1
|
Wang R, Sun Q, Xiao J, Wang C, Li X, Li J, Song Y, Lu H, Liu Y, Zhu S, Liu Z, Zhang Y. Effects of glycine 64 substitutions in RNA-dependent RNA polymerase on ribavirin sensitivity and pathogenicity of coxsackievirus A6. Virus Res 2024; 339:199268. [PMID: 37949376 PMCID: PMC10685073 DOI: 10.1016/j.virusres.2023.199268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Hand, foot, and mouth disease (HFMD) caused by a group of enteroviruses is a global public health problem. In recent years, coxsackievirus A6 (CVA6) has emerged as an important HFMD agent. Previous studies have shown that mutations of glycine 64 in RNA-dependent RNA polymerase (3D polymerase), which is central to viral replication, cause phenotypic changes such as ribavirin resistance, increased replication fidelity, and virulence attenuation in poliovirus and enterovirus A71. In this study, we constructed CVA6 mutants with G64R, G64S, and G64T substitutions by site-directed mutagenesis in full-length cDNA of an infectious CVA6 strain cloned in pcDNA3.1. Viral RNA was obtained by in vitro transcription, and the rescued virus strains were propagated in RD cells. Sequencing after six passages revealed that G64S and G64T mutations were stably inherited, whereas G64R was genetically unstable and reversed to the wild type. Comparison of the biological characteristics of the wild-type and mutant CVA6 strains in an in vivo model (one-day-old ICR mice) revealed that the pathogenicity of CVA6-G64S and CVA6-G64T was significantly reduced compared to wild-type CVA6. In vitro experiments indicated the mutant CVA6-G64S and CVA6-G64T strains had increased resistance to 0.8 mM ribavirin and a decreased replication rate in the presence of 0.8 mM guanidine hydrochloride. Our results show that mutation of residue 64 reduces CVA6 susceptibility to ribavirin and increases CVA6 susceptibility to guanidine hydrochloride, together with increased replication fidelity and attenuated viral pathogenicity, thus laying a foundation for the development of safe and effective live attenuated CVA6 vaccine.
Collapse
Affiliation(s)
- Rui Wang
- Department of Medical Microbiology, Weifang Medical University, Weifang 261053, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China; WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China
| | - Qiang Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China; WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China
| | - Jinbo Xiao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China; WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China
| | - Congcong Wang
- Department of Medical Microbiology, Weifang Medical University, Weifang 261053, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China; WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China
| | - Xiaoliang Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China; WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China; Department of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jichen Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China; WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China
| | - Yang Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China; WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China
| | - Huanhuan Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China; WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China
| | - Ying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China; WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China
| | - Shuangli Zhu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China; WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China
| | - Zhijun Liu
- Department of Medical Microbiology, Weifang Medical University, Weifang 261053, China.
| | - Yong Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China; WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China.
| |
Collapse
|
2
|
The Second Human Pegivirus, a Non-Pathogenic RNA Virus with Low Prevalence and Minimal Genetic Diversity. Viruses 2022; 14:v14091844. [PMID: 36146649 PMCID: PMC9503178 DOI: 10.3390/v14091844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 02/02/2023] Open
Abstract
The second human pegivirus (HPgV-2) is a virus discovered in the plasma of a hepatitis C virus (HCV)-infected patient in 2015 belonging to the pegiviruses of the family Flaviviridae. HPgV-2 has been proved to be epidemiologically associated with and structurally similar to HCV but unrelated to HCV disease and non-pathogenic, but its natural history and tissue tropism remain unclear. HPgV-2 is a unique RNA virus sharing the features of HCV and the first human pegivirus (HPgV-1 or GBV-C). Moreover, distinct from most RNA viruses such as HCV, HPgV-1 and human immunodeficiency virus (HIV), HPgV-2 exhibits much lower genomic diversity, with a high global sequence identity ranging from 93.5 to 97.5% and significantly lower intra-host variation than HCV. The mechanisms underlying the conservation of the HPgV-2 genome are not clear but may include efficient innate immune responses, low immune selection pressure and, possibly, the unique features of the viral RNA-dependent RNA polymerase (RdRP). In this review, we summarize the prevalence, pathogenicity and genetic diversity of HPgV-2 and discuss the possible reasons for the uniformity of its genome sequence, which should elucidate the implications of RNA virus fidelity for attenuated viral vaccines.
Collapse
|
3
|
Jensen JD, Stikeleather RA, Kowalik TF, Lynch M. Imposed mutational meltdown as an antiviral strategy. Evolution 2020; 74:2549-2559. [PMID: 33047822 PMCID: PMC7993354 DOI: 10.1111/evo.14107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/30/2020] [Accepted: 10/10/2020] [Indexed: 12/25/2022]
Abstract
Following widespread infections of the most recent coronavirus known to infect humans, SARS‐CoV‐2, attention has turned to potential therapeutic options. With no drug or vaccine yet approved, one focal point of research is to evaluate the potential value of repurposing existing antiviral treatments, with the logical strategy being to identify at least a short‐term intervention to prevent within‐patient progression, while long‐term vaccine strategies unfold. Here, we offer an evolutionary/population‐genetic perspective on one approach that may overwhelm the capacity for pathogen defense (i.e., adaptation) – induced mutational meltdown – providing an overview of key concepts, review of previous theoretical and experimental work of relevance, and guidance for future research. Applied with appropriate care, including target specificity, induced mutational meltdown may provide a general, rapidly implemented approach for the within‐patient eradication of a wide range of pathogens or other undesirable microorganisms.
Collapse
Affiliation(s)
- Jeffrey D Jensen
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85281.,Center for Evolution & Medicine, Arizona State University, Tempe, Arizona, 85281
| | - Ryan A Stikeleather
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, 85281
| | - Timothy F Kowalik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, 01655
| | - Michael Lynch
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85281.,Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, 85281
| |
Collapse
|
4
|
Abstract
The evolutionary dynamics of a virus can differ within hosts and across populations. Studies of within-host evolution provide an important link between experimental studies of virus evolution and large-scale phylodynamic analyses. They can determine the extent to which global processes are recapitulated on local scales and how accurately experimental infections model natural ones. They may also inform epidemiologic models of disease spread and reveal how host-level dynamics contribute to a virus's evolution at a larger scale. Over the last decade, advances in viral sequencing have enabled detailed studies of viral genetic diversity within hosts. I review how within-host diversity is sampled, measured, and expressed, and how comparative studies of viral diversity can be leveraged to elucidate a virus's evolutionary dynamics. These concepts are illustrated with detailed reviews of recent research on the within-host evolution of influenza virus, dengue virus, and cytomegalovirus.
Collapse
Affiliation(s)
- Adam S Lauring
- Division of Infectious Diseases, Department of Internal Medicine, and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| |
Collapse
|
5
|
Tyr82 Amino Acid Mutation in PB1 Polymerase Induces an Influenza Virus Mutator Phenotype. J Virol 2019; 93:JVI.00834-19. [PMID: 31462570 DOI: 10.1128/jvi.00834-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/19/2019] [Indexed: 01/16/2023] Open
Abstract
In various positive-sense single-stranded RNA viruses, a low-fidelity viral RNA-dependent RNA polymerase (RdRp) confers attenuated phenotypes by increasing the mutation frequency. We report a negative-sense single-stranded RNA virus RdRp mutant strain with a mutator phenotype. Based on structural data of RdRp, rational targeting of key residues, and screening of fidelity variants, we isolated a novel low-fidelity mutator strain of influenza virus that harbors a Tyr82-to-Cys (Y82C) single-amino-acid substitution in the PB1 polymerase subunit. The purified PB1-Y82C polymerase indeed showed an increased frequency of misincorporation compared with the wild-type PB1 in an in vitro biochemical assay. To further investigate the effects of position 82 on PB1 polymerase fidelity, we substituted various amino acids at this position. As a result, we isolated various novel mutators other than PB1-Y82C with higher mutation frequencies. The structural model of influenza virus polymerase complex suggested that the Tyr82 residue, which is located at the nucleoside triphosphate entrance tunnel, may influence a fidelity checkpoint. Interestingly, although the PB1-Y82C variant replicated with wild-type PB1-like kinetics in tissue culture, the 50% lethal dose of the PB1-Y82C mutant was 10 times lower than that of wild-type PB1 in embryonated chicken eggs. In conclusion, our data indicate that the Tyr82 residue of PB1 has a crucial role in regulating polymerase fidelity of influenza virus and is closely related to attenuated pathogenic phenotypes in vivo IMPORTANCE Influenza A virus rapidly acquires antigenic changes and antiviral drug resistance, which limit the effectiveness of vaccines and drug treatments, primarily owing to its high rate of evolution. Virus populations formed by quasispecies can contain resistance mutations even before a selective pressure is applied. To study the effects of the viral mutation spectrum and quasispecies, high- and low-fidelity variants have been isolated for several RNA viruses. Here, we report the discovery of a low-fidelity RdRp variant of influenza A virus that contains a substitution at Tyr82 in PB1. Viruses containing the PB1-Y82C substitution showed growth kinetics and viral RNA synthesis levels similar to those of the wild-type virus in cell culture; however, they had significantly attenuated phenotypes in a chicken egg infection experiment. These data demonstrated that decreased RdRp fidelity attenuates influenza A virus in vivo, which is a desirable feature for the development of safer live attenuated vaccine candidates.
Collapse
|
6
|
RNA Virus Fidelity Mutants: A Useful Tool for Evolutionary Biology or a Complex Challenge? Viruses 2018; 10:v10110600. [PMID: 30388745 PMCID: PMC6267201 DOI: 10.3390/v10110600] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 12/30/2022] Open
Abstract
RNA viruses replicate with low fidelity due to the error-prone nature of the RNA-dependent RNA polymerase, which generates approximately one mutation per round of genome replication. Due to the large population sizes produced by RNA viruses during replication, this results in a cloud of closely related virus variants during host infection, of which small increases or decreases in replication fidelity have been shown to result in virus attenuation in vivo, but not typically in vitro. Since the discovery of the first RNA virus fidelity mutants during the mid-aughts, the field has exploded with the identification of over 50 virus fidelity mutants distributed amongst 7 RNA virus families. This review summarizes the current RNA virus fidelity mutant literature, with a focus upon the definition of a fidelity mutant as well as methods to confirm any mutational changes associated with the fidelity mutant. Due to the complexity of such a definition, in addition to reports of unstable virus fidelity phenotypes, the future translational utility of these mutants and applications for basic science are examined.
Collapse
|
7
|
Abstract
Reproduction of RNA viruses is typically error-prone due to the infidelity of their replicative machinery and the usual lack of proofreading mechanisms. The error rates may be close to those that kill the virus. Consequently, populations of RNA viruses are represented by heterogeneous sets of genomes with various levels of fitness. This is especially consequential when viruses encounter various bottlenecks and new infections are initiated by a single or few deviating genomes. Nevertheless, RNA viruses are able to maintain their identity by conservation of major functional elements. This conservatism stems from genetic robustness or mutational tolerance, which is largely due to the functional degeneracy of many protein and RNA elements as well as to negative selection. Another relevant mechanism is the capacity to restore fitness after genetic damages, also based on replicative infidelity. Conversely, error-prone replication is a major tool that ensures viral evolvability. The potential for changes in debilitated genomes is much higher in small populations, because in the absence of stronger competitors low-fit genomes have a choice of various trajectories to wander along fitness landscapes. Thus, low-fit populations are inherently unstable, and it may be said that to run ahead it is useful to stumble. In this report, focusing on picornaviruses and also considering data from other RNA viruses, we review the biological relevance and mechanisms of various alterations of viral RNA genomes as well as pathways and mechanisms of rehabilitation after loss of fitness. The relationships among mutational robustness, resilience, and evolvability of viral RNA genomes are discussed.
Collapse
|
8
|
Kautz TF, Guerbois M, Khanipov K, Patterson EI, Langsjoen RM, Yun R, Warmbrod KL, Fofanov Y, Weaver SC, Forrester NL. Low-fidelity Venezuelan equine encephalitis virus polymerase mutants to improve live-attenuated vaccine safety and efficacy. Virus Evol 2018; 4:vey004. [PMID: 29593882 PMCID: PMC5841381 DOI: 10.1093/ve/vey004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During RNA virus replication, there is the potential to incorporate mutations that affect virulence or pathogenesis. For live-attenuated vaccines, this has implications for stability, as replication may result in mutations that either restore the wild-type phenotype via reversion or compensate for the attenuating mutations by increasing virulence (pseudoreversion). Recent studies have demonstrated that altering the mutation rate of an RNA virus is an effective attenuation tool. To validate the safety of low-fidelity mutations to increase vaccine attenuation, several mutations in the RNA-dependent RNA-polymerase (RdRp) were tested in the live-attenuated Venezuelan equine encephalitis virus vaccine strain, TC-83. Next generation sequencing after passage in the presence of mutagens revealed a mutant containing three mutations in the RdRp, TC-83 3x, to have decreased replication fidelity, while a second mutant, TC-83 4x displayed no change in fidelity, but shared many phenotypic characteristics with TC-83 3x. Both mutants exhibited increased, albeit inconsistent attenuation in an infant mouse model, as well as increased immunogenicity and complete protection against lethal challenge of an adult murine model compared with the parent TC-83. During serial passaging in a highly permissive model, the mutants increased in virulence but remained less virulent than the parent TC-83. These results suggest that the incorporation of low-fidelity mutations into the RdRp of live-attenuated vaccines for RNA viruses can confer increased immunogenicity whilst showing some evidence of increased attenuation. However, while in theory such constructs may result in more effective vaccines, the instability of the vaccine phenotype decreases the likelihood of this being an effective vaccine strategy.
Collapse
Affiliation(s)
- Tiffany F Kautz
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mathilde Guerbois
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Edward I Patterson
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Rose M Langsjoen
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Ruimei Yun
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Kelsey L Warmbrod
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Yuriy Fofanov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Naomi L Forrester
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
9
|
Graepel KW, Lu X, Case JB, Sexton NR, Smith EC, Denison MR. Proofreading-Deficient Coronaviruses Adapt for Increased Fitness over Long-Term Passage without Reversion of Exoribonuclease-Inactivating Mutations. mBio 2017; 8:e01503-17. [PMID: 29114026 PMCID: PMC5676041 DOI: 10.1128/mbio.01503-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/10/2017] [Indexed: 12/31/2022] Open
Abstract
The coronavirus (CoV) RNA genome is the largest among the single-stranded positive-sense RNA viruses. CoVs encode a proofreading 3'-to-5' exoribonuclease within nonstructural protein 14 (nsp14-ExoN) that is responsible for CoV high-fidelity replication. Alanine substitution of ExoN catalytic residues [ExoN(-)] in severe acute respiratory syndrome-associated coronavirus (SARS-CoV) and murine hepatitis virus (MHV) disrupts ExoN activity, yielding viable mutant viruses with defective replication, up to 20-fold-decreased fidelity, and increased susceptibility to nucleoside analogues. To test the stability of the ExoN(-) genotype and phenotype, we passaged MHV-ExoN(-) 250 times in cultured cells (P250), in parallel with wild-type MHV (WT-MHV). Compared to MHV-ExoN(-) P3, MHV-ExoN(-) P250 demonstrated enhanced replication and increased competitive fitness without reversion at the ExoN(-) active site. Furthermore, MHV-ExoN(-) P250 was less susceptible than MHV-ExoN(-) P3 to multiple nucleoside analogues, suggesting that MHV-ExoN(-) was under selection for increased replication fidelity. We subsequently identified novel amino acid changes within the RNA-dependent RNA polymerase and nsp14 of MHV-ExoN(-) P250 that partially accounted for the reduced susceptibility to nucleoside analogues. Our results suggest that increased replication fidelity is selected in ExoN(-) CoVs and that there may be a significant barrier to ExoN(-) reversion. These results also support the hypothesis that high-fidelity replication is linked to CoV fitness and indicate that multiple replicase proteins could compensate for ExoN functions during replication.IMPORTANCE Uniquely among RNA viruses, CoVs encode a proofreading exoribonuclease (ExoN) in nsp14 that mediates high-fidelity RNA genome replication. Proofreading-deficient CoVs with disrupted ExoN activity [ExoN(-)] either are nonviable or have significant defects in replication, RNA synthesis, fidelity, fitness, and virulence. In this study, we showed that ExoN(-) murine hepatitis virus can adapt during long-term passage for increased replication and fitness without reverting the ExoN-inactivating mutations. Passage-adapted ExoN(-) mutants also demonstrate increasing resistance to nucleoside analogues that is explained only partially by secondary mutations in nsp12 and nsp14. These data suggest that enhanced resistance to nucleoside analogues is mediated by the interplay of multiple replicase proteins and support the proposed link between CoV fidelity and fitness.
Collapse
Affiliation(s)
- Kevin W Graepel
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xiaotao Lu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James Brett Case
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nicole R Sexton
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Everett Clinton Smith
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biology, the University of the South, Sewanee, Tennessee, USA
| | - Mark R Denison
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Griesemer SB, Kramer LD, Van Slyke GA, Pata JD, Gohara DW, Cameron CE, Ciota AT. Mutagen resistance and mutation restriction of St. Louis encephalitis virus. J Gen Virol 2017; 98:201-211. [PMID: 28284278 DOI: 10.1099/jgv.0.000682] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The error rate of the RNA-dependent RNA polymerase (RdRp) of RNA viruses is important in maintaining genetic diversity for viral adaptation and fitness. Numerous studies have shown that mutagen-resistant RNA virus variants display amino acid mutations in the RdRp and other replicase subunits, which in turn exhibit an altered fidelity phenotype affecting viral fitness, adaptability and pathogenicity. St. Louis encephalitis virus (SLEV), like its close relative West Nile virus, is a mosquito-borne flavivirus that has the ability to cause neuroinvasive disease in humans. Here, we describe the successful generation of multiple ribavirin-resistant populations containing a shared amino acid mutation in the SLEV RdRp (E416K). These E416K mutants also displayed resistance to the antiviral T-1106, an RNA mutagen similar to ribavirin. Structural modelling of the E416K polymerase mutation indicated its location in the pinky finger domain of the RdRp, distant from the active site. Deep sequencing of the E416K mutant revealed lower genetic diversity than wild-type SLEV after growth in both vertebrate and invertebrate cells. Phenotypic characterization showed that E416K mutants displayed similar or increased replication in mammalian cells, as well as modest attenuation in mosquito cells, consistent with previous work with West Nile virus high-fidelity variants. In addition, attenuation was limited to mosquito cells with a functional RNA interference response, suggesting an impaired capacity to escape RNA interference could contribute to attenuation of high-fidelity variants. Our results provide increased evidence that RNA mutagen resistance arises through modulation of the RdRp and give further insight into the consequences of altered fidelity of flaviviruses.
Collapse
Affiliation(s)
- Sara B Griesemer
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| | - Laura D Kramer
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, USA.,The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| | - Greta A Van Slyke
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| | - Janice D Pata
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, USA.,The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| | - David W Gohara
- Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, 1100 South Grand Avenue, St Louis, MO, USA
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Alexander T Ciota
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, USA.,The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| |
Collapse
|
11
|
Abstract
By now, it is well established that the error rate of the RNA-dependent RNA polymerase (RdRp) that replicates RNA virus genomes is a primary driver of the mutation frequencies observed in RNA virus populations-the basis for the RNA quasispecies. Over the last 10 years, a considerable amount of work has uncovered the molecular determinants of replication fidelity in this enzyme. The isolation of high- and low-fidelity variants for several RNA viruses, in an expanding number of viral families, provides evidence that nature has optimized the fidelity to facilitate genetic diversity and adaptation, while maintaining genetic integrity and infectivity. This chapter will provide an overview of what fidelity variants tell us about RNA virus biology and how they may be used in antiviral approaches.
Collapse
Affiliation(s)
- Esteban Domingo
- Campus de Cantoblanco, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Peter Schuster
- The Santa Fe Institute, Santa Fe, NM, USA and Institut f. Theoretische Chemie, Universität Wien, Vienna, Austria
| |
Collapse
|
12
|
Van Slyke GA, Arnold JJ, Lugo AJ, Griesemer SB, Moustafa IM, Kramer LD, Cameron CE, Ciota AT. Sequence-Specific Fidelity Alterations Associated with West Nile Virus Attenuation in Mosquitoes. PLoS Pathog 2015; 11:e1005009. [PMID: 26114757 PMCID: PMC4482725 DOI: 10.1371/journal.ppat.1005009] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 06/05/2015] [Indexed: 02/06/2023] Open
Abstract
High rates of error-prone replication result in the rapid accumulation of genetic diversity of RNA viruses. Recent studies suggest that mutation rates are selected for optimal viral fitness and that modest variations in replicase fidelity may be associated with viral attenuation. Arthropod-borne viruses (arboviruses) are unique in their requirement for host cycling and may necessitate substantial genetic and phenotypic plasticity. In order to more thoroughly investigate the correlates, mechanisms and consequences of arbovirus fidelity, we selected fidelity variants of West Nile virus (WNV; Flaviviridae, Flavivirus) utilizing selection in the presence of a mutagen. We identified two mutations in the WNV RNA-dependent RNA polymerase associated with increased fidelity, V793I and G806R, and a single mutation in the WNV methyltransferase, T248I, associated with decreased fidelity. Both deep-sequencing and in vitro biochemical assays confirmed strain-specific differences in both fidelity and mutational bias. WNV fidelity variants demonstrated host-specific alterations to replicative fitness in vitro, with modest attenuation in mosquito but not vertebrate cell culture. Experimental infections of colonized and field populations of Cx. quinquefaciatus demonstrated that WNV fidelity alterations are associated with a significantly impaired capacity to establish viable infections in mosquitoes. Taken together, these studies (i) demonstrate the importance of allosteric interactions in regulating mutation rates, (ii) establish that mutational spectra can be both sequence and strain-dependent, and (iii) display the profound phenotypic consequences associated with altered replication complex function of flaviviruses. West Nile virus (WNV) is the most geographically widespread arthropod-borne virus (arbovirus) in the world. Like most arboviruses, WNV is a RNA virus which is highly mutable and exists in nature as genetically diverse mutant swarms. Although many recent studies have investigated the relationship between virus mutation rate and viral fitness, this had not previously been determined for WNV or other flaviviruses. We identified WNV mutations associated with variation in mutation rate using cell culture passage in the presence of a mutagen and engineered these mutations into an infectious WNV clone in order to investigate the causes and consequences of altered fidelity. Our results demonstrate that interactions among proteins which comprise the WNV replication complex can significantly alter both the extent and types of mutations that occur. In addition, we show that both increasing and decreasing WNV fidelity has host-specific effects on replication in cell culture and is associated with nearly complete ablation of WNV infection in mosquito vectors. These results have significant implications for our understanding of arbovirus evolution, replication complex function and arboviral fitness in mosquitoes, and identify important targets to study the determinants and mechanisms of vector competence and arbovirus fidelity.
Collapse
Affiliation(s)
- Greta A. Van Slyke
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, New York, United States of America
| | - Jamie J. Arnold
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Alex J. Lugo
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sara B. Griesemer
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, New York, United States of America
| | - Ibrahim M. Moustafa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Laura D. Kramer
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, New York, United States of America
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, New York, United States of America
| | - Craig E. Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Alexander T. Ciota
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, New York, United States of America
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
13
|
Kok CC. Therapeutic and prevention strategies against human enterovirus 71 infection. World J Virol 2015; 4:78-95. [PMID: 25964873 PMCID: PMC4419123 DOI: 10.5501/wjv.v4.i2.78] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/21/2014] [Accepted: 02/11/2015] [Indexed: 02/05/2023] Open
Abstract
Human enterovirus 71 (HEV71) is the cause of hand, foot and mouth disease and associated neurological complications in children under five years of age. There has been an increase in HEV71 epidemic activity throughout the Asia-Pacific region in the past decade, and it is predicted to replace poliovirus as the extant neurotropic enterovirus of highest global public health significance. To date there is no effective antiviral treatment and no vaccine is available to prevent HEV71 infection. The increase in prevalence, virulence and geographic spread of HEV71 infection over the past decade provides increasing incentive for the development of new therapeutic and prevention strategies against this emerging viral infection. The current review focuses on the potential, advantages and disadvantages of these strategies. Since the explosion of outbreaks leading to large epidemics in China, research in natural therapeutic products has identified several groups of compounds with anti-HEV71 activities. Concurrently, the search for effective synthetic antivirals has produced promising results. Other therapeutic strategies including immunotherapy and the use of oligonucleotides have also been explored. A sound prevention strategy is crucial in order to control the spread of HEV71. To this end the ultimate goal is the rapid development, regulatory approval and widespread implementation of a safe and effective vaccine. The various forms of HEV71 vaccine designs are highlighted in this review. Given the rapid progress of research in this area, eradication of the virus is likely to be achieved.
Collapse
|
14
|
Mutations in coronavirus nonstructural protein 10 decrease virus replication fidelity. J Virol 2015; 89:6418-26. [PMID: 25855750 DOI: 10.1128/jvi.00110-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/02/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Coronaviruses (CoVs) are unique in encoding a 3'→5' exoribonuclease within nonstructural protein 14 (nsp14-ExoN) that is required for high-fidelity replication, likely via proofreading. nsp14 associates with the CoV RNA-dependent RNA polymerase (nsp12-RdRp), and nsp14-ExoN activity is enhanced by binding nsp10, a small nonenzymatic protein. However, it is not known whether nsp10 functions in the regulation of CoV replication fidelity. To test this, we engineered single and double alanine substitution mutations into the genome of murine hepatitis virus (MHV-A59) containing ExoN activity [ExoN(+)] at positions within nsp10 known to disrupt the nsp10-nsp14 interaction in vitro. We show that an nsp10 mutant, R80A/E82A-ExoN(+), was five to ten times more sensitive to treatment with the RNA mutagen 5-fluorouracil (5-FU) than wild-type (WT)-ExoN(+), suggestive of decreased replication fidelity. This decreased-fidelity phenotype was confirmed using two additional nucleoside analogs, 5-azacytidine and ribavirin. R80A/E82A-ExoN(+) reached a peak titer similar to and demonstrated RNA synthesis kinetics comparable to those seen with WT-ExoN(+). No change in 5-FU sensitivity was observed for R80A/E82A-ExoN(-) relative to MHV-ExoN(-), indicating that the decreased-fidelity phenotype of R80A/E82A-ExoN(-) is linked to the presence of ExoN activity. Our results demonstrate that nsp10 is important for CoV replication fidelity and support the hypothesis that nsp10 functions to regulate nsp14-ExoN activity during virus replication. IMPORTANCE The adaptive capacity of CoVs, as well as all other RNA viruses, is partially attributed to the presence of extensive population genetic diversity. However, decreased fidelity is detrimental to CoV replication and virulence; mutant CoVs with decreased replication fidelity are attenuated and more sensitive to inhibition by RNA mutagens. Thus, identifying the viral protein determinants of CoV fidelity is important for understanding CoV replication, pathogenesis, and virulence. In this report, we show that nsp10, a small, nonenzymatic viral protein, contributes to CoV replication fidelity. Our data support the hypothesis that CoVs have evolved multiple proteins, in addition to nsp14-ExoN, that are responsible for maintaining the integrity of the largest known RNA genomes.
Collapse
|
15
|
Smith EC, Sexton NR, Denison MR. Thinking Outside the Triangle: Replication Fidelity of the Largest RNA Viruses. Annu Rev Virol 2014; 1:111-32. [PMID: 26958717 DOI: 10.1146/annurev-virology-031413-085507] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
When judged by ubiquity, adaptation, and emergence of new diseases, RNA viruses are arguably the most successful biological organisms. This success has been attributed to a defect of sorts: high mutation rates (low fidelity) resulting in mutant swarms that allow rapid selection for fitness in new environments. Studies of viruses with small RNA genomes have identified fidelity determinants in viral RNA-dependent RNA polymerases and have shown that RNA viruses likely replicate within a limited fidelity range to maintain fitness. In this review we compare the fidelity of small RNA viruses with that of the largest RNA viruses, the coronaviruses. Coronaviruses encode the first known viral RNA proofreading exoribonuclease, a function that likely allowed expansion of the coronavirus genome and that dramatically increases replication fidelity and the range of tolerated variation. We propose models for regulation of coronavirus fidelity and discuss the implications of altered fidelity for RNA virus replication, pathogenesis, and evolution.
Collapse
Affiliation(s)
- Everett Clinton Smith
- Department of Pediatrics
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee 37232;
| | - Nicole R Sexton
- Department of Pathology, Microbiology, and Immunology, and
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee 37232;
| | - Mark R Denison
- Department of Pediatrics
- Department of Pathology, Microbiology, and Immunology, and
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee 37232;
| |
Collapse
|
16
|
Attenuation of human enterovirus 71 high-replication-fidelity variants in AG129 mice. J Virol 2014; 88:5803-15. [PMID: 24623423 DOI: 10.1128/jvi.00289-14] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED In a screen for ribavirin resistance, a novel high-fidelity variant of human enterovirus 71 (EV71) with the single amino acid change L123F in its RNA-dependent RNA polymerase (RdRp or 3D) was identified. Based on the crystal structure of EV71 RdRp, L123 locates at the entrance of the RNA template binding channel, which might form a fidelity checkpoint. EV71 RdRp-L123F variants generated less progeny in a guanidine resistance assay and virus populations with lower mutation frequencies in cell culture passage due to their higher replication fidelity. However, compared with wild-type viruses, they did not show growth defects. In vivo infections further revealed that high-fidelity mutations L123F and G64R (previously reported) negatively impacted EV71 fitness and greatly reduced viral pathogenicity alone or together in AG129 mice. Interestingly, a variant with double mutations, RG/B4-G64R/L123F (where RG/B4 is an EV71 genotype B4 virus constructed by reverse genetics [RG])showed higher fidelity in vitro and less virulence in vivo than any one of the above two single mutants. The 50% lethal dose (LD50) of the double mutant increased more than 500 times compared with the LD50 of wild-type RG/B4 in mice. The results indicated that these high-fidelity variants exhibited an attenuated pathogenic phenotype in vivo and offer promise as a live attenuated EV71 vaccine. IMPORTANCE The error-prone nature of the RNA-dependent RNA polymerase (RdRp) of RNA viruses during replication results in quasispecies and aids survival of virus populations under a wide range of selective pressures. Virus variants with higher replication fidelity exhibit lower genetic diversity and attenuated pathogenicity in vivo. Here, we identified a novel high-fidelity mutation L123F in the RdRp of human enterovirus 71 (EV71). We further elucidated that EV71 variants with the RdRp-L123F mutation and/or the previously identified high-fidelity mutation RdRp-G64R were attenuated in an AG129 mouse model. As EV71 has emerged as a serious worldwide health threat, especially in developing countries in the Asia-Pacific region, we urgently need EV71 vaccines. Learning from the poliovirus vaccination, we prefer live attenuated EV71 vaccines to inactivated EV71 vaccines in order to effectively control EV71 outbreaks at low cost. Our results imply a new means of attenuating EV71 and reducing its mutation rate at the same time.
Collapse
|