie Alonso
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Wei Y, Liu H, Hu D, He Q, Yao C, Li H, Hu K, Wang J. Recent Advances in Enterovirus A71 Infection and Antiviral Agents. J Transl Med 2024; 104:100298. [PMID: 38008182 DOI: 10.1016/j.labinv.2023.100298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/29/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023] Open
Abstract
Enterovirus A71 (EV-A71) is one of the major causative agents of hand, foot, and mouth disease (HFMD) that majorly affects children. Most of the time, HFMD is a mild disease but can progress to severe complications, such as meningitis, brain stem encephalitis, acute flaccid paralysis, and even death. HFMD caused by EV-A71 has emerged as an acutely infectious disease of highly pathogenic potential in the Asia-Pacific region. In this review, we introduced the properties and life cycle of EV-A71, and the pathogenesis and the pathophysiology of EV-A71 infection, including tissue tropism and host range of virus infection, the diseases caused by the virus, as well as the genes and host cell immune mechanisms of major diseases caused by enterovirus 71 (EV-A71) infection, such as encephalitis and neurologic pulmonary edema. At the same time, clinicopathologic characteristics of EV-A71 infection were introduced. There is currently no specific medication for EV-A71 infection, highlighting the urgency and significance of developing suitable anti-EV-A71 agents. This overview also summarizes the targets of existing anti-EV-A71 agents, including virus entry, translation, polyprotein processing, replication, assembly and release; interferons; interleukins; the mitogen-activated protein kinase, phosphatidylinositol 3-kinase, and protein kinase B signaling pathways; the oxidative stress pathway; the ubiquitin-proteasome system; and so on. Furthermore, it overviews the effects of natural products, monoclonal antibodies, and RNA interference against EV-A71. It also discusses issues limiting the research of antiviral drugs. This review is a systematic and comprehensive summary of the mechanism and pathological characteristics of EV-A71 infection, the latest progress of existing anti-EV-A71 agents. It would provide better understanding and guidance for the research and application of EV-A71 infection and antiviral inhibitors.
Collapse
Affiliation(s)
- Yanhong Wei
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Huihui Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Da Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Qun He
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Chenguang Yao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Hanluo Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Kanghong Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China.
| | - Jun Wang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Chuang YT, Lin YL, Lin JY. Licochalcone A regulates viral IRES activity to inhibit enterovirus replication. Antiviral Res 2024; 221:105755. [PMID: 37984566 DOI: 10.1016/j.antiviral.2023.105755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/30/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
Enterovirus D68 (EV-D68), belonging to the genus Enterovirus of the Picornavirus family, is an emerging pathogen that can cause neurological and respiratory diseases in children. However, there is little understanding of the pathogenesis of EV-D68, and no effective vaccine or drug for the prevention or treatment of the diseases caused by this virus is available. Autophagy is a cellular process that targets cytoplasmic proteins or organelles to the lysosomes for degradation. Enteroviruses strategically harness the host autophagy pathway to facilitate the completion of their life cycle. Therefore, we selected an autophagy compound library to screen for autophagy-related compounds that may affect viral growth. By using the neutralization screening assay, we identified a compound, 'licochalcone A' that significantly inhibited EV-D68 replication. To investigate the mechanism by which licochalcone A inhibits EV-D68 replication and to identify the viral life cycle stage it inhibits, the time-of-addition, viral attachment, viral entry, and dual-luciferase reporter assays were performed. The results of the time-of-addition assay showed that licochalcone A, a characteristic chalcone found in liquorice roots and widely used in traditional Chinese medicine, inhibits EV-D68 replication during the early stages of the viral life cycle, while those of the dual-luciferase reporter assay showed that licochalcone A does not regulate viral attachment and entry, but inhibits EV-D68 IRES-dependent translation. Licochalcone A also inhibited enterovirus A71 and coxsackievirus B3 but did not significantly inhibit dengue virus 2 or human coronavirus 229E replication. Licochalcone A regulates IRES translation to inhibit EV-D68 viral replication.
Collapse
Affiliation(s)
- Yu-Ting Chuang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Yu-Li Lin
- Department of Medical Research, National Taiwan University Hospital, Taipei City, Taiwan
| | - Jing-Yi Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei City, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei City, Taiwan.
| |
Collapse
|
7
|
Song D, Zhao Y, Sun Y, Liang Y, Chen R, Wen Y, Wu R, Zhao Q, Du S, Yan Q, Han X, Cao S, Huang X. HSP90AB1 Is a Host Factor Required for Transmissible Gastroenteritis Virus Infection. Int J Mol Sci 2023; 24:15971. [PMID: 37958953 PMCID: PMC10649137 DOI: 10.3390/ijms242115971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is an important swine enteric coronavirus causing viral diarrhea in pigs of all ages. Currently, the development of antiviral agents targeting host proteins to combat viral infection has received great attention. The heat shock protein 90 (HSP90) is a critical host factor and has important regulatory effects on the infection of various viruses. However, its roles in porcine coronavirus infection remain unclear. In this study, the effect of HSP90 on TGEV infection was evaluated. In addition, the influence of its inhibitor VER-82576 on proinflammatory cytokine (IL-6, IL-12, TNF-α, CXCL10, and CXCL11) production induced by TGEV infection was further analyzed. The results showed that the knockdown of HSP90AB1 and HSP90 inhibitor VER-82576 treatment resulted in a reduction in TGEV M gene mRNA levels, the N protein level, and virus titers in a dose-dependent manner, while the knockdown of HSP90AA1 and KW-2478 treatment had no significant effect on TGEV infection. A time-of-addition assay indicated that the inhibitory effect of VER-82576 on TGEV infection mainly occurred at the early stage of viral replication. Moreover, the TGEV-induced upregulation of proinflammatory cytokine (IL-6, IL-12, TNF-α, CXCL10, and CXCL11) expression was significantly inhibited by VER-82576. In summary, these findings indicated that HSP90AB1 is a host factor enhancing TGEV infection, and the HSP90 inhibitor VER-82576 could reduce TGEV infection and proinflammatory cytokine production, providing a new perspective for TGEV antiviral drug target design.
Collapse
Affiliation(s)
- Daili Song
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yujia Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ying Sun
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yixiao Liang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Chen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qigui Yan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinfeng Han
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu 611130, China
- National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu 611130, China
- National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
8
|
Andino R, Kirkegaard K, Macadam A, Racaniello VR, Rosenfeld AB. The Picornaviridae Family: Knowledge Gaps, Animal Models, Countermeasures, and Prototype Pathogens. J Infect Dis 2023; 228:S427-S445. [PMID: 37849401 DOI: 10.1093/infdis/jiac426] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Picornaviruses are nonenveloped particles with a single-stranded RNA genome of positive polarity. This virus family includes poliovirus, hepatitis A virus, rhinoviruses, and Coxsackieviruses. Picornaviruses are common human pathogens, and infection can result in a spectrum of serious illnesses, including acute flaccid myelitis, severe respiratory complications, and hand-foot-mouth disease. Despite research on poliovirus establishing many fundamental principles of RNA virus biology and the first transgenic animal model of disease for infection by a human virus, picornaviruses are understudied. Existing knowledge gaps include, identification of molecules required for virus entry, understanding cellular and humoral immune responses elicited during virus infection, and establishment of immune-competent animal models of virus pathogenesis. Such knowledge is necessary for development of pan-picornavirus countermeasures. Defining enterovirus A71 and D68, human rhinovirus C, and echoviruses 29 as prototype pathogens of this virus family may provide insight into picornavirus biology needed to establish public health strategies necessary for pandemic preparedness.
Collapse
Affiliation(s)
- Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Karla Kirkegaard
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Andrew Macadam
- National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom
| | - Vincent R Racaniello
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Amy B Rosenfeld
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
9
|
Wang Z, Pan Q, Ma L, Zhao J, McIntosh F, Liu Z, Ding S, Lin R, Cen S, Finzi A, Liang C. Anthracyclines inhibit SARS-CoV-2 infection. Virus Res 2023; 334:199164. [PMID: 37379907 PMCID: PMC10305762 DOI: 10.1016/j.virusres.2023.199164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/13/2023] [Accepted: 06/26/2023] [Indexed: 06/30/2023]
Abstract
Vaccines and drugs are two effective medical interventions to mitigate SARS-CoV-2 infection. Three SARS-CoV-2 inhibitors, remdesivir, paxlovid, and molnupiravir, have been approved for treating COVID-19 patients, but more are needed, because each drug has its limitation of usage and SARS-CoV-2 constantly develops drug resistance mutations. In addition, SARS-CoV-2 drugs have the potential to be repurposed to inhibit new human coronaviruses, thus help to prepare for future coronavirus outbreaks. We have screened a library of microbial metabolites to discover new SARS-CoV-2 inhibitors. To facilitate this screening effort, we generated a recombinant SARS-CoV-2 Delta variant carrying the nano luciferase as a reporter for measuring viral infection. Six compounds were found to inhibit SARS-CoV-2 at the half maximal inhibitory concentration (IC50) below 1 μM, including the anthracycline drug aclarubicin that markedly reduced viral RNA-dependent RNA polymerase (RdRp)-mediated gene expression, whereas other anthracyclines inhibited SARS-CoV-2 by activating the expression of interferon and antiviral genes. As the most commonly prescribed anti-cancer drugs, anthracyclines hold the promise of becoming new SARS-CoV-2 inhibitors.
Collapse
Affiliation(s)
- Zhen Wang
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Qinghua Pan
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Fiona McIntosh
- Research Institute of the McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | - Zhenlong Liu
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, Quebec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Rongtuan Lin
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Shi H, Liu S, Tan Z, Yin L, Zeng L, Liu T, Zhang S, Zhang L. Proteomic and metabonomic analysis uncovering Enterovirus A71 reprogramming host cell metabolic pathway. Proteomics 2023; 23:e2200362. [PMID: 36254857 DOI: 10.1002/pmic.202200362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/04/2022] [Indexed: 01/19/2023]
Abstract
Enterovirus A71 (EV71) infection can cause hand, foot, and mouth disease (HFMD) and severe neurological complications in children. However, the biological processes regulated by EV71 remain poorly understood. Herein, proteomics and metabonomics studies were conducted to uncover the mechanism of EV71 infection in rhabdomyosarcoma (RD) cells and identify potential drug targets. Differential expressed proteins from enriched membrane were analyzed by isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics technology. Twenty-six differential proteins with 1.5-fold (p < 0.05) change were detected, including 14 upregulated proteins and 12 downregulated proteins. The upregulated proteins are mainly involved in metabolic process, especially in the glycolysis pathway. Alpha-enolase (ENO1) protein was found to increase with temporal dependence following EV71 infection. The targeted metabolomics analysis revealed that glucose absorption and glycolysis metabolites were increased after EV71 infection. The glycolysis pathway was inhibited by knocking down ENO1 or the use of a glycolysis inhibitor (dichloroacetic acid [DCA]); and we found that EV71 infection was inhibited by depleting ENO1 or using DCA. Our study indicates that EV71 may reprogram glucose metabolism by activating glycolysis, and EV71 infection can be inhibited by interrupting the glycolysis pathway. ENO1 may be a potential target against EV71, and DCA could act as an inhibitor of EV71.
Collapse
Affiliation(s)
- Huichun Shi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Siyuan Liu
- The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai, China
| | - Zhimi Tan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lin Yin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Liyan Zeng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tiefu Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuye Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lijun Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Hu B, Chik KKH, Chan JFW, Cai JP, Cao H, Tsang JOL, Zou Z, Hung YP, Tang K, Jia L, Luo C, Yin F, Ye ZW, Chu H, Yeung ML, Yuan S. Vemurafenib Inhibits Enterovirus A71 Genome Replication and Virus Assembly. Pharmaceuticals (Basel) 2022; 15:1067. [PMID: 36145288 PMCID: PMC9500672 DOI: 10.3390/ph15091067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022] Open
Abstract
Enterovirus A71 (EV-A71) infection is a major cause of hand, foot, and mouth disease (HFMD), which may be occasionally associated with severe neurological complications. There is currently a lack of treatment options for EV-A71 infection. The Raf-MEK-ERK signaling pathway, in addition to its critical importance in the regulation of cell growth, differentiation, and survival, has been shown to be essential for virus replication. In this study, we investigated the anti-EV-A71 activity of vemurafenib, a clinically approved B-Raf inhibitor used in the treatment of late-stage melanoma. Vemurafenib exhibits potent anti-EV-A71 effect in cytopathic effect inhibition and viral load reduction assays, with half maximal effective concentration (EC50) at nanomolar concentrations. Mechanistically, vemurafenib interrupts both EV-A71 genome replication and assembly. These findings expand the list of potential antiviral candidates of anti-EV-A71 therapeutics.
Collapse
Affiliation(s)
- Bodan Hu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kenn Ka-Heng Chik
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou 571199, China
| | - Jian-Piao Cai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hehe Cao
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jessica Oi-Ling Tsang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Zijiao Zou
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yin-Po Hung
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kaiming Tang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Lilong Jia
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Cuiting Luo
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Feifei Yin
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou 571199, China
| | - Zi-Wei Ye
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Man-Lung Yeung
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
| |
Collapse
|
12
|
R.Swartz A, Shieh Y, Gulasarian A, Olson J, R.Rustandi R. Binding of Coxsackievirus A21 procapsids to immobilized glutathione depends on cell culture conditions during infection. Virology 2022; 573:167-175. [DOI: 10.1016/j.virol.2022.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023]
|
13
|
Development of antiviral carbon quantum dots that target the Japanese encephalitis virus envelope protein. J Biol Chem 2022; 298:101957. [PMID: 35452675 PMCID: PMC9123278 DOI: 10.1016/j.jbc.2022.101957] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
Japanese encephalitis is a mosquito-borne disease caused by the Japanese encephalitis virus (JEV) that is prevalent in Asia and the Western Pacific. Currently, there is no effective treatment for Japanese encephalitis. Curcumin (Cur) is a compound extracted from the roots of Curcuma longa, and many studies have reported its antiviral and anti-inflammatory activities. However, the high cytotoxicity and very low solubility of Cur limit its biomedical applications. In this study, Cur carbon quantum dots (Cur-CQDs) were synthesized by mild pyrolysis-induced polymerization and carbonization, leading to higher water solubility and lower cytotoxicity, as well as superior antiviral activity against JEV infection. We found that Cur-CQDs effectively bound to the E protein of JEV, preventing viral entry into the host cells. In addition, after continued treatment of JEV with Cur-CQDs, a mutant strain of JEV was evolved that did not support binding of Cur-CQDs to the JEV envelope. Using transmission electron microscopy, biolayer interferometry, and molecular docking analysis, we revealed that the S123R and K312R mutations in the E protein play a key role in binding Cur-CQDs. The S123 and K312 residues are located in structural domains II and III of the E protein, respectively, and are responsible for binding to receptors on and fusing with the cell membrane. Taken together, our results suggest that the E protein of flaviviruses represents a potential target for the development of CQD-based inhibitors to prevent or treat viral infections.
Collapse
|
14
|
Zhao Y, Xiao D, Zhang L, Song D, Chen R, Li S, Liao Y, Wen Y, Liu W, Yu E, Wen Y, Wu R, Zhao Q, Du S, Wen X, Cao S, Huang X. HSP90 inhibitors 17-AAG and VER-82576 inhibit porcine deltacoronavirus replication in vitro. Vet Microbiol 2021; 265:109316. [PMID: 34954542 DOI: 10.1016/j.vetmic.2021.109316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is highly pathogenic to piglets, and no specific drugs or vaccines are available for the prevention and treatment of PDCoV infection, the need for antiviral therapies is pressing. HSP90 inhibitors have potent inhibitory effects against the replication of numerous viruses, hence we evaluated three HSP90 inhibitors, 17-AAG, VER-82576, and KW-2478, for their effects on PDCoV infection in vitro. We evaluated their effectivenesses at suppressing PDCoV by qRT-PCR, western blot, and TCID50 assay, and found that 17-AAG and VER-82576 inhibited PDCoV at the early stage of replication, while KW-2478 showed no significant antiviral activity at any stage of infection. These results indicated that the PDCoV-inhibitory effects of 17-AAG and VER-82576 might be exerted by targeting host cell factor HSP90AB1 but not HSP90AA1. Further study showed that HSP90AB1 mRNA and protein levels were not significantly different in 17-AAG and VER-82576-treated cells versus control cells. 17-AAG and VER-82576 were also evaluated for their effects on the expressions of TNF-α, IL-6, and IL-12, which are PDCoV-induced proinflammatory cytokines. We found that both 17-AAG and VER-82576 inhibited the expressions of TNF-α, IL-6, and IL-12 to varying degrees, but in a dose dependent manner. From our data we can conclude that the HSP90 inhibitors 17-AAG and VER-82576 are promising candidates for the treatment of PDCoV infection.
Collapse
Affiliation(s)
- Yujia Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Dai Xiao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Luwen Zhang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Daili Song
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Rui Chen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Shiqian Li
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yijie Liao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yimin Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Weizhe Liu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Enbo Yu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xintian Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Science-observation Experiment Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China; National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Science-observation Experiment Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China; National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
15
|
Real-Hohn A, Blaas D. Rhinovirus Inhibitors: Including a New Target, the Viral RNA. Viruses 2021; 13:1784. [PMID: 34578365 PMCID: PMC8473194 DOI: 10.3390/v13091784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022] Open
Abstract
Rhinoviruses (RVs) are the main cause of recurrent infections with rather mild symptoms characteristic of the common cold. Nevertheless, RVs give rise to enormous numbers of absences from work and school and may become life-threatening in particular settings. Vaccination is jeopardised by the large number of serotypes eliciting only poorly cross-neutralising antibodies. Conversely, antivirals developed over the years failed FDA approval because of a low efficacy and/or side effects. RV species A, B, and C are now included in the fifteen species of the genus Enteroviruses based upon the high similarity of their genome sequences. As a result of their comparably low pathogenicity, RVs have become a handy model for other, more dangerous members of this genus, e.g., poliovirus and enterovirus 71. We provide a short overview of viral proteins that are considered potential drug targets and their corresponding drug candidates. We briefly mention more recently identified cellular enzymes whose inhibition impacts on RVs and comment novel approaches to interfere with infection via aggregation, virus trapping, or preventing viral access to the cell receptor. Finally, we devote a large part of this article to adding the viral RNA genome to the list of potential drug targets by dwelling on its structure, folding, and the still debated way of its exit from the capsid. Finally, we discuss the recent finding that G-quadruplex stabilising compounds impact on RNA egress possibly via obfuscating the unravelling of stable secondary structural elements.
Collapse
Affiliation(s)
- Antonio Real-Hohn
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria
| | - Dieter Blaas
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria
| |
Collapse
|
16
|
Lubkowska A, Pluta W, Strońska A, Lalko A. Role of Heat Shock Proteins (HSP70 and HSP90) in Viral Infection. Int J Mol Sci 2021; 22:ijms22179366. [PMID: 34502274 PMCID: PMC8430838 DOI: 10.3390/ijms22179366] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Heat shock proteins (HSPs) are a large group of chaperones found in most eukaryotes and bacteria. They are responsible for the correct protein folding, protection of the cell against stressors, presenting immune and inflammatory cytokines; furthermore, they are important factors in regulating cell differentiation, survival and death. Although the biological function of HSPs is to maintain cell homeostasis, some of them can be used by viruses both to fold their proteins and increase the chances of survival in unfavorable host conditions. Folding viral proteins as well as replicating many different viruses are carried out by, among others, proteins from the HSP70 and HSP90 families. In some cases, the HSP70 family proteins directly interact with viral polymerase to enhance viral replication or they can facilitate the formation of a viral replication complex and/or maintain the stability of complex proteins. It is known that HSP90 is important for the expression of viral genes at both the transcriptional and the translational levels. Both of these HSPs can form a complex with HSP90 and, consequently, facilitate the entry of the virus into the cell. Current studies have shown the biological significance of HSPs in the course of infection SARS-CoV-2. A comprehensive understanding of chaperone use during viral infection will provide new insight into viral replication mechanisms and therapeutic potential. The aim of this study is to describe the molecular basis of HSP70 and HSP90 participation in some viral infections and the potential use of these proteins in antiviral therapy.
Collapse
Affiliation(s)
- Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Żołnierska 54, 71-210 Szczecin, Poland;
- Correspondence:
| | - Waldemar Pluta
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Żołnierska 54, 71-210 Szczecin, Poland;
| | - Aleksandra Strońska
- Department of Pharmacognosy and Natural Medicines, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Alicja Lalko
- Student Research at the Chair and Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University, Żołnierska 54, 71-210 Szczecin, Poland;
| |
Collapse
|
17
|
Yang D, Lv X, Zhang S, Zheng S. Tandem Mass Tag-Based Quantitative Proteomic Analysis of Chicken Bursa of Fabricius Infected With Reticuloendotheliosis Virus. Front Vet Sci 2021; 8:666512. [PMID: 34113672 PMCID: PMC8186552 DOI: 10.3389/fvets.2021.666512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/24/2021] [Indexed: 12/03/2022] Open
Abstract
Reticuloendotheliosis virus (REV) is a type C avian retrovirus that causes immunosuppression, dwarf syndrome, and lymphoma in infected hosts. In this study, we used tandem mass tag (TMT) labeling and liquid chromatography–tandem mass spectrometry (LC-MS/MS) to characterize protein alterations in chicken bursa of Fabricius, before and after REV infection at 7, 14, 21, and 28 days. Our data showed that 1,127, 999, 910, and 1,138 differentially expressed proteins were significantly altered at 7, 14, 21, and 28 days after REV infection, respectively. Morphological analysis showed that REV infection reduced in cortical lymphocytes, bursal follicle atrophy, and nuclear damage. Bioinformatics analysis indicated these proteins were mainly involved with immune responses, energy metabolism, cellular processes, biological regulation, metabolic processes, response to stimuli, and multicellular organismal process. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway cluster analysis showed that post-infection, proteins were enriched in the cell cycle, Wnt signaling, antigen processing and presentation, cytokine receptor interaction, adenosine 3′,5′-cyclic monophosphate signaling pathway, and NF-κB signaling. In addition, we observed that peroxiredoxin 4 (PRDX4), peroxiredoxin 6 (PRDX6), glutathione peroxidase 3 (GPX3), catalase (CAT), and peroxidasin (PXDN) were involved in oxidative stress. Some heat shock protein (HSP) family members such as HSPH1, DNAJA4, HSPA8, and HSPA4L also changed significantly after REV infection. These findings help clarify interactions between REV and the host and provides mechanistic insights on REV-induced host immunosuppression.
Collapse
Affiliation(s)
- Dahan Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine, Harbin, China
| | - Xiaoping Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine, Harbin, China
| | - Shujun Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shimin Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine, Harbin, China
| |
Collapse
|
18
|
Zhang WJ, Wang RQ, Li LT, Fu W, Chen HC, Liu ZF. Hsp90 is involved in pseudorabies virus virion assembly via stabilizing major capsid protein VP5. Virology 2020; 553:70-80. [PMID: 33242760 DOI: 10.1016/j.virol.2020.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Many viruses utilize molecular chaperone heat shock protein 90 (Hsp90) for protein folding and stabilization, however, the role of Hsp90 in herpesvirus lifecycle is obscure. Here, we provide evidence that Hsp90 participates in pseudorabies virus (PRV) replication. Viral growth kinetics assays show that Hsp90 inhibitor geldanamycin (GA) abrogates PRV replication at the post-penetration step. Transmission electron microscopy demonstrates that dysfunction of Hsp90 diminishes the quantity of PRV nucleocapsids. Overexpression and knockdown of Hsp90 suggest that de novo Hsp90 is involved in PRV replication. Mechanismly, dysfunction of Hsp90 inhibits PRV major capsid protein VP5 expression. Co-immunoprecipitation and indirect immunofluorescence assays indicate that Hsp90 interacts with VP5. Interestingly, Hsp70, a collaborator of Hsp90, also interacts with VP5, but doesn't affect PRV growth. Finally, inhibition of Hsp90 results in PRV VP5 degradation in a proteasome-dependent manner. Collectively, our data suggest that Hsp90 contributes to PRV virion assembly and replication via stabilization of VP5.
Collapse
Affiliation(s)
- Wen-Jing Zhang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ren-Qi Wang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin-Tao Li
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen Fu
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huan-Chun Chen
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zheng-Fei Liu
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
19
|
Wan Q, Song D, Li H, He ML. Stress proteins: the biological functions in virus infection, present and challenges for target-based antiviral drug development. Signal Transduct Target Ther 2020; 5:125. [PMID: 32661235 PMCID: PMC7356129 DOI: 10.1038/s41392-020-00233-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/26/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023] Open
Abstract
Stress proteins (SPs) including heat-shock proteins (HSPs), RNA chaperones, and ER associated stress proteins are molecular chaperones essential for cellular homeostasis. The major functions of HSPs include chaperoning misfolded or unfolded polypeptides, protecting cells from toxic stress, and presenting immune and inflammatory cytokines. Regarded as a double-edged sword, HSPs also cooperate with numerous viruses and cancer cells to promote their survival. RNA chaperones are a group of heterogeneous nuclear ribonucleoproteins (hnRNPs), which are essential factors for manipulating both the functions and metabolisms of pre-mRNAs/hnRNAs transcribed by RNA polymerase II. hnRNPs involve in a large number of cellular processes, including chromatin remodelling, transcription regulation, RNP assembly and stabilization, RNA export, virus replication, histone-like nucleoid structuring, and even intracellular immunity. Dysregulation of stress proteins is associated with many human diseases including human cancer, cardiovascular diseases, neurodegenerative diseases (e.g., Parkinson’s diseases, Alzheimer disease), stroke and infectious diseases. In this review, we summarized the biologic function of stress proteins, and current progress on their mechanisms related to virus reproduction and diseases caused by virus infections. As SPs also attract a great interest as potential antiviral targets (e.g., COVID-19), we also discuss the present progress and challenges in this area of HSP-based drug development, as well as with compounds already under clinical evaluation.
Collapse
Affiliation(s)
- Qianya Wan
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Dan Song
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Huangcan Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China. .,CityU Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
20
|
Zhang W, Jia K, Jia P, Xiang Y, Lu X, Liu W, Yi M. Marine medaka heat shock protein 90ab1 is a receptor for red-spotted grouper nervous necrosis virus and promotes virus internalization through clathrin-mediated endocytosis. PLoS Pathog 2020; 16:e1008668. [PMID: 32639977 PMCID: PMC7371229 DOI: 10.1371/journal.ppat.1008668] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/20/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022] Open
Abstract
Nervous necrosis virus (NNV) can infect many species of fish and causes serious acute or persistent infection. However, its pathogenic mechanism is still far from clear. Specific cellular surface receptors are crucial determinants of the species tropism of a virus and its pathogenesis. Here, the heat shock protein 90ab1 of marine model fish species marine medaka (MmHSP90ab1) was identified as a novel receptor of red-spotted grouper NNV (RGNNV). MmHSP90ab1 interacted directly with RGNNV capsid protein (CP). Specifically, MmHSP90ab1 bound to the linker region (LR) of CP through its NM domain. Inhibition of MmHSP90ab1 by HSP90-specific inhibitors or MmHSP90ab1 siRNA caused significant inhibition of viral binding and entry, whereas its overexpression led to the opposite effect. The binding of RGNNV to cultured marine medaka hMMES1 cells was inhibited by blocking cell surface-localized MmHSP90ab1 with anti-HSP90β antibodies or pretreating virus with recombinant MmHSP90ab1 or MmHSP90ab1-NM protein, indicating MmHSP90ab1 was an attachment receptor for RGNNV. Furthermore, we found that MmHSP90ab1 formed a complex with CP and marine medaka heat shock cognate 70, a known NNV receptor. Exogenous expression of MmHSP90ab1 independently facilitated the internalization of RGNNV into RGNNV impenetrable cells (HEK293T), which was blocked by chlorpromazine, an inhibitor of clathrin-dependent endocytosis. Further study revealed that MmHSP90ab1 interacted with the marine medaka clathrin heavy chain. Collectively, these data suggest that MmHSP90ab1 is a functional part of the RGNNV receptor complex and involved in the internalization of RGNNV via the clathrin endocytosis pathway.
Collapse
Affiliation(s)
- Wanwan Zhang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China
- * E-mail: (KJ); (MY)
| | - Peng Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China
| | - Yangxi Xiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China
| | - Xiaobing Lu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China
| | - Wei Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China
- * E-mail: (KJ); (MY)
| |
Collapse
|
21
|
Lamut A, Gjorgjieva M, Naesens L, Liekens S, Lillsunde KE, Tammela P, Kikelj D, Tomašič T. Anti-influenza virus activity of benzo[d]thiazoles that target heat shock protein 90. Bioorg Chem 2020; 98:103733. [DOI: 10.1016/j.bioorg.2020.103733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/12/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022]
|
22
|
Human Enterovirus Group B Viruses Rely on Vimentin Dynamics for Efficient Processing of Viral Nonstructural Proteins. J Virol 2020; 94:JVI.01393-19. [PMID: 31619557 PMCID: PMC6955253 DOI: 10.1128/jvi.01393-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022] Open
Abstract
We report that several viruses from the human enterovirus group B cause massive vimentin rearrangements during lytic infection. Comprehensive studies suggested that viral protein synthesis was triggering the vimentin rearrangements. Blocking the host cell vimentin dynamics with β, β'-iminodipropionitrile (IDPN) did not significantly affect the production of progeny viruses and only moderately lowered the synthesis of structural proteins such as VP1. In contrast, the synthesis of the nonstructural proteins 2A, 3C, and 3D was drastically lowered. This led to attenuation of the cleavage of the host cell substrates PABP and G3BP1 and reduced caspase activation, leading to prolonged cell survival. Furthermore, the localization of the proteins differed in the infected cells. Capsid protein VP1 was found diffusely around the cytoplasm, whereas 2A and 3D followed vimentin distribution. Based on protein blotting, smaller amounts of nonstructural proteins did not result from proteasomal degradation but from lower synthesis without intact vimentin cage structure. In contrast, inhibition of Hsp90 chaperone activity, which regulates P1 maturation, lowered the amount of VP1 but had less effect on 2A. The results suggest that the vimentin dynamics regulate viral nonstructural protein synthesis while having less effect on structural protein synthesis or overall infection efficiency. The results presented here shed new light on differential fate of structural and nonstructural proteins of enteroviruses, having consequences on host cell survival.IMPORTANCE A virus needs the host cell in order to replicate and produce new progeny viruses. For this, the virus takes over the host cell and modifies it to become a factory for viral proteins. Irrespective of the specific virus family, these proteins can be divided into structural and nonstructural proteins. Structural proteins are the building blocks for the new progeny virions, whereas the nonstructural proteins orchestrate the takeover of the host cell and its functions. Here, we have shown a mechanism that viruses exploit in order to regulate the host cell. We show that viral protein synthesis induces vimentin cages, which promote production of specific viral proteins that eventually control apoptosis and host cell death. This study specifies vimentin as the key regulator of these events and indicates that viral proteins have different fates in the cells depending on their association with vimentin cages.
Collapse
|
23
|
Lim ZQ, Ng QY, Ng JWQ, Mahendran V, Alonso S. Recent progress and challenges in drug development to fight hand, foot and mouth disease. Expert Opin Drug Discov 2019; 15:359-371. [DOI: 10.1080/17460441.2019.1659241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ze Qin Lim
- Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, Immunology program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Qing Yong Ng
- Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, Immunology program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Justin Wei Qing Ng
- Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, Immunology program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Vikneswari Mahendran
- Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, Immunology program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Sylvie Alonso
- Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, Immunology program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
24
|
Heat-shock protein 90α is involved in maintaining the stability of VP16 and VP16-mediated transactivation of α genes from herpes simplex virus-1. Mol Med 2018; 24:65. [PMID: 30577726 PMCID: PMC6303900 DOI: 10.1186/s10020-018-0066-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/05/2018] [Indexed: 01/24/2023] Open
Abstract
Background Numerous host cellular factors are exploited by viruses to facilitate infection. Our previous studies and those of others have shown heat-shock protein 90 (Hsp90), a cellular molecular chaperone, is involved in herpes simplex virus (HSV)-1 infection. However, the function of the dominant Hsp90 isoform and the relationship between Hsp90 and HSV-1 α genes remain unclear. Methods and results Hsp90α knockdown or inhibition significantly inhibited the promoter activity of HSV-1 α genes and downregulated virion protein 16(VP16) expression from virus and plasmids. The Hsp90α knockdown-induced suppression of α genes promoter activity and downregulation of α genes was reversed by VP16 overexpression, indicating that Hsp90α is involved in VP16-mediated transcription of HSV-1 α genes. Co-immunoprecipitation experiments indicated that VP16 interacted with Hsp90α through the conserved core domain within VP16. Based on using autophagy inhibitors and the presence of Hsp90 inhibitors in ATG7−/− (autophagy-deficient) cells, Hsp90 inhibition-induced degradation of VP16 is dependent on macroautophagy-mediated degradation but not chaperone-mediated autophagy (CMA) pathway. In vivo studies demonstrated that treatment with gels containing Hsp90 inhibitor effectively reduced the level of VP16 and α genes, which may contribute to the amelioration of the skin lesions in an HSV-1 infection mediated zosteriform model. Conclusion Our study provides new insights into the mechanisms by which Hsp90α facilitates the transactivation of HSV-1 α genes and viral infection, and highlights the importance of developing selective inhibitors targeting the interaction between Hsp90α and VP16 to reduce toxicity, a major challenge in the clinical use of Hsp90 inhibitors. Electronic supplementary material The online version of this article (10.1186/s10020-018-0066-x) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Wong KZ, Chu JJH. The Interplay of Viral and Host Factors in Chikungunya Virus Infection: Targets for Antiviral Strategies. Viruses 2018; 10:E294. [PMID: 29849008 PMCID: PMC6024654 DOI: 10.3390/v10060294] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/13/2018] [Accepted: 05/28/2018] [Indexed: 12/14/2022] Open
Abstract
Chikungunya virus (CHIKV) has re-emerged as one of the many medically important arboviruses that have spread rampantly across the world in the past decade. Infected patients come down with acute fever and rashes, and a portion of them suffer from both acute and chronic arthralgia. Currently, there are no targeted therapeutics against this debilitating virus. One approach to develop potential therapeutics is by understanding the viral-host interactions. However, to date, there has been limited research undertaken in this area. In this review, we attempt to briefly describe and update the functions of the different CHIKV proteins and their respective interacting host partners. In addition, we also survey the literature for other reported host factors and pathways involved during CHIKV infection. There is a pressing need for an in-depth understanding of the interaction between the host environment and CHIKV in order to generate potential therapeutics.
Collapse
Affiliation(s)
- Kai Zhi Wong
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597, Singapore.
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597, Singapore.
- Institute of Molecular & Cell Biology, Agency for Science, Technology & Research (A*STAR), 61 Biopolis Drive, Proteos #06-05, Singapore 138673, Singapore.
| |
Collapse
|
26
|
Newman J, Asfor AS, Berryman S, Jackson T, Curry S, Tuthill TJ. The Cellular Chaperone Heat Shock Protein 90 Is Required for Foot-and-Mouth Disease Virus Capsid Precursor Processing and Assembly of Capsid Pentamers. J Virol 2018; 92:e01415-17. [PMID: 29212943 PMCID: PMC5809743 DOI: 10.1128/jvi.01415-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/29/2017] [Indexed: 12/14/2022] Open
Abstract
Productive picornavirus infection requires the hijacking of host cell pathways to aid with the different stages of virus entry, synthesis of the viral polyprotein, and viral genome replication. Many picornaviruses, including foot-and-mouth disease virus (FMDV), assemble capsids via the multimerization of several copies of a single capsid precursor protein into a pentameric subunit which further encapsidates the RNA. Pentamer formation is preceded by co- and posttranslational modification of the capsid precursor (P1-2A) by viral and cellular enzymes and the subsequent rearrangement of P1-2A into a structure amenable to pentamer formation. We have developed a cell-free system to study FMDV pentamer assembly using recombinantly expressed FMDV capsid precursor and 3C protease. Using this assay, we have shown that two structurally different inhibitors of the cellular chaperone heat shock protein 90 (hsp90) impeded FMDV capsid precursor processing and subsequent pentamer formation. Treatment of FMDV permissive cells with the hsp90 inhibitor prior to infection reduced the endpoint titer by more than 10-fold while not affecting the activity of a subgenomic replicon, indicating that translation and replication of viral RNA were unaffected by the drug.IMPORTANCE FMDV of the Picornaviridae family is a pathogen of huge economic importance to the livestock industry due to its effect on the restriction of livestock movement and necessary control measures required following an outbreak. The study of FMDV capsid assembly, and picornavirus capsid assembly more generally, has tended to be focused upon the formation of capsids from pentameric intermediates or the immediate cotranslational modification of the capsid precursor protein. Here, we describe a system to analyze the early stages of FMDV pentameric capsid intermediate assembly and demonstrate a novel requirement for the cellular chaperone hsp90 in the formation of these pentameric intermediates. We show the added complexity involved for this process to occur, which could be the basis for a novel antiviral control mechanism for FMDV.
Collapse
Affiliation(s)
- Joseph Newman
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Amin S Asfor
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | | | - Terry Jackson
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Stephen Curry
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | |
Collapse
|
27
|
Wang Y, Li Y, Ding T. Heat shock protein 90β in the Vero cell membrane binds Japanese encephalitis virus. Int J Mol Med 2017; 40:474-482. [PMID: 28656253 PMCID: PMC5505021 DOI: 10.3892/ijmm.2017.3041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/14/2017] [Indexed: 12/20/2022] Open
Abstract
The pathogenesis of Japanese encephalitis virus (JEV) is complex and unclearly defined, and in particular, the effects of the JEV receptor (JEVR) on diverse susceptible cells are elusive. In contrast to previous studies investigating JEVR in rodent or mosquito cells, in this study, we used primate Vero cells instead. We noted that few novel proteins co‑immunoprecipitated with JEV, and discovered that one of these was heat shock protein 90β (HSP90β), which was probed by mass spectrometry with the highest score of 60.3 after questing the monkey and human protein databases. The specific HSP90β‑JEV binding was confirmed by western blot analysis under non‑reducing conditions, and this was significantly inhibited by an anti‑human HSP90β monoclonal antibody in a dose‑dependent manner, as shown by immunofluorescence assay and flow cytometry. In addition, the results of confocal laser scanning microscopic examination demonstrated that the HSP90β‑JEV binding occurred on the Vero cell surface. Finally, JEV progeny yields determined by plaque assay were also markedly decreased in siRNA‑treated Vero cells, particularly at 24 and 36 h post‑infection. Thus, our data indicate that HSP90β is a binding receptor for JEV in Vero cells.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Microbiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yan Li
- Department of Microbiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Tianbing Ding
- Department of Microbiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
28
|
Prabowo BA, Wang RY, Secario MK, Ou PT, Alom A, Liu JJ, Liu KC. Rapid detection and quantification of Enterovirus 71 by a portable surface plasmon resonance biosensor. Biosens Bioelectron 2017; 92:186-191. [DOI: 10.1016/j.bios.2017.01.043] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/11/2017] [Accepted: 01/20/2017] [Indexed: 12/27/2022]
|
29
|
Wang M, Dong Q, Wang H, He Y, Chen Y, Zhang H, Wu R, Chen X, Zhou B, He J, Kung HF, Huang C, Wei Y, Huang JD, Xu H, He ML. Oblongifolin M, an active compound isolated from a Chinese medical herb Garcinia oblongifolia, potently inhibits enterovirus 71 reproduction through downregulation of ERp57. Oncotarget 2017; 7:8797-808. [PMID: 26848777 PMCID: PMC4891005 DOI: 10.18632/oncotarget.7122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/19/2016] [Indexed: 02/05/2023] Open
Abstract
There is no effective drug to treat EV71 infection yet. Traditional Chinese herbs are great resources for novel antiviral compounds. Here we showed that Oblongifolin M (OM), an active compound isolated from Garcinia oblongifolia, potently inhibited EV71 infection in a dose dependent manner. To identify its potential effectors in the host cells, we successfully identified 18 proteins from 52 differentially expressed spots by comparative proteomics studies. Further studies showed that knockdown of ERp57 inhibited viral replication through downregulating viral IRES (internal ribosome entry site) activities, whereas ectopic expression of ERp57 increased IRES activity and partly rescued the inhibitory effects of OM on viral replication. We demonstrated that OM is an effective antiviral agent; and that ERp57 is one of its cellular effectors against EV71 infection.
Collapse
Affiliation(s)
- Mengjie Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Qi Dong
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,Stanley Ho Center for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Hua Wang
- Stanley Ho Center for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Yaqing He
- Shenzhen Center for Disease Control and Prevention (Shenzhen CDC), Shenzhen, China
| | - Ying Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Hong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinchun Chen
- Institute of Infectious Diseases, The 3rd Peoples' Hospital of Shenzhen, Shenzhen, China
| | - Boping Zhou
- Institute of Infectious Diseases, The 3rd Peoples' Hospital of Shenzhen, Shenzhen, China
| | - Jason He
- College of Letter and Sciences, University of California at Berkeley, Berkeley, CA, USA
| | - Hsiang-Fu Kung
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,Stanley Ho Center for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jian-dong Huang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
30
|
A KDEL Retrieval System for ER-Golgi Transport of Japanese Encephalitis Viral Particles. Viruses 2016; 8:v8020044. [PMID: 26861384 PMCID: PMC4776199 DOI: 10.3390/v8020044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/22/2016] [Accepted: 01/27/2016] [Indexed: 01/26/2023] Open
Abstract
Evidence has emerged that RNA viruses utilize the host secretory pathway for processing and trafficking mature viral particles and for exiting the infected cells. Upon completing the complex assembly process, the viral particles take advantage of the cellular secretory trafficking machinery for their intracellular trafficking toward the Golgi organelle and budding or export of virions. In this study, we showed that Japanese encephalitis virus (JEV)-induced extracellular GRP78 contains no KDEL motif using an anti-KDEL-specific antibody. Overexpression of the KDEL-truncated GRP78 in the GPR78 knocked down cells significantly reduced JEV infectivity, suggesting that the KDEL motif is required for GRP78 function in the release of JE viral particles. In addition, we demonstrated the KDELR protein, an ER-Golgi retrieval system component, is associated with viral envelope proteins and is engaged in the subcellular localization of viral particles in Golgi. More importantly, accumulation of intracellular virions was observed in the KDELR knocked down cells, indicating that the KDELR protein mediated the intracellular trafficking of JE viral particles. Altogether, we demonstrated that intracellular trafficking of JE assembled viral particles was mediated by the host ER-Golgi retrieval system prior to exit by the secretory pathway.
Collapse
|
31
|
Development of a Specific Latex Agglutination Test to Detect Antibodies of Enterovirus 71. Arch Med Res 2015; 46:580-7. [DOI: 10.1016/j.arcmed.2015.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/03/2015] [Indexed: 11/19/2022]
|
32
|
Wen X, Cheng A, Wang M, Jia R, Zhu D, Chen S, Liu M, Sun K, Yang Q, Wu Y, Chen X. Recent advances from studies on the role of structural proteins in enterovirus infection. Future Microbiol 2015; 10:1529-42. [DOI: 10.2217/fmb.15.62] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Enteroviruses are a large group of small nonenveloped viruses that cause common and debilitating illnesses affecting humans and animals worldwide. The capsid composed by viral structural proteins packs the RNA genome. It is becoming apparent that structural proteins of enteroviruses play versatile roles in the virus–host interaction in the viral life cycle, more than just a shell. Furthermore, structural proteins to some extent may be associated with viral virulence and pathogenesis. Better understanding the roles of structural proteins in enterovirus infection may lead to the development of potential antiviral strategies. Here, we discuss recent advances from studies on the role of structural proteins in enterovirus infection and antiviral therapeutics targeted structural proteins.
Collapse
Affiliation(s)
- Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Engineering & Technology Center for Laboratory Animals of Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Xiaoyue Chen
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| |
Collapse
|
33
|
Proteome demonstration of alpha-1-acid glycoprotein and alpha-1-antichymotrypsin candidate biomarkers for diagnosis of enterovirus 71 infection. Pediatr Infect Dis J 2015; 34:304-10. [PMID: 25170552 DOI: 10.1097/inf.0000000000000534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Human enterovirus 71 (EV71) is the major causative agents of hand-foot-and-mouth disease and frequently associated with severe complications such as encephalitis and death. Understanding the host response following enteroviral infection may facilitate the development of biomarkers for EV71 infections. METHODS We implemented two-dimensional gel electrophoresis technology on proteins prepared from serum obtained from 4 mild and 4 severe cases of EV71 infections and 4 healthy control children, to investigate the differentially expressed proteins. The differential expressed proteins were further identified with liquid chromatography-mass spectrometry/mass spectrometry analysis and western blotting validation. RESULTS A total of 27 differentially expressed proteins were picked and identified with liquid chromatography-mass spectrometry/mass spectrometry. Of the 27 identified proteins, 6 proteins were up-regulated in the mild-infected and severe EV71-infected patients in comparison to the healthy control group. Two proteins, alpha-1-acid-glycoprotein (AGP1) and alpha-antichymotrypsin (AACT), were not detected in the EV71-infected patients, but appeared in the control patient. Western blotting analysis demonstrated that AGP1 and AACT proteins were negatively associated with the clinical severity of EV71 infection. Similarly, both of the proteins were not detected in the secretion medium from the EV71-infected neuroblastoma cells, but detected in the mock-infected cells, suggesting that differentially expressed AGP1/AACT protein levels are in response to EV71 infections. CONCLUSIONS Two candidate proteins AGP1 and AACT, whose expression levels were reduced under the EV71 infection pathological condition, provide useful source of information for potential diagnostic biomarkers of EV71 infection in children.
Collapse
|
34
|
Lee PH, Liu CM, Ho TS, Tsai YC, Lin CC, Wang YF, Chen YL, Yu CK, Wang SM, Liu CC, Shiau AL, Lei HY, Chang CP. Enterovirus 71 virion-associated galectin-1 facilitates viral replication and stability. PLoS One 2015; 10:e0116278. [PMID: 25706563 PMCID: PMC4338065 DOI: 10.1371/journal.pone.0116278] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/04/2014] [Indexed: 01/05/2023] Open
Abstract
Enterovirus 71 (EV71) infection causes a myriad of diseases from mild hand-foot-and-mouth disease or herpangina to fatal brain stem encephalitis complicated with pulmonary edema. Several severe EV71 endemics have occurred in Asia-Pacific region, including Taiwan, and have become a serious threat to children’s health. EV71 infection is initiated by the attachment of the virion to the target cell surface. Although this process relies primarily upon interaction between viruses and cell surface receptors, soluble factors may also influence the binding of EV71 to host cells.Galectin-1 has been reported to participate in several virus infections, but is not addressed in EV71. In this study, we found that the serum levels of galectin-1 in EV71-infected children were higher than those in non-infected people. In EV71 infected cells, galectin-1 was found to be associated with the EV71 VP1 and VP3 via carbohydrate residues and subsequently released and bound to another cell surface along with the virus. EV71 propagated from galectin-1 knockdown SK-N-SH cells exhibited lower infectivity in cultured cells and less pathogenicity in mice than the virus propagated from parental cells. In addition, this galectin-1-free EV71 virus was sensitive to high temperature and lost its viability after long-term storage, which could be restored following supplement of recombinant galectin-1. Taken together, our findings uncover a new role of galectin-1 in facilitating EV71 virus infection.
Collapse
Affiliation(s)
- Pei-Huan Lee
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chia-Ming Liu
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Tzong-Shiann Ho
- Department of Emergency Medicine, National Cheng Kung University Hospital, Tainan, 701, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yi-Che Tsai
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chi-Cheng Lin
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ya-Fang Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan
| | - Yuh-Ling Chen
- Department of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chun-Keung Yu
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, 701, Taiwan
| | - Shih-Min Wang
- Department of Pediatrics, National Cheng Kung University Hospital, Tainan, 701, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ching-Chuan Liu
- Department of Pediatrics, National Cheng Kung University Hospital, Tainan, 701, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ai-Li Shiau
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Huan-Yao Lei
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chih-Peng Chang
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, 701, Taiwan
- * E-mail:
| |
Collapse
|
35
|
Ma R, Zhang Y, Liu H, Ning P. Proteome profile of swine testicular cells infected with porcine transmissible gastroenteritis coronavirus. PLoS One 2014; 9:e110647. [PMID: 25333634 PMCID: PMC4204940 DOI: 10.1371/journal.pone.0110647] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 09/19/2014] [Indexed: 02/06/2023] Open
Abstract
The interactions occurring between a virus and a host cell during a viral infection are complex. The purpose of this paper was to analyze altered cellular protein levels in porcine transmissible gastroenteritis coronavirus (TGEV)-infected swine testicular (ST) cells in order to determine potential virus-host interactions. A proteomic approach using isobaric tags for relative and absolute quantitation (iTRAQ)-coupled two-dimensional liquid chromatography-tandem mass spectrometry identification was conducted on the TGEV-infected ST cells. The results showed that the 4-plex iTRAQ-based quantitative approach identified 4,112 proteins, 146 of which showed significant changes in expression 48 h after infection. At 64 h post infection, 219 of these proteins showed significant change, further indicating that a larger number of proteomic changes appear to occur during the later stages of infection. Gene ontology analysis of the altered proteins showed enrichment in multiple biological processes, including cell adhesion, response to stress, generation of precursor metabolites and energy, cell motility, protein complex assembly, growth, developmental maturation, immune system process, extracellular matrix organization, locomotion, cell-cell signaling, neurological system process, and cell junction organization. Changes in the expression levels of transforming growth factor beta 1 (TGF-β1), caspase-8, and heat shock protein 90 alpha (HSP90α) were also verified by western blot analysis. To our knowledge, this study is the first time the response profile of ST host cells following TGEV infection has been analyzed using iTRAQ technology, and our description of the late proteomic changes that are occurring after the time of vigorous viral production are novel. Therefore, this study provides a solid foundation for further investigation, and will likely help us to better understand the mechanisms of TGEV infection and pathogenesis.
Collapse
MESH Headings
- Animals
- Cell Line
- Chromatography, Liquid
- Gastroenteritis, Transmissible, of Swine/genetics
- Gastroenteritis, Transmissible, of Swine/metabolism
- Gastroenteritis, Transmissible, of Swine/pathology
- Gastroenteritis, Transmissible, of Swine/virology
- Gene Expression Regulation, Viral
- Male
- Proteome/genetics
- Swine
- Testis/metabolism
- Testis/pathology
- Testis/virology
- Transmissible gastroenteritis virus/genetics
- Transmissible gastroenteritis virus/pathogenicity
Collapse
Affiliation(s)
- Ruili Ma
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- * E-mail:
| | - Haiquan Liu
- School of Computer Science and Engineering, Xi’an Technological University, Xi’an, Shaanxi, China
| | - Pengbo Ning
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
36
|
Tsou YL, Lin YW, Chang HW, Lin HY, Shao HY, Yu SL, Liu CC, Chitra E, Sia C, Chow YH. Heat shock protein 90: role in enterovirus 71 entry and assembly and potential target for therapy. PLoS One 2013; 8:e77133. [PMID: 24098578 PMCID: PMC3788750 DOI: 10.1371/journal.pone.0077133] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 08/15/2013] [Indexed: 11/18/2022] Open
Abstract
Although several factors participating in enterovirus 71 (EV71) entry and replication had been reported, the precise mechanisms associated with these events are far from clear. In the present study, we showed that heat shock protein 90 (HSP90) is a key element associated with EV71 entry and replication in a human rhabdomyosarcoma of RD cells. Inhibition of HSP90 by pretreating host cells with HSP90β siRNA or blocking HSP90 with a HSP90-specific antibody or geldanamycin (GA), a specific inhibitor of HSP90, as well as recombinant HSP90β resulted in inhibiting viral entry and subsequent viral replication. Co-immunprecipitation of EV71 with recombinant HSP90β and colocalization of EV71-HSP90 in the cells demonstrated that HSP90 was physically associated with EV71 particles. HSP90 seems to mediate EV71 replication by preventing proteosomal degradation of the newly synthesized capsid proteins, but does not facilitate viral gene expression at transcriptional level. This was evident by post-treatment of host cells with GA, which did not affect the expression of viral transcripts but accelerated the degradation of viral capsid proteins and interfered with the formation of assembled virions. In vivo studies were carried out using human SCARB2-transgenic mice to evaluate the protection conferred by HSP90 inhibitor, 17-allyamino-17-demethoxygeldanamycin (17-AAG), an analog of geldanamycin, that elicited similar activity but with less toxicity. The results showed that the administration of 17-AAG twice conferred the resistance to hSCARB2 mice challenged with C2, C4, and B4 genotypes of EV71. Our data supports HSP90 plays an important role in EV71 infection. Targeting of HSP90 with clinically available drugs might provide a feasible therapeutic approach to treat EV71 infection.
Collapse
Affiliation(s)
- Yueh-Liang Tsou
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli, County, Taiwan
- Graduate Program of Biotechnology in Medicine, Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Wen Lin
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli, County, Taiwan
- Graduate Program of Biotechnology in Medicine, Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsuen-Wen Chang
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli, County, Taiwan
| | - Hsiang-Yin Lin
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli, County, Taiwan
| | - Hsiao-Yun Shao
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli, County, Taiwan
| | - Shu-Ling Yu
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli, County, Taiwan
| | - Chia-Chyi Liu
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli, County, Taiwan
| | - Ebenezer Chitra
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli, County, Taiwan
| | - Charles Sia
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli, County, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- * E-mail: (YHC); (CS)
| | - Yen-Hung Chow
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli, County, Taiwan
- * E-mail: (YHC); (CS)
| |
Collapse
|