1
|
Nancarrow N, Aftab M, Hollaway G, Rodoni B, Trębicki P. Symptomless turnip yellows virus infection causes grain yield loss in lentil and field pea: A three-year field study in south-eastern Australia. FRONTIERS IN PLANT SCIENCE 2022; 13:1049905. [PMID: 36507432 PMCID: PMC9727233 DOI: 10.3389/fpls.2022.1049905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Turnip yellows virus (TuYV) is a damaging virus that is persistently transmitted by aphids and infects a wide range of grain hosts including lentil (Lens culinaris Medik), field pea (Pisum sativum L.) and canola (Brassica napus L., oilseed rape). Although information is available about the effects of TuYV infection on grain yield in canola, data about its impact on yield in pulses is lacking. In this study, field experiments quantifying the effects of TuYV infection on the grain yield of lentil and field pea were conducted over three consecutive years (2018-2020) with varying weather conditions. Plants artificially inoculated with TuYV using viruliferous green peach aphid (Myzus persicae, Sulzer) were grown under typical field conditions in south-eastern Australia. At maturity, grain yield, along with associated grain and plant growth parameters, were measured. Compared to the non-inoculated control treatment, early TuYV infection reduced grain yield by up to 36% in lentil and 45% in field pea, while late TuYV infection had no significant impact on yield. Despite a high incidence of TuYV infection and significant yield losses recorded in inoculated plots, no obvious symptoms of virus infection were observed in the inoculated plots in any of the six experiments; this lack of visible symptoms in lentil and field pea has significant implications for crop health assessments, demonstrating the importance of testing for virus instead of relying solely on the presence of visual symptoms, and may also be leading to an underestimation of the importance of TuYV in pulses in Australia.
Collapse
Affiliation(s)
- Narelle Nancarrow
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, Australia
| | - Mohammad Aftab
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, Australia
| | - Grant Hollaway
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, Australia
| | - Brendan Rodoni
- Agriculture Victoria, AgriBio Centre, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Piotr Trębicki
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, Australia
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
2
|
Montes N, Pagán I. Challenges and opportunities for plant viruses under a climate change scenario. Adv Virus Res 2022; 114:1-66. [PMID: 39492212 DOI: 10.1016/bs.aivir.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is an increasing societal awareness on the enormous threat that climate change may pose for human, animal and plant welfare. Although direct effects due to exposure to heat, drought or elevated greenhouse gasses seem to be progressively more obvious, indirect effects remain debatable. A relevant aspect to be clarified relates to the relationship between altered environmental conditions and pathogen-induced diseases. In the particular case of plant viruses, it is still unclear whether climate change will primarily represent an opportunity for the emergence of new infections in previously uncolonized areas and hosts, or if it will mostly be a strong constrain reducing the impact of plant virus diseases and challenging the pathogen's adaptive capacity. This review focuses on current knowledge on the relationship between climate change and the outcome plant-virus interactions. We summarize work done on how this relationship modulates plant virus pathogenicity, between-host transmission (which include the triple interaction plant-virus-vector), ecology, evolution and management of the epidemics they cause. Considering these studies, we propose avenues for future research on this subject.
Collapse
Affiliation(s)
- Nuria Montes
- Fisiología Vegetal, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU Universities, Madrid, Spain; Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria (IIS-IP), Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
3
|
Peters JS, Aguirre BA, DiPaola A, Power AG. Ecology of Yellow Dwarf Viruses in Crops and Grasslands: Interactions in the Context of Climate Change. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:283-305. [PMID: 36027939 DOI: 10.1146/annurev-phyto-020620-101848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Our understanding of the ecological interactions between plant viruses, their insect vectors, and their host plants has increased rapidly over the past decade. The suite of viruses known collectively as the yellow dwarf viruses infect an extensive range of cultivated and noncultivated grasses worldwide and is one of the best-studied plant virus systems. The yellow dwarf viruses are ubiquitous in cereal crops, where they can significantly limit yields, and there is growing recognition that they are also ubiquitous in grassland ecosystems, where they can influence community dynamics. Here, we discuss recent research that has explored (a) the extent and impact of yellow dwarf viruses in a diversity of plant communities, (b) the role of vector behavior in virus transmission, and (c) the prospects for impacts of climate change-including rising temperatures, drought, and elevated CO2-on the epidemiology of yellow dwarf viruses.
Collapse
Affiliation(s)
- Jasmine S Peters
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York, USA;
| | - Beatriz A Aguirre
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York, USA;
| | - Anna DiPaola
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York, USA;
| | - Alison G Power
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
4
|
Bazinet Q, Tang L, Bede JC. Impact of Future Elevated Carbon Dioxide on C 3 Plant Resistance to Biotic Stresses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:527-539. [PMID: 34889654 DOI: 10.1094/mpmi-07-21-0189-fi] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Before the end of the century, atmospheric carbon dioxide levels are predicted to increase to approximately 900 ppm. This will dramatically affect plant physiology and influence environmental interactions and, in particular, plant resistance to biotic stresses. This review is a broad survey of the current research on the effects of elevated CO2 (eCO2) on phytohormone-mediated resistance of C3 agricultural crops and related model species to pathogens and insect herbivores. In general, while plants grown in eCO2 often have increased constitutive and induced salicylic acid levels and suppressed induced jasmonate levels, there are exceptions that implicate other environmental factors, such as light and nitrogen fertilization in modulating these responses. Therefore, this review sets the stage for future studies to delve into understanding the mechanistic basis behind how eCO2 will affect plant defensive phytohormone signaling pathways under future predicted environmental conditions that could threaten global food security to inform the best agricultural management practices.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Quinn Bazinet
- Department of Plant Science, McGill University, 21,111 Lakeshore, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Lawrence Tang
- Department of Plant Science, McGill University, 21,111 Lakeshore, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Jacqueline C Bede
- Department of Plant Science, McGill University, 21,111 Lakeshore, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
5
|
Jones RAC, Sharman M, Trębicki P, Maina S, Congdon BS. Virus Diseases of Cereal and Oilseed Crops in Australia: Current Position and Future Challenges. Viruses 2021; 13:2051. [PMID: 34696481 PMCID: PMC8539440 DOI: 10.3390/v13102051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 12/22/2022] Open
Abstract
This review summarizes research on virus diseases of cereals and oilseeds in Australia since the 1950s. All viruses known to infect the diverse range of cereal and oilseed crops grown in the continent's temperate, Mediterranean, subtropical and tropical cropping regions are included. Viruses that occur commonly and have potential to cause the greatest seed yield and quality losses are described in detail, focusing on their biology, epidemiology and management. These are: barley yellow dwarf virus, cereal yellow dwarf virus and wheat streak mosaic virus in wheat, barley, oats, triticale and rye; Johnsongrass mosaic virus in sorghum, maize, sweet corn and pearl millet; turnip yellows virus and turnip mosaic virus in canola and Indian mustard; tobacco streak virus in sunflower; and cotton bunchy top virus in cotton. The currently less important viruses covered number nine infecting nine cereal crops and 14 infecting eight oilseed crops (none recorded for rice or linseed). Brief background information on the scope of the Australian cereal and oilseed industries, virus epidemiology and management and yield loss quantification is provided. Major future threats to managing virus diseases effectively include damaging viruses and virus vector species spreading from elsewhere, the increasing spectrum of insecticide resistance in insect and mite vectors, resistance-breaking virus strains, changes in epidemiology, virus and vectors impacts arising from climate instability and extreme weather events, and insufficient industry awareness of virus diseases. The pressing need for more resources to focus on addressing these threats is emphasized and recommendations over future research priorities provided.
Collapse
Affiliation(s)
- Roger A. C. Jones
- UWA Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia
| | - Murray Sharman
- Queensland Department of Agriculture and Fisheries, Ecosciences Precinct, P.O. Box 267, Brisbane, QLD 4001, Australia;
| | - Piotr Trębicki
- Grains Innovation Park, Agriculture Victoria, Department of Jobs, Precincts and Regions, Horsham, VIC 3400, Australia; (P.T.); (S.M.)
| | - Solomon Maina
- Grains Innovation Park, Agriculture Victoria, Department of Jobs, Precincts and Regions, Horsham, VIC 3400, Australia; (P.T.); (S.M.)
| | - Benjamin S. Congdon
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia;
| |
Collapse
|
6
|
Yield Losses Caused by Barley Yellow Dwarf Virus-PAV Infection in Wheat and Barley: A Three-Year Field Study in South-Eastern Australia. Microorganisms 2021; 9:microorganisms9030645. [PMID: 33808907 PMCID: PMC8003756 DOI: 10.3390/microorganisms9030645] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 01/25/2023] Open
Abstract
Barley yellow dwarf virus (BYDV) is transmitted by aphids and significantly reduces the yield and quality of cereals worldwide. Four experiments investigating the effects of barley yellow dwarf virus-PAV (BYDV-PAV) infection on either wheat or barley were conducted over three years (2015, 2017, and 2018) under typical field conditions in South-Eastern Australia. Plants inoculated with BYDV-PAV using viruliferous aphids (Rhopalosiphum padi) were harvested at maturity then grain yield and yield components were measured. Compared to the non-inoculated control, virus infection severely reduced grain yield by up to 84% (1358 kg/ha) in wheat and 64% (1456 kg/ha) in barley. The yield component most affected by virus infection was grain number, which accounted for a large proportion of the yield loss. There were no significant differences between early (seedling stage) and later (early-tillering stage) infection for any of the parameters measured (plant height, biomass, yield, grain number, 1000-grain weight or grain size) for either wheat or barley. Additionally, this study provides an estimated yield loss value, or impact factor, of 0.91% (72 kg/ha) for each one percent increase in natural BYDV-PAV background infection. Yield losses varied considerably between experiments, demonstrating the important role of cultivar and environmental factors in BYDV epidemiology and highlighting the importance of conducting these experiments under varying conditions for specific cultivar–vector–virus combinations.
Collapse
|
7
|
Hamann E, Denney D, Day S, Lombardi E, Jameel MI, MacTavish R, Anderson JT. Review: Plant eco-evolutionary responses to climate change: Emerging directions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110737. [PMID: 33568289 DOI: 10.1016/j.plantsci.2020.110737] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 05/14/2023]
Abstract
Contemporary climate change is exposing plant populations to novel combinations of temperatures, drought stress, [CO2] and other abiotic and biotic conditions. These changes are rapidly disrupting the evolutionary dynamics of plants. Despite the multifactorial nature of climate change, most studies typically manipulate only one climatic factor. In this opinion piece, we explore how climate change factors interact with each other and with biotic pressures to alter evolutionary processes. We evaluate the ramifications of climate change across life history stages,and examine how mating system variation influences population persistence under rapid environmental change. Furthermore, we discuss how spatial and temporal mismatches between plants and their mutualists and antagonists could affect adaptive responses to climate change. For example, plant-virus interactions vary from highly pathogenic to mildly facilitative, and are partly mediated by temperature, moisture availability and [CO2]. Will host plants exposed to novel, stressful abiotic conditions be more susceptible to viral pathogens? Finally, we propose novel experimental approaches that could illuminate how plants will cope with unprecedented global change, such as resurrection studies combined with experimental evolution, genomics or epigenetics.
Collapse
Affiliation(s)
- Elena Hamann
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Derek Denney
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Samantha Day
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Elizabeth Lombardi
- Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - M Inam Jameel
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Rachel MacTavish
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
8
|
Ainsworth EA, Long SP. 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation? GLOBAL CHANGE BIOLOGY 2021; 27:27-49. [PMID: 33135850 DOI: 10.1111/gcb.15375] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 05/03/2023]
Abstract
Free-air CO2 enrichment (FACE) allows open-air elevation of [CO2 ] without altering the microclimate. Its scale uniquely supports simultaneous study from physiology and yield to soil processes and disease. In 2005 we summarized results of then 28 published observations by meta-analysis. Subsequent studies have combined FACE with temperature, drought, ozone, and nitrogen treatments. Here, we summarize the results of now almost 250 observations, spanning 14 sites and five continents. Across 186 independent studies of 18 C3 crops, elevation of [CO2 ] by ca. 200 ppm caused a ca. 18% increase in yield under non-stress conditions. Legumes and root crops showed a greater increase and cereals less. Nitrogen deficiency reduced the average increase to 10%, as did warming by ca. 2°C. Two conclusions of the 2005 analysis were that C4 crops would not be more productive in elevated [CO2 ], except under drought, and that yield responses of C3 crops were diminished by nitrogen deficiency and wet conditions. Both stand the test of time. Further studies of maize and sorghum showed no yield increase, except in drought, while soybean productivity was negatively affected by early growing season wet conditions. Subsequent study showed reduced levels of nutrients, notably Zn and Fe in most crops, and lower nitrogen and protein in the seeds of non-leguminous crops. Testing across crop germplasm revealed sufficient variation to maintain nutrient content under rising [CO2 ]. A strong correlation of yield response under elevated [CO2 ] to genetic yield potential in both rice and soybean was observed. Rice cultivars with the highest yield potential showed a 35% yield increase in elevated [CO2 ] compared to an average of 14%. Future FACE experiments have the potential to develop cultivars and management strategies for co-promoting sustainability and productivity under future elevated [CO2 ].
Collapse
Affiliation(s)
- Elizabeth A Ainsworth
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, IL, USA
- Departments of Plant Biology and of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Stephen P Long
- Departments of Plant Biology and of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
9
|
Carreras Navarro E, Lam SK, Trębicki P. Elevated Carbon Dioxide and Nitrogen Impact Wheat and Its Aphid Pest. FRONTIERS IN PLANT SCIENCE 2020; 11:605337. [PMID: 33335537 PMCID: PMC7736075 DOI: 10.3389/fpls.2020.605337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/10/2020] [Indexed: 05/14/2023]
Abstract
The rise in atmospheric carbon dioxide (CO2) generally increases wheat biomass and grain yield but decreases its nutritional value. This, in turn, can alter the metabolic rates, development, and performance of insect pests feeding on the crop. However, it is unclear how elevated CO2 (eCO2) and nitrogen (N) input affect insect pest biology through changes in wheat growth and tissue N content. We investigated the effect of three different N application rates (low, medium, and high) and two CO2 levels (ambient and elevated) on wheat growth and quality and the development and performance of the bird cherry-oat aphid, a major cereal pest worldwide, under controlled environmental conditions. We found that eCO2 significantly decreased total aphid fecundity and wheat N content by 22 and 39%, respectively, when compared to ambient CO2 (aCO2). Greater N application significantly increased total aphid fecundity and plant N content but did not offset the effects of eCO2. Our findings provide important information on aphid threats under future CO2 conditions, as the heavy infestation of the bird cherry-oat aphid is detrimental to wheat grain yield and quality.
Collapse
Affiliation(s)
- Eva Carreras Navarro
- Agriculture Victoria, Horsham, VIC, Australia
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Shu Kee Lam
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Piotr Trębicki
- Agriculture Victoria, Horsham, VIC, Australia
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
10
|
Moreno-Delafuente A, Viñuela E, Fereres A, Medina P, Trębicki P. Simultaneous Increase in CO 2 and Temperature Alters Wheat Growth and Aphid Performance Differently Depending on Virus Infection. INSECTS 2020; 11:E459. [PMID: 32707938 PMCID: PMC7469198 DOI: 10.3390/insects11080459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 01/15/2023]
Abstract
Climate change impacts crop production, pest and disease pressure, yield stability, and, therefore, food security. In order to understand how climate and atmospheric change factors affect trophic interactions in agriculture, we evaluated the combined effect of elevated carbon dioxide (CO2) and temperature on the interactions among wheat (Triticum aestivum L.), Barley yellow dwarf virus species PAV (BYDV-PAV) and its vector, the bird cherry-oat aphid (Rhopalosiphum padi L.). Plant traits and aphid biological parameters were examined under two climate and atmospheric scenarios, current (ambient CO2 and temperature = 400 ppm and 20 °C), and future predicted (elevated CO2 and temperature = 800 ppm and 22 °C), on non-infected and BYDV-PAV-infected plants. Our results show that combined elevated CO2 and temperature increased plant growth, biomass, and carbon to nitrogen (C:N) ratio, which in turn significantly decreased aphid fecundity and development time. However, virus infection reduced chlorophyll content, biomass, wheat growth and C:N ratio, significantly increased R. padi fecundity and development time. Regardless of virus infection, aphid growth rates remained unchanged under simulated future conditions. Therefore, as R. padi is currently a principal pest in temperate cereal crops worldwide, mainly due to its role as a plant virus vector, it will likely continue to have significant economic importance. Furthermore, an earlier and more distinct virus symptomatology was highlighted under the future predicted scenario, with consequences on virus transmission, disease epidemiology and, thus, wheat yield and quality. These research findings emphasize the complexity of plant-vector-virus interactions expected under future climate and their implications for plant disease and pest incidence in food crops.
Collapse
Affiliation(s)
- Ana Moreno-Delafuente
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (ETSIAAB-UPM), Avd. Puerta de Hierro 2-4, 28040 Madrid, Spain; (A.M.-D.); (E.V.); (P.M.)
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, 110 Natimuk Rd, Horsham, VIC 3400, Australia
| | - Elisa Viñuela
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (ETSIAAB-UPM), Avd. Puerta de Hierro 2-4, 28040 Madrid, Spain; (A.M.-D.); (E.V.); (P.M.)
- Associate Unit IVAS (CSIC-UPM): Control of Insect Vectors of Viruses in Horticultural Sustainable Systems, 28006 Madrid, Spain
| | - Alberto Fereres
- Associate Unit IVAS (CSIC-UPM): Control of Insect Vectors of Viruses in Horticultural Sustainable Systems, 28006 Madrid, Spain
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (ICA-CSIC), C/Serrano 115 dpdo., 28006 Madrid, Spain;
| | - Pilar Medina
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (ETSIAAB-UPM), Avd. Puerta de Hierro 2-4, 28040 Madrid, Spain; (A.M.-D.); (E.V.); (P.M.)
- Associate Unit IVAS (CSIC-UPM): Control of Insect Vectors of Viruses in Horticultural Sustainable Systems, 28006 Madrid, Spain
| | - Piotr Trębicki
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, 110 Natimuk Rd, Horsham, VIC 3400, Australia
| |
Collapse
|
11
|
Trebicki P. Climate change and plant virus epidemiology. Virus Res 2020; 286:198059. [PMID: 32561376 DOI: 10.1016/j.virusres.2020.198059] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/20/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022]
Abstract
Changes in global climate driven by anthropogenic activities, especially the burning of fossil fuels and deforestation, have been progressively increasing and are projected to intensify. Increasing concentrations of atmospheric carbon dioxide and temperature will have significant consequences for future food production, quality, distribution and security. The epidemiology of plant viruses will be altered in the future as a result of climate change. Elevated atmospheric carbon dioxide, increased temperature, changes to water availability and more frequent extreme weather events will have direct and indirect effects on plant viruses through changes in hosts and vectors. Predicted climatic changes will affect the distribution and survival of plant viruses and their vectors, which are expected to increase in many geographic regions. Furthermore, climate change can affect the virulence and pathogenicity of plant viruses, consequently increasing the frequency and scale of disease outbreaks. Thus, greater understanding of plant virus epidemiology is needed to better anticipate challenges ahead and to develop effective and robust control strategies that will aid in securing global food production for the future.
Collapse
Affiliation(s)
- Piotr Trebicki
- Agriculture Victoria, 110 Natimuk Rd, Horsham, Victoria, 3400, Australia.
| |
Collapse
|
12
|
Tenllado F, Canto T. Effects of a changing environment on the defenses of plants to viruses. Curr Opin Virol 2020; 42:40-46. [PMID: 32531746 DOI: 10.1016/j.coviro.2020.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
Abstract
Since their appearance, plants have lived and evolved within changing environments that were determined by a host of abiotic and biotic factors. It is in this evolutionary context that both, the mechanisms of defense by plants against viruses and the viral reprogramming of plant routes were established, which combined define the outcomes of compatible infections. Current alterations in the chemistry of the atmosphere are causing changes in the global context in which plants and viruses interact that are unprecedented not in their nature but in their pace. We discuss here the potential reach of environment changes taking place now, and how the main abiotic parameters that are driving them can affect defense responses of plants to viruses in compatible infections.
Collapse
Affiliation(s)
- Francisco Tenllado
- Department of Environmental Biology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Tomas Canto
- Department of Environmental Biology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain.
| |
Collapse
|
13
|
Peñalver-Cruz A, Garzo E, Prieto-Ruiz I, Díaz-Carro M, Winters A, Moreno A, Fereres A. Feeding behavior, life history, and virus transmission ability of Bemisia tabaci Mediterranean species (Hemiptera: Aleyrodidae) under elevated CO 2. INSECT SCIENCE 2020; 27:558-570. [PMID: 30672655 DOI: 10.1111/1744-7917.12661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/18/2018] [Accepted: 01/14/2019] [Indexed: 05/27/2023]
Abstract
The continuous rise of CO2 concentrations in the atmosphere is reducing plant nutritional quality for herbivores and indirectly affects their performance. The whitefly (Bemisia tabaci, Gennadius) is a major worldwide pest of agricultural crops causing significant yield losses. This study investigated the plant-mediated indirect effects of elevated CO2 on the feeding behavior and life history of B. tabaci Mediterranean species. Eggplants were grown under elevated and ambient CO2 concentrations for 3 weeks after which plants were either used to monitor the feeding behavior of whiteflies using the Electrical Penetration Graph technique or to examine fecundity and fertility of whiteflies. Plant leaf carbon, nitrogen, phenols and protein contents were also analyzed for each treatment. Bemisia tabaci feeding on plants exposed to elevated CO2 showed a longer phloem ingestion and greater fertility compared to those exposed to ambient CO2 suggesting that B. tabaci is capable of compensating for the plant nutritional deficit. Additionally, this study looked at the transmission of the virus Tomato yellow leaf curl virus (Begomovirus) by B. tabaci exposing source and receptor tomato plants to ambient or elevated CO2 levels before or after virus transmission tests. Results indicate that B. tabaci transmitted the virus at the same rate independent of the CO2 levels and plant treatment. Therefore, we conclude that B. tabaci Mediterranean species prevails over the difficulties that changes in CO2 concentrations may cause and it is predicted that under future climate change conditions, B. tabaci would continue to be considered a serious threat for agriculture worldwide.
Collapse
Affiliation(s)
- Ainara Peñalver-Cruz
- Departamento de Protección vegetal, Instituto de Ciencias Agrarias (ICA-CSIC), Madrid, Spain
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Elisa Garzo
- Departamento de Protección vegetal, Instituto de Ciencias Agrarias (ICA-CSIC), Madrid, Spain
| | - Inés Prieto-Ruiz
- Departamento de Protección vegetal, Instituto de Ciencias Agrarias (ICA-CSIC), Madrid, Spain
| | - Miguel Díaz-Carro
- Departamento de Protección vegetal, Instituto de Ciencias Agrarias (ICA-CSIC), Madrid, Spain
| | - Ana Winters
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, UK
| | - Aránzazu Moreno
- Departamento de Protección vegetal, Instituto de Ciencias Agrarias (ICA-CSIC), Madrid, Spain
| | - Alberto Fereres
- Departamento de Protección vegetal, Instituto de Ciencias Agrarias (ICA-CSIC), Madrid, Spain
| |
Collapse
|
14
|
van Munster M. Impact of Abiotic Stresses on Plant Virus Transmission by Aphids. Viruses 2020; 12:E216. [PMID: 32075208 PMCID: PMC7077179 DOI: 10.3390/v12020216] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 01/05/2023] Open
Abstract
Plants regularly encounter abiotic constraints, and plant response to stress has been a focus of research for decades. Given increasing global temperatures and elevated atmospheric CO2 levels and the occurrence of water stress episodes driven by climate change, plant biochemistry, in particular, plant defence responses, may be altered significantly. Environmental factors also have a wider impact, shaping viral transmission processes that rely on a complex set of interactions between, at least, the pathogen, the vector, and the host plant. This review considers how abiotic stresses influence the transmission and spread of plant viruses by aphid vectors, mainly through changes in host physiology status, and summarizes the latest findings in this research field. The direct effects of climate change and severe weather events that impact the feeding behaviour of insect vectors as well as the major traits (e.g., within-host accumulation, disease severity and transmission) of viral plant pathogens are discussed. Finally, the intrinsic capacity of viruses to react to environmental cues in planta and how this may influence viral transmission efficiency is summarized. The clear interaction between biotic (virus) and abiotic stresses is a risk that must be accounted for when modelling virus epidemiology under scenarios of climate change.
Collapse
Affiliation(s)
- Manuella van Munster
- INRA, UMR385, CIRAD TA-A54K, Campus International de Baillarguet, CEDEX 05, 34398 Montpellier, France
| |
Collapse
|
15
|
Shopan J, Liu C, Hu Z, Zhang M, Yang J. Identification of eukaryotic translation initiation factors and the temperature-dependent nature of Turnip mosaic virus epidemics in allopolyploid Brassica juncea. 3 Biotech 2020; 10:75. [PMID: 32051808 PMCID: PMC6987279 DOI: 10.1007/s13205-020-2058-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 01/06/2020] [Indexed: 11/24/2022] Open
Abstract
Eukaryotic translation initiation factors (eIFs) are essential protein complexes involved in the translation of mRNA into proteins. These initiation factors are generally used as targets in the control of plant RNA virus infections. In the present study, we identified a total 190 eIFs, clustered phylogenetically into 40 distinct subfamilies in the allopolyploid Brassica juncea. Extensive evolutionary duplications of the eIFs in B. juncea suggest their increased genetic diversity and wide adaptability. The induction of expressions in some of the eIFs after inoculation against Turnip mosaic virus (TuMV) provided candidate targets to be used in the control of viral infections. In addition, the expression profiles of eIFs under different temperatures suggested that the TuMV epidemic was temperature dependent. The eIFs expressions suggested that the systemic viral infections were more acute in plants grown between 20 °C and 28 °C. In addition, our results revealed that new subgroups of eIFs, eIF2β, eIF2α, eIF2Bβ, EF1A, and PABP could be represented as targets for antiviral strategies in B. juncea. In summary, our findings would be helpful in studying the complex mechanisms of eIF-mediated, temperature-dependent RNA virus control in B. juncea.
Collapse
Affiliation(s)
- Jannat Shopan
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
| | - Chang Liu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058 China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058 China
| |
Collapse
|
16
|
Tausz-Posch S, Tausz M, Bourgault M. Elevated [CO 2 ] effects on crops: Advances in understanding acclimation, nitrogen dynamics and interactions with drought and other organisms. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22 Suppl 1:38-51. [PMID: 30945436 DOI: 10.1111/plb.12994] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/01/2019] [Indexed: 05/13/2023]
Abstract
Future rapid increases in atmospheric CO2 concentration [CO2 ] are expected, with values likely to reach ~550 ppm by mid-century. This implies that every terrestrial plant will be exposed to nearly 40% more of one of the key resources determining plant growth. In this review we highlight selected areas of plant interactions with elevated [CO2 ] (e[CO2 ]), where recently published experiments challenge long-held, simplified views. Focusing on crops, especially in more extreme and variable growing conditions, we highlight uncertainties associated with four specific areas. (1) While it is long known that photosynthesis can acclimate to e[CO2 ], such acclimation is not consistently observed in field experiments. The influence of sink-source relations and nitrogen (N) limitation on acclimation is investigated and current knowledge about whether stomatal function or mesophyll conductance (gm ) acclimate independently is summarised. (2) We show how the response of N uptake to e[CO2 ] is highly variable, even for one cultivar grown within the same field site, and how decreases in N concentrations ([N]) are observed consistently. Potential mechanisms contributing to [N] decreases under e[CO2 ] are discussed and proposed solutions are addressed. (3) Based on recent results from crop field experiments in highly variable, non-irrigated, water-limited environments, we challenge the previous opinion that the relative CO2 effect is larger under drier environmental conditions. (4) Finally, we summarise how changes in growth and nutrient concentrations due to e[CO2 ] will influence relationships between crops and weeds, herbivores and pathogens in agricultural systems.
Collapse
Affiliation(s)
- S Tausz-Posch
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - M Tausz
- School of Biosciences, University of Birmingham, Birmingham, UK
- Department of Agriculture, Science and the Environment, CQUniversity Australia, Rockhampton, QLD, Australia
| | - M Bourgault
- Northern Agricultural Research Center, Montana State University, Havre, MT, USA
| |
Collapse
|
17
|
Rubio B, Cosson P, Caballero M, Revers F, Bergelson J, Roux F, Schurdi-Levraud V. Genome-wide association study reveals new loci involved in Arabidopsis thaliana and Turnip mosaic virus (TuMV) interactions in the field. THE NEW PHYTOLOGIST 2019; 221:2026-2038. [PMID: 30282123 DOI: 10.1111/nph.15507] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/18/2018] [Indexed: 05/12/2023]
Abstract
The genetic architecture of plant response to viruses has often been studied in model nonnatural pathosystems under controlled conditions. There is an urgent need to elucidate the genetic architecture of the response to viruses in a natural setting. A field experiment was performed in each of two years. In total, 317 Arabidopsis thaliana accessions were inoculated with its natural Turnip mosaic virus (TuMV). The accessions were phenotyped for viral accumulation, frequency of infected plants, stem length and symptoms. Genome-wide association mapping was performed. Arabidopsis thaliana exhibits extensive natural variation in its response to TuMV in the field. The underlying genetic architecture reveals a more quantitative picture than in controlled conditions. Ten genomic regions were consistently identified across the two years. RTM3 (Restricted TEV Movement 3) is a major candidate for the response to TuMV in the field. New candidate genes include Dead box helicase 1, a Tim Barrel domain protein and the eukaryotic translation initiation factor eIF3b. To our knowledge, this study is the first to report the genetic architecture of quantitative response of A. thaliana to a naturally occurring virus in a field environment, thereby highlighting relevant candidate genes involved in plant virus interactions in nature.
Collapse
Affiliation(s)
- Bernadette Rubio
- Univ. Bordeaux INRA, UMR Biologie du Fruit et Pathologie, 1332, 71 avenue Edouard Bourlaux, 33883, Villenave d'Ornon cedex, France
| | - Patrick Cosson
- Univ. Bordeaux INRA, UMR Biologie du Fruit et Pathologie, 1332, 71 avenue Edouard Bourlaux, 33883, Villenave d'Ornon cedex, France
| | - Mélodie Caballero
- Univ. Bordeaux INRA, UMR Biologie du Fruit et Pathologie, 1332, 71 avenue Edouard Bourlaux, 33883, Villenave d'Ornon cedex, France
| | - Frédéric Revers
- INRA, UMR 1202 BIOGECO, Université de Bordeaux, 69 Route d'Arcachon, 33612, Cestas Cedex, France
| | - Joy Bergelson
- Ecology & Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA
| | - Fabrice Roux
- LIPM, INRA, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Valérie Schurdi-Levraud
- Univ. Bordeaux INRA, UMR Biologie du Fruit et Pathologie, 1332, 71 avenue Edouard Bourlaux, 33883, Villenave d'Ornon cedex, France
| |
Collapse
|
18
|
Nancarrow N, Aftab M, Freeman A, Rodoni B, Hollaway G, Trębicki P. Prevalence and Incidence of Yellow Dwarf Viruses Across a Climatic Gradient: A Four-Year Field Study in Southeastern Australia. PLANT DISEASE 2018; 102:2465-2472. [PMID: 30307836 DOI: 10.1094/pdis-01-18-0116-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Yellow dwarf viruses (YDVs) form a complex of economically important pathogens that affect cereal production worldwide, reducing yield and quality. The prevalence and incidence of YDVs including barley yellow dwarf viruses (BYDV-PAV and BYDV-MAV) and cereal yellow dwarf virus (CYDV-RPV) in cereal fields in Victoria, Australia were measured. As temperature decreases and rainfall increases from north to south in Victoria, fields in three geographical regions were evaluated to determine potential differences in virus prevalence and incidence across the weather gradient. Cereal samples randomly collected from each field during spring for four consecutive years (2014-2017) were tested for BYDV-PAV, BYDV-MAV, and CYDV-RPV using tissue blot immunoassay. BYDV-PAV was the most prevalent YDV species overall and had the highest overall mean incidence. Higher temperature and lower rainfall were associated with reduced prevalence and incidence of YDVs as the northern region, which is hotter and drier, had a 17-fold decrease in virus incidence compared with the cooler and wetter regions. Considerable year-to-year variation in virus prevalence and incidence was observed. This study improves our understanding of virus epidemiology, which will aid the development of more targeted control measures and predictive models. It also highlights the need to monitor for YDVs and their vectors over multiple years to assess the level of risk and to make more informed and appropriate disease management decisions.
Collapse
Affiliation(s)
| | | | - Angela Freeman
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Brendan Rodoni
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | | | | |
Collapse
|
19
|
Trębicki P, Dáder B, Vassiliadis S, Fereres A. Insect-plant-pathogen interactions as shaped by future climate: effects on biology, distribution, and implications for agriculture. INSECT SCIENCE 2017; 24:975-989. [PMID: 28843026 DOI: 10.1111/1744-7917.12531] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 05/02/2023]
Abstract
Carbon dioxide (CO2 ) is the main anthropogenic gas which has drastically increased since the industrial revolution, and current concentrations are projected to double by the end of this century. As a consequence, elevated CO2 is expected to alter the earths' climate, increase global temperatures and change weather patterns. This is likely to have both direct and indirect impacts on plants, insect pests, plant pathogens and their distribution, and is therefore problematic for the security of future food production. This review summarizes the latest findings and highlights current knowledge gaps regarding the influence of climate change on insect, plant and pathogen interactions with an emphasis on agriculture and food production. Direct effects of climate change, including increased CO2 concentration, temperature, patterns of rainfall and severe weather events that impact insects (namely vectors of plant pathogens) are discussed. Elevated CO2 and temperature, together with plant pathogen infection, can considerably change plant biochemistry and therefore plant defense responses. This can have substantial consequences on insect fecundity, feeding rates, survival, population size, and dispersal. Generally, changes in host plant quality due to elevated CO2 (e.g., carbon to nitrogen ratios in C3 plants) negatively affect insect pests. However, compensatory feeding, increased population size and distribution have also been reported for some agricultural insect pests. This underlines the importance of additional research on more targeted, individual insect-plant scenarios at specific locations to fully understand the impact of a changing climate on insect-plant-pathogen interactions.
Collapse
Affiliation(s)
- Piotr Trębicki
- Biosciences Research, Department of Economic Development Jobs, Transport and Resources (DEDJTR), Horsham, VIC, Australia
| | - Beatriz Dáder
- INRA, UMR 385 BGPI (CIRAD-INRA-SupAgroM), Campus International de Baillarguet, Montpellier, France
| | - Simone Vassiliadis
- Biosciences Research, DEDJTR, La Trobe University, AgriBio Centre, 5 Ring Road, Bundoora, VIC, Australia
| | | |
Collapse
|