1
|
Prašnikar M, Bjelošević Žiberna M, Gosenca Matjaž M, Ahlin Grabnar P. Novel strategies in systemic and local administration of therapeutic monoclonal antibodies. Int J Pharm 2024; 667:124877. [PMID: 39490550 DOI: 10.1016/j.ijpharm.2024.124877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/03/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Monoclonal antibodies (mAbs) are an evolving class of biopharmaceuticals, with advancements evident across various stages of their development. While discovery, mAb chemical optimization, production and purification processes have been thoroughly reviewed, this paper aims to offer a summary of novel strategies in administration of mAbs. At present, systemic delivery of mAbs is available through parenteral administration routes with focus on subcutaneous administration. In addition, oriented toward patient-friendly therapy, other less invasive administration routes of mAbs, such as inhalation, nasal, transdermal, and oral administration, are explored. Literature data reveals the potential for local delivery of mAbs via inhalation, nasal, transdermal, intratumoral, intravitreal and vaginal administration, offering high efficacy with fewer systemic adverse effects. However, to date, only mAb medicines are available for intravitreal administration, mainly due to higher bioavailability, and an intranasal spray is authorised as a medical device. The review highlights the promising data in approval of novel administration routes, likely through inhalation, but further intensive research considering the current obstacles, is essential.
Collapse
Affiliation(s)
- Monika Prašnikar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | | | - Mirjam Gosenca Matjaž
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Pegi Ahlin Grabnar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Liu Y, Zhang J, Liu W, Pan Y, Ruan S, Nian X, Chen W, Sun L, Yin Q, Yue X, Li Q, Gui F, Wu C, Wang S, Yang Y, Jing Z, Long F, Wang Z, Zhang Z, Huang C, Duan K, Liang M, Yang X. Human monoclonal antibody F61 nasal spray effectively protected high-risk populations from SARS-CoV-2 variants during the COVID-19 pandemic from late 2022 to early 2023 in China. Emerg Microbes Infect 2024; 13:2284297. [PMID: 37970736 DOI: 10.1080/22221751.2023.2284297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/13/2023] [Indexed: 11/17/2023]
Abstract
Following the national dynamic zero-COVID strategy adjustment, the utilization of broad-spectrum nasal neutralizing antibodies may offer an alternative approach to controlling the outbreak of Omicron variants between late 2022 and early 2023 in China. This study involved an investigator-initiated trial (IIT) to assess the pharmacokinetic, safety and efficacy of the F61 nasal spray. A total of 2,008 participants were randomly assigned to receive F61 nasal spray (24 mg/0.8 mL/dose) or normal saline (0.8 mL/dose) and 1336 completed the follow-up in the IIT. Minimal absorption of F61 antibody into the bloodstream was detected in individuals receiving F61 nasal spray for seven consecutive days. No treatment-emergent adverse reactions of grade 3 severity or higher were reported. In the one-dose cohort, the 7-day cumulative SARS-CoV-2 infection rate was 79.0% in the F61 group and 82.6% in the placebo group, whereas, in the multiple-dose (once daily for 7 consecutive days) cohort, the rates were 6.55% in the F61 group and 23.83% in the placebo group. The laboratory-confirmed efficacy of F61 was 3.78% (-3.74%-10.75%) in the one-dose cohort and 72.19% (57.33%-81.87%) in the multiple-dose cohort. In the real-world study, 60,225 volunteers in four different regions were administered the F61 nasal spray based on the subject's wishes, over 90% efficacy rate was observed against different Omicron variants. The F61 nasal spray, with its favourable safety profile, could be a promising prophylactic monoclonal antibody against SARS-CoV-2 VOCs.
Collapse
Affiliation(s)
- Ying Liu
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, People's Republic of China
- Hubei Public Health Clinical Center, Wuhan, People's Republic of China
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Wuhan, People's Republic of China
| | - Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, People's Republic of China
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Wen Liu
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, People's Republic of China
- Hubei Public Health Clinical Center, Wuhan, People's Republic of China
| | - Yongbing Pan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, People's Republic of China
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Shunan Ruan
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, People's Republic of China
| | - Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, People's Republic of China
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Wei Chen
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, People's Republic of China
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Lina Sun
- National Institute for Viral Disease Control and Prevention, Chinese CDC, Beijing, People's Republic of China
| | - Qiangling Yin
- National Institute for Viral Disease Control and Prevention, Chinese CDC, Beijing, People's Republic of China
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, People's Republic of China
| | - Xin Yue
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, People's Republic of China
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Qingliang Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, People's Republic of China
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Fang Gui
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, People's Republic of China
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Cong Wu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, People's Republic of China
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Shuzhen Wang
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, People's Republic of China
| | - Yunkai Yang
- China National Biotec Group Company Limited, Beijing, People's Republic of China
| | - Zhaofei Jing
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, People's Republic of China
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Feiguang Long
- China National Biotec Group Company Limited, Beijing, People's Republic of China
| | - Zejun Wang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, People's Republic of China
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Zeyu Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, People's Republic of China
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Chaolin Huang
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, People's Republic of China
- Hubei Public Health Clinical Center, Wuhan, People's Republic of China
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Wuhan, People's Republic of China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, People's Republic of China
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Mifang Liang
- National Institute for Viral Disease Control and Prevention, Chinese CDC, Beijing, People's Republic of China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, People's Republic of China
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
- China National Biotec Group Company Limited, Beijing, People's Republic of China
| |
Collapse
|
3
|
Potter JA, Aitken A, Yang L, Hill J, Tortajada A, Hurwitz JL, Jones BG, Alias N, Zhou M, Connaris H. HEX17(Neumifil): An intranasal respiratory biotherapeutic with broad-acting antiviral activity. Antiviral Res 2024; 228:105945. [PMID: 38914284 DOI: 10.1016/j.antiviral.2024.105945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024]
Abstract
Broad-acting antiviral strategies to prevent respiratory tract infections are urgently required. Emerging or re-emerging viral diseases caused by new or genetic variants of viruses such as influenza viruses (IFVs), respiratory syncytial viruses (RSVs), human rhinoviruses (HRVs), parainfluenza viruses (PIVs) or coronaviruses (CoVs), pose a severe threat to human health, particularly in the very young or old, or in those with pre-existing respiratory conditions such as asthma or chronic obstructive pulmonary disease (COPD). Although vaccines remain a key component in controlling and preventing viral infections, they are unable to provide broad-spectrum protection against recurring seasonal infections or newly emerging threats. HEX17 (aka Neumifil), is a first-in-class protein-based antiviral prophylactic for respiratory viral infections. HEX17 consists of a hexavalent carbohydrate-binding module (CBM) with high affinity to sialic acids, which are typically present on terminating branches of glycans on viral cellular receptors. This allows HEX17 to block virus engagement of host receptors and inhibit infection of a wide range of viral pathogens and their variants with reduced risk of antiviral resistance. As described herein, HEX17 has demonstrated broad-spectrum efficacy against respiratory viral pathogens including IFV, RSV, CoV and HRV in multiple in vivo and in vitro studies. In addition, HEX17 can be easily administered via an intranasal spray and is currently undergoing clinical trials.
Collapse
Affiliation(s)
- Jane A Potter
- Pneumagen Ltd., Kinburn Castle, Doubledykes Road, St Andrews, Fife, KY16 9DR, UK.
| | - Angus Aitken
- Pneumagen Ltd., Kinburn Castle, Doubledykes Road, St Andrews, Fife, KY16 9DR, UK
| | - Lei Yang
- Pneumagen Ltd., Kinburn Castle, Doubledykes Road, St Andrews, Fife, KY16 9DR, UK
| | - Jennifer Hill
- Pneumagen Ltd., Kinburn Castle, Doubledykes Road, St Andrews, Fife, KY16 9DR, UK
| | - Antoni Tortajada
- Pneumagen Ltd., Kinburn Castle, Doubledykes Road, St Andrews, Fife, KY16 9DR, UK
| | - Julia L Hurwitz
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Bart G Jones
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Nadiawati Alias
- University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Mingkui Zhou
- Pneumagen Ltd., Kinburn Castle, Doubledykes Road, St Andrews, Fife, KY16 9DR, UK
| | - Helen Connaris
- University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK.
| |
Collapse
|
4
|
Marcotte H, Cao Y, Zuo F, Simonelli L, Sammartino JC, Pedotti M, Sun R, Cassaniti I, Hagbom M, Piralla A, Yang J, Du L, Percivalle E, Bertoglio F, Schubert M, Abolhassani H, Sherina N, Guerra C, Borte S, Rezaei N, Kumagai-Braesch M, Xue Y, Su C, Yan Q, He P, Grönwall C, Klareskog L, Calzolai L, Cavalli A, Wang Q, Robbiani DF, Hust M, Shi Z, Feng L, Svensson L, Chen L, Bao L, Baldanti F, Xiao J, Qin C, Hammarström L, Yang X, Varani L, Xie XS, Pan-Hammarström Q. Conversion of monoclonal IgG to dimeric and secretory IgA restores neutralizing ability and prevents infection of Omicron lineages. Proc Natl Acad Sci U S A 2024; 121:e2315354120. [PMID: 38194459 PMCID: PMC10801922 DOI: 10.1073/pnas.2315354120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 01/11/2024] Open
Abstract
The emergence of Omicron lineages and descendent subvariants continues to present a severe threat to the effectiveness of vaccines and therapeutic antibodies. We have previously suggested that an insufficient mucosal immunoglobulin A (IgA) response induced by the mRNA vaccines is associated with a surge in breakthrough infections. Here, we further show that the intramuscular mRNA and/or inactivated vaccines cannot sufficiently boost the mucosal secretory IgA response in uninfected individuals, particularly against the Omicron variant. We thus engineered and characterized recombinant monomeric, dimeric, and secretory IgA1 antibodies derived from four neutralizing IgG monoclonal antibodies (mAbs 01A05, rmAb23, DXP-604, and XG014) targeting the receptor-binding domain of the spike protein. Compared to their parental IgG antibodies, dimeric and secretory IgA1 antibodies showed a higher neutralizing activity against different variants of concern (VOCs), in part due to an increased avidity. Importantly, the dimeric or secretory IgA1 form of the DXP-604 antibody significantly outperformed its parental IgG antibody, and neutralized the Omicron lineages BA.1, BA.2, and BA.4/5 with a 25- to 75-fold increase in potency. In human angiotensin converting enzyme 2 (ACE2) transgenic mice, a single intranasal dose of the dimeric IgA DXP-604 conferred prophylactic and therapeutic protection against Omicron BA.5. Thus, dimeric or secretory IgA delivered by nasal administration may potentially be exploited for the treatment and prevention of Omicron infection, thereby providing an alternative tool for combating immune evasion by the current circulating subvariants and, potentially, future VOCs.
Collapse
Affiliation(s)
- Harold Marcotte
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Yunlong Cao
- Changping Laboratory, Beijing102206, People’s Republic of China
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing100871, People’s Republic of China
| | - Fanglei Zuo
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Luca Simonelli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Josè Camilla Sammartino
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia27100, Italy
| | - Mattia Pedotti
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Rui Sun
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Irene Cassaniti
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia27100, Italy
| | - Marie Hagbom
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58185, Sweden
| | - Antonio Piralla
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia27100, Italy
| | - Jinxuan Yang
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650023, People’s Republic of China
| | - Likun Du
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Elena Percivalle
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia27100, Italy
| | - Federico Bertoglio
- Department of Medical Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig38106, Germany
| | - Maren Schubert
- Department of Medical Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig38106, Germany
| | - Hassan Abolhassani
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Natalia Sherina
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Concetta Guerra
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Stephan Borte
- Department of Laboratory Medicine, Hospital St. Georg, Leipzig04129, Germany
- ImmunoDeficiencyCenter Leipzig, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiency Diseases, Hospital St. Georg, Leipzig04129, Germany
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran14194, Iran
| | - Makiko Kumagai-Braesch
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm14186, Sweden
| | - Yintong Xue
- Department of Immunology, Peking University Health Science Center, Beijing100191, People’s Republic of China
| | - Chen Su
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, People’s Republic of China
| | - Qihong Yan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences,Guangzhou510530, People’s Republic of China
| | - Ping He
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences,Guangzhou510530, People’s Republic of China
| | - Caroline Grönwall
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm17176, Sweden
| | - Lars Klareskog
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm17176, Sweden
- Rheumatology Unit, Karolinska University Hospital, Stockholm17176, Sweden
| | - Luigi Calzolai
- European Commission, Joint Research Centre, Ispra21027, Italy
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, 200032 Shanghai200032, People’s Republic of China
| | - Davide F. Robbiani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Michael Hust
- Department of Medical Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig38106, Germany
| | - Zhengli Shi
- State Key laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei430071, People’s Republic of China
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences,Guangzhou510530, People’s Republic of China
| | - Lennart Svensson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58185, Sweden
- Division of Infectious Diseases, Department of Medicine, Karolinska Institute, Stockholm17177, Sweden
| | - Ling Chen
- Guangzhou Laboratory, Guangzhou510005, People’s Republic of China
| | - Linlin Bao
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, National Health Commission Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing100021, People’s Republic of China
- National Center of Technology Innovation for Animal Model, Beijing102206, People’s Republic of China
| | - Fausto Baldanti
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia27100, Italy
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia27100, Italy
| | - Junyu Xiao
- Changping Laboratory, Beijing102206, People’s Republic of China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, People’s Republic of China
| | - Chuan Qin
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, National Health Commission Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing100021, People’s Republic of China
- National Center of Technology Innovation for Animal Model, Beijing102206, People’s Republic of China
| | - Lennart Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Xinglou Yang
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650023, People’s Republic of China
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Xiaoliang Sunney Xie
- Changping Laboratory, Beijing102206, People’s Republic of China
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing100871, People’s Republic of China
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| |
Collapse
|
5
|
Yang X. Passive antibody therapy in emerging infectious diseases. Front Med 2023; 17:1117-1134. [PMID: 38040914 DOI: 10.1007/s11684-023-1021-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/20/2023] [Indexed: 12/03/2023]
Abstract
The epidemic of corona virus disease 2019 (COVID-19) caused by severe acute respiratory syndrome Coronavirus 2 and its variants of concern (VOCs) has been ongoing for over 3 years. Antibody therapies encompassing convalescent plasma, hyperimmunoglobulin, and neutralizing monoclonal antibodies (mAbs) applied in passive immunotherapy have yielded positive outcomes and played a crucial role in the early COVID-19 treatment. In this review, the development path, action mechanism, clinical research results, challenges, and safety profile associated with the use of COVID-19 convalescent plasma, hyperimmunoglobulin, and mAbs were summarized. In addition, the prospects of applying antibody therapy against VOCs was assessed, offering insights into the coping strategies for facing new infectious disease outbreaks.
Collapse
Affiliation(s)
- Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, 430207, China.
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, 430207, China.
- China National Biotec Group Company Limited, Beijing, 100029, China.
| |
Collapse
|
6
|
Abassi L, Bertoglio F, Mačak Šafranko Ž, Schirrmann T, Greweling-Pils M, Seifert O, Khan F, Katzmarzyk M, Jacobsen H, Gödecke N, Heine PA, Frenzel A, Nowack H, Dübel S, Kurolt IC, Kontermann RE, Markotić A, Schubert M, Hust M, Čičin-Šain L. Evaluation of the Neutralizing Antibody STE90-C11 against SARS-CoV-2 Delta Infection and Its Recognition of Other Variants of Concerns. Viruses 2023; 15:2153. [PMID: 38005829 PMCID: PMC10675157 DOI: 10.3390/v15112153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
As of now, the COVID-19 pandemic has spread to over 770 million confirmed cases and caused approximately 7 million deaths. While several vaccines and monoclonal antibodies (mAb) have been developed and deployed, natural selection against immune recognition of viral antigens by antibodies has fueled the evolution of new emerging variants and limited the immune protection by vaccines and mAb. To optimize the efficiency of mAb, it is imperative to understand how they neutralize the variants of concern (VoCs) and to investigate the mutations responsible for immune escape. In this study, we show the in vitro neutralizing effects of a previously described monoclonal antibody (STE90-C11) against the SARS-CoV-2 Delta variant (B.1.617.2) and its in vivo effects in therapeutic and prophylactic settings. We also show that the Omicron variant avoids recognition by this mAb. To define which mutations are responsible for the escape in the Omicron variant, we used a library of pseudovirus mutants carrying each of the mutations present in the Omicron VoC individually. We show that either 501Y or 417K point mutations were sufficient for the escape of Omicron recognition by STE90-C11. To test how escape mutations act against a combination of antibodies, we tested the same library against bispecific antibodies, recognizing two discrete regions of the spike antigen. While Omicron escaped the control by the bispecific antibodies, the same antibodies controlled all mutants with individual mutations.
Collapse
Affiliation(s)
- Leila Abassi
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany; (L.A.); (F.K.); (M.K.); (H.J.); (N.G.)
| | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany; (F.B.); (P.A.H.); (S.D.); (M.S.); (M.H.)
| | - Željka Mačak Šafranko
- Research Department, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10000 Zagreb, Croatia; (Ž.M.Š.); (I.-C.K.); (A.M.)
| | - Thomas Schirrmann
- YUMAB GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany; (T.S.); (A.F.)
| | - Marina Greweling-Pils
- Core Facility of Comparative Medicine, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Oliver Seifert
- Institute of Cell Biology and Immunology, University of Stuttgart, 70174 Stuttgart, Germany; (O.S.); (H.N.); (R.E.K.)
| | - Fawad Khan
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany; (L.A.); (F.K.); (M.K.); (H.J.); (N.G.)
| | - Maeva Katzmarzyk
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany; (L.A.); (F.K.); (M.K.); (H.J.); (N.G.)
| | - Henning Jacobsen
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany; (L.A.); (F.K.); (M.K.); (H.J.); (N.G.)
| | - Natascha Gödecke
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany; (L.A.); (F.K.); (M.K.); (H.J.); (N.G.)
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany; (F.B.); (P.A.H.); (S.D.); (M.S.); (M.H.)
| | - André Frenzel
- YUMAB GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany; (T.S.); (A.F.)
| | - Helena Nowack
- Institute of Cell Biology and Immunology, University of Stuttgart, 70174 Stuttgart, Germany; (O.S.); (H.N.); (R.E.K.)
| | - Stefan Dübel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany; (F.B.); (P.A.H.); (S.D.); (M.S.); (M.H.)
| | - Ivan-Christian Kurolt
- Research Department, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10000 Zagreb, Croatia; (Ž.M.Š.); (I.-C.K.); (A.M.)
| | - Roland E. Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, 70174 Stuttgart, Germany; (O.S.); (H.N.); (R.E.K.)
| | - Alemka Markotić
- Research Department, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10000 Zagreb, Croatia; (Ž.M.Š.); (I.-C.K.); (A.M.)
- School of Medicine, Catholic University of Croatia, 10000 Zagreb, Croatia
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany; (F.B.); (P.A.H.); (S.D.); (M.S.); (M.H.)
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany; (F.B.); (P.A.H.); (S.D.); (M.S.); (M.H.)
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany; (L.A.); (F.K.); (M.K.); (H.J.); (N.G.)
- Centre for Individualized Infection Medicine, a Joint Venture of HZI and MHH, 31625 Hannover, Germany
| |
Collapse
|
7
|
Sha A, Liu Y, Hao H. Current state-of-the-art and potential future therapeutic drugs against COVID-19. Front Cell Dev Biol 2023; 11:1238027. [PMID: 37691829 PMCID: PMC10485263 DOI: 10.3389/fcell.2023.1238027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
The novel coronavirus disease (COVID-19) continues to endanger human health, and its therapeutic drugs are under intensive research and development. Identifying the efficacy and toxicity of drugs in animal models is helpful for further screening of effective medications, which is also a prerequisite for drugs to enter clinical trials. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) invades host cells mainly by the S protein on its surface. After the SARS-CoV-2 RNA genome is injected into the cells, M protein will help assemble and release new viruses. RdRp is crucial for virus replication, assembly, and release of new virus particles. This review analyzes and discusses 26 anti-SARS-CoV-2 drugs based on their mechanism of action, effectiveness and safety in different animal models. We propose five drugs to be the most promising to enter the next stage of clinical trial research, thus providing a reference for future drug development.
Collapse
Affiliation(s)
- Ailong Sha
- School of Teacher Education, Chongqing Three Gorges University, Chongqing, China
- School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Yi Liu
- School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Haiyan Hao
- School of Environmental and Chemical Engineering, Chongqing, China
| |
Collapse
|
8
|
Focosi D, Maggi F. Respiratory delivery of passive immunotherapies for SARS-CoV-2 prophylaxis and therapy. Hum Vaccin Immunother 2023; 19:2260040. [PMID: 37799070 PMCID: PMC10561570 DOI: 10.1080/21645515.2023.2260040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023] Open
Abstract
Convalescent plasma has been extensively tested during the COVID-19 pandemic as a transfusion product. Similarly, monoclonal antibodies have been largely administered either intravenously or intramuscularly. Nevertheless, when used against a respiratory pathogen, respiratory delivery is preferable to maximize the amount of antibody that reaches the entry door in order to prevent sustained viral multiplication. In this narrative review, we review the different types of inhalation device and summarize evidence from animal models and early clinical trials supporting the respiratory delivery (for either prophylactic or therapeutic purposes) of convalescent plasma or monoclonal antibodies (either full antibodies, single-chain variable fragments, or camelid-derived monoclonal heavy-chain only antibodies). Preliminary evidences from animal models suggest similar safety and noninferior efficacy, but efficacy evaluation from clinical trials is still limited.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani IRCCS”, Rome, Italy
| |
Collapse
|
9
|
Low Z, Lani R, Tiong V, Poh C, AbuBakar S, Hassandarvish P. COVID-19 Therapeutic Potential of Natural Products. Int J Mol Sci 2023; 24:9589. [PMID: 37298539 PMCID: PMC10254072 DOI: 10.3390/ijms24119589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Despite the fact that coronavirus disease 2019 (COVID-19) treatment and management are now considerably regulated, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still one of the leading causes of death in 2022. The availability of COVID-19 vaccines, FDA-approved antivirals, and monoclonal antibodies in low-income countries still poses an issue to be addressed. Natural products, particularly traditional Chinese medicines (TCMs) and medicinal plant extracts (or their active component), have challenged the dominance of drug repurposing and synthetic compound libraries in COVID-19 therapeutics. Their abundant resources and excellent antiviral performance make natural products a relatively cheap and readily available alternative for COVID-19 therapeutics. Here, we deliberately review the anti-SARS-CoV-2 mechanisms of the natural products, their potency (pharmacological profiles), and application strategies for COVID-19 intervention. In light of their advantages, this review is intended to acknowledge the potential of natural products as COVID-19 therapeutic candidates.
Collapse
Affiliation(s)
- Zhaoxuan Low
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Z.L.); (S.A.)
| | - Rafidah Lani
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Vunjia Tiong
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Z.L.); (S.A.)
| | - Chitlaa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia;
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Z.L.); (S.A.)
| | - Pouya Hassandarvish
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Z.L.); (S.A.)
| |
Collapse
|
10
|
Song Y, Hu H, Xiao K, Huang X, Guo H, Shi Y, Zhao J, Zhu S, Ji T, Xia B, Jiang J, Cao L, Zhang Y, Zhang Y, Xu W. A Synthetic SARS-CoV-2-Derived T-Cell and B-Cell Peptide Cocktail Elicits Full Protection against Lethal Omicron BA.1 Infection in H11-K18-hACE2 Mice. Microbiol Spectr 2023; 11:e0419422. [PMID: 36912685 PMCID: PMC10100915 DOI: 10.1128/spectrum.04194-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/19/2023] [Indexed: 03/14/2023] Open
Abstract
Emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developing the capacity for immune evasion and resistance to existing vaccines and drugs. To address this, development of vaccines against coronavirus disease 2019 (COVID-19) has focused on universality, strong T cell immunity, and rapid production. Synthetic peptide vaccines, which are inexpensive and quick to produce, show low toxicity, and can be selected from the conserved SARS-CoV-2 proteome, are promising candidates. In this study, we evaluated the effectiveness of a synthetic peptide cocktail containing three murine CD4+ T-cell epitopes from the SARS-CoV-2 nonspike proteome and one B-cell epitope from the Omicron BA.1 receptor-binding domain (RBD), along with aluminum phosphate (Al) adjuvant and 5' cytosine-phosphate-guanine 3' oligodeoxynucleotide (CpG-ODN) adjuvant in mice. The peptide cocktail induced good Th1-biased T-cell responses and effective neutralizing-antibody titers against the Omicron BA.1 variant. Additionally, H11-K18-hACE2 transgenic mice were fully protected against lethal challenge with the BA.1 strain, with a 100% survival rate and reduced pulmonary viral load and pathological lesions. Subcutaneous administration was found to be the superior route for synthetic peptide vaccine delivery. Our findings demonstrate the effectiveness of the peptide cocktail in mice, suggesting the feasibility of synthetic peptide vaccines for humans. IMPORTANCE Current vaccines based on production of neutralizing antibodies fail to prevent the infection and transmission of SARS-CoV-2 Omicron and its subvariants. Understanding the critical factors and avoiding the disadvantages of vaccine strategies are essential for developing a safe and effective COVID-19 vaccine, which would include a more effective and durable cellular response, minimal effects of viral mutations, rapid production against emerging variants, and good safety. Peptide-based vaccines are an excellent alternative because they are inexpensive, quick to produce, and very safe. In addition, human leukocyte antigen T-cell epitopes could be targeted at robust T-cell immunity and selected in the conserved region of the SARS-CoV-2 variants. Our study showed that a synthetic SARS-CoV-2-derived peptide cocktail induced full protection against lethal infection with Omicron BA.1 in H11-K18-hACE2 mice for the first time. This could have implications for the development of effective COVID-19 peptide vaccines for humans.
Collapse
Affiliation(s)
- Yang Song
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongqiao Hu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kang Xiao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xinghu Huang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hong Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuqing Shi
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiannan Zhao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuangli Zhu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tianjiao Ji
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Baicheng Xia
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Jiang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lei Cao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenbo Xu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
11
|
Chen J, Li Y, Liu Z. Functional nucleic acids as potent therapeutics against SARS-CoV-2 infection. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101249. [PMID: 36714073 PMCID: PMC9869493 DOI: 10.1016/j.xcrp.2023.101249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The COVID-19 pandemic has posed a severe threat to human life and the global economy. Although conventional treatments, including vaccines, antibodies, and small-molecule inhibitors, have been broadly developed, they usually fall behind the constant mutation of SARS-CoV-2, due to the long screening process and high production cost. Functional nucleic acid (FNA)-based therapeutics are a newly emerging promising means against COVID-19, considering their timely adaption to different mutants and easy design for broad-spectrum virus inhibition. In this review, we survey typical FNA-related therapeutics against SARS-CoV-2 infection, including aptamers, aptamer-integrated DNA frameworks, functional RNA, and CRISPR-Cas technology. We first introduce the pathogenesis, transmission, and evolution of SARS-CoV-2, then analyze the existing therapeutic and prophylactic strategies, including their pros and cons. Subsequently, the FNAs are recommended as potent alternative therapeutics from their screening process and controllable engineering to effective neutralization. Finally, we put forward the remaining challenges of the existing field and sketch out the future development directions.
Collapse
Affiliation(s)
- Jingran Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ying Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Ji X, Meng X, Zhu X, He Q, Cui Y. Research and development of Chinese anti-COVID-19 drugs. Acta Pharm Sin B 2022; 12:4271-4286. [PMID: 36119967 PMCID: PMC9472487 DOI: 10.1016/j.apsb.2022.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/06/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022] Open
Abstract
The outbreak and spread of coronavirus disease 2019 (COVID-19) highlighted the importance and urgency of the research and development of therapeutic drugs. Very early into the COVID-19 pandemic, China has begun developing drugs, with some notable progress. Herein, we summarizes the anti-COVID-19 drugs and promising drug candidates originally developed and researched in China. Furthermore, we discussed the developmental prospects, mechanisms of action, and advantages and disadvantages of the anti-COVID-19 drugs in development, with the aim to contribute to the rational use of drugs in COVID-19 treatment and more effective development of new drugs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the variants. Neutralizing antibody is an effective approach to overcome COVID-19. However, drug resistance induced by rapid virus mutation will likely to challenge neutralizing antibodies. Taking into account current epidemic trends, small molecule drugs have a crucial role in fighting COVID-19 due to their significant advantage of convenient administration and affordable and broad-spectrum. Traditional Chinese medicines, including natural products and traditional Chinese medicine prescriptions, contribute to the treatment of COVID-19 due to their unique mechanism of action. Currently, the research and development of Chinese anti-COVID-19 drugs have led to some promising achievements, thus prompting us to expect even more rapidly available solutions.
Collapse
Affiliation(s)
- Xiwei Ji
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100034, China
| | - Xiangrui Meng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xiao Zhu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qingfeng He
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
13
|
Nocini R, Henry BM, Mattiuzzi C, Lippi G. Improving Nasal Protection for Preventing SARS-CoV-2 Infection. Biomedicines 2022; 10:2966. [PMID: 36428534 PMCID: PMC9687306 DOI: 10.3390/biomedicines10112966] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Airborne pathogens, including SARS-CoV-2, are mainly contracted within the airway pathways, especially in the nasal epithelia, where inhaled air is mostly filtered in resting conditions. Mucosal immunity developing after SARS-CoV-2 infection or vaccination in this part of the body represents one of the most efficient deterrents for preventing viral infection. Nonetheless, the complete lack of such protection in SARS-CoV-2 naïve or seronegative subjects, the limited capacity of neutralizing new and highly mutated lineages, along with the progressive waning of mucosal immunity over time, lead the way to considering alternative strategies for constructing new walls that could stop or entrap the virus at the nasal mucosa surface, which is the area primarily colonized by the new SARS-CoV-2 Omicron sublineages. Among various infection preventive strategies, those based on generating physical barriers within the nose, aimed at impeding host cell penetration (i.e., using compounds with mucoadhesive properties, which act by hindering, entrapping or adsorbing the virus), or those preventing the association of SARS-CoV-2 with its cellular receptors (i.e., administering anti-SARS-CoV-2 neutralizing antibodies or agents that inhibit priming or binding of the spike protein) could be considered appealing perspectives. Provided that these agents are proven safe, comfortable, and compatible with daily life, we suggest prioritizing their usage in subjects at enhanced risk of contagion, during high-risk activities, as well as in patients more likely to develop severe forms of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Riccardo Nocini
- Unit of Otorhinolaryngology, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Brandon Michael Henry
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Camilla Mattiuzzi
- Service of Clinical Governance, Provincial Agency for Social and Sanitary Services (APSS), Via Alcide Degasperi 79, 38123 Trento, Italy
| | - Giuseppe Lippi
- Section of Clinical Biochemistry and School of Medicine, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| |
Collapse
|
14
|
Li X, Pan Y, Yin Q, Wang Z, Shan S, Zhang L, Yu J, Qu Y, Sun L, Gui F, Lu J, Jing Z, Wu W, Huang T, Shi X, Li J, Li X, Li D, Wang S, Yang M, Zhang L, Duan K, Liang M, Yang X, Wang X. Structural basis of a two-antibody cocktail exhibiting highly potent and broadly neutralizing activities against SARS-CoV-2 variants including diverse Omicron sublineages. Cell Discov 2022; 8:87. [PMID: 36075908 PMCID: PMC9453709 DOI: 10.1038/s41421-022-00449-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/23/2022] [Indexed: 11/19/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs), especially the latest Omicron, have exhibited severe antibody evasion. Broadly neutralizing antibodies with high potency against Omicron are urgently needed for understanding the working mechanisms and developing therapeutic agents. In this study, we characterized the previously reported F61, which was isolated from convalescent patients infected with prototype SARS-CoV-2, as a broadly neutralizing antibody against all VOCs including Omicron BA.1, BA.1.1, BA.2, BA.3 and BA.4 sublineages by utilizing antigen binding and cell infection assays. We also identified and characterized another broadly neutralizing antibody D2 with epitope distinct from that of F61. More importantly, we showed that a combination of F61 with D2 exhibited synergy in neutralization and protecting mice from SARS-CoV-2 Delta and Omicron BA.1 variants. Cryo-Electron Microscopy (Cryo-EM) structures of the spike-F61 and spike-D2 binary complexes revealed the distinct epitopes of F61 and D2 at atomic level and the structural basis for neutralization. Cryo-EM structure of the Omicron-spike-F61-D2 ternary complex provides further structural insights into the synergy between F61 and D2. These results collectively indicated F61 and F61-D2 cocktail as promising therapeutic antibodies for combating SARS-CoV-2 variants including diverse Omicron sublineages.
Collapse
Affiliation(s)
- Xiaoman Li
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yongbing Pan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, Hubei, China
| | - Qiangling Yin
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zejun Wang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, Hubei, China
| | - Sisi Shan
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Laixing Zhang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinfang Yu
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuanyuan Qu
- Institution of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Lina Sun
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fang Gui
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, Hubei, China
| | - Jia Lu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, Hubei, China
| | - Zhaofei Jing
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, Hubei, China
| | - Wei Wu
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tao Huang
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuanling Shi
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jiandong Li
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xinguo Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, Hubei, China
| | - Dexin Li
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- CDC-WIV Joint Research Center for Emerging Diseases and Biosafety, Wuhan, Hubei, China
| | - Shiwen Wang
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- CDC-WIV Joint Research Center for Emerging Diseases and Biosafety, Wuhan, Hubei, China
| | - Maojun Yang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Linqi Zhang
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, Hubei, China
| | - Mifang Liang
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
- CDC-WIV Joint Research Center for Emerging Diseases and Biosafety, Wuhan, Hubei, China.
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, Hubei, China.
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|