1
|
Zhou J, Zhu N, Dai Q, Sun H, Zhao J, Qiu Y, Zhou B, Wang D, Cui Y, Guo J, Feng X, Hou L, Liu J. DEAD-box RNA helicase 10 inhibits porcine circovirus type 3 replication by interacting with the viral capsid protein and activating interferon responses. J Virol 2025:e0057625. [PMID: 40340395 DOI: 10.1128/jvi.00576-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 04/08/2025] [Indexed: 05/10/2025] Open
Abstract
Porcine circovirus type 3 (PCV3) is an emerging pathogen that causes porcine dermatitis and nephropathy syndrome-like symptoms, multisystemic inflammation, and reproductive failure. The PCV3 capsid (Cap) protein interacts with DEAD-box RNA helicase 10 (DDX10), a protein that functions primarily through regulating interferon (IFN)-β production to exert its antiviral activity. However, how the interaction between DDX10 and PCV3 Cap regulates viral replication remains unknown. We used Western blotting, interaction assays, and knockdown analyses to observe impaired PCV3 proliferation in transiently DDX10-overexpressing cells, as indicated by decreased viral protein expression levels and virus production. In contrast, PCV3 replication increased upon small interfering RNA-mediated DDX10 depletion. Furthermore, DDX10 positively regulated IFN-β production and interferon-stimulated gene expression, inhibiting PCV3 replication. Mechanistically, PCV3 Cap co-localized and interacted with DDX10, and the N-terminal nuclear localization signal of PCV3 Cap and the helicase domain of DDX10 were essential for the Cap-DDX10 interaction. Furthermore, PCV3 infection decreases DDX10 expression to antagonize its antiviral activity. These results show that DDX10 antagonizes PCV3 replication by interacting with the PCV3 Cap protein and activating IFN-β responses, which provides important insight into the prevention and control of PCV3 infection.IMPORTANCEClarifying how host factors contribute to infection with PCV3, a newly discovered pathogen associated with multiple clinicopathological signs in swine, helps elucidate viral pathogenesis. The PCV3 Cap protein has been shown to interact with DDX10, a crucial protein that regulates RNA virus replication. Herein, we further demonstrated that DDX10 expression is downregulated in PCV3-infected cells and antagonizes the replication of PCV3 and that DDX10 increases interferon-β and interferon-stimulated gene levels to inhibit PCV3 replication by binding to the PCV3 Cap. In addition, PCV3 infection decreases DDX10 expression to antagonize its antiviral activity. These results reveal a molecular mechanism by which DDX10 antagonizes PCV3 replication by binding to the PCV3 Cap protein and activating IFN signals, thereby providing important targets for preventing and controlling PCV3 infection.
Collapse
Affiliation(s)
- Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ning Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Qianhong Dai
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Haoyu Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jie Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yonghui Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Beiyi Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Dedong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongqiu Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xufei Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Chen Y, Li S, Long X, Wang J, He Z, Guo C. SERTAD3 interacts with porcine reproductive and respiratory syndrome virus nonstructural protein 9 and inhibits virus replication. Int J Biol Macromol 2025; 309:142828. [PMID: 40187446 DOI: 10.1016/j.ijbiomac.2025.142828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV)-encoded nonstructural protein 9 (Nsp9) has RNA-dependent RNA polymerase (RdRp) function and plays a key role in virus replication. Exploring the interaction of PRRSV Nsp9 with host proteins is important for understanding virus pathogenesis. Here, we found that the SERTA domain containing 3 (SERTAD3) is one of the host interacting factors of viral Nsp9 through yeast two-hybrid screening. The computational simulations and coimmunoprecipitation assay also confirmed their interaction. Further, SERTAD3 interacted with the nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain of Nsp9, while multiple domains of SERTAD3 interacted with Nsp9. PRRSV infection promoted SERTAD3 expression in vitro. SERTAD3 knockdown significantly facilitated PRRSV replication, while its overexpression led to a significant decrease in virus infection, demonstrating that SERTAD3 acts as a negative regulator during PRRSV replication. Mechanistically, we identified that the C-terminal activation domain of SERTAD3 was crucial for its inhibition of PRRSV. The deletion of the activation domain of SERTAD3 significantly impaired its binding ability to Nsp9, indicating that the potent interaction between its activation domain and Nsp9 is crucial for virus inhibition. This study reveals that SERTAD3 acts as a host limiting factor for PRRSV and provides a molecular basis for developing antivirals against PRRSV.
Collapse
Affiliation(s)
- Yongjie Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Songbei Li
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Xiaoqin Long
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Jingxing Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Zhan He
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Chunhe Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
3
|
Jing H, Liu Y, Song Y, Song T, Wang T, Ding Z, Liu J, Zhao P. ZDHHC3-LYPLA1 regulates PRRSV-2 replication through reversible palmitoylation. Vet Microbiol 2025; 301:110368. [PMID: 39787744 DOI: 10.1016/j.vetmic.2025.110368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly contagious swine pathogen, causing respiratory problems in piglets and reproductive failure in sows. Palmitoylation, catalyzed by zinc finger Asp-His-His-Cys (ZDHHC) domain-containing palmitoyl acyltransferases, plays intricate roles in virus infection. However, whether palmitoylation regulates PRRSV replication is incompletely understood. Here, we report that inhibition of palmitoylation by 2-bromo palmitate (2-BP) promotes PRRSV multiplication. ZDHHC3 is identified as the key palmitoyl transferase regulating PRRSV replication in PAMs infection. Mechanistically, ZDHHC3 catalyzes nucleocapsid (N) protein palmitoylation at cysteine 90. This modification prevents the Nsp9-N protein interaction and subsequent viral RNA synthesis. Furthermore, LYPLA1 de-palmitoylates N protein, thus counteracting the ZDHHC3's activity on PRRSV replication. Meanwhile, the administration of small-molecule inhibitor ML348 targeting LYPLA1 could hinder PRRSV-2 replication. In summary, our results underscore the critical role of reversible palmitoylation in PRRSV replication. These findings might provide potential new anti-PRRSV strategies.
Collapse
Affiliation(s)
- Huiyuan Jing
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China.
| | - Ying Liu
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yvzhen Song
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Tao Song
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Ting Wang
- College of Animal Science, Jiangxi Agricultural University, Nanchang, China
| | - Zhen Ding
- College of Animal Science, Jiangxi Agricultural University, Nanchang, China
| | - Jie Liu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Pandeng Zhao
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| |
Collapse
|
4
|
He Z, Li F, Yan J, Liu M, Chen Y, Guo C. The dual role of autophagy during porcine reproductive and respiratory syndrome virus infection: A review. Int J Biol Macromol 2024; 282:136978. [PMID: 39471930 DOI: 10.1016/j.ijbiomac.2024.136978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/12/2024] [Accepted: 10/25/2024] [Indexed: 11/01/2024]
Abstract
Autophagy is a highly conserved catabolic process that transports cellular components to lysosomes for degradation and reuse. It impacts various cellular functions, including innate and adaptive immunity. It can exhibit a dual role in viral infections, either promoting or inhibiting viral replication depending on the virus and the stage of the infection cycle. Porcine reproductive and respiratory syndrome virus (PRRSV) is a significant pathogen impacting the sustainable development of the global pork industry. Recent research has shown that PRRSV has evolved specific mechanisms to facilitate or impede autophagosome maturation, thereby evading innate and adaptive immune responses. These primary mechanisms involve viral proteins that target multiple regulators of autophagosome formation, including autophagy receptors, tethering proteins, autophagy-related (ATG) genes, as well as the functional proteins of autophagosomes and late endosomes/lysosomes. Additionally, these mechanisms are related to the post-translational modification of key components, viral antigens for presentation to T lymphocytes, interferon production, and the biogenesis and function of lysosomes. This review discusses the specific mechanisms by which PRRSV targets autophagy in host defence and virus survival, summarizes the role of viral proteins in subverting the autophagic process, and examines how the host utilizes the antiviral functions of autophagy to prevent PRRSV infection.
Collapse
Affiliation(s)
- Zhan He
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Fangfang Li
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Jiecong Yan
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Min Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Yongjie Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Chunhe Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
5
|
Wang T, Zhao D, Zhang Y, Yu D, Liu G, Zhang K. Annexin A2: A Double-Edged Sword in Pathogen Infection. Pathogens 2024; 13:564. [PMID: 39057791 PMCID: PMC11279864 DOI: 10.3390/pathogens13070564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Annexin A2 (ANXA2) is a multifunctional calcium- and phospholipid-binding protein that plays an important role in various cells. During pathogen infections, ANXA2 modulates the nuclear factor kappa-B (NF-κB) and cell apoptosis signaling pathways and guides the chemotaxis of inflammatory cells toward inflammation sites, thereby protecting the host organism through the modulation of the inflammatory response. In addition, ANXA2 can regulate immune responses, and in certain pathogen infections, it can interact with pathogen proteins to facilitate their invasion and proliferation. This review provides an overview of the research progress on how ANXA2 regulates pathogen infections.
Collapse
Affiliation(s)
- Tianyu Wang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Dengshuai Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yuanhang Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Dixi Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Guoping Liu
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Keshan Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| |
Collapse
|
6
|
Gong X, Liang Y, Wang J, Pang Y, Wang F, Chen X, Zhang Q, Song C, Wang Y, Zhang C, Fang X, Chen X. Highly pathogenic PRRSV upregulates IL-13 production through nonstructural protein 9-mediated inhibition of N6-methyladenosine demethylase FTO. J Biol Chem 2024; 300:107199. [PMID: 38508309 PMCID: PMC11017062 DOI: 10.1016/j.jbc.2024.107199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), a highly infectious virus, causes severe losses in the swine industry by regulating the inflammatory response, inducing tissue damage, suppressing the innate immune response, and promoting persistent infection in hosts. Interleukin-13 (IL-13) is a cytokine that plays a critical role in regulating immune responses and inflammation, particularly in immune-related disorders, certain types of cancer, and numerous bacterial and viral infections; however, the underlying mechanisms of IL-13 regulation during PRRSV infection are not well understood. In this study, we demonstrated that PRRSV infection elevates IL-13 levels in porcine alveolar macrophages. PRRSV enhances m6A-methylated RNA levels while reducing the expression of fat mass and obesity associated protein (FTO, an m6A demethylase), thereby augmenting IL-13 production. PRRSV nonstructural protein 9 (nsp9) was a key factor for this modulation. Furthermore, we found that the residues Asp567, Tyr586, Leu593, and Asp595 were essential for nsp9 to induce IL-13 production via attenuation of FTO expression. These insights delineate PRRSV nsp9's role in FTO-mediated IL-13 release, advancing our understanding of PRRSV's impact on host immune and inflammatory responses.
Collapse
Affiliation(s)
- Xingyu Gong
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yuan Liang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Jingjing Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yipeng Pang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Fang Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xiaohan Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Qiaoya Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Chengchuang Song
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China; Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
| | - Yanhong Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China; Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China; Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China; Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Normal University, Xuzhou, Jiangsu Province, China.
| | - Xi Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China; Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Normal University, Xuzhou, Jiangsu Province, China.
| |
Collapse
|
7
|
Messmer M, Pierson L, Pasquier C, Djordjevic N, Chicher J, Hammann P, Pfeffer S, Girardi E. DEAD box RNA helicase 5 is a new pro-viral host factor for Sindbis virus infection. Virol J 2024; 21:76. [PMID: 38553727 PMCID: PMC10981342 DOI: 10.1186/s12985-024-02349-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND RNA helicases are emerging as key factors regulating host-virus interactions. The DEAD-box ATP-dependent RNA helicase DDX5, which plays an important role in many aspects of cellular RNA biology, was also found to either promote or inhibit viral replication upon infection with several RNA viruses. Here, our aim is to examine the impact of DDX5 on Sindbis virus (SINV) infection. METHODS We analysed the interaction between DDX5 and the viral RNA using imaging and RNA-immunoprecipitation approaches. The interactome of DDX5 in mock- and SINV-infected cells was determined by mass spectrometry. We validated the interaction between DDX17 and the viral capsid by co- immunoprecipitation in the presence or absence of an RNase treatment. We determined the subcellular localization of DDX5, its cofactor DDX17 and the viral capsid protein by co-immunofluorescence. Finally, we investigated the impact of DDX5 depletion and overexpression on SINV infection at the viral protein, RNA and infectious particle accumulation level. The contribution of DDX17 was also tested by knockdown experiments. RESULTS In this study we demonstrate that DDX5 interacts with the SINV RNA during infection. Furthermore, the proteomic analysis of the DDX5 interactome in mock and SINV-infected HCT116 cells identified new cellular and viral partners and confirmed the interaction between DDX5 and DDX17. Both DDX5 and DDX17 re-localize from the nucleus to the cytoplasm upon SINV infection and interact with the viral capsid protein. We also show that DDX5 depletion negatively impacts the viral replication cycle, while its overexpression has a pro-viral effect. Finally, we observed that DDX17 depletion reduces SINV infection, an effect which is even more pronounced in a DDX5-depleted background, suggesting a synergistic pro-viral effect of the DDX5 and DDX17 proteins on SINV. CONCLUSIONS These results not only shed light on DDX5 as a novel and important host factor to the SINV life cycle, but also expand our understanding of the roles played by DDX5 and DDX17 as regulators of viral infections.
Collapse
Affiliation(s)
- Mélanie Messmer
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 2 allée Konrad Roentgen, Strasbourg, 67084, France
| | - Louison Pierson
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 2 allée Konrad Roentgen, Strasbourg, 67084, France
| | - Charline Pasquier
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 2 allée Konrad Roentgen, Strasbourg, 67084, France
| | - Nikola Djordjevic
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 2 allée Konrad Roentgen, Strasbourg, 67084, France
| | - Johana Chicher
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Plateforme Protéomique Strasbourg - Esplanade, Université de Strasbourg, 2 allée Konrad Roentgen, Strasbourg, 67084, France
| | - Philippe Hammann
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Plateforme Protéomique Strasbourg - Esplanade, Université de Strasbourg, 2 allée Konrad Roentgen, Strasbourg, 67084, France
| | - Sébastien Pfeffer
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 2 allée Konrad Roentgen, Strasbourg, 67084, France
| | - Erika Girardi
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 2 allée Konrad Roentgen, Strasbourg, 67084, France.
| |
Collapse
|
8
|
Liao Y, Wang H, Liao H, Sun Y, Tan L, Song C, Qiu X, Ding C. Classification, replication, and transcription of Nidovirales. Front Microbiol 2024; 14:1291761. [PMID: 38328580 PMCID: PMC10847374 DOI: 10.3389/fmicb.2023.1291761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/06/2023] [Indexed: 02/09/2024] Open
Abstract
Nidovirales is one order of RNA virus, with the largest single-stranded positive sense RNA genome enwrapped with membrane envelope. It comprises four families (Arterividae, Mesoniviridae, Roniviridae, and Coronaviridae) and has been circulating in humans and animals for almost one century, posing great threat to livestock and poultry,as well as to public health. Nidovirales shares similar life cycle: attachment to cell surface, entry, primary translation of replicases, viral RNA replication in cytoplasm, translation of viral proteins, virion assembly, budding, and release. The viral RNA synthesis is the critical step during infection, including genomic RNA (gRNA) replication and subgenomic mRNAs (sg mRNAs) transcription. gRNA replication requires the synthesis of a negative sense full-length RNA intermediate, while the sg mRNAs transcription involves the synthesis of a nested set of negative sense subgenomic intermediates by a discontinuous strategy. This RNA synthesis process is mediated by the viral replication/transcription complex (RTC), which consists of several enzymatic replicases derived from the polyprotein 1a and polyprotein 1ab and several cellular proteins. These replicases and host factors represent the optimal potential therapeutic targets. Hereby, we summarize the Nidovirales classification, associated diseases, "replication organelle," replication and transcription mechanisms, as well as related regulatory factors.
Collapse
Affiliation(s)
- Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huan Wang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huiyu Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
9
|
Yi H, Ye R, Xie E, Lu L, Wang Q, Wang S, Sun Y, Tian T, Qiu Y, Wu Q, Zhang G, Wang H. ZNF283, a Krüppel-associated box zinc finger protein, inhibits RNA synthesis of porcine reproductive and respiratory syndrome virus by interacting with Nsp9 and Nsp10. Vet Res 2024; 55:9. [PMID: 38225617 PMCID: PMC10790482 DOI: 10.1186/s13567-023-01263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/15/2023] [Indexed: 01/17/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a viral pathogen with substantial economic implications for the global swine industry. The existing vaccination strategies and antiviral drugs offer limited protection. Replication of the viral RNA genome encompasses a complex series of steps, wherein a replication complex is assembled from various components derived from both viral and cellular sources, as well as from the viral genomic RNA template. In this study, we found that ZNF283, a Krüppel-associated box (KRAB) containing zinc finger protein, was upregulated in PRRSV-infected Marc-145 cells and porcine alveolar macrophages and that ZNF283 inhibited PRRSV replication and RNA synthesis. We also found that ZNF283 interacts with the viral proteins Nsp9, an RNA-dependent RNA polymerase, and Nsp10, a helicase. The main regions involved in the interaction between ZNF283 and Nsp9 were determined to be the KRAB domain of ZNF283 and amino acids 178-449 of Nsp9. The KRAB domain of ZNF283 plays a role in facilitating Nsp10 binding. In addition, ZNF283 may have an affinity for the 3' untranslated region of PRRSV. These findings suggest that ZNF283 is an antiviral factor that inhibits PRRSV infection and extend our understanding of the interactions between KRAB-containing zinc finger proteins and viruses.
Collapse
Affiliation(s)
- Heyou Yi
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
| | - Ruirui Ye
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China
| | - Ermin Xie
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China
| | - Lechen Lu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China
| | - Qiumei Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China
| | - Shaojun Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China
| | - Yankuo Sun
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Tao Tian
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China
| | - Yingwu Qiu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China
| | - Qianwen Wu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.
| | - Heng Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
10
|
Islam MA. A review of SARS-CoV-2 variants and vaccines: Viral properties, mutations, vaccine efficacy, and safety. INFECTIOUS MEDICINE 2023; 2:247-261. [PMID: 38205179 PMCID: PMC10774670 DOI: 10.1016/j.imj.2023.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/09/2023] [Accepted: 08/28/2023] [Indexed: 01/12/2024]
Abstract
The severe acute respiratory syndrome coronavirus disease 2 instigated by coronavirus disease of 2019 (COVID-19) has delivered an unfathomable obstruction that has touched all sectors worldwide. Despite new vaccine technologies and mass administration of booster doses, the virus persists, and unknown the ending of the pandemic for new variants and sub-variants. Moreover, whether leaning on home medications or using plant extracts is sufficient often to combat the virus has generated tremendous interest in the scientific fraternity. Different databases including PubMed, Scopus, Web of Science, and Google Scholar used to find published articles linked with related topics. Currently, COVID-19 third and fourth shots of vaccines are progressively administered worldwide, where some countries trail others by a significant margin. Many proteins related to viral activity have changed, possibly boosting the virus infectivity and making antibodies ineffective. This study will reminisce the viral genome, associated pathways for viral protein functions, variants, and their mutations. The current, comprehensive review will also provide information on vaccine technologies developed by several biotech companies and the efficacy of their doses, costs including boosters on a mass level. As no vaccine is working to protect fully against all the variants, the new proactive vaccine research needs to be conducted based on all variants, their sub-lineage, and mutations.
Collapse
Affiliation(s)
- Md. Aminul Islam
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj 2310, Bangladesh
- COVID-19 Diagnostic lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| |
Collapse
|
11
|
Li J, Zhou Y, Zhao W, Liu J, Ullah R, Fang P, Fang L, Xiao S. Porcine reproductive and respiratory syndrome virus degrades DDX10 via SQSTM1/p62-dependent selective autophagy to antagonize its antiviral activity. Autophagy 2023; 19:2257-2274. [PMID: 36779599 PMCID: PMC10351467 DOI: 10.1080/15548627.2023.2179844] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/14/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a typical immunosuppressive virus devastating the global swine industry. DEAD-box helicases (DDXs) are a family of ATP-dependent RNA helicases that are predominantly implicated in modulating cellular RNA metabolism. Meanwhile, a growing number of studies have suggested that some DDXs are associated with innate immunity and virus infection, so they are considered potential antiviral targets. Herein, we screened 40 DDXs and found that ectopic expression of DDX10 exhibited a significant anti-PRRSV effect, while DDX10 knockdown promoted PRRSV proliferation. Further analysis revealed that DDX10 positively regulates type I interferon production, which may contribute to its anti-PRRSV effect. Interestingly, PRRSV infection promoted DDX10 translocation from the nucleus to the cytoplasm for macroautophagic/autophagic degradation to block the antiviral effect of DDX10. By screening PRRSV-encoded proteins, we found that the viral envelope (E) protein interacted with DDX10. In line with the autophagic degradation of DDX10 during PRRSV infection, E protein could induce autophagy and reduce DDX10 expression in wild-type cells, but not in ATG5 or ATG7 knockout (KO) cells. When further screening the cargo receptors for autophagic degradation, we found that SQSTM1/p62 (sequestosome 1) interacted with both DDX10 and E protein, and E protein-mediated DDX10 degradation was almost entirely blocked in SQSTM1 KO cells, demonstrating that E protein degrades DDX10 by promoting SQSTM1-mediated selective autophagy. Our study reveals a novel mechanism by which PRRSV escapes host antiviral innate immunity through selective autophagy, providing a new target for developing anti-PRRSV drugs.Abbreviations: ACTB: actin beta; ATG: autophagy related; co-IP: co-immunoprecipitation; CQ: chloroquine; DDX10: DEAD-box helicase 10; E: envelope; EGFP: enhanced green fluorescent protein; hpi: hours post infection; hpt: hours post transfection; IFA: indirect immunofluorescence assay; IFN-I: type I IFN; IFNB/IFN-β: interferon beta; IRF3: interferon regulatory factor 3; ISGs: interferon-stimulated genes; KO: knockout; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; mAb: monoclonal antibody; MOI: multiplicity of infection; NBR1: NBR1 autophagy cargo receptor; NFKB/NF-κB: nuclear factor kappa B; OPTN: optineurin; ORF: open reading frame; PRRSV: porcine reproductive and respiratory syndrome virus; SeV: sendai virus; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TCID50: 50% tissue culture infective dose; WT: wild type.
Collapse
Affiliation(s)
- Jia Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhannull, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhannull, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Wenkai Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhannull, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Jiao Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhannull, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Rizwan Ullah
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhannull, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhannull, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhannull, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhannull, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| |
Collapse
|
12
|
Zhang Y, Cen J, Yuan G, Jia Z, Chen K, Gao W, Chen J, Adamek M, Jia Z, Zou J. DDX5 inhibits type I IFN production by promoting degradation of TBK1 and disrupting formation of TBK1 - TRAF3 complex. Cell Mol Life Sci 2023; 80:212. [PMID: 37462751 PMCID: PMC11073175 DOI: 10.1007/s00018-023-04860-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/13/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
DExD/H-box helicase (DDX) 5 belongs to the DExD/H-box helicase family. DDX family members play differential roles in the regulation of innate antiviral immune response. However, whether DDX5 is involved in antiviral immunity remains unclear. In this study, we found that DDX5 serves as a negative regulator of type I interferon (IFN) response. Overexpression of DDX5 inhibited IFN production induced by Spring viremia of carp virus (SVCV) and poly(I:C) and enhanced virus replication by targeting key elements of the RLR signaling pathway (MAVS, MITA, TBK1, IRF3 and IRF7). Mechanistically, DDX5 directly interacted with TBK1 to promote its autophagy-mediated degradation. Moreover, DDX5 was shown to block the interaction between TRAF3 and TBK1, hence preventing nuclear translocation of IRF3. Together, these data shed light on the roles of DDX5 in regulating IFN response.
Collapse
Affiliation(s)
- Yanwei Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jing Cen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Gaoliang Yuan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Kangyong Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wa Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jing Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Zhiying Jia
- Heilongjiang River Fisheries Research Institute, CAFS, Harbin, 150070, Heilongjiang Province, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China.
| |
Collapse
|
13
|
Wang Q, Yi H, Guo Y, Sun Y, Yu Z, Lu L, Ye R, Xie E, Wu Q, Qiu Y, Quan W, Zhang G, Wang H. PCNA promotes PRRSV replication by increasing the synthesis of viral genome. Vet Microbiol 2023; 281:109741. [PMID: 37087878 DOI: 10.1016/j.vetmic.2023.109741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/25/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an RNA virus belonging to the Arteriviridae family. Currently, the strain has undergone numerous mutations, bringing massive losses to the swine industry worldwide. Despite several studies had been conducted on PRRSV, the molecular mechanisms by which it causes infection remain unclear. Proliferating cell nuclear antigen (PCNA) is a sign of DNA damage and it participates in DNA replication and repair. Therefore, in this study, we investigated the potential role of PCNA in PRRSV infection. We observed that PCNA expression was stable after PRRSV infection in vitro; however, PCNA was translocated from the nucleus to the cytoplasm. Notably, we found the redistribution of PCNA from the nucleus to the cytoplasm in cells transfected with the N protein. PCNA silencing inhibited PRRSV replication and the synthesis of PRRSV shorter subgenomic RNA (sgmRNA) and genomic RNA (gRNA), while PCNA overexpression promoted virus replication and PRRSV shorter sgmRNA and gRNA synthesis. By performing immunoprecipitation and immunofluorescence colocalization, we confirmed that PCNA interacted with replication-related proteins, namely NSP9, NSP12, and N, but not with NSP10 and NSP11. Domain III of the N protein (41-72 aa) interacted with the IDCL domain of PCNA (118-135 aa). Therefore, we propose cytoplasmic transport of PCNA and its subsequent influence on PRRSV RNA synthesis could be a viral strategy for manipulating cell function, thus PCNA is a potential target to prevent and control PRRSV infection.
Collapse
Affiliation(s)
- Qiumei Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Heyou Yi
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Yanchen Guo
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Yankuo Sun
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Zhiqing Yu
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhong mu Institutes of China Animal Husbandry Industry Co. Ltd., Beijing, China
| | - Lechen Lu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Ruirui Ye
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Ermin Xie
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Qianwen Wu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Yingwu Qiu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Weipeng Quan
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| | - Heng Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
14
|
Gao S, Han B, Xu B, Wang N, Zhang Y, Liu X, Zhang M, Wang G, Guan X, Huang J, Liu M, Shi W. SAV Nsp2 regulates NF-κB signaling to induce inflammatory responses by targeting host DDX3. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104612. [PMID: 36473548 DOI: 10.1016/j.dci.2022.104612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Salmon alphavirus (SAV) infection leads to severe pancreas disease (PD) with typical inflammatory responses in Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Nsp2, an important nonstructural protein of SAV, can activate NF-κB signaling pathway to reduce inflammatory responses. However, the molecular mechanism remains unclear. In this study, the ML (279-421aa) of Nsp2 was revealed to be the key domain for activating NF-κB. We focused on a host protein, DEAD-box RNA helicase 3 (DDX3), that may interact with Nsp2 to regulate NF-κB-induced inflammatory. The interaction between DDX3 and Nsp2 was confirmed in vitro. Overexpression of DDX3 inhibited the activation of NF-κB by Nsp2. SAV Nsp2 relieves the inhibitory effect of DDX3 on NF-κB, thereby initiating the innate immune response. This study revealed the molecular mechanism of Nsp2-induced inflammatory response by targeting DDX3 to activate NF-κB, providing a theoretical basis for revealing the underlying infection mechanism and pathogenesis of SAV.
Collapse
Affiliation(s)
- Shuai Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bing Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Baoxing Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Na Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yanru Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xuefei Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mengmeng Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Guanbo Wang
- Wellcome-Wolfson Institute for Exprerimental Medicine Queen's University Belfast, 97 Lisburn Rd, Belfast, BT9 7BL, UK
| | - Xueting Guan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jinshan Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Min Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Wen Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
15
|
Cleavage of AUF1 by Coxsackievirus B Affects DDX5 Regulatory on Viral Replication through iTRAQ Proteomics Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8610467. [PMID: 36246972 PMCID: PMC9560859 DOI: 10.1155/2022/8610467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022]
Abstract
Coxsackievirus B (CVB) 3C protease (3Cpro) plays a specific cleavage role on AU-rich binding factor (AUF1, also called hnRNP D), which consequently disputes the regulation of AUF1 on downstream molecules. In our study, the iTRAQ approach was first used to quantify the differentially expressed cellular proteins in AUF1-overexpressing HeLa cells, which provides straightforward insight into the role of AUF1 during viral infection. A total of 1,290 differentially expressed proteins (DEPs), including 882 upregulated and 408 downregulated proteins, were identified. The DEPs are involved in a variety of cellular processes via GO terms, protein–protein interactions, and a series of further bioinformatics analyses. Among the DEPs, some demonstrated important roles in cellular metabolism. In particular, DDX5 was further verified to be negatively regulated by AUF1 and increased in CVB-infected cells, which in turn promoted CVB replication. These findings provide potential novel ideas for exploring new antiviral therapy targets.
Collapse
|
16
|
Comprehensive Subcellular Localization of Swine Acute Diarrhea Syndrome Coronavirus Proteins. J Virol 2022; 96:e0077222. [PMID: 35972293 PMCID: PMC9472759 DOI: 10.1128/jvi.00772-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bats are reservoirs for diverse coronaviruses, including swine acute diarrhea syndrome coronavirus (SADS-CoV). SADS-CoV was first identified in diarrheal piglets in 2017. As a novel alphacoronavirus, SADS-CoV shares ~95% identity with bat alphacoronavirus HKU2. SADS-CoV has been reported to have broad cell tropism and inherent potential to cross host species barriers for dissemination. Thus far, no effective antiviral drugs or vaccines are available to treat infections with SADS-CoV. Therefore, knowledge of the protein-coding gene set and a subcellular localization map of SADS-CoV proteins are fundamental first steps in this endeavor. Here, all SADS-CoV genes were cloned separately into Flag-tagged plasmids, and the subcellular localizations of viral proteins, with the exception of nsp11, were detected using confocal microscopy techniques. As a result, nsp1, nsp3-N, nsp4, nsp5, nsp7, nsp8, nsp9, nsp10, nsp14, and nsp15 were localized in the cytoplasm and nuclear spaces, and these viral proteins may perform specific functions in the nucleus. All structural and accessory proteins were mainly localized in the cytoplasm. NS7a and membrane protein M colocalized with the Golgi compartment, and they may regulate the assembly of SADS-CoV virions. Maturation of SADS-CoV may occur in the late endosomes, during which envelope protein E is involved in the assembly and release of the virus. In summary, the present study demonstrates for the first time the location of all the viral proteins of SADS-CoV. These fundamental studies of SADS-CoV will promote studies of basic virology of SADS-CoV and support preventive strategies for animals with infection of SADS-CoV. IMPORTANCE SADS-CoV is the first documented spillover of a bat coronavirus that causes severe diseases in domestic animals. Our study is an in-depth annotation of the newly discovered swine coronavirus SADS-CoV genome and viral protein expression. Systematic subcellular localization of SADS-CoV proteins can have dramatic significance in revealing viral protein biological functions in the subcellular locations. Furthermore, our study promote understanding the fundamental science behind the novel swine coronavirus to pave the way for treatments and cures.
Collapse
|
17
|
Sha H, Zhang H, Chen Y, Huang L, Zhao M, Wang N. Research Progress on the NSP9 Protein of Porcine Reproductive and Respiratory Syndrome Virus. Front Vet Sci 2022; 9:872205. [PMID: 35898550 PMCID: PMC9309524 DOI: 10.3389/fvets.2022.872205] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a contagious disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV). PRRS is also called “blue ear disease” because of the characteristic blue ear in infected sows and piglets. Its main clinical features are reproductive disorders of sows, breathing difficulties in piglets, and fattening in pigs, which cause considerable losses to the swine industry. NSP9, a non-structural protein of PRRSV, plays a vital role in PRRSV replication and virulence because of its RNA-dependent RNA polymerase (RdRp) structure. The NSP9 sequence is highly conserved and contains T cell epitopes, which are beneficial for the development of future vaccines. NSP9 acts as the protein interaction hub between virus and host during PRRSV infection, especially in RNA replication and transcription. Herein, we comprehensively review the application of NSP9 in terms of genetic evolution analysis, interaction with host proteins that affect virus replication, interaction with other viral proteins, pathogenicity, regulation of cellular immune response, antiviral drugs, vaccines, and detection methods. This review can therefore provide innovative ideas and strategies for PRRSV prevention and control.
Collapse
Affiliation(s)
- Huiyang Sha
- Department of Veterinary Medicine, School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
| | - Hang Zhang
- Department of Veterinary Medicine, School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
| | - Yao Chen
- Department of Veterinary Medicine, School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
| | - Liangzong Huang
- Department of Veterinary Medicine, School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
- *Correspondence: Liangzong Huang
| | - Mengmeng Zhao
- Department of Veterinary Medicine, School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
- Mengmeng Zhao
| | - Nina Wang
- Department of Veterinary Medicine, School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
- Nina Wang
| |
Collapse
|
18
|
Zhao L, Zhao Y, Liu Q, Huang J, Lu Y, Ping J. DDX5/METTL3-METTL14/YTHDF2 Axis Regulates Replication of Influenza A Virus. Microbiol Spectr 2022; 10:e0109822. [PMID: 35583334 PMCID: PMC9241928 DOI: 10.1128/spectrum.01098-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
DEAD-box helicase 5 (DDX5), a member of the DEAD/H-box helicases, is known to participate in all aspects of RNA metabolism. However, its regulatory effect in antiviral innate immunity during replication of influenza virus remains unclear. Herein, we found that human DDX5 promotes replication of influenza virus in A549 cells. Moreover, our results further revealed that DDX5 relies on its N terminus to interact with the nucleoprotein (NP) of influenza virus, which is independent of RNA. Of course, we also observed colocalization of DDX5 with NP in the context of transfection or infection. However, influenza virus infection had no significant effect on the protein expression and nucleocytoplasmic distribution of DDX5. Importantly, we found that DDX5 suppresses antiviral innate immunity induced by influenza virus infection. Mechanistically, DDX5 downregulated the mRNA levels of interferon beta (IFN-β), interleukin 6 (IL-6), and DHX58 via the METTL3-METTL14/YTHDF2 axis. We revealed that DDX5 bound antiviral transcripts and regulated immune responses through YTHDF2-dependent mRNA decay. Taken together, our data demonstrate that the DDX5/METTL3-METTL14/YTHDF2 axis regulates the replication of influenza A virus. IMPORTANCE The replication and transcription of influenza virus depends on the participation of many host factors in cells. Exploring the relationship between viruses and host factors will help us fully understand the characteristics and pathogenic mechanisms of influenza viruses. In this study, we showed that DDX5 interacted with the NP of influenza virus. We demonstrated that DDX5 downregulated the expression of IFN-β and IL-6 and the transcription of antiviral genes downstream from IFN-β in influenza virus-infected A549 cells. Additionally, DDX5 downregulated the mRNA levels of antiviral transcripts via the METTL3-METTL14/YTHDF2 axis. Our findings provide a novel perspective to understand the mechanism by which DDX5 regulates antiviral immunity.
Collapse
Affiliation(s)
- Lingcai Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yongzhen Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qingzheng Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jingjin Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuanlu Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jihui Ping
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
19
|
Hu M, Zheng H, Wu J, Sun Y, Wang T, Chen S. DDX5: an expectable treater for viral infection- a literature review. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:712. [PMID: 35845539 PMCID: PMC9279824 DOI: 10.21037/atm-22-2375] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/21/2022] [Indexed: 11/06/2022]
Abstract
Background and Objective DEAD-box protein (DDX)5 plays important roles in multiple aspects of cellular processes that require modulating RNA structure. Alongside the canonical role of DDX5 in RNA metabolism, many reports have shown that DDX5 influences viral infection by directly interacting with viral proteins. However, the functional role of DDX5 in virus-associated cancers, as well as the identity of DDX5 in virus infection-associated signaling pathways, has remained largely unexplained. Here, we further explore the precise functions of DDX5 and its potential targets for antiviral treatment. Methods We searched the PubMed and PMC databases to identify studies on role of DDXs, especially DDX5, during various viral infection published up to May 2022. Key Content and Findings DDX5 functions as both a viral infection helper and inhibitor, which depends on virus type. DDXs proteins have been identified to play roles on multiple aspects covering RNA metabolism and function. Conclusions DDX5 influences viral pathogenesis by participating in viral replication and multiple viral infection-related signaling pathways, it also plays a double-edge sword role under different viral infection conditions. Deep investigation into the mechanism of DDX5 modulating immune response in host cells revealed that it holds highly potential usage for future antiviral therapy. We reviewed current studies to provide a comprehensive update of the role of DDX5 in viral infection.
Collapse
Affiliation(s)
- Minghui Hu
- Clinical Lab, The Affiliated Hospital of Qingdao University, Qingdao China
| | - Hongying Zheng
- Clinical Lab, The Affiliated Hospital of Qingdao University, Qingdao China
| | - Jingqi Wu
- Microbiology Department, Harbin Medical University, Harbin, China
| | - Yue Sun
- School of Public Health, Harbin Medical University, Harbin, China
| | - Tianying Wang
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao, China
| | - Shuang Chen
- Clinical Lab, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
20
|
Paraoxonase-1 Facilitates PRRSV Replication by Interacting with Viral Nonstructural Protein-9 and Inhibiting Type I Interferon Pathway. Viruses 2022; 14:v14061203. [PMID: 35746674 PMCID: PMC9230610 DOI: 10.3390/v14061203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/29/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
Paraoxonase-1 (PON1), an esterase with specifically paraoxonase activity, has been proven to be involved in inflammation and infection. Porcine reproductive and respiratory syndrome virus (PRRSV) is still a major concern in pigs and causes severe economic losses to the swine industry worldwide. In this study, the role of PON1 was investigated in porcine alveolar macrophages (PAMs) during PRRSV infection. The results showed that PRRSV replication downregulated PON1, and the knockdown of PON1 significantly decreased PRRSV replication. Similarly, PON1 overexpression could enhance PRRSV replication. Interestingly, we observed that PON1 interacted with PRRSV nonstructural protein 9 (Nsp9), the RNA-dependent RNA polymerase, and the knockdown of PON1 lowered the RNA binding ability of Nsp9, suggesting that PON1 can facilitate Nsp9 function in viral replication. In addition, the knockdown of PON1 expression led to the amplification of type I interferon (IFN) genes and vice versa. In summary, our data demonstrate that PON1 facilitates PRRSV replication by interacting with Nsp9 and inhibiting the type I IFN signaling pathway. Hence, PON1 may be an additional component of the anti-PRRSV defenses.
Collapse
|
21
|
Research Progress in Porcine Reproductive and Respiratory Syndrome Virus–Host Protein Interactions. Animals (Basel) 2022; 12:ani12111381. [PMID: 35681845 PMCID: PMC9179581 DOI: 10.3390/ani12111381] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease caused by porcine reproductive and respiratory syndrome virus (PRRSV), which has been regarded as a persistent challenge for the pig industry in many countries. PRRSV is internalized into host cells by the interaction between PRRSV proteins and cellular receptors. When the virus invades the cells, the host antiviral immune system is quickly activated to suppress the replication of the viruses. To retain fitness and host adaptation, various viruses have evolved multiple elegant strategies to manipulate the host machine and circumvent against the host antiviral responses. Therefore, identification of virus–host interactions is critical for understanding the host defense against viral infections and the pathogenesis of the viral infectious diseases. Most viruses, including PRRSV, interact with host proteins during infection. On the one hand, such interaction promotes the virus from escaping the host immune system to complete its replication. On the other hand, the interactions regulate the host cell immune response to inhibit viral infections. As common antiviral drugs become increasingly inefficient under the pressure of viral selectivity, therapeutic agents targeting the intrinsic immune factors of the host protein are more promising because the host protein has a lower probability of mutation under drug-mediated selective pressure. This review elaborates on the virus–host interactions during PRRSV infection to summarize the pathogenic mechanisms of PRRSV, and we hope this can provide insights for designing effective vaccines or drugs to prevent and control the spread of PRRS.
Collapse
|
22
|
Liu J, Yao L, Huang S, Wang B, Li L, Li L, Gu W, Xiao S, Liu G. AMG487 inhibits PRRSV replication and ameliorates lung injury in pig lung xenografts by down-regulating the expression of ANXA2. Antiviral Res 2022; 202:105314. [DOI: 10.1016/j.antiviral.2022.105314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/25/2022] [Accepted: 04/01/2022] [Indexed: 12/25/2022]
|
23
|
Li J, Wang D, Fang P, Pang Y, Zhou Y, Fang L, Xiao S. DEAD-Box RNA Helicase 21 (DDX21) Positively Regulates the Replication of Porcine Reproductive and Respiratory Syndrome Virus via Multiple Mechanisms. Viruses 2022; 14:v14030467. [PMID: 35336874 PMCID: PMC8949431 DOI: 10.3390/v14030467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) remains a persistent hazard in the global pig industry. DEAD (Glu-Asp-Ala-Glu) box helicase 21 (DDX21) is a member of the DDX family. In addition to its function of regulating cellular RNA metabolism, DDX21 also regulates innate immunity and is involved in the replication cycle of some viruses. However, the relationship between DDX21 and PRRSV has not yet been explored. Here, we found that a DDX21 overexpression promoted PRRSV replication, whereas knockdown of DDX21 reduced PRRSV proliferation. Mechanistically, DDX21 promoted PRRSV replication independently of its ATPase, RNA helicase, and foldase activities. Furthermore, overexpression of DDX21 stabilized the expressions of PRRSV nsp1α, nsp1β, and nucleocapsid proteins, three known antagonists of interferon β (IFN-β). Knockdown of DDX21 activated the IFN-β signaling pathway in PRRSV-infected cells, suggesting that the effect of DDX21 on PRRSV-encoded IFN-β antagonists may be a driving factor for its contribution to viral proliferation. We also found that PRRSV infection enhanced DDX21 expression and promoted its nucleus-to-cytoplasm translocation. Screening PRRSV-encoded proteins showed that nsp1β interacted with the C-terminus of DDX21 and enhanced the expression of DDX21. Taken together, these findings reveal that DDX21 plays an important role in regulating PRRSV proliferation through multiple mechanisms.
Collapse
Affiliation(s)
- Jia Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (D.W.); (P.F.); (Y.P.); (Y.Z.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (D.W.); (P.F.); (Y.P.); (Y.Z.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (D.W.); (P.F.); (Y.P.); (Y.Z.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yu Pang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (D.W.); (P.F.); (Y.P.); (Y.Z.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (D.W.); (P.F.); (Y.P.); (Y.Z.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (D.W.); (P.F.); (Y.P.); (Y.Z.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (D.W.); (P.F.); (Y.P.); (Y.Z.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
24
|
Identification of Cryptic Promoter Activity in cDNA Sequences Corresponding to PRRSV 5′ Untranslated Region and Transcription Regulatory Sequences. Viruses 2022; 14:v14020400. [PMID: 35215993 PMCID: PMC8874549 DOI: 10.3390/v14020400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
To investigate the role of PRRSV nonstructural proteins (nsps) in viral RNA replication and transcription, we generated a cDNA clone of PRRSV strain NCV1 carrying the nanoluciferase (nluc) gene under the control of the transcription regulatory sequence 6 (TRS6) designated as pNCV1-Nluc. Cells transfected with the pNCV1-Nluc DNA plasmid produced an infectious virus and high levels of luciferase activity. Interestingly, cells transfected with mutant pNCV1-Nluc constructs carrying deletions in nsp7 or nsp9 regions also exhibited luciferase activity, although no infectious virus was produced. Further investigation revealed that the cDNA sequences corresponding to the PRRSV 5′ untranslated region (UTR) and TRS, when cloned upstream of the reporter gene nluc, were able to drive the expression of the reporter genes in the transfected cells. Luciferase signals from cells transfected with a reporter plasmid carrying PRRSV 5′ UTR or TRS sequences upstream of nluc were in the range of 6- to 10-fold higher compared to cells transfected with an empty plasmid carrying nluc only. The results suggest that PRRSV 5′ UTR and TRS-B in their cDNA forms possess cryptic eukaryotic promoter activity.
Collapse
|
25
|
Wen X, Ge X, Zhou L, Zhang Y, Guo X, Yang H. PRRSV Promotes MARC-145 Cells Entry Into S Phase of the Cell Cycle to Facilitate Viral Replication via Degradation of p21 by nsp11. Front Vet Sci 2021; 8:642095. [PMID: 33869322 PMCID: PMC8044838 DOI: 10.3389/fvets.2021.642095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) remains one of the most economically significant pathogens that seriously affect the global swine industry. Despite sustained efforts, the factors that affect PRRSV replication in host cells are far from being fully elucidated and thus warrants further investigation. In this study, we first demonstrated that PRRSV infection can cause downregulation of endogenous p21 protein in MARC-145 cells in a virus dose-dependent manner. Next, we analyzed the effect of p21 knockdown by RNA interference on cell cycle progression using flow cytometric analysis, and found that knockdown of p21 promotes MARC-145 cells entry into S phase of the cell cycle. Interestingly, we further discovered PRRSV infection is also able to promote MARC-145 cells entry into the S phase. Subsequently, we synchronized MARC-145 cells into G0/G1, S and G2/M phases, respectively, and then determined PRRSV replication in these cells. Results here show that the MARC-145 cells synchronized into the S phase exhibited the highest viral titer among the cells synchronized to different phases. Additionally, to reliably analyze the potential role of endogenous p21 protein in PRRSV replication, we constructed a p21 gene-knockout MARC-145 cell line (p21-/-) using CRISPR/Cas9 technology and evaluated its capability to support PRRSV replication. Our results indicate that knockout of p21 is conducive to PRRSV replication in MARC-145 cells. Furthermore, through construction of a series of eukaryotic plasmids expressing each of individual PRRSV proteins combined with cell transfection, we demonstrated that the nonstructural protein 11 (nsp11) of PRRSV mediates p21 degradation, which was further confirmed by generating a stable MARC-145 cell line constitutively expressing nsp11 using a lentivirus system. Notably, we further demonstrated that the endoribonuclease activity rather than the deubiquitinating activity of nsp11 is essential for p21 degradation via mutagenic analysis. Finally, we demonstrated that nsp11 mediates p21 degradation via a ubiquitin-independent proteasomal degradation manner. Altogether, our study not only uncovers a new pathogenesis of PRRSV, but also provides new insights into development of novel antiviral strategies.
Collapse
Affiliation(s)
- Xuexia Wen
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongning Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Wang Y, Li R, Qiao S, Wang J, Liu H, Li Z, Ma H, Yang L, Ruan H, Weng M, Hiscox JA, Stewart JP, Nan Y, Zhang G, Zhou EM. Structural Characterization of Non-structural Protein 9 Complexed With Specific Nanobody Pinpoints Two Important Residues Involved in Porcine Reproductive and Respiratory Syndrome Virus Replication. Front Microbiol 2020; 11:581856. [PMID: 33281776 PMCID: PMC7688669 DOI: 10.3389/fmicb.2020.581856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by PRRS virus (PRRSV), is a widespread viral disease that has led to huge economic losses for the global swine industry. Non-structural protein 9 (Nsp9) of PRRSV possesses essential RNA-dependent RNA polymerase (RdRp) activity for viral RNA replication. Our previous report showed that Nsp9-specific nanobody, Nb6, was able to inhibit PRRSV replication. In this study, recombinant Nsp9 and Nsp9-Nb6 complex were prepared then characterized using bio-layer interferometry (BLI) and dynamic light scattering (DLS) analyses that demonstrated high-affinity binding of Nb6 to Nsp9 to form a homogeneous complex. Small-angle X-ray scattering (SAXS) characterization analyses revealed that spatial interactions differed between Nsp9 and Nsp9-Nb6 complex molecular envelopes. Enzyme-linked immunosorbent assays (ELISAs) revealed key involvement of Nsp9 residues Ile588, Asp590, and Leu643 and Nb6 residues Tyr62, Trp105, and Pro107 in the Nsp9-Nb6 interaction. After reverse genetics-based techniques were employed to generate recombinant Nsp9 mutant viruses, virus replication efficiencies were assessed in MARC-145 cells. The results revealed impaired viral replication of recombinant viruses bearing I588A and L643A mutations as compared with replication of wild type virus, as evidenced by reduced negative-strand genomic RNA [(−) gRNA] synthesis and attenuated viral infection. Moreover, the isoleucine at position 588 of Nsp9 was conserved across PRRSV genotypes. In conclusion, structural analysis of the Nsp9-Nb6 complex revealed novel amino acid interactions involved in viral RNA replication that will be useful for guiding development of structure-based anti-PRRSV agents.
Collapse
Affiliation(s)
- Yan Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jiaxi Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Hongliang Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhijun Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Hongfang Ma
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Lei Yang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Haiyu Ruan
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Maoyang Weng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Julian A Hiscox
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - James P Stewart
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
27
|
Dos Santos WG. Natural history of COVID-19 and current knowledge on treatment therapeutic options. Biomed Pharmacother 2020; 129:110493. [PMID: 32768971 PMCID: PMC7332915 DOI: 10.1016/j.biopha.2020.110493] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 02/08/2023] Open
Abstract
Despite intense research there is currently no effective vaccine available against the new severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged in the later 2019 and responsible for the COVID-19 pandemic. This infectious and communicable disease has become one of the major public health challenges in the world. The clinical management of COVID-19 has been limited to infection prevention and control measures associated with supportive care such as supplemental oxygen and mechanical ventilation. Meanwhile efforts to find an effective treatment to inhibit virus replication, mitigate the symptoms, increase survival and decrease mortality rate are ongoing. Several classes of drugs, many of them already in use for other diseases, are being evaluated based on the body of clinical knowledge obtained from infected patients regarding to the natural history and evolution of the infection. Herein we will provide an updated overview of the natural history and current knowledge on drugs and therapeutic agents being tested for the prevention and treatment of COVID-19. These include different classes of drugs such as antiviral agents (chloroquine, ivermectin, nitazoxanide, hydroxychloroquine, lopinavir, remdesivir, tocilizumab), supporting agents (Vitamin C, Vitamin D, azithromycin, corticosteroids) and promising investigational vaccines. Considering the controversies and excessive number of compounds being tested and reported in the literature we hope that this review can provide useful and updated consolidated information on potential drugs used to prevent, control and treat COVID-19 patients worldwide.
Collapse
Affiliation(s)
- Wagner Gouvea Dos Santos
- Laboratory of Genetics and Molecular Biology, Department of Biomedicine, Graduate Program in Applied Health Sciences, Special Academic Unit of Health Sciences, Federal University of Jataí-UFJ, BR 364, Km 195, Nº 3800, CEP 75801-615, Jataí, Goiás, Brazil.
| |
Collapse
|
28
|
Bello-Onaghise G, Wang G, Han X, Nsabimana E, Cui W, Yu F, Zhang Y, Wang L, Li Z, Cai X, Li Y. Antiviral Strategies of Chinese Herbal Medicine Against PRRSV Infection. Front Microbiol 2020; 11:1756. [PMID: 32849384 PMCID: PMC7401453 DOI: 10.3389/fmicb.2020.01756] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/06/2020] [Indexed: 01/18/2023] Open
Abstract
Bioactive compounds from Traditional Chinese Medicines (TCMs) are gradually becoming an effective alternative in the control of porcine reproductive and respiratory syndrome virus (PRRSV) because most of the commercially available PRRSV vaccines cannot provide full protection against the genetically diverse strains isolated from farms. Besides, the incomplete attenuation procedure involved in the production of modified live vaccines (MLV) may cause them to revert to the more virulence forms. TCMs have shown some promising potentials in bridging this gap. Several investigations have revealed that herbal extracts from TCMs contain molecules with significant antiviral activities against the various stages of the life cycle of PRRSV, and they do this through different mechanisms. They either block PRRSV attachment and entry into cells or inhibits the replication of viral RNA or viral particles assembly and release or act as immunomodulators and pathogenic pathway inhibitors through cytokines regulations. Here, we summarized the various antiviral strategies employed by some TCMs against the different stages of the life cycle of PRRSV under two major classes, including direct-acting antivirals (DAAs) and indirect-acting antivirals (IAAs). We highlighted their mechanisms of action. In conclusion, we recommended that in making plans for the use of TCMs to control PRRSV, the pathway forward must be built on a real understanding of the mechanisms by which bioactive compounds exert their effects. This will provide a template that will guide the focus of collaborative studies among researchers in the areas of bioinformatics, chemistry, and proteomics. Furthermore, available data and procedures to support the efficacy, safety, and quality control levels of TCMs should be well documented without any breach of data integrity and good manufacturing practices.
Collapse
Affiliation(s)
- God'spower Bello-Onaghise
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Department of Animal Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiao Han
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Department of Animal and Veterinary Science, Chengdu Agricultural College, Chengdu, China
| | - Eliphaz Nsabimana
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenqiang Cui
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Fei Yu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuefeng Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Linguang Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhengze Li
- Department of Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanhua Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
29
|
Yoshimoto FK. The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2 or n-COV19), the Cause of COVID-19. Protein J 2020; 39:198-216. [PMID: 32447571 PMCID: PMC7245191 DOI: 10.1007/s10930-020-09901-4] [Citation(s) in RCA: 359] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The devastating effects of the recent global pandemic (termed COVID-19 for "coronavirus disease 2019") caused by the severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) are paramount with new cases and deaths growing at an exponential rate. In order to provide a better understanding of SARS CoV-2, this article will review the proteins found in the SARS CoV-2 that caused this global pandemic.
Collapse
Affiliation(s)
- Francis K Yoshimoto
- Department of Chemistry, The University of Texas at San Antonio (UTSA), San Antonio, TX, 78249-0698, USA.
| |
Collapse
|
30
|
Mrozowich T, Henrickson A, Demeler B, Patel TR. Nanoscale Structure Determination of Murray Valley Encephalitis and Powassan Virus Non-Coding RNAs. Viruses 2020; 12:E190. [PMID: 32046304 PMCID: PMC7077200 DOI: 10.3390/v12020190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 01/02/2023] Open
Abstract
Viral infections are responsible for numerous deaths worldwide. Flaviviruses, which contain RNA as their genetic material, are one of the most pathogenic families of viruses. There is an increasing amount of evidence suggesting that their 5' and 3' non-coding terminal regions are critical for their survival. Information on their structural features is essential to gain detailed insights into their functions and interactions with host proteins. In this study, the 5' and 3' terminal regions of Murray Valley encephalitis virus and Powassan virus were examined using biophysical and computational modeling methods. First, we used size exclusion chromatography and analytical ultracentrifuge methods to investigate the purity of in-vitro transcribed RNAs. Next, we employed small-angle X-ray scattering techniques to study solution conformation and low-resolution structures of these RNAs, which suggest that the 3' terminal regions are highly extended as compared to the 5' terminal regions for both viruses. Using computational modeling tools, we reconstructed 3-dimensional structures of each RNA fragment and compared them with derived small-angle X-ray scattering low-resolution structures. This approach allowed us to reinforce that the 5' terminal regions adopt more dynamic structures compared to the mainly double-stranded structures of the 3' terminal regions.
Collapse
Affiliation(s)
- Tyler Mrozowich
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada; (T.M.); (A.H.); (B.D.)
| | - Amy Henrickson
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada; (T.M.); (A.H.); (B.D.)
| | - Borries Demeler
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada; (T.M.); (A.H.); (B.D.)
- Department of Chemistry And Biochemistry, University of Montana, Missoula, MT 59812, USA
- NorthWest Biophysics Consortium, University of Lethbridge, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Trushar R Patel
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada; (T.M.); (A.H.); (B.D.)
- NorthWest Biophysics Consortium, University of Lethbridge, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Li Ka Shing Institute of Virology and Discovery Lab, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
31
|
Li L, Zhao K, Gao F, Jiang Y, Shan T, Tong W, Zheng H, Yu L, Li G, Ma Z, Tong G. Restriction of porcine reproductive and respiratory syndrome virus replication by galectin-1. Vet Microbiol 2019; 235:310-318. [PMID: 31383318 DOI: 10.1016/j.vetmic.2019.07.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 01/07/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes great economic losses to the swine industry globally; however, effective control measures for this virus are limited. Here, we screened a porcine alveolar macrophage (PAM) cDNA library with a yeast two-hybrid system to reveal that galectin-1 (Gal-1), an endogenous innate immune protein encoded by LGALS1, interacts with nonstructural protein 11 (Nsp11) of PRRSV. Western blotting and viral titer assays indicated that Gal-1 overexpression suppressed replication in multiple PRRSV strains (P < 0.001), whereas Gal-1 knockdown or knockout increased viral titer and nucleocapsid protein expression. The Gal-1-specific anti-PRRSV effect was associated with the endoribonuclease domain of Nsp11 through inactivation of interferon-antagonist function and stimulation of interferon-stimulated gene expression. Additionally, Gal-1 interacted with PRRSV E protein but not with PRRSV glycoproteins, and recombinant Gal-1 treatment inhibited PRRSV in PAMs and MARC-145 cells. Furthermore, Gal-1 inhibited replication in multiple viruses, including equine arteritis virus, porcine epidemic diarrhea virus, pseudorabies virus, Japanese encephalitis virus, and classical swine fever virus, suggesting its potential broad application for antiviral strategies. Our findings provide insight into the important role of Gal-1 in PRRSV pathogenesis and its potential use as a novel therapeutic target against PRRSV infection.
Collapse
Affiliation(s)
- Liwei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, PR China
| | - Kuan Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Fei Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, PR China
| | - Yifeng Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, PR China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, PR China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, PR China
| | - Hao Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, PR China
| | - Lingxue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, PR China
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, PR China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
32
|
Li R, Chen C, He J, Zhang L, Zhang L, Guo Y, Zhang W, Tan K, Huang J. E3 ligase ASB8 promotes porcine reproductive and respiratory syndrome virus proliferation by stabilizing the viral Nsp1α protein and degrading host IKKβ kinase. Virology 2019; 532:55-68. [DOI: 10.1016/j.virol.2019.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/30/2019] [Accepted: 04/12/2019] [Indexed: 12/18/2022]
|
33
|
Jing H, Song T, Cao S, Sun Y, Wang J, Dong W, Zhang Y, Ding Z, Wang T, Xing Z, Bao W. Nucleotide-binding oligomerization domain-like receptor X1 restricts porcine reproductive and respiratory syndrome virus-2 replication by interacting with viral Nsp9. Virus Res 2019; 268:18-26. [PMID: 31132368 PMCID: PMC7114581 DOI: 10.1016/j.virusres.2019.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022]
Abstract
PRRSV infection up-regulates NLRX1 expression. NLRX1 impairs PRRSV replication. NLRX1 suppresses the synthesis of viral subgenomic RNAs. NLRX1 interacts and colocalizes with the Nsp9 of PRRSV.
Porcine reproductive and respiratory syndrome virus (PRRSV) causes one of the most economically important diseases of swine worldwide. Current antiviral strategies provide only limited protection. Nucleotide-binding oligomerization domain-like receptor (NLR) X1 is unique among NLR proteins in its functions as a pro-viral or antiviral factor to different viral infections. To date, the impact of NLRX1 on PRRSV infection remains unclear. In this study, we found that PRRSV infection promoted the expression of NLRX1 gene. In turn, ectopic expression of NLRX1 inhibited PRRSV replication in Marc-145 cells, whereas knockdown of NLRX1 enhanced PRRSV propagation in porcine alveolar macrophages (PAMs). Mechanistically, NLRX1 was revealed to impair intracellular viral subgenomic RNAs accumulation. Finally, Mutagenic analyses indicated that the LRR (leucine-rich repeats) domain of NLRX1 interacted with PRRSV Nonstructural Protein 9 (Nsp9) RdRp (RNA-dependent RNA Polymerase) domain and was necessary for antiviral activity. Thus, our study establishes the role of NLRX1 as a new host restriction factor in PRRSV infection.
Collapse
Affiliation(s)
- Huiyuan Jing
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China.
| | - Tao Song
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Sufang Cao
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Yanting Sun
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Jinhe Wang
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Wang Dong
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Yan Zhang
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Zhen Ding
- College of Animal Science, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ting Wang
- College of Animal Science, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhao Xing
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Wenqi Bao
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| |
Collapse
|
34
|
ZAP, a CCCH-Type Zinc Finger Protein, Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication and Interacts with Viral Nsp9. J Virol 2019; 93:JVI.00001-19. [PMID: 30867303 DOI: 10.1128/jvi.00001-19] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/04/2019] [Indexed: 01/27/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important pathogens affecting many swine-producing regions. Current vaccination strategies and antiviral drugs provide only limited protection. PRRSV infection can cleave mitochondrial antiviral signaling protein (MAVS) and inhibit the induction of type I interferon. The antiviral effector molecules that are involved in host protective responses to PRRSV infection are not fully understood. Here, by using transcriptome sequencing, we found that a zinc finger antiviral protein, ZAP, is upregulated in MAVS-transfected Marc-145 cells and that ZAP suppresses PRRSV infection at the early stage of replication. We also found that the viral protein Nsp9, an RNA-dependent RNA polymerase (RdRp), interacts with ZAP. The interacting locations were mapped to the zinc finger domain of ZAP and N-terminal amino acids 150 to 160 of Nsp9. These findings suggest that ZAP is an effective antiviral factor for suppressing PRRSV infection, and they shed light on virus-host interaction.IMPORTANCE PRRSV continues to adversely impact the global swine industry. It is important to understand the various antiviral factors against PRRSV infection. Here, a zinc finger protein, termed ZAP, was screened from MAVS-induced antiviral genes by transcriptome sequencing, and it was found to remarkably suppress PRRSV replication and interact with PRRSV Nsp9. The zinc finger domain of ZAP and amino acids 150 to 160 of Nsp9 are responsible for the interaction. These findings expand the antiviral spectrum of ZAP and provide a better understanding of ZAP antiviral mechanisms, as well as virus-host interactions.
Collapse
|
35
|
A Nanobody Targeting Viral Nonstructural Protein 9 Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication. J Virol 2019; 93:JVI.01888-18. [PMID: 30463975 DOI: 10.1128/jvi.01888-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/13/2018] [Indexed: 11/20/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is of great concern to the swine industry due to pandemic outbreaks of the disease, current ineffective vaccinations, and a lack of efficient antiviral strategies. In our previous study, a PRRSV Nsp9-specific nanobody, Nb6, was successfully isolated, and the intracellularly expressed Nb6 could dramatically inhibit PRRSV replication in MARC-145 cells. However, despite its small size, the application of Nb6 protein in infected cells is greatly limited, as the protein itself cannot enter the cells physically. In this study, a trans-activating transduction (TAT) peptide was fused with Nb6 to promote protein entry into cells. TAT-Nb6 was expressed as an inclusion body in Escherichia coli, and indirect enzyme-linked immunosorbent assays and pulldown assays showed that E. coli-expressed TAT-Nb6 maintained the binding ability to E. coli-expressed or PRRSV-encoded Nsp9. We demonstrated that TAT delivered Nb6 into MARC-145 cells and porcine alveolar macrophages (PAMs) in a dose- and time-dependent manner, and TAT-Nb6 efficiently inhibited the replication of several PRRSV genotype 2 strains as well as a genotype 1 strain. Using a yeast two-hybrid assay, Nb6 recognition sites were identified in the C-terminal part of Nsp9 and spanned two discontinuous regions (Nsp9aa454-551 and Nsp9aa599-646). Taken together, these results suggest that TAT-Nb6 can be developed as an antiviral drug for the inhibition of PRRSV replication and controlling PRRS disease.IMPORTANCE The pandemic outbreak of PRRS, which is caused by PRRSV, has greatly affected the swine industry. We still lack an efficient vaccine, and it is an immense challenge to control its infection. An intracellularly expressed Nsp9-specific nanobody, Nb6, has been shown to be able to inhibit PRRSV replication in MARC-145 cells. However, its application is limited, because Nb6 cannot physically enter cells. Here, we demonstrated that the cell-penetrating peptide TAT could deliver Nb6 into cultured cells. In addition, TAT-Nb6 fusion protein could suppress the replication of various PRRSV strains in MARC-145 cells and PAMs. These findings may provide a new approach for drug development to control PRRS.
Collapse
|
36
|
Zhao K, Li LW, Zhang YJ, Jiang YF, Gao F, Li GX, Yu LX, Zhao WY, Shan TL, Zhou YJ, Tong GZ. MOV10 inhibits replication of porcine reproductive and respiratory syndrome virus by retaining viral nucleocapsid protein in the cytoplasm of Marc-145 cells. Biochem Biophys Res Commun 2018; 504:157-163. [PMID: 30172377 DOI: 10.1016/j.bbrc.2018.08.148] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 08/25/2018] [Indexed: 12/14/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has been a major threat to global industrial pig farming ever since its emergence in the late 1980s. Identification of sustainable and effective control measures against PRRSV transmission is a pressing problem. The nucleocapsid (N) protein of PRRSV is specifically localized in the cytoplasm and nucleus of virus-infected cells which is important for PRRSV replication. In the current study, a new host restricted factor, Moloney leukemia virus 10-like protein (MOV10), was identified as an inhibitor of PRRSV replication. N protein levels and viral replication were significantly reduced in Marc-145 cells stably overexpressing MOV10 compared with those in wild-type Marc-145 cells. Adsorption experiments revealed that MOV10 did not affect the attachment and internalization of PRRSV. Co-immunoprecipitation and immunofluorescence co-localization analyses showed that MOV10 interacted and co-localized with the PRRSV N protein in the cytoplasm. Notably, MOV10 affected the distribution of N protein in the cytoplasm and nucleus, leading to the retention of N protein in the former. Taken together, these findings demonstrate for the first time that MOV10 inhibits PRRSV replication by restricting the nuclear import of N protein. These observations have great implications for the development of anti-PRRSV drugs and provide new insight into the role of N protein in PRRSV biology.
Collapse
Affiliation(s)
- Kuan Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Li-Wei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, PR China
| | - Yu-Jiao Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yi-Feng Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, PR China
| | - Fei Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, PR China
| | - Guo-Xin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, PR China
| | - Ling-Xue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, PR China
| | - Wen-Ying Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Tong-Ling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, PR China
| | - Yan-Jun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, PR China
| | - Guang-Zhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
37
|
Porcine reproductive and respiratory syndrome virus nsp1β and nsp11 antagonize the antiviral activity of cholesterol-25-hydroxylase via lysosomal degradation. Vet Microbiol 2018; 223:134-143. [PMID: 30173739 DOI: 10.1016/j.vetmic.2018.08.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 07/29/2018] [Accepted: 08/09/2018] [Indexed: 12/11/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an immunosuppressive pathogen which has been recognized to modulate the host interferon (IFN) systems. Cholesterol-25-hydroxylase (CH25 H) is an important interferon-stimulated gene (ISG)-encoded polytopic membrane protein that significantly inhibits the replication of many viruses. In the current study, we showed that PRRSV infection induced the down-regulation of the endogenous CH25H in porcine alveolar macrophages (PAMs), and then discovered that the nonstructural protein (nsp) 1β and nsp11 of PRRSV could mediate the reduction of porcine CH25H d in HEK 293FT cells. Next, the amino acids including His-159 in nsp1β, and His-129, His-144 and Lys-173 in nsp11 were determined to play crucial roles in the reduction of CH25H. Furthermore, we confirmed that the nsp1β and nsp11 mediated the degradation of CH25H by lysosomal pathway in HEK 293FT cells. Finally, it was demonstrated that the anti-PRRSV activity of CH25H could be antagonized by nsp1β and nsp11 in MARC-145 cells. Our findings suggest a manner of antagonizing the antiviral activity of CH25H by PRRSV, and provide novel insight into the understanding of PRRSV's ability of escaping the innate immunity of host.
Collapse
|
38
|
Li L, Zhou Y, Jiang Y, Gao F, Shan T, Zhao K, Zhang Y, Li L, Tong G. Galectin-3 inhibits replication of porcine reproductive and respiratory syndrome virus by interacting with viral Nsp12 in vitro. Virus Res 2018; 253:87-91. [PMID: 29920289 DOI: 10.1016/j.virusres.2018.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/05/2018] [Accepted: 06/15/2018] [Indexed: 12/21/2022]
Abstract
Porcine galectin-3 (GAL3) is a 29-kDa protein encoded by a single gene, LGALS3, located on chromosome 1. Here, using a yeast two-hybrid screen of a cDNA library from porcine alveolar macrophage cells (PAMs), we report for the first time that GAL3 interacts with nonstructural protein 12 (Nsp12) of the porcine reproductive and respiratory syndrome virus (PRRSV). Although extensive research has focused on porcine reproductive and respiratory syndrome (PRRS), little is known about the pathogen and host interactions involving individual nonstructural viral proteins, especially Nsp12. Here, we showed that GAL3 interacted with viral Nsp12 following co-transfection of HEK293 cells with GAL3- and Nsp12-expressing plasmids. Additionally, we observed that PPRSV infection led to reduced GAL3 levels during the late phase of infection in both MARC-145 cells and PAMs. Importantly, GAL3 overexpression significantly suppressed the replication of both type 1 and 2 PRRSV strains, whereas knockout of endogenous LGALS3 in MARC-145 cells significantly increased viral titer and expression of the nucleocapsid protein. These results strongly support a direct inhibitory effect of GAL3 on PRRSV replication, which might contribute to an overall antiviral effect. Furthermore, our findings provide insights into the molecular basis of the role Nsp12 plays in PRRSV pathogenesis.
Collapse
Affiliation(s)
- Liwei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, PR China
| | - Yanjun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, PR China
| | - Yifeng Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, PR China
| | - Fei Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, PR China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, PR China
| | - Kuan Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yujiao Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Lin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
39
|
Nan H, Lan J, Tian M, Dong S, Tian J, Liu L, Xu X, Chen H. The Network of Interactions Among Porcine Reproductive and Respiratory Syndrome Virus Non-structural Proteins. Front Microbiol 2018; 9:970. [PMID: 29867873 PMCID: PMC5960727 DOI: 10.3389/fmicb.2018.00970] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/25/2018] [Indexed: 12/22/2022] Open
Abstract
The RNA synthesis of porcine reproductive and respiratory syndrome virus (PRRSV), a positive-strand RNA virus, is compartmentalized in virus-induced double-membrane vesicles where viral proteins and some cellular proteins assemble into replication and transcription complexes (RTCs). The viral replicase proteins are the major components of the RTCs but the physical associations among these non-structural proteins (nsps) remain elusive. In this study, we investigated the potential interactions between PRRSV nsps by yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BiFC) and pull-down assays. Our analyses revealed a complex network of interactions involving most of PRRSV nsps. Among them, nsp9 and nsp12 were identified as the hubs of the nsp interactome; transmembrane proteins nsp2 and nsp5 both interacted with nsp3, indicating that the three membrane-bound proteins might bind together to form the scaffold to support the association of RTCs with the intracellular membrane. The PRRSV nsp interactions identified in this study may provide valuable clues for future researches on the RTC formation and function.
Collapse
Affiliation(s)
- Hao Nan
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Jixun Lan
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Mengmeng Tian
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Shan Dong
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Jiao Tian
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Long Liu
- College of Life Sciences, Northwest A&F University, Yangling, China.,School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Xiaodong Xu
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Hongying Chen
- College of Life Sciences, Northwest A&F University, Yangling, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
40
|
Meier-Stephenson V, Mrozowich T, Pham M, Patel TR. DEAD-box helicases: the Yin and Yang roles in viral infections. Biotechnol Genet Eng Rev 2018; 34:3-32. [PMID: 29742983 DOI: 10.1080/02648725.2018.1467146] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Viruses hijack the host cell machinery and recruit host proteins to aid their replication. Several host proteins also play vital roles in inhibiting viral replication. Emerging class of host proteins central to both of these processes are the DEAD-box helicases: a highly conserved family of ATP-dependent RNA helicases, bearing a common D-E-A-D (Asp-Glu-Ala-Asp) motif. They play key roles in numerous cellular processes, including transcription, splicing, miRNA biogenesis and translation. Though their sequences are highly conserved, these helicases have quite diverse roles in the cell. Interestingly, often these helicases display contradictory actions in terms of the support and/or clearance of invading viruses. Increasing evidence highlights the importance of these enzymes, however, little is known about the structural basis of viral RNA recognition by the members of the DEAD-box family. This review summarizes the current knowledge in the field for selected DEAD-box helicases and highlights their diverse actions upon viral invasion of the host cell. We anticipate that through a better understanding of how these helicases are being utilized by viral RNAs and proteins to aid viral replication, it will be possible to address the urgent need to develop novel therapeutic approaches to combat viral infections.
Collapse
Affiliation(s)
- Vanessa Meier-Stephenson
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada.,b Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine , University of Calgary , Calgary , Canada
| | - Tyler Mrozowich
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada
| | - Mimi Pham
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada
| | - Trushar R Patel
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada.,b Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine , University of Calgary , Calgary , Canada.,c Faculty of Medicine & Dentistry, DiscoveryLab , University of Alberta , Edmonton , Canada
| |
Collapse
|
41
|
Cheng W, Chen G, Jia H, He X, Jing Z. DDX5 RNA Helicases: Emerging Roles in Viral Infection. Int J Mol Sci 2018; 19:ijms19041122. [PMID: 29642538 PMCID: PMC5979547 DOI: 10.3390/ijms19041122] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 02/07/2023] Open
Abstract
Asp-Glu-Ala-Asp (DEAD)-box polypeptide 5 (DDX5), also called p68, is a prototypical member of the large ATP-dependent RNA helicases family and is known to participate in all aspects of RNA metabolism ranging from transcription to translation, RNA decay, and miRNA processing. The roles of DDX5 in cell cycle regulation, tumorigenesis, apoptosis, cancer development, adipogenesis, Wnt-β-catenin signaling, and viral infection have been established. Several RNA viruses have been reported to hijack DDX5 to facilitate various steps of their replication cycles. Furthermore, DDX5 can be bounded by the viral proteins of some viruses with unknown functions. Interestingly, an antiviral function of DDX5 has been reported during hepatitis B virus and myxoma virus infection. Thus, the precise roles of this apparently multifaceted protein remain largely obscure. Here, we provide a rapid and critical overview of the structure and functions of DDX5 with a particular emphasis on its role during virus infection.
Collapse
Affiliation(s)
- Wenyu Cheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.
| | - Guohua Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.
| | - Huaijie Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.
| | - Xiaobing He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.
| | - Zhizhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.
| |
Collapse
|
42
|
Xu L, Zhou L, Sun W, Zhang P, Ge X, Guo X, Han J, Yang H. Nonstructural protein 9 residues 586 and 592 are critical sites in determining the replication efficiency and fatal virulence of the Chinese highly pathogenic porcine reproductive and respiratory syndrome virus. Virology 2018; 517:135-147. [PMID: 29397202 PMCID: PMC7111471 DOI: 10.1016/j.virol.2018.01.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 01/20/2018] [Accepted: 01/24/2018] [Indexed: 01/09/2023]
Abstract
The highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) has caused huge economic losses to the swine industry in China. Understanding the molecular basis in relation to the virulence of HP-PRRSV is essential for effectively controlling clinical infection and disease. In the current study, we constructed and rescued a serial of mutant viruses in nsp9 and nsp10 based on the differential amino acid sites between HP-PRRSV JXwn06 and LP-PRRSV HB-1/3.9. The replication efficiency in pulmonary alveolar macrophages (PAMs) and the pathogenicity of the mutant viruses for piglets were analyzed. Our results showed that the mutation of Thr to Ala in 586 and Ser to Thr in 592 of nsp9 decreased the replication efficiency of HP-PRRSV in PAMs, and could attenuate its virulence for piglets, suggesting that the residues 586 and 592 of nsp9 are critical sites natively in determining the fatal virulence of the Chinese HP-PRRSV for piglets.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Weifeng Sun
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Pingping Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China.
| |
Collapse
|
43
|
Wang C, Zeng N, Liu S, Miao Q, Zhou L, Ge X, Han J, Guo X, Yang H. Interaction of porcine reproductive and respiratory syndrome virus proteins with SUMO-conjugating enzyme reveals the SUMOylation of nucleocapsid protein. PLoS One 2017; 12:e0189191. [PMID: 29236778 PMCID: PMC5728522 DOI: 10.1371/journal.pone.0189191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/21/2017] [Indexed: 12/30/2022] Open
Abstract
SUMOylation is a reversible post-translational modification that regulates the function of target protein. In this study, we first predicted by software that the multiple proteins of porcine reproductive and respiratory syndrome virus (PRRSV) could be sumoylated. Next, we confirmed that Nsp1β, Nsp4, Nsp9, Nsp10 and nucleocapsid (N) protein of PRRSV could interact with the sole SUMO E2 conjugating enzyme Ubc9, and Ubc9 could be co-localized with Nsp1β, Nsp4, Nsp9 and Nsp10 in the cytoplasm, while with N protein in both the cytoplasm and nucleus. Finally, we demonstrated that N protein could be sumoylated by either SUMO1 or SUMO2/3. In addition, the overexpression of Ubc9 could inhibit viral genomic replication at early period of PRRSV infection and the knockdown of Ubc9 by siRNA could promote the virus replication. These findings reveal the SUMOylation property of PRRSV N protein and the involvement of Ubc9 in PRRSV replication through interaction with multiple proteins of PRRSV. To our knowledge, this is the first study indicating the interplay between SUMO modification system and PRRSV.
Collapse
Affiliation(s)
- Cong Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Nanfang Zeng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Siyu Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Qi Miao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
- * E-mail: (XG); (HY)
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
- * E-mail: (XG); (HY)
| |
Collapse
|
44
|
Jing H, Zhou Y, Fang L, Ding Z, Wang D, Ke W, Chen H, Xiao S. DExD/H-Box Helicase 36 Signaling via Myeloid Differentiation Primary Response Gene 88 Contributes to NF-κB Activation to Type 2 Porcine Reproductive and Respiratory Syndrome Virus Infection. Front Immunol 2017; 8:1365. [PMID: 29123520 PMCID: PMC5662876 DOI: 10.3389/fimmu.2017.01365] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 10/05/2017] [Indexed: 02/02/2023] Open
Abstract
DExD/H-box helicase 36 (DHX36) is known to be an ATP-dependent RNA helicase that unwinds the guanine-quadruplexes DNA or RNA, but emerging data suggest that it also functions as pattern recognition receptor in innate immunity. Porcine reproductive and respiratory syndrome virus (PRRSV) is an Arterivirus that has been devastating the swine industry worldwide. Interstitial pneumonia is considered to be one of the most obvious clinical signs of PRRSV infection, suggesting that the inflammatory response plays an important role in PRRSV pathogenesis. However, whether DHX36 is involved in PRRSV-induced inflammatory cytokine expression remains unclear. In this study, we found that PRRSV infection increased the expression of DHX36. Knockdown of DHX36 and its adaptor myeloid differentiation primary response gene 88 (MyD88) by small-interfering RNA in MARC-145 cells significantly reduced NF-κB activation and pro-inflammatory cytokine expression after PRRSV infection. Further investigation revealed that PRRSV nucleocapsid protein interacted with the N-terminal quadruplex binding domain of DHX36, which in turn augmented nucleocapsid protein-induced NF-κB activation. Taken together, our results suggest that DHX36-MyD88 has a relevant role in the recognition of PRRSV nucleocapsid protein and in the subsequent activation of pro-inflammatory NF-κB pathway.
Collapse
Affiliation(s)
- Huiyuan Jing
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhen Ding
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Wenting Ke
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
45
|
Interleukin-2 enhancer binding factor 2 interacts with the nsp9 or nsp2 of porcine reproductive and respiratory syndrome virus and exerts negatively regulatory effect on the viral replication. Virol J 2017; 14:125. [PMID: 28693575 PMCID: PMC5504599 DOI: 10.1186/s12985-017-0794-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/03/2017] [Indexed: 11/30/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failures in sows and respiratory diseases in growing pigs, resulting in huge economic loss for the pig production worldwide. The nonstructural protein 9 (nsp9) and nonstructural protein 2 (nsp2) of PRRSV are known to play important roles in viral replication. Cellular interleukin-2 enhancer binding factor 2 (ILF2) participates in many cellular pathways and involves in life cycle of some viruses. In the present study, we analyzed the interaction of cellular ILF2 with the nsp9 and nsp2 of PRRSV in vitro and explored the effect of ILF2 on viral replication. Methods The interaction of ILF2 with the nsp9 or nsp2 of PRRSV was analyzed in 293FT cells and MARC-145 cells by co-immunoprecipitation (Co-IP) and the co-localization of ILF2 with the nsp9 or nsp2 of PRRSV in MARC-145 cell and pulmonary alveolar macrophages (PAMs) was examined by confocal immunofluorescence assay. The effect of ILF2 knockdown and over-expression on PRRSV replication was explored in MARC-145 cells by small interfering RNA (siRNA) and lentivirus transduction, respectively. Results The interaction of ILF2 with nsp9 or nsp2 was first demonstrated in 293FT cells co-transfected with ILF2-expressing plasmid and nsp9-expressing plasmid or nsp2-expressing plasmid. The interaction of endogenous ILF2 with the nsp9 or nsp2 of PRRSV was further confirmed in MARC-145 cells transduced with GFP-nsp9-expressing lentiviruses or infected with PRRSV JXwn06. The RdRp domain of nsp9 was shown to be responsible for its interaction with ILF2, while three truncated nsp2 were shown to interact with ILF2. Moreover, we observed that ILF2 partly translocated from the nucleus to the cytoplasm and co-localized with nsp9 and nsp2 in PRRSV-infected MARC-145 cells and PAMs. Finally, our analysis indicated that knockdown of ILF2 favored the replication of PRRSV, while over-expression of ILF2 impaired the viral replication in MARC-145 cells. Conclusion Our findings are the first to confirm that the porcine ILF2 interacts with the nsp9 and nsp2 of PRRSV in vitro, and exerts negatively regulatory effect on the replication of PRRSV. Our present study provides more evidence for understanding the roles of the interactions between cellular proteins and viral proteins in the replication of PRRSV. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0794-5) contains supplementary material, which is available to authorized users.
Collapse
|
46
|
Jin H, Zhou L, Ge X, Zhang H, Zhang R, Wang C, Wang L, Zhang Z, Yang H, Guo X. Cellular DEAD-box RNA helicase 18 (DDX18) Promotes the PRRSV Replication via Interaction with Virus nsp2 and nsp10. Virus Res 2017; 238:204-212. [PMID: 28648849 DOI: 10.1016/j.virusres.2017.05.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 11/17/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an aetiological agent that can lead to reproductive failure and respiratory diseases of pigs. The replication and pathogenesis of PRRSV, although poorly understood, has been associated with the host factors. DDX18 is a member of DEAD-box RNA helicases (DDXs) family which were proved to participate in viral replication. Previously, we found the DDX18 interacts with both nsp2 and nsp10 of PRRSV by Co-Immunoprecipitation (Co-IP). In the present study, we demonstrated the interactions of DDX18 with nsp2 and nsp10, and located DDX18's binding regions as the N-terminus of nsp2 and both the N-terminus and C-terminus of nsp10. The expression of the nsp2 or nsp10 in MARC-145 cells and primary PAM cells redistributed DDX18 from the nucleus to the cytoplasm, and promoted the viral replication, but silencing of the DDX18 gene in MARC-145 cells down-regulated the replication of PRRSV. These findings proved that the cellular RNA helicase DDX18 plays a role in the replication of PRRSV, and provides insights into the understanding of PRRSV replication.
Collapse
Affiliation(s)
- Huan Jin
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Han Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Ruimin Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Cong Wang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Li Wang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhibang Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China.
| | - Xin Guo
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China.
| |
Collapse
|
47
|
Han J, Zhou L, Ge X, Guo X, Yang H. Pathogenesis and control of the Chinese highly pathogenic porcine reproductive and respiratory syndrome virus. Vet Microbiol 2017; 209:30-47. [PMID: 28292547 DOI: 10.1016/j.vetmic.2017.02.020] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 12/24/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has remained a major threat to the worldwide swine industry ever since its first discovery in the early 1990s. Under the selective pressures in the field, this positive-stranded RNA virus undergoes rapid genetic evolution that eventually leads to emergence in 2006 of the devastating Chinese highly pathogenic PRRSV (HP-PRRSV). The atypical nature of HP-PRRSV has caused colossal economic losses to the swine producers in China and the surrounding countries. In this review, we summarize the recent advances in our understanding of the pathogenesis, evolution and ongoing field practices on the control of this troubling virus in China.
Collapse
Affiliation(s)
- Jun Han
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China.
| |
Collapse
|
48
|
Porcine Reproductive and Respiratory Syndrome Virus Nucleocapsid Protein Interacts with Nsp9 and Cellular DHX9 To Regulate Viral RNA Synthesis. J Virol 2016; 90:5384-5398. [PMID: 27009951 DOI: 10.1128/jvi.03216-15] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/15/2016] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Porcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid (N) protein is the main component of the viral capsid to encapsulate viral RNA, and it is also a multifunctional protein involved in the regulation of host cell processes. Nonstructural protein 9 (Nsp9) is the RNA-dependent RNA polymerase that plays a critical role in viral RNA transcription and replication. In this study, we demonstrate that PRRSV N protein is bound to Nsp9 by protein-protein interaction and that the contacting surface on Nsp9 is located in the two predicted α-helixes formed by 48 residues at the C-terminal end of the protein. Mutagenesis analyses identified E646, E608, and E611 on Nsp9 and Q85 on the N protein as the pivotal residues participating in the N-Nsp9 interaction. By overexpressing the N protein binding fragment of Nsp9 in infected Marc-145 cells, the synthesis of viral RNAs, as well as the production of infectious progeny viruses, was dramatically inhibited, suggesting that Nsp9-N protein association is involved in the process of viral RNA production. In addition, we show that PRRSV N interacts with cellular RNA helicase DHX9 and redistributes the protein into the cytoplasm. Knockdown of DHX9 increased the ratio of short subgenomic mRNAs (sgmRNAs); in contrast, DHX9 overexpression benefited the synthesis of longer sgmRNAs and the viral genomic RNA (gRNA). These results imply that DHX9 is recruited by the N protein in PRRSV infection to regulate viral RNA synthesis. We postulate that N and DHX9 may act as antiattenuation factors for the continuous elongation of nascent transcript during negative-strand RNA synthesis. IMPORTANCE It is unclear whether the N protein of PRRSV is involved in regulation of the viral RNA production process. In this report, we demonstrate that the N protein of the arterivirus PRRSV participates in viral RNA replication and transcription through interacting with Nsp9 and its RdRp and recruiting cellular RNA helicase to promote the production of longer viral sgmRNAs and gRNA. Our data here provide some new insights into the discontinuous to continuous extension of PRRSV RNA synthesis and also offer a new potential anti-PRRSV strategy targeting the N-Nsp9 and/or N-DHX9 interaction.
Collapse
|
49
|
Infectious Salmon Anaemia Virus (ISAV) RNA Binding Protein Encoded by Segment 8 ORF2 and Its Interaction with ISAV and Intracellular Proteins. Viruses 2016; 8:v8020052. [PMID: 26901217 PMCID: PMC4776207 DOI: 10.3390/v8020052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/15/2016] [Accepted: 02/08/2016] [Indexed: 11/29/2022] Open
Abstract
Infectious salmon anaemia virus (ISAV) is an orthomyxovirus infecting salmonid fish. The virus is adapted to low temperature and has a replication optimum between 10–15 °C. In this study the subcellular localization and protein interactions for the protein encoded by the largest open reading frame of gene segment 8 (s8ORF2) were investigated. In ISAV infected cells the s8ORF2 protein was found mainly in the cytosol but a minor fraction of cells expressed the protein in the nucleus as well. Green fluorescent protein-tagged s8ORF2 did not leak out of the cell when the plasma membrane was permeabilized, suggesting interactions with intracellular structural components. The s8ORF2 protein exists both as monomer and homodimer, and co-immunoprecipitation experiments strongly suggests it binds to the ISAV fusion-, nucleo- and matrix proteins. Two versions of s8ORF2 were detected with apparent molecular weights of 24–26 and 35 kDa in lysates of infected cells. The 35 kDa type is an early viral protein while the smaller version appears during the later phases of infection. The 24–26 kDa type was also the predominant form in viral particles. The s8ORF2 protein has previously been shown to bind RNA and interfere with interferon induction and signaling. Here we found that a fraction of the s8ORF2 protein pool in infected cells is likely to be conjugated to the interferon stimulated gene 15 (ISG15) and ubiquitin. Furthermore, several endogenous proteins pulled down by the s8ORF2 protein were identified by liquid chromatography mass spectrometry (LC-MS).
Collapse
|
50
|
Liu H, Wang Y, Duan H, Zhang A, Liang C, Gao J, Zhang C, Huang B, Li Q, Li N, Xiao S, Zhou EM. An intracellularly expressed Nsp9-specific nanobody in MARC-145 cells inhibits porcine reproductive and respiratory syndrome virus replication. Vet Microbiol 2015; 181:252-60. [PMID: 26525739 DOI: 10.1016/j.vetmic.2015.10.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/17/2015] [Accepted: 10/20/2015] [Indexed: 02/04/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a widespread viral disease affecting the swine industry, with no cure or effective treatment. Current vaccines are inefficient mainly due to the high degree of genetic and antigenic variation within PRRS virus (PRRSV) strains. Thus, the development of novel anti-PRRSV strategies is an important area of research. The nonstructural protein 9 (Nsp9) of PRRSV is essential for viral replication, and its sequence is relatively conserved, making it a logical antiviral target for PRRSV. Camel single-domain antibodies (nanobodies) represent a promising antiviral approach because of their small size, high specificity, and solubility. However, no nanobodies against PRRSV have been reported to date. In this study, Nsp9-specific nanobodies were isolated from a phage display library of variable domains of Camellidaeheavy chain-only antibodies (VHH). One of the isolated nanobodies, Nb6, was chosen for further investigation. Co-immunoprecipitation experiments indicated that Nb6 can still maintain antigen binding capabilities when expressed in the cell cytoplasm. A MARC-145 cell line stably expressing Nb6 was established to investigate its potential antiviral activity. Our results showed that intracellularly expressed Nb6 could potently suppress PRRSV replication by inhibiting viral genome replication and transcription. More importantly, Nb6 could protect MARC-145 cells from virus-induced cytopathic effect (CPE) and fully block PRRSV replication at an MOI of 0.01 or lower. To our knowledge, this is the first report of a nanobody based antiviral strategy against PRRSV, and this finding has the potential to lead to future developments of novel antiviral treatments for PRRSV infection.
Collapse
Affiliation(s)
- Hongliang Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Yan Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Hong Duan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Angke Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Chao Liang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Jiming Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Chong Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Baicheng Huang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Qiongyi Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Na Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Shuqi Xiao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|