1
|
Trifković M, Hejna O, Kuznetsova A, Mullett M, Jankovský L, Botella L. Dothistroma septosporum and Dothistroma pini, the causal agents of Dothistroma needle blight, are infected by multiple viruses. Virus Res 2024; 350:199476. [PMID: 39353468 PMCID: PMC11490729 DOI: 10.1016/j.virusres.2024.199476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Dothistroma septosporum and Dothistroma pini are severe foliar pathogens of conifers. They infect a broad spectrum of hosts (mainly Pinus spp.), causing chlorosis, defoliation of needles, and eventually the death of pine trees in extreme cases. Mycoviruses represent a novel and innovative avenue for controlling pathogens. To search for possible viruses hosted by Dothistroma spp. we screened a subset of isolates (20 strains of D. septosporum and one D. pini) originating from the Czech Republic, Slovenia, Italy, Austria and Ireland for viral dsRNA segments. Only five of them showed the presence of dsRNA segments. A total of 21 fungal isolates were prepared for total RNA extractions. RNA samples were pooled, and two separate RNA libraries were constructed for stranded total RNA sequencing. RNA-Seq data processing, pairwise sequence comparisons (PASC) and phylogenetic analyses revealed the presence of thirteen novel putative viruses with varying genome types: seven negative-sense single-stranded RNA viruses, including six bunya-like viruses and one new member of the order Mononegavirales; three positive-sense single-stranded RNA viruses, two of which are similar to those of the family Narnaviridae, while the genome of the third correspond to those of the family Gammaflexiviridae; and three double-stranded RNA viruses, comprising two novel members of the family Chrysoviridae and a potentially new species of gammapartitivirus. The results were confirmed with RT-PCR screening that the fungal pathogens hosted all the viruses and showed that particular fungal strains harbour multiple virus infections and that they are transmitted vertically. In this study, we described the narnavirus infecting D. pini. To our knowledge, this is the first virus discovered in D. pini.
Collapse
Affiliation(s)
- Miloš Trifković
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic.
| | - Ondřej Hejna
- Department of Genetics and Agricultural Biotechnology. Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Czech Republic
| | - Anna Kuznetsova
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic
| | - Martin Mullett
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic
| | - Libor Jankovský
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic
| | - Leticia Botella
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic
| |
Collapse
|
2
|
Lopez-Jimenez J, Herrera J, Alzate JF. Expanding the knowledge frontier of mitoviruses in Cannabis sativa. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105523. [PMID: 37940011 DOI: 10.1016/j.meegid.2023.105523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/25/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Mitoviruses were initially known for their presence in the mitochondria of fungi and were considered exclusive to these organisms. However, recent studies have shown that they are also present in a large number of plant species. Despite the potential impact that mitoviruses might have on the mitochondria of plant cells, there is a lack of information about these ancient RNA viruses, especially within the Cannabaceae family. Cannabis sativa has been in the spotlight in recent years due to the growing industrial applications of plant derivatives, such as fiber and secondary metabolites. Given the importance of Cannabis in today's agriculture, our study aimed to expand the knowledge frontier of Mitoviruses in C. sativa by increasing the number of reference genomes of CasaMV1 available in public databases and representing a larger number of crops in countries where its industrial-scale growth is legalized. To achieve this goal, we used transcriptomics to sequence the first mitoviral genomes of Colombian crops and analyzed RNA-seq datasets available in the SRA databank. Additionally, the evolutionary analysis performed using the mitovirus genomes revealed two main lineages of CasaMV1, termed CasaMV1_L1 and CasaMV1_L2. These mitoviral lineages showed strong clustering based on the geographic location of the crops and differential expression intensities.
Collapse
Affiliation(s)
- Juliana Lopez-Jimenez
- Centro Nacional de Secuenciación Genómica CNSG, Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Medellín, Colombia
| | - Jorge Herrera
- Fábrica de Plantas y Semillas de Antioquia S.A.S. - FASPLAN, El Carmen de Viboral, Antioquia, Colombia
| | - Juan F Alzate
- Centro Nacional de Secuenciación Genómica CNSG, Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Medellín, Colombia; Fábrica de Plantas y Semillas de Antioquia S.A.S. - FASPLAN, El Carmen de Viboral, Antioquia, Colombia; Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
3
|
Shamsi W, Kondo H, Ulrich S, Rigling D, Prospero S. Novel RNA viruses from the native range of Hymenoscyphus fraxineus, the causal fungal agent of ash dieback. Virus Res 2022; 320:198901. [PMID: 36058013 DOI: 10.1016/j.virusres.2022.198901] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022]
Abstract
The native Japanese population of the fungus Hymenoscyphus fraxineus, the causal agent of ash dieback in Europe, was screened for viruses using a high-throughput sequencing method. Five RNA viruses were detected in 116 fungal isolates sequenced via Illumina RNA-seq platform, with an overall virus prevalence of 11.2%. The viruses were completely sequenced by RNA ligase mediated rapid amplification of cDNA ends (RLM-RACE) followed by Sanger sequencing. The sequences appear to represent new species from three established families (Mito-, Endorna- and Partitiviridae), one recognized genus (Botybirnavirus) and a negative-sense single-stranded RNA virus in the order Bunyavirales from the proposed family "Mybuviridae". The highest prevalence was found for the mitovirus (7.8%), that had two genomic forms (linear and circular), while the other viruses were detected each in one isolate. Co-infection of a mitovirus and an endornavirus was also observed in one of the infected isolates. Here we describe the molecular characterization of the identified viruses. This study expands the diversity of viruses in H. fraxineus and provides the basis for investigating the virus-mediated control of ash dieback in Europe.
Collapse
Affiliation(s)
- Wajeeha Shamsi
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, Birmensdorf 8903, Switzerland.
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Sven Ulrich
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, Birmensdorf 8903, Switzerland
| | - Daniel Rigling
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, Birmensdorf 8903, Switzerland
| | - Simone Prospero
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, Birmensdorf 8903, Switzerland
| |
Collapse
|
4
|
Mycoviromic Analysis Unveils Complex Virus Composition in a Hypovirulent Strain of Sclerotinia sclerotiorum. J Fungi (Basel) 2022; 8:jof8070649. [PMID: 35887405 PMCID: PMC9317179 DOI: 10.3390/jof8070649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Mycoviruses are ubiquitous in pathogenic fungi including Sclerotinia sclerotiorum. Using RNA sequencing, more mycoviruses have been identified in individual strains, which were previously reported to be infected by a single mycovirus. A hypovirulent strain of S. sclerotiorum, HC025, was previously thought to harbor a single mitovirus, Sclerotinia sclerotiorum mitovirus 1 (SsMV1), based on the analysis of the conventional dsRNA extraction method. We found HC025 to be co-infected by five mycoviruses. In addition to SsMV1, four mycoviruses were identified: Sclerotinia sclerotiorum narnavirus 4 (SsNV4), Sclerotinia sclerotiorum negative-stranded RNA virus 1 (SsNSRV1), Sclerotinia sclerotiorum ourmia-like virus 14 (SsOLV14), and SsOLV22. Three mycoviruses including SsNV4, SsNSRV1, and SsOLV14 share high replicase identities (more than 95%) with the previously reported corresponding mycoviruses, and SsOLV22 shows lower identity to the known viruses. The complete genome of SsOLV22 is 3987 nt long and contains a single ORF-encoded RdRp, which shares 24.84% identity with the RNA-dependent RNA polymerase (RdRp) of Hubei narna-like virus 10 (query coverage: 26%; e-value: 8 × 10−19). The phylogenetic tree of RdRp suggests that SsOLV22 is a new member within the family Botourmiaviridae. All of the mycoviruses except for SsNSRV1 could horizontally co-transfer from HC025 to the virulent strain Ep-1PNA367 with hypovirulent phenotypes, and converted a later strain into a hypovirulent strain. In summary, we molecularly characterized the hypovirulent strain HC025 and identified five RNA mycoviruses including a new member within Botourmiaviridae.
Collapse
|
5
|
Luo X, Jiang D, Xie J, Jia J, Duan J, Cheng J, Fu Y, Chen T, Yu X, Li B, Lin Y. Genome Characterization and Phylogenetic Analysis of a Novel Endornavirus That Infects Fungal Pathogen Sclerotinia sclerotiorum. Viruses 2022; 14:456. [PMID: 35336865 PMCID: PMC8953294 DOI: 10.3390/v14030456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Endornaviruses are capsidless linear (+) ssRNA viruses in the family Endornaviridae. In this study, Scelrotinia sclerotiorum endornavirus 11 (SsEV11), a novel endornavirus infecting hypovirulent Sclerotinia sclerotiorum strain XY79, was identified and cloned using virome sequencing analysis and rapid amplification of cDNA ends (RACE) techniques. The full-length genome of SsEV11 is 11906 nt in length with a large ORF, which encodes a large polyprotein of 3928 amino acid residues, containing a viral methyltransferase domain, a cysteine-rich region, a putative DEADc, a viral helicase domain, and an RNA-dependent RNA polymerase (RdRp) 2 domain. The 5' and 3' untranslated regions (UTR) are 31 nt and 90 nt, respectively. According to the BLAST result of the nucleotide sequence, SsEV11 shows the highest identity (45%) with Sclerotinia minor endornavirus 1 (SmEV1). Phylogenetic analysis based on amino acid sequence of RdRp demonstrated that SsEV11 clusters to endornavirus and has a close relationship with Betaendornavirus. Phylogenetic analysis based on the sequence of endornaviral RdRp domain indicated that there were three large clusters in the phylogenetic tree. Combining the results of alignment analysis, Cluster I at least has five subclusters including typical members of Alphaendornavirus and many unclassified endornaviruses that isolated from fungi, oomycetes, algae, and insects; Cluster II also has five subclusters including typical members of Betaendornavirus, SsEV11, and other unclassified viruses that infected fungi; Cluster III includes many endorna-like viruses that infect nematodes, mites, and insects. Viruses in Cluster I and Cluster II are close to each other and relatively distant to those in Cluster III. Our study characterized a novel betaendornavirus, SsEV11, infected fungal pathogen S. sclerotiorum, and suggested that notable phylogenetic diverse exists in endornaviruses. In addition, at least, one novel genus, Gammaendornavirus, should be established to accommodate those endorna-like viruses in Cluster III.
Collapse
Affiliation(s)
- Xin Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (D.J.); (J.X.); (J.J.); (T.C.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (D.J.); (J.X.); (J.J.); (T.C.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (D.J.); (J.X.); (J.J.); (T.C.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Jichun Jia
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (D.J.); (J.X.); (J.J.); (T.C.)
| | - Jie Duan
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Jiasen Cheng
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (D.J.); (J.X.); (J.J.); (T.C.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Xiao Yu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Bo Li
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| |
Collapse
|
6
|
Rumbou A, Vainio EJ, Büttner C. Towards the Forest Virome: High-Throughput Sequencing Drastically Expands Our Understanding on Virosphere in Temperate Forest Ecosystems. Microorganisms 2021; 9:microorganisms9081730. [PMID: 34442809 PMCID: PMC8399312 DOI: 10.3390/microorganisms9081730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Thanks to the development of HTS technologies, a vast amount of genetic information on the virosphere of temperate forests has been gained in the last seven years. To estimate the qualitative/quantitative impact of HTS on forest virology, we have summarized viruses affecting major tree/shrub species and their fungal associates, including fungal plant pathogens, mutualists and saprotrophs. The contribution of HTS methods is extremely significant for forest virology. Reviewed data on viral presence in holobionts allowed us a first attempt to address the role of virome in holobionts. Forest health is dependent on the variability of microorganisms interacting with the host tree/holobiont; symbiotic microbiota and pathogens engage in a permanent interplay, which influences the host. Through virus–virus interplays synergistic or antagonistic relations may evolve, which may drastically affect the health of the holobiont. Novel insights of these interplays may allow practical applications for forest plant protection based on endophytes and mycovirus biocontrol agents. The current analysis is conceived in light of the prospect that novel viruses may initiate an emergent infectious disease and that measures for the avoidance of future outbreaks in forests should be considered.
Collapse
Affiliation(s)
- Artemis Rumbou
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, 14195 Berlin, Germany;
- Correspondence:
| | - Eeva J. Vainio
- Natural Resources Institute Finland, Forest Health and Biodiversity, Latokartanonkaari 9, 00790 Helsinki, Finland;
| | - Carmen Büttner
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, 14195 Berlin, Germany;
| |
Collapse
|
7
|
Khalifa ME, MacDiarmid RM. A Mechanically Transmitted DNA Mycovirus Is Targeted by the Defence Machinery of Its Host, Botrytis cinerea. Viruses 2021; 13:v13071315. [PMID: 34372522 PMCID: PMC8309985 DOI: 10.3390/v13071315] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
Eukaryotic circular single-stranded DNA (ssDNA) viruses were known only to infect plants and vertebrates until the discovery of the isolated DNA mycovirus from the fungus Sclerotinia sclerotiorum. Similar viral sequences were reported from several other sources and classified in ten genera within the Genomoviridae family. The current study reports two circular ssDNA mycoviruses isolated from the phytopathogen Botrytis cinerea, and their assignment to a newly created genus tentatively named Gemydayirivirus. The mycoviruses, tentatively named botrytis gemydayirivirus 1 (BGDaV1) and BGDaV2, are 1701 and 1693 nt long and encode three and two open reading frames (ORFs), respectively. Of the predicted ORFs, only ORF I, which codes for a replication initiation protein (Rep), shared identity with other proteins in GenBank. BGDaV1 is infective as cell-free purified particles and confers hypovirulence on its natural host. Investigation revealed that BGDaV1 is a target for RNA silencing and genomic DNA methylation, keeping the virus at very low titre. The discovery of BGDaV1 expands our knowledge of the diversity of genomoviruses and their interaction with fungal hosts.
Collapse
Affiliation(s)
- Mahmoud E. Khalifa
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand;
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta 34517, Egypt
- Correspondence:
| | - Robin M. MacDiarmid
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand;
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
8
|
Sahin E, Akata I, Keskin E. Novel and divergent bipartite mycoviruses associated with the ectomycorrhizal fungus Sarcosphaera coronaria. Virus Res 2020; 286:198071. [PMID: 32589898 DOI: 10.1016/j.virusres.2020.198071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023]
Abstract
Members of the family Partitiviridae are reported from a variety of fungal and plant taxa. After dsRNA-preparation, deep sequencing, and bioinformatics, we here reveal the existence of various divergent partitiviruses co-infecting the ectomycorrhizal fungus Sarcosphaera coronaria, symbiotically associated with the pine species Pinus brutia in Turkey. A total of 75 complete or nearly complete sequences related to the members of Alphapartitivirus and Betapartitivirus, were detected from the ascocarp sample of the fungal isolate. Two of the identified partitivirus genome segments encoding for partitiviral capsid protein represent evolutionarily distinct members of Alphapartitivirus, indicating that they may have diverged in the presence of long spatial isolation. In an attempt to match the two genome segments of the identified partitiviruses and distinguish individual species co-inhabiting a single host, nine possible genome segment pairs were identified.
Collapse
Affiliation(s)
- Ergin Sahin
- Ankara University Faculty of Science Department of Biology, 06100, Tandogan, Ankara, Turkey.
| | - Ilgaz Akata
- Ankara University Faculty of Science Department of Biology, 06100, Tandogan, Ankara, Turkey
| | - Emre Keskin
- Ankara University Faculty of Agriculture Department of Fisheries and Aquaculture, 06110 Dışkapı, Ankara, Turkey
| |
Collapse
|
9
|
Filippou C, Coutts RHA, Stevens DA, Sabino R, Kotta-Loizou I. Completion of the sequence of the Aspergillus fumigatus partitivirus 1 genome. Arch Virol 2020; 165:1891-1894. [PMID: 32458177 PMCID: PMC7351820 DOI: 10.1007/s00705-020-04660-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/12/2020] [Indexed: 11/26/2022]
Abstract
A Portuguese isolate of Aspergillus fumigatus was found to contain three double-stranded (ds) RNA elements ranging in size from 1.1 to 1.8 kbp and comprising the genome of a strain of Aspergillus fumigatus partitivirus 1 (AfuPV-1) previously thought to contain only the two largest dsRNA elements. The sequence of the smallest dsRNA element is described here, completing the sequence of the AfuPV-1 genome. Sequence analysis of the element revealed an open reading frame encoding a protein of unknown function similar in size and distantly related to elements previously identified in other members of the family Partitiviridae.
Collapse
Affiliation(s)
- Charalampos Filippou
- Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Robert H A Coutts
- Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - David A Stevens
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
- California Institute for Medical Research, San Jose, California, USA
| | - Raquel Sabino
- Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK.
| |
Collapse
|
10
|
Alcaide C, Rabadán MP, Moreno-Pérez MG, Gómez P. Implications of mixed viral infections on plant disease ecology and evolution. Adv Virus Res 2020; 106:145-169. [PMID: 32327147 DOI: 10.1016/bs.aivir.2020.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mixed viral infections occur more commonly than would be expected by chance in nature. Virus-virus interactions may affect viral traits and leave a genetic signature in the population, and thus influence the prevalence and emergence of viral diseases. Understanding about how the interactions between viruses within a host shape the evolutionary dynamics of the viral populations is needed for viral disease prevention and management. Here, we first synthesize concepts implied in the occurrence of virus-virus interactions. Second, we consider the role of the within-host interactions of virus-virus and virus-other pathogenic microbes, on the composition and structure of viral populations. Third, we contemplate whether mixed viral infections can create opportunities for the generation and maintenance of viral genetic diversity. Fourth, we attempt to summarize the evolutionary response of viral populations to mixed infections to understand how they shape the spatio-temporal dynamics of viral populations at the individual plant and field scales. Finally, we anticipate the future research under the reconciliation of molecular epidemiology and evolutionary ecology, drawing attention to the need of adding more complexity to future research in order to gain a better understanding about the mechanisms operating in nature.
Collapse
Affiliation(s)
- Cristina Alcaide
- Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de investigaciones Científicas (CEBAS-CSIC), Dpto Biología del Estrés y Patología Vegetal, Murcia, Spain
| | - M Pilar Rabadán
- Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de investigaciones Científicas (CEBAS-CSIC), Dpto Biología del Estrés y Patología Vegetal, Murcia, Spain
| | - Manuel G Moreno-Pérez
- Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de investigaciones Científicas (CEBAS-CSIC), Dpto Biología del Estrés y Patología Vegetal, Murcia, Spain
| | - Pedro Gómez
- Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de investigaciones Científicas (CEBAS-CSIC), Dpto Biología del Estrés y Patología Vegetal, Murcia, Spain.
| |
Collapse
|
11
|
Alcaide C, Rabadán MP, Juárez M, Gómez P. Long-Term Cocirculation of Two Strains of Pepino Mosaic Virus in Tomato Crops and Its Effect on Population Genetic Variability. PHYTOPATHOLOGY 2020; 110:49-57. [PMID: 31524081 DOI: 10.1094/phyto-07-19-0247-fi] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mixed viral infections are common in plants, and the evolutionary dynamics of viral populations may differ depending on whether the infection is caused by single or multiple viral strains. However, comparative studies of single and mixed infections using viral populations in comparable agricultural and geographical locations are lacking. Here, we monitored the occurrence of pepino mosaic virus (PepMV) in tomato crops in two major tomato-producing areas in Murcia (southeastern Spain), supporting evidence showing that PepMV disease-affected plants had single infections of the Chilean 2 (CH2) strain in one area and the other area exhibited long-term (13 years) coexistence of the CH2 and European (EU) strains. We hypothesized that circulating strains of PepMV might be modulating the differentiation between them and shaping the evolutionary dynamics of PepMV populations. Our phylogenetic analysis of 106 CH2 isolates randomly selected from both areas showed a remarkable divergence between the CH2 isolates, with increased nucleotide variability in the geographical area where both strains cocirculate. Furthermore, the potential virus-virus interaction was studied further by constructing six full-length infectious CH2 clones from both areas, and assessing their viral fitness in the presence and absence of an EU-type isolate. All CH2 clones showed decreased fitness in mixed infections and although complete genome sequencing indicated a nucleotide divergence of those CH2 clones by area, the magnitude of the fitness response was irrespective of the CH2 origin. Overall, these results suggest that although agroecological cropping practices may be particularly important for explaining the evolutionary dynamics of PepMV in tomato crops, the cocirculation of both strains may have implications on the genetic variability of PepMV populations.
Collapse
Affiliation(s)
- C Alcaide
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Campus de Espinardo, Espinardo, CP.30100, Murcia, Spain
| | - M P Rabadán
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Campus de Espinardo, Espinardo, CP.30100, Murcia, Spain
| | - M Juárez
- Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández de Elche, Orihuela 03312, Alicante, Spain
| | - P Gómez
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Campus de Espinardo, Espinardo, CP.30100, Murcia, Spain
| |
Collapse
|
12
|
Kashif M, Jurvansuu J, Vainio EJ, Hantula J. Alphapartitiviruses of Heterobasidion Wood Decay Fungi Affect Each Other's Transmission and Host Growth. Front Cell Infect Microbiol 2019; 9:64. [PMID: 30972301 PMCID: PMC6443826 DOI: 10.3389/fcimb.2019.00064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/01/2019] [Indexed: 11/13/2022] Open
Abstract
Heterobasidion spp. root rot fungi are highly destructive forest pathogens of the northern boreal forests, and are known to host a diverse community of partitiviruses. The transmission of these mycoviruses occurs horizontally among host strains via mycelial anastomoses. We revealed using dual cultures that virus transmission rates are affected by pre-existing virus infections among two strains of H. annosum. The transmission efficacy of mycovirus HetPV15-pa1 to a pre-infected host was elevated from zero to 50% by the presence of HetPV13-an1, and a double infection of these viruses in the donor resulted in an overall transmission rate of 90% to a partitivirus-free recipient. On contrary, pre-existing virus infections of two closely related strains of HetPV11 hindered each other's transmission, but had unexpectedly dissimilar effects on the transmission of more distantly related viruses. The co-infection of HetPV13-an1 and HetPV15-pa1 significantly reduced host growth, whereas double infections including HetPV11 strains had variable effects. Moreover, the results showed that RdRp transcripts are generally more abundant than capsid protein (CP) transcripts and the four different virus strains express unique transcripts ratios of RdRp and CP. Taken together, the results show that the interplay between co-infecting viruses and their host is extremely complex and highly unpredictable.
Collapse
Affiliation(s)
- Muhammad Kashif
- Forest Health and Biodiversity, Natural Resources Institute Finland, Helsinki, Finland
| | | | - Eeva J Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland, Helsinki, Finland
| | - Jarkko Hantula
- Forest Health and Biodiversity, Natural Resources Institute Finland, Helsinki, Finland
| |
Collapse
|
13
|
Botella L, Hantula J. Description, Distribution, and Relevance of Viruses of the Forest Pathogen Gremmeniella abietina. Viruses 2018; 10:v10110654. [PMID: 30463286 PMCID: PMC6267220 DOI: 10.3390/v10110654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 01/29/2023] Open
Abstract
The European race of the ascomycetous species Gremmeniella abietina (Lagerberg) Morelet includes causal agents of shoot blight and stem canker of several conifers in Europe and North America, which are known to host a diverse virome. GaRV6 is the latest and sixth mycovirus species reported within G. abietina. Before its description, one victorivirus and one gammapartitivirus species were described in biotype A, two mitoviruses in both biotypes A and B and a betaendornavirus in biotype B. Possible phenotypic changes produced by mycoviruses on G. abietina mycelial growth have been reported in Spanish mitovirus-free and GaRV6-hosting G. abietina isolates, which had higher growth rates at the optimal temperature of 15 °C, but no other major differences have been observed between partitivirus-like dsRNA and dsRNA-free isolates. In this review, we reappraise the diversity of viruses found in G. abietina so far, and their relevance in clarifying the taxonomy of G. abietina. We also provide evidence for the presence of two new viruses belonging to the families Fusariviridae and Endornaviridae in Spanish isolates.
Collapse
Affiliation(s)
- Leticia Botella
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.
| | - Jarkko Hantula
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland.
| |
Collapse
|
14
|
de Lima JGS, Teixeira DG, Freitas TT, Lima JPMS, Lanza DCF. Evolutionary origin of 2A-like sequences in Totiviridae genomes. Virus Res 2018; 259:1-9. [PMID: 30339789 DOI: 10.1016/j.virusres.2018.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/28/2018] [Accepted: 10/15/2018] [Indexed: 12/20/2022]
Abstract
In recent years there has been a significant increase in the number of new species potentially belonging to the Totiviridae family. Most of these new viruses have not yet been covered by the Committee on Taxonomy of Viruses (ICTV) official classification. In this study, a phylogenetic analysis including new sequences of Totiviridae candidates revealed a clade including Giardiavirus and a great diversity of new totiviruses, which infect arthropods, protozoa and mollusc. This expanded Giardiavirus clade comprises two monophyletic groups, one of them including Giardia lamblia virus (GLV) grouped with viruses that infect arthropods and vertebrates (GLV-like group), and the other includes the previously proposed Artivirus group (IMNV-like group). A screening of the members of the GLV-like group in search of genomic elements already described in IMNV-like group revealed the existence of sites with a high propensity to become 2 A-like oligopeptides, mainly in a specific subgroup of arthropod viruses, suggesting that these viruses preserved ancestral characteristics. The existence of these "pseudo 2 A-sites" associated to phylogenetic reconstruction indicates that these sequences appear at a decisive stage for viral evolution. If they are changed to functional 2 A-like sequences, an irreversible route to increase the genome complexity will be initiated.
Collapse
Affiliation(s)
- Juliana G S de Lima
- Applied Molecular Biology Lab - LAPLIC, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Diego G Teixeira
- Laboratory of Metabolic Systems and Bioinformatics - LASIS, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Tiago T Freitas
- Applied Molecular Biology Lab - LAPLIC, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Postgraduate Program in Science, Technology and Innovation, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - João P M S Lima
- Laboratory of Metabolic Systems and Bioinformatics - LASIS, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Daniel C F Lanza
- Applied Molecular Biology Lab - LAPLIC, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Postgraduate Program in Science, Technology and Innovation, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
15
|
Hrabáková L, Grum-Grzhimaylo AA, Koloniuk I, Debets AJM, Sarkisova T, Petrzik K. The alkalophilic fungus Sodiomyces alkalinus hosts beta- and gammapartitiviruses together with a new fusarivirus. PLoS One 2017; 12:e0187799. [PMID: 29186149 PMCID: PMC5706713 DOI: 10.1371/journal.pone.0187799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 10/26/2017] [Indexed: 11/18/2022] Open
Abstract
Mixed infection by three dsRNA viruses, a novel betapartitivirus, a gammapartitivirus, and a novel fusarivirus, has been identified in four isolates of the obligate alkalophilic fungus Sodiomyces alkalinus. The first, Sodiomyces alkalinus partitivirus 1 (SaPV1), is placed within the genus Betapartitivirus and is related to Ustilaginoidea virens partitivirus 2. The taxonomic position of the second virus is less clear as it shares high (85%) amino acid sequence identity but significantly low (77%) nucleotide sequence identity of the capsid protein with Colletotrichum truncatum partitivirus 1. The third, the novel Sodiomyces alkalinus fusarivirus 1 (SaFV1), is related to Fusarium poae fusarivirus 1. All the viruses show efficient vertical transmission through asexual and sexual spores. These novel coexisting viruses do not evoke apparent phenotypic alteration to their fungal host. This is the first description of a viral infection in an alkalophilic fungus.
Collapse
Affiliation(s)
- Lenka Hrabáková
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | | | - Igor Koloniuk
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | | | - Tatiana Sarkisova
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Karel Petrzik
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
16
|
Kotta-Loizou I, Coutts RHA. Mycoviruses in Aspergilli: A Comprehensive Review. Front Microbiol 2017; 8:1699. [PMID: 28932216 PMCID: PMC5592211 DOI: 10.3389/fmicb.2017.01699] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 08/23/2017] [Indexed: 12/31/2022] Open
Abstract
Fungi, similar to all species, are susceptible to viral infection. Aspergillus is arguably the most well studied fungal genus because of its medical, ecological and economical significance. Mycoviruses were initially detected in Aspergillus species almost 50 years ago and the field continues to be active today with ground-breaking discoveries. The aim of the present review is to cover the scientific progress in all aspects of mycovirology as exemplified by Aspergillus-focused research. Initially an overview of the population studies illustrating the presence of mycoviruses in numerous important Aspergillus species, such as A. niger, A. flavus, and A. fumigatus with be presented. Moreover the intricacies of mycovirus transmission, both inter- and intra-species, will be discussed together with the methodologies used to investigate viral dispersion in a laboratory setting. Subsequently, the genomic features of all molecularly characterized mycoviruses to date will be analyzed in depth. These include members of established viral families, such as Partitiviridae, Chrysoviridae and Totiviridae, but also more recent, novel discoveries that led to the proposal of new viral families, such as Polymycoviridae, Alternaviridae and, in the context of the present review, Exartaviridae. Finally, the major issue of phenotypic effects of mycoviral infection on the host is addressed, including aflatoxin production in A. flavus, together with growth and virulence in A. fumigatus. Although the molecular mechanisms behind these phenomena are yet to be elucidated, recent studies suggest that by implication, RNA silencing may be involved.
Collapse
Affiliation(s)
- Ioly Kotta-Loizou
- Department of Life Sciences, Imperial College LondonLondon, United Kingdom
| | - Robert H A Coutts
- Department of Biological and Environmental Sciences, University of HertfordshireHatfield, United Kingdom
| |
Collapse
|
17
|
Complete nucleotide sequences of dsRNA2 and dsRNA7 detected in the phytopathogenic fungus Sclerotium hydrophilum and their close phylogenetic relationship to a group of unclassified viruses. Virus Genes 2016; 52:823-827. [DOI: 10.1007/s11262-016-1375-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 07/19/2016] [Indexed: 11/24/2022]
|
18
|
Li L, Liu J, Zhang Q, Fu R, Zhu X, Li C, Chen J. Seed-borne viral dsRNA elements in three cultivatedRaphanusandBrassicaplants suggest three cryptoviruses. Can J Microbiol 2016; 62:287-95. [DOI: 10.1139/cjm-2015-0788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Since the 1970s, several dsRNA viruses, including Radish yellow edge virus, Raphanus sativus virus 1, Raphanus sativus virus 2, and Raphanus sativus virus 3, have been identified and reported as infecting radish. In the present study, in conjunction with a survey of seed-borne viruses in cultivated Brassica and Raphanus using the dsRNA diagnostic method, we discovered 3 novel cryptoviruses that infect Brassica and Raphanus: Raphanus sativus partitivirus 1, which infects radish (Raphanus sativus); Sinapis alba cryptic virus 1, which infects Sinapis alba; and Brassica rapa cryptic virus 1 (BrCV1), which infects Brassica rapa. The genomic organization of these cryptoviruses was analyzed and characterized. BrCV1 might represent the first plant partitivirus found in Gammapartitivirus. Additionally, the evolutionary relationships among all of the partitiviruses reported in Raphanus and Brassica were analyzed.
Collapse
Affiliation(s)
- Liqiang Li
- College of Life Science, Zhejiang University, Hangzhou, 310058, People’s Republic of China
| | - Jianning Liu
- Institute of Bioengineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People’s Republic of China
| | - Qiong Zhang
- Institute of Bioengineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People’s Republic of China
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, People’s Republic of China
| | - Runying Fu
- Shenzhen Seventh People’s Hospital, Shenzhen, 518081, People’s Republic of China
| | - Xiwu Zhu
- Institute of Bioengineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People’s Republic of China
- Institute of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 41700, People’s Republic of China
| | - Chao Li
- College of Life Science, Shenzhen University, Shenzhen, 518068, People’s Republic of China
| | - Jishuang Chen
- College of Life Science, Zhejiang University, Hangzhou, 310058, People’s Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People’s Republic of China
| |
Collapse
|
19
|
Martinez J, Lepetit D, Ravallec M, Fleury F, Varaldi J. Additional heritable virus in the parasitic wasp Leptopilina boulardi: prevalence, transmission and phenotypic effects. J Gen Virol 2016; 97:523-535. [DOI: 10.1099/jgv.0.000360] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Julien Martinez
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Lyon, France
| | - David Lepetit
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Lyon, France
| | - Marc Ravallec
- Unité BiVi (Biologie Intégrative et Virologie des Insectes), Université Montpellier II-INRA 1231, France
| | - Frédéric Fleury
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Lyon, France
| | - Julien Varaldi
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Lyon, France
| |
Collapse
|
20
|
Vainio EJ, Hantula J. Taxonomy, biogeography and importance of Heterobasidion viruses. Virus Res 2015; 219:2-10. [PMID: 26477938 DOI: 10.1016/j.virusres.2015.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/08/2015] [Accepted: 10/10/2015] [Indexed: 11/17/2022]
Abstract
The genus Heterobasidion consists of several species of necrotrophic and saprotrophic fungi, and includes some of the most detrimental organisms in boreal conifer forests. These fungi host a widespread and diverse mycovirus community composed of more than 16 species of Partitiviridae, a species of Narnaviridae and one taxonomically unassigned virus related to the Curvularia thermal tolerance virus. These viruses are able to cross species borders, co-infect single host strains and cause phenotypic changes in their hosts. The abundance of viruses increases over time in Heterobasidion infection centers, and they are targeted by fungal RNA interference. Long-term field studies are essential for obtaining a comprehensive view of virus effects in the nature.
Collapse
Affiliation(s)
- Eeva J Vainio
- Natural Resources Institute Finland (Luke), Jokiniemenkuja 1, POB 18, 01301 Vantaa, Finland.
| | - Jarkko Hantula
- Natural Resources Institute Finland (Luke), Jokiniemenkuja 1, POB 18, 01301 Vantaa, Finland.
| |
Collapse
|
21
|
Botella L, Vainio EJ, Hantula J, Diez JJ, Jankovsky L. Description and prevalence of a putative novel mycovirus within the conifer pathogen Gremmeniella abietina. Arch Virol 2015; 160:1967-75. [PMID: 26047648 DOI: 10.1007/s00705-015-2456-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
Abstract
The European race of Gremmeniella abietina (Lagerberg) Morelet is the causal agent of stem canker and shoot blight on numerous conifers in Europe and North America. It comprises different species and biotypes in which the presence of mycoviruses has been determined. In this report, we describe the full-length sequence of the RNA-dependent RNA polymerase (RdRp) of a putative novel virus, Gremmeniella abietina RNA virus 6 (GaRV6), with 2165 nt and a GC content of 54.7 %. A BLASTp search using the deduced RdRp amino acid sequence confirmed GaRV6 to be related to members of a still unassigned virus taxon, which includes, e.g., Fusarium graminearum dsRNA mycovirus 4 (FgV-4) and the mutualistic Curvularia thermal tolerance virus (CThTV). The prevalence and genetic diversity of GaRV6 was also studied within the European race of G. abietina. We examined 162 isolates originating from Canada, the Czech Republic, Finland, Italy, Montenegro, Serbia, Spain, Switzerland, Turkey and the United States. According to direct specific reverse transcription (RT) PCR screening based on the RdRp sequence, the virus appears to be present only in Spain, where it is relatively abundant but genetically highly uniform.
Collapse
Affiliation(s)
- Leticia Botella
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 61300, Brno, Czech Republic,
| | | | | | | | | |
Collapse
|
22
|
Liu L, Wang Q, Cheng J, Fu Y, Jiang D, Xie J. Molecular characterization of a bipartite double-stranded RNA virus and its satellite-like RNA co-infecting the phytopathogenic fungus Sclerotinia sclerotiorum. Front Microbiol 2015; 6:406. [PMID: 25999933 PMCID: PMC4422086 DOI: 10.3389/fmicb.2015.00406] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/19/2015] [Indexed: 11/13/2022] Open
Abstract
A variety of mycoviruses have been found in Sclerotinia sclerotiorum. In this study, we report a novel mycovirus S. sclerotiorum botybirnavirus 1 (SsBRV1) that was originally isolated from the hypovirulent strain SCH941 of S. sclerotiorum. SsBRV1 has rigid spherical virions that are ∼38 nm in diameter, and three double-stranded RNA (dsRNA) segments (dsRNA1, 2, and 3 with lengths of 6.4, 6.0, and 1.7 kbp, respectively) were packaged in the virions. dsRNA1 encodes a cap-pol fusion protein, and dsRNA2 encodes a polyprotein with unknown functions but contributes to the formation of virus particles. The dsRNA3 is dispensable and may be a satellite-like RNA of SsBRV1. Although phylogenetic analysis of the RdRp domain demonstrated that SsBRV1 is related to Botrytis porri RNA virus 1 (BpRV1) and Ustilago maydis dsRNA virus-H1, the structure proteins of SsBRV1 do not have any significant sequence similarities with other known viral proteins with the exception of those of BpRV1. SsBRV1 carrying dsRNA3 seems to have no obvious effects on the colony morphology, but can significantly reduce the growth rate and virulence of S. sclerotiorum. These findings provide new insights into the virus taxonomy, virus evolution and the interactions between SsBRV1 and the fungal hosts.
Collapse
Affiliation(s)
- Lijiang Liu
- State Key Laboratory of Agricultural Microbiology and The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Qihua Wang
- State Key Laboratory of Agricultural Microbiology and The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology and The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Yanping Fu
- State Key Laboratory of Agricultural Microbiology and The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology and The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology and The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
23
|
Prevalence and diversity of mycoviruses infecting the plant pathogen Ustilaginoidea virens. Virus Res 2015; 195:47-56. [DOI: 10.1016/j.virusres.2014.08.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 12/15/2022]
|
24
|
Botella L, Tuomivirta TT, Hantula J, Diez JJ, Jankovsky L. The European race of Gremmeniella abietina hosts a single species of Gammapartitivirus showing a global distribution and possible recombinant events in its history. Fungal Biol 2014; 119:125-35. [PMID: 25749364 PMCID: PMC7102696 DOI: 10.1016/j.funbio.2014.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 11/28/2022]
Abstract
The population genetics of the family Partitiviridae was studied within the European race of the conifer pathogen Gremmeniella abietina. One hundred sixty-two isolates were collected from different countries, including Canada, the Czech Republic, Finland, Italy, Montenegro, Serbia, Spain, Switzerland, Turkey and the United States. A unique species of G. abietina RNA virus-MS1 (GaRV-MS1) appears to occur indistinctly in G. abietina biotypes A and B, without a particular geographical distribution pattern. Forty-six isolates were shown to host GaRV-MS1 according to direct specific RT-PCR screening, and the virus was more common in biotype A than B. Phylogenetic analysis based on 46 partial coat protein (CP) cDNA sequences divided the GaRV-MS1 population into two closely related clades, while RNA-dependent RNA polymerase (RdRp) sequences revealed only one clade. The evolution of the virus appears to mainly occur through purifying selection but also through recombination. Recombination events were detected within alignments of the three complete CP and RdRp sequences of GaRV-MS1. This is the first time that recombination events have been directly identified in fungal partitiviruses and in G. abietina in particular. The results suggest that the population dynamics of GaRV-MS1 do not have a direct impact on the genetic structure of its host, G. abietina, though they might have had an innocuous ancestral relationship.
Collapse
Affiliation(s)
- Leticia Botella
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic.
| | - Tero T Tuomivirta
- Finnish Forest Research Institute, Vantaa Research Unit, PO Box 18, 01301 Vantaa, Finland
| | - Jarkko Hantula
- Finnish Forest Research Institute, Vantaa Research Unit, PO Box 18, 01301 Vantaa, Finland
| | - Julio J Diez
- Sustainable Forest Management Research Institute, University of Valladolid - INIA, Avenida de Madrid 44, 34071 Palencia, Spain
| | - Libor Jankovsky
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic
| |
Collapse
|
25
|
Viruses accumulate in aging infection centers of a fungal forest pathogen. ISME JOURNAL 2014; 9:497-507. [PMID: 25126757 DOI: 10.1038/ismej.2014.145] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 05/06/2014] [Accepted: 07/07/2014] [Indexed: 11/09/2022]
Abstract
Fungal viruses (mycoviruses) with RNA genomes are believed to lack extracellular infective particles. These viruses are transmitted laterally among fungal strains through mycelial anastomoses or vertically via their infected spores, but little is known regarding their prevalence and patterns of dispersal under natural conditions. Here, we examined, in detail, the spatial and temporal changes in a mycovirus community and its host fungus Heterobasidion parviporum, the most devastating fungal pathogen of conifers in the Boreal forest region. During the 7-year sampling period, viruses accumulated in clonal host individuals as a result of indigenous viruses spreading within and between clones as well as novel strains arriving via airborne spores. Viral community changes produced pockets of heterogeneity within large H. parviporum clones. The appearance of novel viral infections in aging clones indicated that transient cell-to-cell contacts between Heterobasidion strains are likely to occur more frequently than what was inferred from genotypic analyses. Intraspecific variation was low among the three partitivirus species at the study site, whereas the unassigned viral species HetRV6 was highly polymorphic. The accumulation of point mutations during persistent infections resulted in viral diversification, that is, the presence of nearly identical viral sequence variants within single clones. Our results also suggest that co-infections by distantly related viral species are more stable than those between conspecific strains, and mutual exclusion may play a role in determining mycoviral communities.
Collapse
|
26
|
Nibert ML, Ghabrial SA, Maiss E, Lesker T, Vainio EJ, Jiang D, Suzuki N. Taxonomic reorganization of family Partitiviridae and other recent progress in partitivirus research. Virus Res 2014; 188:128-41. [DOI: 10.1016/j.virusres.2014.04.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
|
27
|
Zhang T, Jiang Y, Huang J, Dong W. Genomic organization of a novel partitivirus from the phytopathogenic fungus Ustilaginoidea virens. Arch Virol 2013; 158:2415-9. [PMID: 23732929 DOI: 10.1007/s00705-013-1742-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/19/2013] [Indexed: 10/26/2022]
Abstract
From the plant pathogen Ustilaginoidea virens, four double-stranded RNA (dsRNA) segments designated Uv-dsRNA1, -2, -3, and -4 were isolated, cloned, and sequenced. Uv-dsRNA1 (1775 bp) and -2 (1588 bp) potentially encode an RNA-dependent RNA polymerase (RdRp) and a viral coat protein (CP), respectively. Since the RdRp and CP sequences encoded by Uv-dsRNA1 and -2, respectively, are most closely related to, but clearly distinct from, those of viruses of the genus Partitivirus, they appear to be the two genome segments of a new partitivirus, for which the name Ustilaginoidea virens partitivirus 1 is proposed. In contrast, Uv-dsRNA3 (1352 bp) did not share significant sequence similarity with GenBank sequences, and the ORF of Uv-dsRNA4 (1119 bp) was only 32 % identical to a functionally unknown protein (GaRVMS2s3gp1) encoded by Gremmeniella abietina RNA virus MS2.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | | | | | | |
Collapse
|
28
|
Negruk V. Mitochondrial Genome Sequence of the Legume Vicia faba. FRONTIERS IN PLANT SCIENCE 2013; 4:128. [PMID: 23675376 PMCID: PMC3646248 DOI: 10.3389/fpls.2013.00128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/19/2013] [Indexed: 05/26/2023]
Abstract
The number of plant mitochondrial genomes sequenced exceeds two dozen. However, for a detailed comparative study of different phylogenetic branches more plant mitochondrial genomes should be sequenced. This article presents sequencing data and comparative analysis of mitochondrial DNA (mtDNA) of the legume Vicia faba. The size of the V. faba circular mitochondrial master chromosome of cultivar Broad Windsor was estimated as 588,000 bp with a genome complexity of 387,745 bp and 52 conservative mitochondrial genes; 32 of them encoding proteins, 3 rRNA, and 17 tRNA genes. Six tRNA genes were highly homologous to chloroplast genome sequences. In addition to the 52 conservative genes, 114 unique open reading frames (ORFs) were found, 36 without significant homology to any known proteins and 29 with homology to the Medicago truncatula nuclear genome and to other plant mitochondrial ORFs, 49 ORFs were not homologous to M. truncatula but possessed sequences with significant homology to other plant mitochondrial or nuclear ORFs. In general, the unique ORFs revealed very low homology to known closely related legumes, but several sequence homologies were found between V. faba, Beta vulgaris, Nicotiana tabacum, Vitis vinifera, and even the monocots Oryza sativa and Zea mays. Most likely these ORFs arose independently during angiosperm evolution (Kubo and Mikami, 2007; Kubo and Newton, 2008). Computational analysis revealed in total about 45% of V. faba mtDNA sequence being homologous to the Medicago truncatula nuclear genome (more than to any sequenced plant mitochondrial genome), and 35% of this homology ranging from a few dozen to 12,806 bp are located on chromosome 1. Apparently, mitochondrial rrn5, rrn18, rps10, ATP synthase subunit alpha, cox2, and tRNA sequences are part of transcribed nuclear mosaic ORFs.
Collapse
|
29
|
Abstract
Members of the virus family Narnaviridae contain the simplest genomes of any RNA virus, ranging from 2.3 to 3.6 kb and encoding only a single polypeptide that has an RNA-dependent RNA polymerase domain. The family is subdivided into two genera based on subcellular location: members of the genus Narnavirus have been found in the yeast Saccharomyces cerevisiae and in the oomycete Phytophthora infestans and are confined to the cytosol, while members of the genus Mitovirus have been found only in filamentous fungi and are found in mitochondria. None identified thus far encodes a capsid protein; like several other RNA viruses of lower eukaryotes, their genomes are confined within lipid vesicles. As more family members are discovered, their importance as genetic elements is becoming evident. The unique association of the genus Mitovirus with mitochondria renders them potentially valuable tools to study biology of lower eukaryotes.
Collapse
|
30
|
Vainio EJ, Piri T, Hantula J. Virus community dynamics in the conifer pathogenic fungus Heterobasidion parviporum following an artificial introduction of a partitivirus. MICROBIAL ECOLOGY 2013; 65:28-38. [PMID: 22961364 DOI: 10.1007/s00248-012-0118-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/20/2012] [Indexed: 06/01/2023]
Abstract
Viruses infecting the conifer pathogenic fungus Heterobasidion annosum sensu lato are intracellular and spread via anastomosis contacts. In the laboratory, these viruses transmit readily even between somatically incompatible isolates, but their dispersal capacity in natural conditions has not been previously studied. We introduced a mycovirus to a heavily diseased forest site by inoculating Norway spruce stumps with heartrot decay using a mycelial suspension of Heterobasidion parviporum strain RT3.49C hosting the partitivirus strain HetRV4-pa1. The Heterobasidion population at the sample plot was screened for mycoviruses prior to and after the inoculation. Based on sequence analysis, the resident H. parviporum strains harbored six different strains of the virus species Heterobasidion RNA virus 6 (HetRV6) and one strain of HetRV4 prior to the inoculation. After three growth seasons, the inoculated H. parviporum host strain was not detected, but the introduced virus had infected two resident H. parviporum genets. The presence of a preexisting HetRV6 infection did not hinder spread of the introduced partitivirus but resulted in coinfections instead. The resident HetRV6 virus population seemed to be highly stable during the incubation period, while the single indigenous HetRV4 infection was not detected after the inoculation. In laboratory infection experiments, the introduced virus could be transmitted successfully into all of the resident H. parviporum genets. This study shows for the first time transmission of a Heterobasidion virus between somatically incompatible hosts in natural conditions.
Collapse
Affiliation(s)
- Eeva J Vainio
- Vantaa Research Unit, Finnish Forest Research Institute, PO Box 18, 01301, Vantaa, Finland.
| | | | | |
Collapse
|
31
|
Prevalence and diversity of viruses in the entomopathogenic fungus Beauveria bassiana. Appl Environ Microbiol 2012; 78:8523-30. [PMID: 23001673 DOI: 10.1128/aem.01954-12] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Viruses have been discovered in numerous fungal species, but unlike most known animal or plant viruses, they are rarely associated with deleterious effects on their hosts. The knowledge about viruses among entomopathogenic fungi is very limited, although their existence is suspected because of the presence of virus-like double-stranded RNA (dsRNA) in isolates of several species. Beauveria bassiana is one of the most-studied species of entomopathogenic fungi; it has a cosmopolitan distribution and is used as a biological control agent against invertebrates in agriculture. We analyzed a collection of 73 isolates obtained at different locations and from different habitats in Spain and Portugal, searching for dsRNA elements indicative of viral infections. The results revealed that the prevalence of viral infections is high; 54.8% of the isolates contained dsRNA elements with viral characteristics. The dsRNA electropherotypes of infected isolates indicated that virus diversity was high in the collection analyzed and that mixed virus infections occurred in fungal isolates. However, a hybridization experiment indicated that dsRNA bands that are similar in size do not always have similar sequences. Particular virus species or dsRNA profiles were not associated with locations or types of habitats, probably because of the ubiquity and efficient dispersion of this fungus as an airborne species. The sequence of one of the most common dsRNA elements corresponded to the 5.2-kbp genome of a previously undescribed member of the Totiviridae family, termed B. bassiana RNA virus 1 (BbRV1).
Collapse
|
32
|
Goremykin VV, Lockhart PJ, Viola R, Velasco R. The mitochondrial genome of Malus domestica and the import-driven hypothesis of mitochondrial genome expansion in seed plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:615-26. [PMID: 22469001 DOI: 10.1111/j.1365-313x.2012.05014.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Mitochondrial genomes of spermatophytes are the largest of all organellar genomes. Their large size has been attributed to various factors; however, the relative contribution of these factors to mitochondrial DNA (mtDNA) expansion remains undetermined. We estimated their relative contribution in Malus domestica (apple). The mitochondrial genome of apple has a size of 396 947 bp and a one to nine ratio of coding to non-coding DNA, close to the corresponding average values for angiosperms. We determined that 71.5% of the apple mtDNA sequence was highly similar to sequences of its nuclear DNA. Using nuclear gene exons, nuclear transposable elements and chloroplast DNA as markers of promiscuous DNA content in mtDNA, we estimated that approximately 20% of the apple mtDNA consisted of DNA sequences imported from other cell compartments, mostly from the nucleus. Similar marker-based estimates of promiscuous DNA content in the mitochondrial genomes of other species ranged between 21.2 and 25.3% of the total mtDNA length for grape, between 23.1 and 38.6% for rice, and between 47.1 and 78.4% for maize. All these estimates are conservative, because they underestimate the import of non-functional DNA. We propose that the import of promiscuous DNA is a core mechanism for mtDNA size expansion in seed plants. In apple, maize and grape this mechanism contributed far more to genome expansion than did homologous recombination. In rice the estimated contribution of both mechanisms was found to be similar.
Collapse
Affiliation(s)
- Vadim V Goremykin
- IASMA Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all'Adige (TN), Italy.
| | | | | | | |
Collapse
|
33
|
Botella L, Tuomivirta TT, Vervuurt S, Diez JJ, Hantula J. Occurrence of two different species of mitoviruses in the European race of Gremmeniella abietina var. abietina, both hosted by the genetically unique Spanish population. Fungal Biol 2012; 116:872-82. [PMID: 22862915 DOI: 10.1016/j.funbio.2012.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 05/08/2012] [Accepted: 05/09/2012] [Indexed: 01/10/2023]
Abstract
The genetic structure of the genus Mitovirus community hosted by the European pathogenic conifer fungus Gremmeniella abietina var. abietina was investigated. Gremmeniella abietina is a species complex with a divergent mycovirus community, composed mainly of Totivirus, Partitivirus, and Mitovirus species. In this work, the total doubled-stranded (ds)RNA from 353 isolates from Canada, Finland, Spain, Switzerland, Turkey, and USA was extracted to look for the presence of a ca. 2.5 kb band typical of mitoviruses' genomes. Based on the banding data, 60 partial RNA-dependent RNA polymerase (RdRp) DNA sequences (ca. 500 bp) were amplified with reverse transcription-polymerase chain reaction (RT-PCR) and sequenced. Two distantly related mitovirus groups (species) were observed in the clustering analysis, one of them related to GMV1-1 and the other one related to a new putative species described in this study, GMV2-1. Viruses in these two clusters seemed to be subjected to purifying selection. The cluster with GMV1-1 included viruses observed in the Finnish biotype A and Spanish strains, whereas the cluster including GMV2-1 was composed of viruses of the Finnish biotype B and one from the Spanish population. Thereby, the Spanish population of G. abietina harboured mitovirus strains occurring in both biotype A and B strains, and it is the first one hosting distantly related mycoviruses of a single genus in one population of G. abietina. This may suggest that horizontal transmission of viruses could have occurred between biotype B and the Spanish population.
Collapse
Affiliation(s)
- Leticia Botella
- Sustainable Forest Management Research Institute, University of Valladolid, INIA, 34004 Palencia, Spain.
| | | | | | | | | |
Collapse
|
34
|
Feldman TS, Morsy MR, Roossinck MJ. Are communities of microbial symbionts more diverse than communities of macrobial hosts? Fungal Biol 2012; 116:465-77. [DOI: 10.1016/j.funbio.2012.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 01/12/2012] [Accepted: 01/19/2012] [Indexed: 11/16/2022]
|
35
|
Mycoviruses infecting the endophytic and entomopathogenic fungus Tolypocladium cylindrosporum. Virus Res 2011; 160:409-13. [DOI: 10.1016/j.virusres.2011.06.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 11/19/2022]
|
36
|
Isawa H, Kuwata R, Hoshino K, Tsuda Y, Sakai K, Watanabe S, Nishimura M, Satho T, Kataoka M, Nagata N, Hasegawa H, Bando H, Yano K, Sasaki T, Kobayashi M, Mizutani T, Sawabe K. Identification and molecular characterization of a new nonsegmented double-stranded RNA virus isolated from Culex mosquitoes in Japan. Virus Res 2010; 155:147-55. [PMID: 20875466 DOI: 10.1016/j.virusres.2010.09.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 09/03/2010] [Accepted: 09/19/2010] [Indexed: 12/21/2022]
Abstract
Two infectious agents were isolated from Culex species mosquitoes in Japan and were identified as distinct strains of a new RNA virus by a method for sequence-independent amplification of viral nucleic acids. The virus designated Omono River virus (OMRV) replicated in mosquito cells in which it produced a severe cytopathic effect. Icosahedral virus particles of approximately 40 nm in diameter were detected in the cytoplasm of infected cells. The OMRV genome was observed to consist of a nonsegmented, 7.6-kb double-stranded RNA (dsRNA) and contain two overlapping open reading frames (ORFs), namely ORF1 and ORF2. ORF1 was found to encode a putative dsRNA-binding protein, a major capsid protein, and other putative proteins, which might be generated by co- and/or post-translational processing of the ORF1 polyprotein precursor, and ORF2 was found to encode a putative RNA-dependent RNA polymerase (RdRp), which could be translated as a fusion with the ORF1 product by a -1 ribosomal frameshift. Phylogenetic analysis based on RdRp revealed that OMRV is closely related to penaeid shrimp infectious myonecrosis virus and Drosophila totivirus, which are tentatively assigned to the family Totiviridae. These results indicated that OMRV is a new member of the family of nonsegmented dsRNA viruses infecting arthropod hosts, but not fungal or protozoan hosts.
Collapse
Affiliation(s)
- Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kanematsu S, Sasaki A, Onoue M, Oikawa Y, Ito T. Extending the fungal host range of a partitivirus and a mycoreovirus from Rosellinia necatrix by inoculation of protoplasts with virus particles. PHYTOPATHOLOGY 2010; 100:922-30. [PMID: 20701490 DOI: 10.1094/phyto-100-9-0922] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The potential host range of mycoviruses is poorly understood because of the lack of suitable inoculation methods. Recently, successful transfection has been reported for somatically incompatible fungal isolates with purified virus particles of two mycoviruses, the partitivirus RnPV1-W8 (RnPV1) and the mycoreovirus RnMyRV3/W370 (MyRV3), from the white root rot fungus Rosellinia necatrix (class Sordariomycetes, subclass Xylariomycetidae). These studies examined and revealed the effect of the mycoviruses on growth and pathogenicity of R. necatrix. Here, we extended the experimental host range of these two mycoviruses using a transfection approach. Protoplasts of other phytopathogenic Sordariomycetous fungi-Diaporthe sp., Cryphonectria parasitica, Valsa ceratosperma (Sordariomycetidae), and Glomerella cingulata (Hypocreomycetidae)-were inoculated with RnPV1 and MyRV3 viral particles. The presence of double-stranded RNA viral genomes in regenerated mycelia of Diaporthe sp., C. parasitica, and V. ceratosperma confirmed both types of viral infections in these three novel host species. An established RnPV1 infection was confirmed in G. cingulata but MyRV3 did not infect this host. Horizontal transmission of both viruses from newly infected strains to virus-free, wild-type strains through hyphal anastomosis was readily achieved by dual culture; however, vertical transmission through conidia was rarely observed. The virulence of Diaporthe sp., C. parasitica, and V. ceratosperma strains harboring MyRV3 was reduced compared with their virus-free counterpart. In summary, our protoplast inoculation method extended the experimental host range of RnPV1-W8 and MyRV3 within the class Sordariomycetes and revealed that MyRV3 confers hypovirulence to the new hosts, as it does to R. necatrix.
Collapse
Affiliation(s)
- Satoko Kanematsu
- Apple Research Station, National Institute of Fruit Tree Science, NARO, Shimokuriyagama, Morioka, Japan.
| | | | | | | | | |
Collapse
|
38
|
Tuomivirta TT, Kaitera J, Hantula J. A novel putative virus of Gremmeniella abietina type B (Ascomycota: Helotiaceae) has a composite genome with endornavirus affinities. J Gen Virol 2009; 90:2299-305. [PMID: 19494051 DOI: 10.1099/vir.0.011973-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Ascospore and mycelial isolates of Gremmeniella abietina type B were found to contain three different dsRNA molecules with approximate lengths of 11, 5 and 3 kb. The 11 kb dsRNA encoded the genome of a putative virus and is named Gremmeniella abietina type B RNA virus XL (GaBRV-XL). GaBRV-XL probably exists in an unencapsulated state. We identified two distinct dsRNAs (10 374 and 10 375 bp) of GaBRV-XL, both of which coded for the same putative polyprotein (3249 amino acids) and contained four regions similar to putative viral methyltransferases, DExH box helicases, viral RNA helicase 1 and RNA-dependent RNA polymerases. While a cysteine-rich region with several CxCC motifs in GaBRV-XL was similar to that of putative endornaviruses, cluster analyses of conserved regions revealed GaBRV-XL to be distinct from a broad range of viral taxa but most closely related to Discula destructiva virus 3. Collectively, these findings suggest that GaBRV-XL represents a novel virus group related to endornaviruses.
Collapse
Affiliation(s)
- Tero T Tuomivirta
- Finnish Forest Research Institute, Vantaa Research Unit, Jokiniemenkuja 1, PO Box 18, FI-01301 Vantaa, Finland.
| | | | | |
Collapse
|
39
|
Li L, Tian Q, Du Z, Duns GJ, Chen J. A novel double-stranded RNA virus detected in Primula malacoides is a plant-isolated partitivirus closely related to partitivirus infecting fungal species. Arch Virol 2009; 154:565-72. [PMID: 19267226 DOI: 10.1007/s00705-009-0342-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Accepted: 02/19/2009] [Indexed: 11/24/2022]
Abstract
A novel virus was detected in ornamental plants of Primula malacoides Franch exhibiting typical yellow-edge symptoms. Two double-stranded RNA (dsRNA) segments, of 2390 bp and 2344 bp, respectively, were extracted from plant tissues, and these same dsRNAs were detected from purified virions of about 35 nm in diameter. The two dsRNAs, putatively encoding partitivirus-related RNA-dependent RNA polymerase and capsid protein, were sequenced. Analysis of phylogenetic relationships and genomic structures indicated that these two dsRNAs together make up the genome of a novel partitivirus. This virus was found to be more closely related to the fungus-infecting partitiviruses than to the ones that infect plants and was designated as Primula malacoides virus 1 (PmV1). It is strongly suggested that this novel virus be classified as a member of the genus Partitivirus.
Collapse
Affiliation(s)
- Liqiang Li
- Institute of Bioengineering, Zhejiang Sci-Tech University, Hangzhou, China
| | | | | | | | | |
Collapse
|
40
|
Pearson MN, Beever RE, Boine B, Arthur K. Mycoviruses of filamentous fungi and their relevance to plant pathology. MOLECULAR PLANT PATHOLOGY 2009; 10:115-28. [PMID: 19161358 PMCID: PMC6640375 DOI: 10.1111/j.1364-3703.2008.00503.x] [Citation(s) in RCA: 341] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mycoviruses (fungal viruses) are reviewed with emphasis on plant pathogenic fungi. Based on the presence of virus-like particles and unencapsidated dsRNAs, mycoviruses are common in all major fungal groups. Over 80 mycovirus species have been officially recognized from ten virus families, but a paucity of nucleic acid sequence data makes assignment of many reported mycoviruses difficult. Although most of the particle types recognized to date are isometric, a variety of morphologies have been found and, additionally, many apparently unencapsidated dsRNAs have been reported. Until recently, most characterized mycoviruses have dsRNA genomes, but ssRNA mycoviruses now constitute about one-third of the total. Two hypotheses for the origin of mycoviruses of plant pathogens are discussed: the first that they are of unknown but ancient origin and have coevolved along with their hosts, the second that they have relatively recently moved from a fungal plant host into the fungus. Although mycoviruses are typically readily transmitted through asexual spores, transmission through sexual spores varies with the host fungus. Evidence for natural horizontal transmission has been found. Typically, mycoviruses are apparently symptomless (cryptic) but beneficial effects on the host fungus have been reported. Of more practical interest to plant pathologists are those viruses that confer a hypovirulent phenotype, and the scope for using such viruses as biocontrol agents is reviewed. New tools are being developed based on host genome studies that will help to address the intellectual challenge of understanding the fungal-virus interactions and the practical challenge of manipulating this relationship to develop novel biocontrol agents for important plant pathogens.
Collapse
Affiliation(s)
- Michael N Pearson
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | | | | | | |
Collapse
|
41
|
Ghabrial SA, Nibert ML. Victorivirus, a new genus of fungal viruses in the family Totiviridae. Arch Virol 2008; 154:373-9. [DOI: 10.1007/s00705-008-0272-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 11/10/2008] [Indexed: 01/30/2023]
|
42
|
Goremykin VV, Salamini F, Velasco R, Viola R. Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer. Mol Biol Evol 2008; 26:99-110. [PMID: 18922764 DOI: 10.1093/molbev/msn226] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial genome of grape (Vitis vinifera), the largest organelle genome sequenced so far, is presented. The genome is 773,279 nt long and has the highest coding capacity among known angiosperm mitochondrial DNAs (mtDNAs). The proportion of promiscuous DNA of plastid origin in the genome is also the largest ever reported for an angiosperm mtDNA, both in absolute and relative terms. In all, 42.4% of chloroplast genome of Vitis has been incorporated into its mitochondrial genome. In order to test if horizontal gene transfer (HGT) has also contributed to the gene content of the grape mtDNA, we built phylogenetic trees with the coding sequences of mitochondrial genes of grape and their homologs from plant mitochondrial genomes. Many incongruent gene tree topologies were obtained. However, the extent of incongruence between these gene trees is not significantly greater than that observed among optimal trees for chloroplast genes, the common ancestry of which has never been in doubt. In both cases, we attribute this incongruence to artifacts of tree reconstruction, insufficient numbers of characters, and gene paralogy. This finding leads us to question the recent phylogenetic interpretation of Bergthorsson et al. (2003, 2004) and Richardson and Palmer (2007) that rampant HGT into the mtDNA of Amborella best explains phylogenetic incongruence between mitochondrial gene trees for angiosperms. The only evidence for HGT into the Vitis mtDNA found involves fragments of two coding sequences stemming from two closteroviruses that cause the leaf roll disease of this plant. We also report that analysis of sequences shared by both chloroplast and mitochondrial genomes provides evidence for a previously unknown gene transfer route from the mitochondrion to the chloroplast.
Collapse
Affiliation(s)
- Vadim V Goremykin
- Istituto Agrario San Michele all'Adige Research Center, San Michele all'Adige (TN), Italy.
| | | | | | | |
Collapse
|
43
|
Genomic characterization of a novel partitivirus infecting Aspergillus ochraceus. Virus Genes 2008; 37:322-7. [DOI: 10.1007/s11262-008-0265-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 07/17/2008] [Indexed: 11/25/2022]
|
44
|
Balijja A, Kvarnheden A, Turchetti T. A non-phenol-chloroform extraction of double-stranded RNA from plant and fungal tissues. J Virol Methods 2008; 152:32-7. [PMID: 18598720 DOI: 10.1016/j.jviromet.2008.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 05/21/2008] [Accepted: 06/02/2008] [Indexed: 10/21/2022]
Abstract
Double-stranded RNA (dsRNA) molecules of viruses are found in nature at a very high frequency. Their detection in plants and fungi has been carried out with difficulty due to the complicated dsRNA extraction techniques used commonly which includes phenol-chloroform extractions. In this study, an extraction method for isolation of dsRNA is described that is free of phenol and chloroform. A lysis buffer, containing beta-mercaptoethanol and polyvinylpolypyrrolidone (PVPP-40), was added to homogenised tissues and the subsequent supernatant was filtered through a cellulose CF-11 mini-column. DsRNA molecules were separated based on the differing affinity of nucleic acids for the cellulose CF-11 resin in 20% ethanol buffer. This easy, rapid and cheap technique has been successfully tested on fungi and plants containing different dsRNA virus molecules, indicating the possibility of a wide use of the method.
Collapse
Affiliation(s)
- Alitukiriza Balijja
- CNR, Istituto per la Protezione delle Piante, 50019 Sesto Fiorentino, Via Madonna del Piano 10, Italy.
| | | | | |
Collapse
|
45
|
Complete nucleotide sequences and genome characterization of a novel double-stranded RNA virus infecting Rosa multiflora. Arch Virol 2008; 153:455-62. [DOI: 10.1007/s00705-007-0008-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 11/29/2007] [Indexed: 10/22/2022]
|
46
|
Bongaerts GPA, van den Heuvel LP. Microbial mito-pathogens: Fact or fiction? Med Hypotheses 2008; 70:1051-3. [PMID: 17826002 DOI: 10.1016/j.mehy.2007.06.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 06/26/2007] [Indexed: 02/07/2023]
Abstract
Mitochondria are bacteria-like semi-autonomous intracellular organelles that function as the powerhouses of eukaryotic cells. Inactivation or destruction of these organelles may have far-reaching consequences regarding the viability of the cells and thus of tissues, organs and finally even the body. Since mitochondria resemble (degenerated) bacteria, we have extrapolated from both cytological and microbiological facts the existence of various (kinds of) mitochondrion-specific microbial pathogens, i.e., pathogenic micro-organisms that may damage or destroy the mitochondria from within. These mito-pathogens may include mitoviruses, mitoviroids and mitobacteria. Although these mito-pathogens have not yet been demonstrated in humans, their theoretical degenerative effect regarding energy production from energy-rich substrates, such as carbohydrates and fats, might explain diseases that have not yet been understood, such as prion diseases and post-traumatic muscle dystrophy. Therefore, these kinds of micro-organisms should be kept in mind.
Collapse
Affiliation(s)
- Ger P A Bongaerts
- Nijmegen University Centre of Infectious Diseases, Cluster Office CSS (633), Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| | | |
Collapse
|
47
|
Sun L, Nuss DL, Suzuki N. Synergism between a mycoreovirus and a hypovirus mediated by the papain-like protease p29 of the prototypic hypovirus CHV1-EP713. J Gen Virol 2006; 87:3703-3714. [PMID: 17098988 DOI: 10.1099/vir.0.82213-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Infection of the chestnut blight fungus, Cryphonectria parasitica, by the prototypic hypovirus Cryphonectria hypovirus 1-EP713 (CHV1-EP713) or by the type member, Mycoreovirus 1-Cp9B21 (MyRV1-Cp9B21), of a novel genus (Mycoreovirus) of the family Reoviridae results in hypovirulence, but with a different spectrum of phenotypic changes. The former virus depresses pigmentation and conidiation dramatically, whilst the latter virus has little effect on these processes. This study showed that double infection by the two viruses resulted in a phenotype similar to that of CHV1-EP713 singly infected colonies, but with further decreased levels of host conidiation and vegetative growth and increased levels of MyRV1-Cp9B21 genomic dsRNA accumulation (twofold) and vertical transmission (sixfold). In contrast, CHV1-EP713 RNA accumulation was not altered by MyRV1-Cp9B21 infection. It was also found that the papain-like cysteine protease p29, encoded by CHV1-EP713 ORF A, contributes to the phenotypic alterations and transactivation of MyRV1-Cp9B21 replication and transmission. Chromosomally expressed p29 was able to increase MyRV1-Cp9B21 vertical transmission by more than twofold and genomic RNA accumulation by 80 %. Transactivation was abolished by Cys-->Gly mutations at p29 residues 70 and 72 located within the previously identified symptom-determinant domain required for suppression of host pigmentation and sporulation and p29-mediated in trans enhancement of homologous Deltap29 mutant virus RNA replication. Transactivation was not altered by Ser substitutions at the p29 protease catalytic residue Cys(162). These results indicated a link between p29-mediated enhancement of heterologous virus accumulation and transmission and p29-mediated host symptom expression. The role of p29 as a suppressor of RNA silencing is discussed.
Collapse
Affiliation(s)
- Liying Sun
- Agrivirology Laboratory, Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Donald L Nuss
- Center for Biosystems Research, University of Maryland Biotechnology Institute, University of Maryland, College Park, MD 20742, USA
| | - Nobuhiro Suzuki
- Agrivirology Laboratory, Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
48
|
Romo M, Leuchtmann A, García B, Zabalgogeazcoa I. A totivirus infecting the mutualistic fungal endophyte Epichloë festucae. Virus Res 2006; 124:38-43. [PMID: 17081641 DOI: 10.1016/j.virusres.2006.09.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 09/25/2006] [Accepted: 09/25/2006] [Indexed: 11/15/2022]
Abstract
Epichloë festucae (Ascomycota) infects the grass Festuca rubra. Infected plants may be more resistant to herbivores and obtain other benefits. The 5109bp dsRNA genome of a virus which infects E. festucae was sequenced, and its incidence in natural populations and transmission were studied. The viral genome has characteristics of the family Totiviridae. Its two ORFs are overlapped by four nucleotides; ORF1 codes a 765 amino acid putative coat protein (CP); ORF2 is in a -1 frameshift with respect to ORF1, and codes a 826 amino acid RNA dependent RNA polymerase (RdRp). This virus, denominated Epichloë festucae virus 1 (EfV1), is closely related to members of the genus Totivirus which infect filamentous fungi, as deduced from phylogenetic analyses of CPs and RdRps. In two natural populations of Epichloë festucae, 36.4% of the isolates were infected by EfV1. The virus was efficiently transmitted to asexual fungal spores. However, when ascospore progeny of matings between virus-free and infected strains was analyzed, it was found that the virus was not transmitted to progeny of sexual spores.
Collapse
Affiliation(s)
- María Romo
- Instituto de Recursos Naturales y Agrobiología, CSIC, Apartado 257, 37071 Salamanca, Spain.
| | | | | | | |
Collapse
|
49
|
Kozlakidis Z, Covelli L, Di Serio F, Citir A, Açıkgöz S, Hernández C, Ragozzino A, Flores R, Coutts RHA. Molecular characterization of the largest mycoviral-like double-stranded RNAs associated with Amasya cherry disease, a disease of presumed fungal aetiology. J Gen Virol 2006; 87:3113-3117. [PMID: 16963771 DOI: 10.1099/vir.0.82121-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The sequence of the four large (L) double-stranded RNAs (dsRNAs) associated with Amasya cherry disease (ACD), which has a presumed fungal aetiology, is reported. ACD L dsRNAs 1 (5121 bp) and 2 (5047 bp) potentially encode proteins of 1628 and 1620 aa, respectively, that are 37% identical and of unknown function. ACD L dsRNAs 3 (4458 bp) and 4 (4303 bp) potentially encode proteins that are 68% identical and contain the eight motifs conserved in RNA-dependent RNA polymerases (RdRp) of dsRNA mycoviruses, having highest similarity with those of members of the family Totiviridae. Both terminal regions share extensive conservation in all four RNAs, suggesting a functional relationship between them. As ACD L dsRNAs 1 and 2 do not encode RdRps, both are probably replicated by those from either ACD L dsRNA 3 or 4. Partial characterization of the equivalent L dsRNAs 3 and 4 associated with cherry chlorotic rusty spot revealed essentially identical sequences.
Collapse
Affiliation(s)
- Z Kozlakidis
- Division of Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, London SW7 2AZ, UK
| | - L Covelli
- Dipartimento di Arboricoltura, Botanica e Patologia Vegetale, Università di Napoli, 80055 Portici, Italy
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - F Di Serio
- Istituto di Virologia Vegetale del CNR, Sezione di Bari, 70126 Bari, Italy
| | - A Citir
- Tekirdag Ziraat Fakültesi, Trakya Universitesi, 59030 Tekirdag, Turkey
| | - S Açıkgöz
- Adnan Menderes University, Agricultural Faculty, Plant Pathology Department, 09100 Aydin, Turkey
| | - C Hernández
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - A Ragozzino
- Dipartimento di Arboricoltura, Botanica e Patologia Vegetale, Università di Napoli, 80055 Portici, Italy
| | - R Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - R H A Coutts
- Division of Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, London SW7 2AZ, UK
| |
Collapse
|
50
|
Kim JW, Choi EY, Kim YT. Intergeneric relationship between the Aspergillus ochraceous virus F and the Penicillium stoloniferum virus S. Virus Res 2006; 120:212-5. [PMID: 16725223 DOI: 10.1016/j.virusres.2006.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 04/04/2006] [Accepted: 04/10/2006] [Indexed: 11/18/2022]
Abstract
It was reported that the "slow" component (PsV-S) of Penicillium stoloniferum virus complex also occurred in a second genus, Aspergillus ochraceous. The responsible virus for this intergeneric occurrence was considered to be the "fast" component (AoV-F) of A. ochraceous virus complex. In this investigation, AoV dsRNA 1, that was previously shown to cross-hybridize with PsV-S dsRNA, has been cloned. It was 1754 bp in length and contained one open reading frame of 539 amino acids (p63), had the same genome organization as PsV-S dsRNA S1 and also had the conserved sequence motif of the PsV-S dsRNAs (5'-GCGCAAAA-3') at the 5' terminus. A BLAST search indicated that p63 was a putative dsRNA-dependent RNA polymerase (RdRp), had 81% of sequence homology to members of the genus Partitivirus, and grouped together with PsV-S in phylogenetic analysis. But immunoblot analysis showed that the capsid protein (P3) of AoV-F virus component did not reacted against PsV-S antiserum. These evidences suggest that the cross serological relationship between AoV-F and PsV-S previously observed may have been due to the RdRps of the respective viruses rather than between their respective capsid proteins as was assumed in 1985.
Collapse
Affiliation(s)
- Jong Wook Kim
- Department of Biochemistry, College of Medicine, Inha University, Incheon 402-751, South Korea.
| | | | | |
Collapse
|