1
|
Browne DJ, Crooks P, Smith C, Doolan DL. Differential reactivity of SARS-CoV-2 S-protein T-cell epitopes in vaccinated versus naturally infected individuals. Clin Transl Immunology 2025; 14:e70031. [PMID: 40342296 PMCID: PMC12056234 DOI: 10.1002/cti2.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/20/2025] [Accepted: 03/18/2025] [Indexed: 05/11/2025] Open
Abstract
Objectives Vaccine-induced protective immunity against SARS-CoV-2 has proved difficult to sustain. Robust T-cell responses are thought to play an important role, but T-cell responses against the SARS-CoV-2 spike protein (S-protein), the core vaccine antigen, following vaccination or natural infection are incompletely understood. Methods Herein, the reactivity of 170 putative SARS-CoV-2 S-protein CD8+ and CD4+ T-cell peptide epitopes in the same individuals prior to vaccination, after COVID-19 vaccination, and again following subsequent natural infection was assayed using a high-throughput reverse transcription-quantitative PCR (HTS-RT-qPCR) assay. Results The profile of immunoreactive SARS-CoV-2 S-protein epitopes differed between vaccination and natural infection. Vaccine-induced immunoreactive epitopes were localised primarily into two extra-domanial regions. In contrast, epitopes recognised following natural infection were spread across the antigen. Furthermore, T-cell epitopes in naïve individuals were primarily recognised in association with HLA-A, while natural infection shifted epitope associations towards HLA-B, particularly the B7 supertype. Conclusion This study provides insight into T-cell responses against the SARS-CoV-2 S-protein following vaccination and subsequent natural infection.
Collapse
Affiliation(s)
- Daniel J Browne
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsQLDAustralia
| | - Pauline Crooks
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of ImmunologyQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Corey Smith
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of ImmunologyQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
- Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsQLDAustralia
- Institute for Molecular BioscienceThe University of QueenslandSt LuciaQLDAustralia
| |
Collapse
|
2
|
Zhao Y, He C, Peng M, Li M, Liu X, Han X, Fu Q, Wu Y, Yue F, Yan C, Zhao G, Shen C. Large-Scale Screening of CD4 + T-Cell Epitopes From SARS-CoV-2 Proteins and the Universal Detection of SARS-CoV-2 Specific T Cells for Northeast Asian Population. J Med Virol 2025; 97:e70241. [PMID: 39977358 DOI: 10.1002/jmv.70241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/09/2024] [Accepted: 01/25/2025] [Indexed: 02/22/2025]
Abstract
The polymorphism of human leukocyte antigens in the Northeast Asian populations and the lack of broad-spectrum T-cell epitopes covering this cohort markedly limited the development of T cell-directed vaccines against SARS-CoV-2 infection, and also hampered the universal detection of SARS-CoV-2 specific T cells. In this study, 93 CD4+ T-cell epitopes restricted by 12 prevalent HLA-DRB1 allotypes, which covering over 80% Chinese and Northeast Asian populations, were identified from the S, E, M, N and RdRp proteins of SARS-CoV-2 by in silico prediction, DC-peptide-PBL coculture experiment, and immunization in HLA-A2/DR1 transgenic mice. Furthermore, by using validated 215 CD8+ T cell epitope peptides and 123 CD4+ T-cell epitope peptides covering Northeast Asian cohort, the universal ELISpot detection systems of SARS-CoV-2 specific CD8+ T cells and CD4+ T cells were established, for the first time, and followed by the tests for 50 unexposed and 100 convalescent samples. The median of spot-forming units for CD8+ T cells and CD4+ T cells were 68 and 15, respectively, in the unexposed donors, but were 137 and 52 in the convalescent donors 6 months after recovery while 128 and 47 in the convalescent donors 18 months after recovery. This work initially provided the broad-spectrum CD4+ T-cell epitope library of SARS-CoV-2 for the design of T cell-directed vaccines and the universal T cell detection tool tailoring to Northeast Asian population, and confirmed the long-term memory T cell immunity after SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Chengtao He
- Nanjing Red Cross Blood Center, Nanjing, China
| | - Min Peng
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Min Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Xiaotao Liu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Xuelian Han
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Qiang Fu
- Nanjing Red Cross Blood Center, Nanjing, China
| | - Yandan Wu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Fangping Yue
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Chunguang Yan
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Chuanlai Shen
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
3
|
Olivero NB, Zappia VE, Gargantini P, Human-Gonzalez C, Raya-Plasencia L, Marquez J, Ortiz-Batsche L, Hernandez-Morfa M, Cortes PR, Ceschin D, Nuñez-Fernandez M, Perez DR, Echenique J. Genomic Evolution of the SARS-CoV-2 Omicron Variant in Córdoba, Argentina (2021-2022): Analysis of Uncommon and Prevalent Spike Mutations. Viruses 2024; 16:1877. [PMID: 39772187 PMCID: PMC11680156 DOI: 10.3390/v16121877] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/26/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025] Open
Abstract
Understanding the evolutionary patterns and geographic spread of SARS-CoV-2 variants, particularly Omicron, is essential for effective public health responses. This study focused on the genomic analysis of the Omicron variant in Cordoba, Argentina from 2021 to 2022. Phylogenetic analysis revealed the dominant presence of BA.1 and BA.2 lineages, with BA.5 emerging earlier than BA.4, aligning with observations from other regions. Haplotype network analysis showed significant genetic divergence within Omicron samples, forming distinct clusters. In comparison to global datasets, we identified mutations in the Omicron genomes (A27S, Y145D, and L212I) situated within the NTD region of the Spike protein. These mutations, while not widespread globally, showed higher prevalence in our region. Of particular interest were the Y145D and L212I substitutions, previously unreported in Argentina. In silico analysis revealed that both mutations impact the binding affinity of T-cell epitopes to HLA type I and II alleles. Notably, these alleles are among the most common in the Argentinian population, with some associated with protection against and others with susceptibility to SARS-CoV-2 infection. These findings strongly suggest that these prevalent mutations likely influence the immunogenicity of the Spike protein and contribute to immune evasion mechanisms. This study provides valuable insights into the genomic dynamics of the Omicron variant in Cordoba, Argentina and highlights unique mutations with potential implications for COVID-19 vaccines.
Collapse
Affiliation(s)
- Nadia B. Olivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina; (V.E.Z.); (C.H.-G.); (L.R.-P.); (M.H.-M.); (P.R.C.)
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Victoria E. Zappia
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina; (V.E.Z.); (C.H.-G.); (L.R.-P.); (M.H.-M.); (P.R.C.)
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Pablo Gargantini
- Clínica Universitaria Reina Fabiola, Universidad Católica de Córdoba, Córdoba X5000HUA, Argentina; (P.G.); (J.M.)
| | - Candela Human-Gonzalez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina; (V.E.Z.); (C.H.-G.); (L.R.-P.); (M.H.-M.); (P.R.C.)
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Luciana Raya-Plasencia
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina; (V.E.Z.); (C.H.-G.); (L.R.-P.); (M.H.-M.); (P.R.C.)
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Judith Marquez
- Clínica Universitaria Reina Fabiola, Universidad Católica de Córdoba, Córdoba X5000HUA, Argentina; (P.G.); (J.M.)
| | - Lucia Ortiz-Batsche
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens 30692, GA, USA; (L.O.-B.); (D.R.P.)
| | - Mirelys Hernandez-Morfa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina; (V.E.Z.); (C.H.-G.); (L.R.-P.); (M.H.-M.); (P.R.C.)
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Paulo R. Cortes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina; (V.E.Z.); (C.H.-G.); (L.R.-P.); (M.H.-M.); (P.R.C.)
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Danilo Ceschin
- Instituto Universitario de Ciencias Biomedicas de Córdoba (IUCBC), Centro de Investigacion en Medicina Traslacional “Severo R. Amuchastegui” (CIMETSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina;
| | - Mariana Nuñez-Fernandez
- Centro de Química Aplicada, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina;
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens 30692, GA, USA; (L.O.-B.); (D.R.P.)
| | - José Echenique
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina; (V.E.Z.); (C.H.-G.); (L.R.-P.); (M.H.-M.); (P.R.C.)
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| |
Collapse
|
4
|
Zornikova K, Dianov D, Ivanova N, Davydova V, Nenasheva T, Fefelova E, Bogolyubova A. Features of Highly Homologous T-Cell Receptor Repertoire in the Immune Response to Mutations in Immunogenic Epitopes. Int J Mol Sci 2024; 25:12591. [PMID: 39684303 DOI: 10.3390/ijms252312591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
CD8+ T-cell immunity, mediated through interactions between human leukocyte antigen (HLA) and the T-cell receptor (TCR), plays a pivotal role in conferring immune memory and protection against viral infections. The emergence of SARS-CoV-2 variants presents a significant challenge to the existing population immunity. While numerous SARS-CoV-2 mutations have been associated with immune evasion from CD8+ T cells, the molecular effects of most mutations on epitope-specific TCR recognition remain largely unexplored, particularly for epitope-specific repertoires characterized by common TCRs. In this study, we investigated an HLA-A*24-restricted NYN epitope (Spike448-456) that elicits broad and highly homologous CD8+ T cell responses in COVID-19 patients. Eleven naturally occurring mutations in the NYN epitope, all of which retained cell surface presentation by HLA, were tested against four transgenic Jurkat reporter cell lines. Our findings demonstrate that, with the exception of L452R and the combined mutation L452Q + Y453F, these mutations have minimal impact on the avidity of recognition by NYN peptide-specific TCRs. Additionally, we observed that a similar TCR responded differently to mutant epitopes and demonstrated cross-reactivity to the unrelated VYF epitope (ORF3a112-120). The results contradict the idea that immune responses with limited receptor diversity are insufficient to provide protection against emerging variants.
Collapse
Affiliation(s)
- Ksenia Zornikova
- National Medical Research Center for Hematology, Moscow 125167, Russia
| | - Dmitry Dianov
- National Medical Research Center for Hematology, Moscow 125167, Russia
| | - Natalia Ivanova
- National Medical Research Center for Hematology, Moscow 125167, Russia
| | - Vassa Davydova
- National Medical Research Center for Hematology, Moscow 125167, Russia
| | - Tatiana Nenasheva
- National Medical Research Center for Hematology, Moscow 125167, Russia
| | | | | |
Collapse
|
5
|
Kumar S, Nan L, Kalodimou G, Jany S, Freudenstein A, Brandmüller C, Müller K, Girl P, Ehmann R, Guggemos W, Seilmaier M, Wendtner CM, Volz A, Sutter G, Fux R, Tscherne A. Implementation of an Immunoassay Based on the MVA-T7pol-Expression System for Rapid Identification of Immunogenic SARS-CoV-2 Antigens: A Proof-of-Concept Study. Int J Mol Sci 2024; 25:10898. [PMID: 39456680 PMCID: PMC11508112 DOI: 10.3390/ijms252010898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The emergence of hitherto unknown viral pathogens presents a great challenge for researchers to develop effective therapeutics and vaccines within a short time to avoid an uncontrolled global spread, as seen during the coronavirus disease 2019 (COVID-19) pandemic. Therefore, rapid and simple methods to identify immunogenic antigens as potential therapeutical targets are urgently needed for a better pandemic preparedness. To address this problem, we chose the well-characterized Modified Vaccinia virus Ankara (MVA)-T7pol expression system to establish a workflow to identify immunogens when a new pathogen emerges, generate candidate vaccines, and test their immunogenicity in an animal model. By using this system, we detected severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) nucleoprotein (N)-, and spike (S)-specific antibodies in COVID-19 patient sera, which is in line with the current literature and our observations from previous immunogenicity studies. Furthermore, we detected antibodies directed against the SARS-CoV-2-membrane (M) and -ORF3a proteins in COVID-19 patient sera and aimed to generate recombinant MVA candidate vaccines expressing either the M or ORF3a protein. When testing our candidate vaccines in a prime-boost immunization regimen in humanized HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice, we were able to demonstrate M- and ORF3a-specific cellular and humoral immune responses. Hence, the established workflow using the MVA-T7pol expression system represents a rapid and efficient tool to identify potential immunogenic antigens and provides a basis for future development of candidate vaccines.
Collapse
Affiliation(s)
- Satendra Kumar
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
| | - Liangliang Nan
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
| | - Georgia Kalodimou
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany (R.E.)
| | - Sylvia Jany
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
| | - Astrid Freudenstein
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
| | - Christine Brandmüller
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
| | - Katharina Müller
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany (R.E.)
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
| | - Philipp Girl
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany (R.E.)
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
- Chair of Bacteriology and Mycology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany
| | - Rosina Ehmann
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany (R.E.)
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
| | - Wolfgang Guggemos
- Munich Clinic Schwabing, Academic Teaching Hospital, Ludwig Maximilians University Munich (LMU Munich), 80804 Munich, Germany; (W.G.); (M.S.)
| | - Michael Seilmaier
- Munich Clinic Schwabing, Academic Teaching Hospital, Ludwig Maximilians University Munich (LMU Munich), 80804 Munich, Germany; (W.G.); (M.S.)
| | - Clemens-Martin Wendtner
- Medical Clinic III, University Hospital, Ludwig Maximilians University Munich (LMU Munich), 80336 Munich, Germany;
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- German Center for Infection Research, Partner Site Hannover-Braunschweig, 30559 Hannover, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany (R.E.)
| | - Robert Fux
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
| | - Alina Tscherne
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany (R.E.)
| |
Collapse
|
6
|
Macchia I, La Sorsa V, Ciervo A, Ruspantini I, Negri D, Borghi M, De Angelis ML, Luciani F, Martina A, Taglieri S, Durastanti V, Altavista MC, Urbani F, Mancini F. T Cell Peptide Prediction, Immune Response, and Host-Pathogen Relationship in Vaccinated and Recovered from Mild COVID-19 Subjects. Biomolecules 2024; 14:1217. [PMID: 39456150 PMCID: PMC11505848 DOI: 10.3390/biom14101217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
COVID-19 remains a significant threat, particularly to vulnerable populations. The emergence of new variants necessitates the development of treatments and vaccines that induce both humoral and cellular immunity. This study aimed to identify potentially immunogenic SARS-CoV-2 peptides and to explore the intricate host-pathogen interactions involving peripheral immune responses, memory profiles, and various demographic, clinical, and lifestyle factors. Using in silico and experimental methods, we identified several CD8-restricted SARS-CoV-2 peptides that are either poorly studied or have previously unreported immunogenicity: fifteen from the Spike and three each from non-structural proteins Nsp1-2-3-16. A Spike peptide, LA-9, demonstrated a 57% response rate in ELISpot assays using PBMCs from 14 HLA-A*02:01 positive, vaccinated, and mild-COVID-19 recovered subjects, indicating its potential for diagnostics, research, and multi-epitope vaccine platforms. We also found that younger individuals, with fewer vaccine doses and longer intervals since infection, showed lower anti-Spike (ELISA) and anti-Wuhan neutralizing antibodies (pseudovirus assay), higher naïve T cells, and lower central memory, effector memory, and CD4hiCD8low T cells (flow cytometry) compared to older subjects. In our cohort, a higher prevalence of Vδ2-γδ and DN T cells, and fewer naïve CD8 T cells, seemed to correlate with strong cellular and lower anti-NP antibody responses and to associate with Omicron infection, absence of confusional state, and habitual sporting activity.
Collapse
Affiliation(s)
- Iole Macchia
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Valentina La Sorsa
- Research Promotion and Coordination Service, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Alessandra Ciervo
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| | - Irene Ruspantini
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Donatella Negri
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| | - Martina Borghi
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| | - Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Francesca Luciani
- National Center for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.L.); (A.M.)
| | - Antonio Martina
- National Center for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.L.); (A.M.)
| | - Silvia Taglieri
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Valentina Durastanti
- Neurology Unit, San Filippo Neri Hospital, ASL RM1, 00135 Rome, Italy; (V.D.); (M.C.A.)
| | | | - Francesca Urbani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Fabiola Mancini
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| |
Collapse
|
7
|
Kim GJ, Elnaggar JH, Varnado M, Feehan AK, Tauzier D, Rose R, Lamers SL, Sevalia M, Nicholas N, Gravois E, Fort D, Crabtree JS, Miele L. A bioinformatic analysis of T-cell epitope diversity in SARS-CoV-2 variants: association with COVID-19 clinical severity in the United States population. Front Immunol 2024; 15:1357731. [PMID: 38784379 PMCID: PMC11112498 DOI: 10.3389/fimmu.2024.1357731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/05/2024] [Indexed: 05/25/2024] Open
Abstract
Long-term immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires the identification of T-cell epitopes affecting host immunogenicity. In this computational study, we explored the CD8+ epitope diversity estimated in 27 of the most common HLA-A and HLA-B alleles, representing most of the United States population. Analysis of 16 SARS-CoV-2 variants [B.1, Alpha (B.1.1.7), five Delta (AY.100, AY.25, AY.3, AY.3.1, AY.44), and nine Omicron (BA.1, BA.1.1, BA.2, BA.4, BA.5, BQ.1, BQ.1.1, XBB.1, XBB.1.5)] in analyzed MHC class I alleles revealed that SARS-CoV-2 CD8+ epitope conservation was estimated at 87.6%-96.5% in spike (S), 92.5%-99.6% in membrane (M), and 94.6%-99% in nucleocapsid (N). As the virus mutated, an increasing proportion of S epitopes experienced reduced predicted binding affinity: 70% of Omicron BQ.1-XBB.1.5 S epitopes experienced decreased predicted binding, as compared with ~3% and ~15% in the earlier strains Delta AY.100-AY.44 and Omicron BA.1-BA.5, respectively. Additionally, we identified several novel candidate HLA alleles that may be more susceptible to severe disease, notably HLA-A*32:01, HLA-A*26:01, and HLA-B*53:01, and relatively protected from disease, such as HLA-A*31:01, HLA-B*40:01, HLA-B*44:03, and HLA-B*57:01. Our findings support the hypothesis that viral genetic variation affecting CD8 T-cell epitope immunogenicity contributes to determining the clinical severity of acute COVID-19. Achieving long-term COVID-19 immunity will require an understanding of the relationship between T cells, SARS-CoV-2 variants, and host MHC class I genetics. This project is one of the first to explore the SARS-CoV-2 CD8+ epitope diversity that putatively impacts much of the United States population.
Collapse
Affiliation(s)
- Grace J. Kim
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Jacob H. Elnaggar
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Microbiology, Immunology, and Parasitology, Lousiana State University Health Sciences Center (LSUHSC), New Orleans, LA, United States
| | - Mallory Varnado
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Amy K. Feehan
- Research and Development, Oschner Medical Center, New Orleans, LA, United States
| | - Darlene Tauzier
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Rebecca Rose
- Research and Development, BioInfoExperts, LLC, Thibodaux, LA, United States
| | - Susanna L. Lamers
- Research and Development, BioInfoExperts, LLC, Thibodaux, LA, United States
| | - Maya Sevalia
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Najah Nicholas
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Elizabeth Gravois
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Daniel Fort
- Research and Development, Oschner Medical Center, New Orleans, LA, United States
| | - Judy S. Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
8
|
Ahn YM, Maddumage JC, Grant EJ, Chatzileontiadou DS, Perera WG, Baker BM, Szeto C, Gras S. The impact of SARS-CoV-2 spike mutation on peptide presentation is HLA allomorph-specific. Curr Res Struct Biol 2024; 7:100148. [PMID: 38742159 PMCID: PMC11089313 DOI: 10.1016/j.crstbi.2024.100148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/11/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024] Open
Abstract
CD8+ T cells are crucial for viral elimination and recovery from viral infection. Nonetheless, the current understanding of the T cell response to SARS-CoV-2 at the antigen level remains limited. The Spike protein is an external structural protein that is prone to mutations, threatening the efficacy of current vaccines. Therefore, we have characterised the immune response towards the immunogenic Spike-derived peptide (S976-984, VLNDILSRL), restricted to the HLA-A*02:01 molecule, which is mutated in both Alpha (S982A) and Omicron BA.1 (L981F) variants of concern. We determined that the mutation in the Alpha variant (S982A) impacted both the stability and conformation of the peptide, bound to HLA-A*02:01, in comparison to the original S976-984. We identified a longer and overlapping immunogenic peptide (S975-984, SVLNDILSRL) that could be presented by HLA-A*02:01, HLA-A*11:01 and HLA-B*13:01 allomorphs. We showed that S975-specific CD8+ T cells were weakly cross-reactive to the mutant peptides despite their similar conformations when presented by HLA-A*11:01. Altogether, our results show that the impact of SARS-CoV-2 mutations on peptide presentation is HLA allomorph-specific, and that post vaccination there are T cells able to react and cross-react towards the variant of concern peptides.
Collapse
Affiliation(s)
- You Min Ahn
- Infection & Immunity Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Agriculture (SABE), La Trobe University, Bundoora, Victoria, Australia
| | - Janesha C. Maddumage
- Infection & Immunity Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Agriculture (SABE), La Trobe University, Bundoora, Victoria, Australia
| | - Emma J. Grant
- Infection & Immunity Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Agriculture (SABE), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Demetra S.M. Chatzileontiadou
- Infection & Immunity Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Agriculture (SABE), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - W.W.J. Gihan Perera
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Brian M. Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Christopher Szeto
- Infection & Immunity Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Agriculture (SABE), La Trobe University, Bundoora, Victoria, Australia
- Australian Synchrotron, ANSTO, Clayton, Victoria, Australia
| | - Stephanie Gras
- Infection & Immunity Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Agriculture (SABE), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
9
|
Slieker RC, Warmerdam DO, Vermeer MH, van Doorn R, Heemskerk MHM, Scheeren FA. Reassessing human MHC-I genetic diversity in T cell studies. Sci Rep 2024; 14:7966. [PMID: 38575727 PMCID: PMC10995142 DOI: 10.1038/s41598-024-58777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/03/2024] [Indexed: 04/06/2024] Open
Abstract
The Major Histocompatibility Complex class I (MHC-I) system plays a vital role in immune responses by presenting antigens to T cells. Allele specific technologies, including recombinant MHC-I technologies, have been extensively used in T cell analyses for COVID-19 patients and are currently used in the development of immunotherapies for cancer. However, the immense diversity of MHC-I alleles presents challenges. The genetic diversity serves as the foundation of personalized medicine, yet it also poses a potential risk of exacerbating healthcare disparities based on MHC-I alleles. To assess potential biases, we analysed (pre)clinical publications focusing on COVID-19 studies and T cell receptor (TCR)-based clinical trials. Our findings reveal an underrepresentation of MHC-I alleles associated with Asian, Australian, and African descent. Ensuring diverse representation is vital for advancing personalized medicine and global healthcare equity, transcending genetic diversity. Addressing this disparity is essential to unlock the full potential of T cells for enhancing diagnosis and treatment across all individuals.
Collapse
Affiliation(s)
- Roderick C Slieker
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniël O Warmerdam
- Centre for Future Affordable & Sustainable Therapy Development (FAST), The Hague, The Netherlands
| | - Maarten H Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Dermatology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ferenc A Scheeren
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
10
|
Ozsahin DU, Ameen ZS, Hassan AS, Mubarak AS. Enhancing explainable SARS-CoV-2 vaccine development leveraging bee colony optimised Bi-LSTM, Bi-GRU models and bioinformatic analysis. Sci Rep 2024; 14:6737. [PMID: 38509174 PMCID: PMC10954760 DOI: 10.1038/s41598-024-55762-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded RNA virus that caused the outbreak of the coronavirus disease 2019 (COVID-19). The COVID-19 outbreak has led to millions of deaths and economic losses globally. Vaccination is the most practical solution, but finding epitopes (antigenic peptide regions) in the SARS-CoV-2 proteome is challenging, costly, and time-consuming. Here, we proposed a deep learning method based on standalone Recurrent Neural networks to predict epitopes from SARS-CoV-2 proteins easily. We optimised the standalone Bidirectional Long Short-Term Memory (Bi-LSTM) and Bidirectional Gated Recurrent Unit (Bi-GRU) with a bioinspired optimisation algorithm, namely, Bee Colony Optimization (BCO). The study shows that LSTM-based models, particularly BCO-Bi-LSTM, outperform all other models and achieve an accuracy of 0.92 and AUC of 0.944. To overcome the challenge of understanding the model predictions, explainable AI using the Shapely Additive Explanations (SHAP) method was employed to explain how Blackbox models make decisions. Finally, the predicted epitopes led to the development of a multi-epitope vaccine. The multi-epitope vaccine effectiveness evaluation is based on vaccine toxicity, allergic response risk, and antigenic and biochemical characteristics using bioinformatic tools. The developed multi-epitope vaccine is non-toxic and highly antigenic. Codon adaptation, cloning, gel electrophoresis assess genomic sequence, protein composition, expression and purification while docking and IMMSIM servers simulate interactions and immunological response, respectively. These investigations provide a conceptual framework for developing a SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Dilber Uzun Ozsahin
- Department of Medical Diagnostic Imaging, College of Health Science, University of Sharjah, Sharjah, UAE
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
- Operational Research Centre in Healthcare, Near East University, TRNC Mersin 10, Nicosia, 99138, Turkey
| | - Zubaida Said Ameen
- Operational Research Centre in Healthcare, Near East University, TRNC Mersin 10, Nicosia, 99138, Turkey
- Department of Biochemistry, Yusuf Maitama Sule University, Kano, Nigeria
| | - Abdurrahman Shuaibu Hassan
- Department of Electrical Electronics and Automation Systems Engineering, Kampala International University, Kampala, Uganda.
| | - Auwalu Saleh Mubarak
- Operational Research Centre in Healthcare, Near East University, TRNC Mersin 10, Nicosia, 99138, Turkey
- Department of Electrical Engineering, Aliko Dangote University of Science and Technology, Wudil, Kano, Nigeria
| |
Collapse
|
11
|
Gan M, Cao J, Zhang Y, Fu H, Lin X, Ouyang Q, Xu X, Yuan Y, Fan X. Landscape of T cell epitopes displays hot mutations of SARS-CoV-2 variant spikes evading cellular immunity. J Med Virol 2024; 96:e29452. [PMID: 38314852 DOI: 10.1002/jmv.29452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
The continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been accompanied by the emergence of viral mutations that pose a great challenge to existing vaccine strategies. It is not fully understood with regard to the role of mutations on the SARS-CoV-2 spike protein from emerging viral variants in T cell immunity. In the current study, recombinant eukaryotic plasmids were constructed as DNA vaccines to express the spike protein from multiple SARS-CoV-2 strains. These DNA vaccines were used to immunize BALB/c mice, and cross-T cell responses to the spike protein from these viral strains were quantitated using interferon-γ (IFN-γ) Elispot. Peptides covering the full-length spike protein from different viral strains were used to detect epitope-specific IFN-γ+ CD4+ and CD8+ T cell responses by fluorescence-activated cell sorting. SARS-CoV-2 Delta and Omicron BA.1 strains were found to have broad T cell cross-reactivity, followed by the Beta strain. The landscapes of T cell epitopes on the spike protein demonstrated that at least 30 mutations emerging from Alpha to Omicron BA.5 can mediate the escape of T cell immunity. Omicron and its sublineages have 19 out of these 30 mutations, most of which are new, and a few are inherited from ancient circulating variants of concerns. The cross-T cell immunity between SARS-CoV-2 prototype strain and Omicron strains can be attributed to the T cell epitopes located in the N-terminal domain (181-246 aa [amino acids], 271-318 aa) and C-terminal domain (1171-1273 aa) of the spike protein. These findings provide in vivo evidence for optimizing vaccine manufacturing and immunization strategies for current or future viral variants.
Collapse
Affiliation(s)
- Mengze Gan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Jinge Cao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yandi Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Fu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaosong Lin
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Ouyang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyue Xu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Yuan
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xionglin Fan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Yang G, Wang J, Sun P, Qin J, Yang X, Chen D, Zhang Y, Zhong N, Wang Z. SARS-CoV-2 epitope-specific T cells: Immunity response feature, TCR repertoire characteristics and cross-reactivity. Front Immunol 2023; 14:1146196. [PMID: 36969254 PMCID: PMC10036809 DOI: 10.3389/fimmu.2023.1146196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
The devastating COVID-19 pandemic caused by SARS-CoV-2 and multiple variants or subvariants remains an ongoing global challenge. SARS-CoV-2-specific T cell responses play a critical role in early virus clearance, disease severity control, limiting the viral transmission and underpinning COVID-19 vaccine efficacy. Studies estimated broad and robust T cell responses in each individual recognized at least 30 to 40 SARS-CoV-2 antigen epitopes and associated with COVID-19 clinical outcome. Several key immunodominant viral proteome epitopes, including S protein- and non-S protein-derived epitopes, may primarily induce potent and long-lasting antiviral protective effects. In this review, we summarized the immune response features of immunodominant epitope-specific T cells targeting different SRAS-CoV-2 proteome structures after infection and vaccination, including abundance, magnitude, frequency, phenotypic features and response kinetics. Further, we analyzed the epitopes immunodominance hierarchy in combination with multiple epitope-specific T cell attributes and TCR repertoires characteristics, and discussed the significant implications of cross-reactive T cells toward HCoVs, SRAS-CoV-2 and variants of concern, especially Omicron. This review may be essential for mapping the landscape of T cell responses toward SARS-CoV-2 and optimizing the current vaccine strategy.
Collapse
Affiliation(s)
- Gang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Guangzhou Laboratory, Guangzhou, China
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Junxiang Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ping Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jian Qin
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Xiaoyun Yang
- Guangzhou Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Daxiang Chen
- Guangzhou Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yunhui Zhang
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Nanshan Zhong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Guangzhou Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhongfang Wang
- Guangzhou Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Pagani L, Chinello C, Risca G, Capitoli G, Criscuolo L, Lombardi A, Ungaro R, Mangioni D, Piga I, Muscatello A, Blasi F, Favalli A, Martinovic M, Gori A, Bandera A, Grifantini R, Magni F. Plasma Proteomic Variables Related to COVID-19 Severity: An Untargeted nLC-MS/MS Investigation. Int J Mol Sci 2023; 24:ijms24043570. [PMID: 36834989 PMCID: PMC9962231 DOI: 10.3390/ijms24043570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection leads to a wide range of clinical manifestations and determines the need for personalized and precision medicine. To better understand the biological determinants of this heterogeneity, we explored the plasma proteome of 43 COVID-19 patients with different outcomes by an untargeted liquid chromatography-mass spectrometry approach. The comparison between asymptomatic or pauci-symptomatic subjects (MILDs), and hospitalised patients in need of oxygen support therapy (SEVEREs) highlighted 29 proteins emerged as differentially expressed: 12 overexpressed in MILDs and 17 in SEVEREs. Moreover, a supervised analysis based on a decision-tree recognised three proteins (Fetuin-A, Ig lambda-2chain-C-region, Vitronectin) that are able to robustly discriminate between the two classes independently from the infection stage. In silico functional annotation of the 29 deregulated proteins pinpointed several functions possibly related to the severity; no pathway was associated exclusively to MILDs, while several only to SEVEREs, and some associated to both MILDs and SEVEREs; SARS-CoV-2 signalling pathway was significantly enriched by proteins up-expressed in SEVEREs (SAA1/2, CRP, HP, LRG1) and in MILDs (GSN, HRG). In conclusion, our analysis could provide key information for 'proteomically' defining possible upstream mechanisms and mediators triggering or limiting the domino effect of the immune-related response and characterizing severe exacerbations.
Collapse
Affiliation(s)
- Lisa Pagani
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Clizia Chinello
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
- Correspondence: ; Tel.:+39-333-5905725
| | - Giulia Risca
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre—B4, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Giulia Capitoli
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre—B4, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Lucrezia Criscuolo
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Andrea Lombardi
- Department of Pathophysiology and Transplantation, University of Milano, 20122 Milano, Italy
- Infectious Diseases Unit, IRCCS Ca’ Granda Ospedale Maggiore Policlinico Foundation, 20122 Milano, Italy
| | - Riccardo Ungaro
- Infectious Diseases Unit, IRCCS Ca’ Granda Ospedale Maggiore Policlinico Foundation, 20122 Milano, Italy
| | - Davide Mangioni
- Department of Pathophysiology and Transplantation, University of Milano, 20122 Milano, Italy
- Infectious Diseases Unit, IRCCS Ca’ Granda Ospedale Maggiore Policlinico Foundation, 20122 Milano, Italy
| | - Isabella Piga
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Antonio Muscatello
- Infectious Diseases Unit, IRCCS Ca’ Granda Ospedale Maggiore Policlinico Foundation, 20122 Milano, Italy
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milano, 20122 Milano, Italy
- Respiratory Unit and Cystic Fibrosis Adult Center, Internal Medicine Department, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Andrea Favalli
- Istituto Nazionale di Genetica Molecolare (INGM), 20122 Milano, Italy
| | | | - Andrea Gori
- Department of Pathophysiology and Transplantation, University of Milano, 20122 Milano, Italy
- Infectious Diseases Unit, IRCCS Ca’ Granda Ospedale Maggiore Policlinico Foundation, 20122 Milano, Italy
| | - Alessandra Bandera
- Department of Pathophysiology and Transplantation, University of Milano, 20122 Milano, Italy
- Infectious Diseases Unit, IRCCS Ca’ Granda Ospedale Maggiore Policlinico Foundation, 20122 Milano, Italy
| | - Renata Grifantini
- Istituto Nazionale di Genetica Molecolare (INGM), 20122 Milano, Italy
| | - Fulvio Magni
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| |
Collapse
|