1
|
Xiran L, Hongyan S, Guixiang Q, Ying S, Xiang L, Xin T, Mengying H, Ji W, Shangwei J. Preliminary investigation and analysis of nucleotide site variability of nine glycoproteins on varicella-zoster virus envelope, Jilin Province, China, 2010-March 2024. Sci Rep 2024; 14:22758. [PMID: 39353981 PMCID: PMC11445264 DOI: 10.1038/s41598-024-73072-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024] Open
Abstract
Varicella is endemic worldwide. In China, varicella has not yet been included in the list of legal infectious diseases, nor has a unified national surveillance program been established. And the live attenuated varicella vaccine has not been included in routine immunization. In this study, we analyzed for the first time the varicella epidemiology in Jilin Province in the past 20 years, and the nucleotide site, amino acid site and N-glycosylation site variation of glycoprotein in varicella-zoster virus (VZV) surface 9 in the past 15 years. The results showed that the reported incidence of varicella in Jilin Province in the last 20 years was fluctuating above and below 20/100,000, especially after the epidemic of the COVID-19, and fatal cases appeared in individual years. The genotypic branching of VZV was monitored as Clade 2 in the last 15 years. 9 glycogen nucleotide sites of VZV had different degrees of variability, and the variability had specificity. Therefore, it gives us the idea that in order to reduce the incidence of varicella and herpes zoster, a provincial or even national surveillance program should be introduced as early as possible, and the dynamic monitoring of the variability of the nucleotide sites of VZV should be strengthened at the same time as the vaccine immunization strategy is introduced.
Collapse
Affiliation(s)
- Li Xiran
- China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Sun Hongyan
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Qin Guixiang
- Department of Tuberculosis Meningitis Diagnosis and Treatment Center, Changchun Infectious Disease Hospital, Changchun, 130123, Jilin, China
| | - Sun Ying
- Department of Dermatology, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Li Xiang
- Department of Viral Disease, Jilin Provincial Center for Disease Control and Prevention, Changchun, 130062, Jilin, China
| | - Tian Xin
- Department of EMO, Jilin Provincial Center for Disease Control and Prevention, Changchun, 130062, Jilin, China
| | - Han Mengying
- Department of Infectious Diseases, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Wang Ji
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun, 130022, Jilin, China.
| | - Ji Shangwei
- Department of Infectious Diseases, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China.
| |
Collapse
|
2
|
Yang S, Cao D, Jaijyan DK, Wang M, Liu J, Cruz-Cosme R, Wu S, Huang J, Zeng M, Liu X, Sun W, Xiong D, Tang Q, Xiao L, Zhu H. Identification and characterization of Varicella Zoster Virus circular RNA in lytic infection. Nat Commun 2024; 15:4932. [PMID: 38858365 PMCID: PMC11164961 DOI: 10.1038/s41467-024-49112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
This study investigates the role of circular RNAs (circRNAs) in the context of Varicella-Zoster Virus (VZV) lytic infection. We employ two sequencing technologies, short-read sequencing and long-read sequencing, following RNase R treatment on VZV-infected neuroblastoma cells to identify and characterize both cellular and viral circRNAs. Our large scanning analysis identifies and subsequent experiments confirm 200 VZV circRNAs. Moreover, we discover numerous VZV latency-associated transcripts (VLTs)-like circRNAs (circVLTslytic), which contain multiple exons and different isoforms within the same back-splicing breakpoint. To understand the functional significance of these circVLTslytic, we utilize the Bacteria Artificial Chromosome system to disrupt the expression of viral circRNAs in genomic DNA location. We reveal that the sequence flanking circVLTs' 5' splice donor plays a pivotal role as a cis-acting element in the formation of circVLTslytic. The circVLTslytic is dispensable for VZV replication, but the mutation downstream of circVLTslytic exon 5 leads to increased acyclovir sensitivity in VZV infection models. This suggests that circVLTslytic may have a role in modulating the sensitivity to antiviral treatment. The findings shed new insight into the regulation of cellular and viral transcription during VZV lytic infection, emphasizing the intricate interplay between circRNAs and viral processes.
Collapse
Affiliation(s)
- Shaomin Yang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Di Cao
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 070101, USA
| | - Mei Wang
- Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jian Liu
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, 363000, China
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC, 20059, USA
| | - Songbin Wu
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Jiabin Huang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Mulan Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 070101, USA
| | - Xiaolian Liu
- Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Wuping Sun
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Donglin Xiong
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC, 20059, USA.
| | - Lizu Xiao
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China.
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 070101, USA.
| |
Collapse
|
3
|
Chung WC, Ravichandran S, Park D, Lee GM, Kim YE, Choi Y, Song MJ, Kim KK, Ahn JH. G-quadruplexes formed by Varicella-Zoster virus reiteration sequences suppress expression of glycoprotein C and regulate viral cell-to-cell spread. PLoS Pathog 2023; 19:e1011095. [PMID: 36630443 PMCID: PMC9873165 DOI: 10.1371/journal.ppat.1011095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/24/2023] [Accepted: 01/02/2023] [Indexed: 01/12/2023] Open
Abstract
G-quadruplex (G4) formed by repetitive guanosine-rich sequences plays important roles in diverse cellular processes; however, its roles in viral infection are not fully understood. In this study, we investigated the genome-wide distribution of G4-forming sequences (G4 motifs) in Varicella-Zoster virus (VZV) and found that G4 motifs are enriched in the internal repeat short and the terminal repeat short regions flanking the unique short region and also in some reiteration (R) sequence regions. A high density of G4 motifs in the R2 region was found on the template strand of ORF14, which encodes glycoprotein C (gC), a virulent factor for viral growth in skin. Analyses such as circular dichroism spectroscopy, thermal difference spectra, and native polyacrylamide gel electrophoresis with oligodeoxynucleotides demonstrated that several G4 motifs in ORF14 form stable G4 structures. In transfection assays, gC expression from the G4-disrupted ORF14 gene was increased at the transcriptional level and became more resistant to suppression by G4-ligand treatment. The recombinant virus containing the G4-disrupted ORF14 gene expressed a higher level of gC mRNA, while it showed a slightly reduced growth. This G4-disrupted ORF14 virus produced smaller plaques than the wild-type virus. Our results demonstrate that G4 formation via reiteration sequences suppresses gC expression during VZV infection and regulates viral cell-to-cell spread.
Collapse
Affiliation(s)
- Woo-Chang Chung
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Subramaniyam Ravichandran
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Daegyu Park
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Gwang Myeong Lee
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Young-Eui Kim
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Youngju Choi
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Moon Jung Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Jin-Hyun Ahn
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
4
|
Palmer WH, Telford M, Navarro A, Santpere G, Norman PJ. Human herpesvirus diversity is altered in HLA class I binding peptides. Proc Natl Acad Sci U S A 2022; 119:e2123248119. [PMID: 35486690 PMCID: PMC9170163 DOI: 10.1073/pnas.2123248119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/30/2022] [Indexed: 11/18/2022] Open
Abstract
Herpesviruses are ubiquitous, genetically diverse DNA viruses, with long-term presence in humans associated with infrequent but significant pathology. Human leukocyte antigen (HLA) class I presents intracellularly derived peptide fragments from infected tissue cells to CD8+ T and natural killer cells, thereby directing antiviral immunity. Allotypes of highly polymorphic HLA class I are distinguished by their peptide binding repertoires. Because this HLA class I variation is a major determinant of herpesvirus disease, we examined if sequence diversity of virus proteins reflects evasion of HLA presentation. Using population genomic data from Epstein–Barr virus (EBV), human cytomegalovirus (HCMV), and Varicella–Zoster virus, we tested whether diversity differed between the regions of herpesvirus proteins that can be recognized, or not, by HLA class I. Herpesviruses exhibit lytic and latent infection stages, with the latter better enabling immune evasion. Whereas HLA binding peptides of lytic proteins are conserved, we found that EBV and HCMV proteins expressed during latency have increased peptide sequence diversity. Similarly, latent, but not lytic, herpesvirus proteins have greater population structure in HLA binding than nonbinding peptides. Finally, we found patterns consistent with EBV adaption to the local HLA environment, with less efficient recognition of EBV isolates by high-frequency HLA class I allotypes. Here, the frequency of CD8+ T cell epitopes inversely correlated with the frequency of HLA class I recognition. Previous analyses have shown that pathogen-mediated natural selection maintains exceptional polymorphism in HLA residues that determine peptide recognition. Here, we show that HLA class I peptide recognition impacts diversity of globally widespread pathogens.
Collapse
Affiliation(s)
- William H. Palmer
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO 80045
| | - Marco Telford
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Arcadi Navarro
- Institut de Biologia Evolutiva (Universitat Pompeu Fabra - Consejo Superior de Investigaciones Científicas), Department of Medicine and Life Sciences (MELIS), Barcelona Biomedical Research Park, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats and Universitat Pompeu Fabra, 08010 Barcelona, Spain
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Barcelona Beta Brain Research Center, Pasqual Maragall Foundation, 08005 Barcelona, Spain
| | - Gabriel Santpere
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO 80045
| |
Collapse
|
5
|
The Structures and Functions of VZV Glycoproteins. Curr Top Microbiol Immunol 2021; 438:25-58. [PMID: 34731265 DOI: 10.1007/82_2021_243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The virions of all enveloped viruses, including those of the Herpesviridae, must bind to the cell surface then undergo a process of membrane fusion between the cell plasma membrane and the virus particle envelope. As for all herpesviruses, glycoproteins in the virion envelope are the modus operandi of these events.
Collapse
|
6
|
Depledge DP, Breuer J. Varicella-Zoster Virus-Genetics, Molecular Evolution and Recombination. Curr Top Microbiol Immunol 2021; 438:1-23. [PMID: 34374828 DOI: 10.1007/82_2021_238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This chapter first details the structure, organization and coding content of the VZV genome to provide a foundation on which the molecular evolution of the virus can be projected. We subsequently describe the evolution of molecular profiling approaches from restriction fragment length polymorphisms to single nucleotide polymorphism profiling to modern day high-throughput sequencing approaches. We describe how the application of these methodologies led to our current model of VZV phylogeograpy including the number and structure of geographic clades and the role of recombination in reshaping these.
Collapse
Affiliation(s)
- Daniel P Depledge
- Institute of Virology, Hannover Medical School (MHH), Hannover, Germany. .,Department of Microbiology, NYU School of Medicine, New York, USA.
| | - Judith Breuer
- Department of Infection & Immunology, University College London, London, UK
| |
Collapse
|
7
|
Braspenning SE, Sadaoka T, Breuer J, Verjans GMGM, Ouwendijk WJD, Depledge DP. Decoding the Architecture of the Varicella-Zoster Virus Transcriptome. mBio 2020; 11:e01568-20. [PMID: 33024035 PMCID: PMC7542360 DOI: 10.1128/mbio.01568-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Varicella-zoster virus (VZV), a double-stranded DNA virus, causes varicella, establishes lifelong latency in ganglionic neurons, and reactivates later in life to cause herpes zoster, commonly associated with chronic pain. The VZV genome is densely packed and produces multitudes of overlapping transcripts deriving from both strands. While 71 distinct open reading frames (ORFs) have thus far been experimentally defined, the full coding potential of VZV remains unknown. Here, we integrated multiple short-read RNA sequencing approaches with long-read direct RNA sequencing on RNA isolated from VZV-infected cells to provide a comprehensive reannotation of the lytic VZV transcriptome architecture. Through precise mapping of transcription start sites, splice junctions, and polyadenylation sites, we identified 136 distinct polyadenylated VZV RNAs that encode canonical ORFs, noncanonical ORFs, and ORF fusions, as well as putative noncoding RNAs (ncRNAs). Furthermore, we determined the kinetic class of all VZV transcripts and observed, unexpectedly, that transcripts encoding the ORF62 protein, previously designated Immediate-Early, were expressed with Late kinetics. Our work showcases the complexity of the VZV transcriptome and provides a comprehensive resource that will facilitate future functional studies of coding RNAs, ncRNAs, and the biological mechanisms underlying the regulation of viral transcription and translation during lytic VZV infection.IMPORTANCE Transcription from herpesviral genomes, executed by the host RNA polymerase II and regulated by viral proteins, results in coordinated viral gene expression to efficiently produce infectious progeny. However, the complete coding potential and regulation of viral gene expression remain ill-defined for the human alphaherpesvirus varicella-zoster virus (VZV), causative agent of both varicella and herpes zoster. Here, we present a comprehensive overview of the VZV transcriptome and the kinetic class of all identified viral transcripts, using two virus strains and two biologically relevant cell types. Additionally, our data provide an overview of how VZV diversifies its transcription from one of the smallest herpesviral genomes. Unexpectedly, the transcript encoding the major viral transactivator protein (pORF62) was expressed with Late kinetics, whereas orthologous transcripts in other alphaherpesviruses are typically expressed during the immediate early phase. Therefore, our work both establishes the architecture of the VZV transcriptome and provides insight into regulation of alphaherpesvirus gene expression.
Collapse
Affiliation(s)
| | - Tomohiko Sadaoka
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Judith Breuer
- Department of Infection and Immunity, University College London, London, United Kingdom
| | | | | | - Daniel P Depledge
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| |
Collapse
|