1
|
Wang Q, Zhang H, Jin Q, Wang X. Effects of Dietary Linoleic Acid on Blood Lipid Profiles: A Systematic Review and Meta-Analysis of 40 Randomized Controlled Trials. Foods 2023; 12:foods12112129. [PMID: 37297374 DOI: 10.3390/foods12112129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Th aim of this meta-analysis was to elucidate whether dietary linoleic acid (LA) supplementation affected blood lipid profiles, including triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), compared with other fatty acids. Embase, PubMed, Web of Science and the Cochrane Library databases, updated to December 2022, were searched. The present study employed weighted mean difference (WMD) and a 95% confidence interval (CI) to examine the efficacy of the intervention. Out of the 3700 studies identified, a total of 40 randomized controlled trials (RCTs), comprising 2175 participants, met the eligibility criteria. Compared with the control group, the dietary intake of LA significantly decreased the concentrations of LDL-C (WMD: -3.26 mg/dL, 95% CI: -5.78, -0.74, I2 = 68.8%, p = 0.01), and HDL-C (WMD: -0.64 mg/dL, 95% CI: -1.23, -0.06, I2 = 30.3%, p = 0.03). There was no significant change in the TG and TC concentrations. Subgroup analysis showed that the LA intake was significantly reduced in blood lipid profiles compared with saturated fatty acids. The effect of LA on lipids was not found to be dependent on the timing of supplementation. LA supplementation in an excess of 20 g/d could be an effective dose for lowering lipid profiles. The research results provide further evidence that LA intake may play a role in reducing LDL-C and HDL-C, but not TG and TC.
Collapse
Affiliation(s)
- Qiong Wang
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hui Zhang
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xingguo Wang
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Waiz M, Alvi SS, Khan MS. Potential dual inhibitors of PCSK-9 and HMG-R from natural sources in cardiovascular risk management. EXCLI JOURNAL 2022; 21:47-76. [PMID: 35221836 PMCID: PMC8859648 DOI: 10.17179/excli2021-4453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) stands amongst the leading causes of mortality worldwide and has attracted the attention of world's leading pharmaceutical companies in order to tackle such mortalities. The low-density lipoprotein-cholesterol (LDL-C) is considered the most prominent biomarker for the assessment of ASCVD risk. Distinct inhibitors of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-R), the chief hepatic cholesterogenic enzyme, are being used since last seven decades to manage hypercholesterolemia. On the other hand, discovery and the association of proprotein convertase subtilisin/kexin type-9 (PCSK-9) with increased ASCVD risk have established PCSK-9 as a novel therapeutic target in cardiovascular medicine. PCSK-9 is well reckoned to facilitate the LDL-receptor (LDL-R) degradation and compromised LDL-C clearance leading to the arterial atherosclerotic plaque formation. The currently available HMG-R inhibitors (statins) and PCSK-9 inhibitors (siRNA, anti-sense oligonucleotides, and monoclonal antibodies) have shown great promises in achieving LDL-C lowering goals, however, their life long prescriptions have raised significant concerns. These deficits associated with the synthetic HMG-R and PCSK-9 inhibitors called for the discovery of alternative therapeutic candidates with potential dual HMG-R and PCSK-9 inhibitory activities from natural origins. Therefore, this report firstly describes the mechanistic insights into the cholesterol homeostasis through HMG-R, PCSK-9, and LDL-R functionality and then compiles the pharmacological effects of natural secondary metabolites with special emphasis on their dual HMG-R and PCSK-9 inhibitory action. In conclusion, various natural products exhibit atheroprotective effects via targeting HMG-R and PCSK-9 activities and lipoprotein metabolism, however, further clinical assessments are still warranted prior their approval for ASCVD risk management in hypercholesterolemic patients.
Collapse
Affiliation(s)
- Mohd Waiz
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, U.P. 226026, India
| | - Sahir Sultan Alvi
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, U.P. 226026, India
| | - M Salman Khan
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, U.P. 226026, India
| |
Collapse
|
3
|
Bagherniya M, Johnston TP, Sahebkar A. Regulation of Apolipoprotein B by Natural Products and Nutraceuticals: A Comprehensive Review. Curr Med Chem 2021; 28:1363-1406. [PMID: 32338202 DOI: 10.2174/0929867327666200427092114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 11/22/2022]
Abstract
Cardiovascular Disease (CVD) is the most important and the number one cause of mortality in both developing and industrialized nations. The co-morbidities associated with CVD are observed from infancy to old age. Apolipoprotein B100 (Apo B) is the primary apolipoprotein and structural protein of all major atherogenic particles derived from the liver including Very-Low- Density Lipoproteins (VLDL), Intermediate-density Lipoprotein (IDL), and Low-density Lipoprotein (LDL) particles. It has been suggested that measurement of the Apo B concentration is a superior and more reliable index for the prediction of CVD risk than is the measurement of LDL-C. Nutraceuticals and medicinal plants have attracted significant attention as it pertains to the treatment of non-communicable diseases, particularly CVD, diabetes mellitus, hypertension, and Nonalcoholic Fatty Liver Disease (NAFLD). The effect of nutraceuticals and herbal products on CVD, as well as some of its risk factors such as dyslipidemia, have been investigated previously. However, to the best of our knowledge, the effect of these natural products, including herbal supplements and functional foods (e.g. fruits and vegetables as either dry materials, or their extracts) on Apo B has not yet been investigated. Therefore, the primary objective of this paper was to review the effect of bioactive natural compounds on plasma Apo B concentrations. It is concluded that, in general, medicinal plants and nutraceuticals can be used as complementary medicine to reduce plasma Apo B levels in a safe, accessible, and inexpensive manner in an attempt to prevent and treat CVD.
Collapse
Affiliation(s)
- Mohammad Bagherniya
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, United States
| | | |
Collapse
|
4
|
Nergiz-Unal R, Ulug E, Kisioglu B, Tamer F, Bodur M, Yalcimin H, Yuruk AA. Hepatic cholesterol synthesis and lipoprotein levels impaired by dietary fructose and saturated fatty acids in mice: Insight on PCSK9 and CD36. Nutrition 2020; 79-80:110954. [PMID: 32862122 DOI: 10.1016/j.nut.2020.110954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the uncertain effects of high saturated fatty acids (SFAs) or fructose intake on cholesterol and lipoproteins with an insight of proprotein convertase subtilisin/kexin type 9 (PCSK9)- and cluster of differentiation 36 (CD36)-induced mechanisms. METHODS Forty male C57 BL/6 mice (8 wks of age) were divided into four groups and fed ad libitum with standard chow or three isocaloric diets containing high SFAs (SFA group), monounsaturated fatty acids (MUFA group, vehicle), or fructose for 15 wks. Subsequently, mice were sacrificed and blood, liver, and heart were collected for further analysis. RESULTS Consequently, fructose or SFA intake resulted in higher plasma and liver total cholesterol (TC) levels, plasma low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol (HDL-C), apolipoprotein (Apo)-B levels, TC/HDL-C, and LDL-C/HDL-C ratios, and lower plasma levels of HDL-C and Apo-A1 (P < 0.05). Levels of 3-hydroxy-3-methylglutaryl-CoA reductase and acetyl-CoA acetyltransferase 1 enzymes in liver and CD36 levels in plasma were elevated by high SFAs and fructose intake (P < 0.05), whereas plasma PCSK9 levels were not significantly changed. Fructose and SFA intake increased PCSK9 and CD36 levels in the heart, along with increased CD36 levels in the liver (P < 0.05). Furthermore, plasma LDL-C was found to be positively correlated with liver PCSK9 (r = 0.85, P = 0.02), and CD36 (r = 0.70, P = 0.02) in the SFA and fructose groups. CONCLUSION High intakes of dietary SFAs and fructose might induce dysregulations in the cholesterol synthesis and blood lipoprotein levels via proposed nutrient-sensitive biomarkers PCSK9 and CD36 in liver and extrahepatic tissues involved in cholesterol homeostasis.
Collapse
Affiliation(s)
- Reyhan Nergiz-Unal
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey.
| | - Elif Ulug
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Betul Kisioglu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Funda Tamer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Mahmut Bodur
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ankara University, Ankara, Turkey
| | - Hacer Yalcimin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Armagan Aytug Yuruk
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|
5
|
Yue H, Qiu B, Jia M, Liu W, Guo XF, Li N, Xu ZX, Du FL, Xu T, Li D. Effects of α-linolenic acid intake on blood lipid profiles:a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2020; 61:2894-2910. [PMID: 32643951 DOI: 10.1080/10408398.2020.1790496] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
To investigate the effect of ALA intake on blood lipid profiles, including triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), very-low-density lipoprotein (VLDL-C) and ratio of TC to HDL-C. We systematically searched randomized controlled trials of ALA intervention on PubMed, Embase, Cochrane library and related references up to March 2018. The final values were calculated as weighted mean difference (WMD) by using a random effects model. Subgroup analysis and meta-regression were used to explore the source of heterogeneity. Generalized least square was performed for dose-response analysis. Forty-seven studies with 1305 individuals in the ALA arm and 1325 individuals in the control arm were identified. Compared with control group, dietary intake of ALA significantly reduced the concentrations of TG (WMD -0.101 mmol/L; 95% CI: -0.158 to -0.044 mmol/L; P = 0.001), TC (WMD -0.140 mmol/L; 95% CI: -0.224 to -0.056 mmol/L; P = 0.001), LDL-C (WMD -0.131 mmol/L; 95% CI: -0.191 to -0.071 mmol/L; P < 0.001), VLDL-C (WMD -0.121 mmol/L; 95% CI: -0.170 to -0.073 mmol/L; P < 0.001), TC/HDL-C ratio (WMD -0.165 mmol/L; 95% CI: -0.317 to -0.013 mmol/L; P = 0.033) and LDL-C/HDL-C ratio (WMD -0.158 mmol/L; 95% CI: -0.291 to -0.025 mmol/L; P = 0.02). There is no effect of ALA intake on HDL-C (WMD 0.008 mmol/L; 95% CI: -0.018 to 0.034 mmol/L; P = 0.541). Dose-response analysis indicated that 1 g per day increment of ALA was associated with a 0.0016 mmol/L, 0.0071 mmol/L, 0.0015 and 0.0061 mmol/L reduction in TG (95% CI: -0.0029 to -0.0002 mmol/L), TC (95% CI: -0.0085 to -0.0058 mmol/L), HDL-C (95% CI: -0.0020 to -0.0011 mmol/L) and LDL-C (95% CI: -0.0073 to -0.0049 mmol/L) levels, respectively. The effects of ALA intake on TG, TC and LDL-C concentrations were more obvious among Asian participants, and also more obvious on patients with hyperlipidemia or hyperglycemia compared to healthy individuals. Dietary ALA intervention improves blood lipid profiles by decreasing levels of TG, TC, LDL and VLDL-C. Our findings add to the evidence that increasing ALA intake could potentially prevent risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Hao Yue
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Food for Special Medical Purpose Engineering Technology Research Center, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan, China.,College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Bin Qiu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Food for Special Medical Purpose Engineering Technology Research Center, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan, China
| | - Min Jia
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Food for Special Medical Purpose Engineering Technology Research Center, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan, China
| | - Wei Liu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Food for Special Medical Purpose Engineering Technology Research Center, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan, China
| | - Xiao-Fei Guo
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Na Li
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Food for Special Medical Purpose Engineering Technology Research Center, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan, China.,College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Zhi-Xiang Xu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Fang-Ling Du
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Food for Special Medical Purpose Engineering Technology Research Center, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan, China
| | - Tongcheng Xu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Food for Special Medical Purpose Engineering Technology Research Center, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan, China
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Naturally Occurring PCSK9 Inhibitors. Nutrients 2020; 12:nu12051440. [PMID: 32429343 PMCID: PMC7284437 DOI: 10.3390/nu12051440] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/25/2022] Open
Abstract
Genetic, epidemiological and pharmacological data have led to the conclusion that antagonizing or inhibiting Proprotein convertase subtilisin/kexin type 9 (PCSK9) reduces cardiovascular events. This clinical outcome is mainly related to the pivotal role of PCSK9 in controlling low-density lipoprotein (LDL) cholesterol levels. The absence of oral and affordable anti-PCSK9 medications has limited the beneficial effects of this new therapeutic option. A possible breakthrough in this field may come from the discovery of new naturally occurring PCSK9 inhibitors as a starting point for the development of oral, small molecules, to be used in combination with statins in order to increase the percentage of patients reaching their LDL-cholesterol target levels. In the present review, we have summarized the current knowledge on natural compounds or extracts that have shown an inhibitory effect on PCSK9, either in experimental or clinical settings. When available, the pharmacodynamic and pharmacokinetic profiles of the listed compounds are described.
Collapse
|
7
|
Sundfør TM, Svendsen M, Heggen E, Dushanov S, Klemsdal TO, Tonstad S. BMI modifies the effect of dietary fat on atherogenic lipids: a randomized clinical trial. Am J Clin Nutr 2019; 110:832-841. [PMID: 31216575 DOI: 10.1093/ajcn/nqz113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/10/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND SFA intake increases LDL cholesterol whereas PUFA intake lowers it. Whether the lipid response to dietary fat differs between normal-weight and obese persons is of relevance to dietary recommendations for obese populations. OBJECTIVES We compared the effect of substituting unsaturated fat for saturated fat on LDL cholesterol and apoB concentrations in normal-weight (BMI ≤ 25 kg/m2) and obese (BMI: 30-45) subjects with elevated LDL cholesterol. METHODS We randomly assigned 83 men and women (aged 21-70 y) stratified by BMI (normal: n = 44; obese: n = 39) and elevated LDL cholesterol (mean ± SD, normal weight 4.6 ± 0.9 mmol/L; obese 4.4 ± 0.8 mmol/L) to either a PUFA diet enriched with oil-based margarine ( n = 42) or an SFA diet enriched with butter (n = 41) for 6 wk. RESULTS Seven-day dietary records showed differences of ∼9 energy percent (E%) in SFA and ∼4 E% in PUFA between the SFA and PUFA groups. In the total study population, the PUFA diet compared with the SFA diet lowered LDL cholesterol (-0.31 mmol/L; 95% CI: -0.47, -0.15 mmol/L, compared with 0.32 mmol/L; 95% CI: 0.18, 0.47 mmol/L; P < 0.001) and apoB (-0.08 g/L; 95% CI: -0.11, -0.05 g/L, compared with 0.07 g/L; 95% CI: 0.03, 0.10 g/L; P < 0.001). Tests of the BMI × diet interaction were significant for total cholesterol, LDL cholesterol, and apoB ( P values ≤ 0.009). In normal-weight compared with obese participants post-hoc comparisons found that the respective changes in LDL cholesterol were 9.7% (95% CI: 5.3%, 14.2%) compared with 5.3% (95% CI: -0.7%, 11.2%), P = 0.206, in the SFA group, and -10.4% (95% CI: -15.2%, -5.7%) compared with -2.3% (95% CI: -7.4%, 2.8%), P = 0.020, in the PUFA group. ApoB changes were 7.5% (95% CI: 3.5%, 11.4%) compared with 3.0% (95% CI: -1.7%, 7.7%), P = 0.140, in the SFA group, and -8.9% (95% CI: -12.6%, -5.2%) compared with -3.8% (95% CI: -6.3%, -1.2%), P = 0.021, in the PUFA group. Responses to dietary fat were not associated with changes in polyprotein convertase subtisilin/kexin type 9 concentrations. CONCLUSIONS BMI modifies the effect of PUFAs compared with SFAs, with smaller improvements in atherogenic lipid concentrations in obese than in normal-weight individuals, possibly supporting adjustment of dietary recommendations according to BMI. This trial was registered with www.clinicaltrials.gov as NCT02589769.
Collapse
Affiliation(s)
- Tine Mejlbo Sundfør
- Section for Preventive Cardiology, Department of Endocrinology, Morbid Obesity, and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Mette Svendsen
- Section for Preventive Cardiology, Department of Endocrinology, Morbid Obesity, and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Eli Heggen
- Section for Preventive Cardiology, Department of Endocrinology, Morbid Obesity, and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Sasha Dushanov
- Section for Preventive Cardiology, Department of Endocrinology, Morbid Obesity, and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Tor Ole Klemsdal
- Section for Preventive Cardiology, Department of Endocrinology, Morbid Obesity, and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Serena Tonstad
- Section for Preventive Cardiology, Department of Endocrinology, Morbid Obesity, and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
8
|
Ghobadi S, Hassanzadeh-Rostami Z, Mohammadian F, Zare M, Faghih S. Effects of Canola Oil Consumption on Lipid Profile: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. J Am Coll Nutr 2018; 38:185-196. [PMID: 30381009 DOI: 10.1080/07315724.2018.1475270] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hyperlipidemia is a well- known risk factor of cardiovascular disease. A healthy diet containing vegetable oils such as canola oil (CO) may help to reduce serum lipids. This study aimed to quantify the effects of CO on lipid parameters using a systematic review and meta-analysis of randomized controlled trials. PubMed, Web of Science, Scopus, ProQuest, and Embase were systematically searched until December 2017, with no time and design restrictions. Also, a manual search was performed to find extra relevant articles. Lipid parameters including total cholesterol (TC), low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), triglycerides (TG), apolipoprotein A1 (Apo A1), and apolipoprotein B (Apo B) were entered the meta-analysis. Weighed mean difference (WMD) and 95% confidence interval (CI) were stated as the effect size. Sensitivity analyses and prespecified subgroup were conducted to evaluate potential heterogeneity. Twenty-seven trials, comprising 1359 participants, met the eligibility criteria. Results of this study showed that CO consumption significantly reduced TC (-7.24 mg/dl, 95% CI, -12.1 to -2.7), and LDL (-6.4 mg/dl, 95% CI, -10.8 to -2), although it had no effects on HDL, TG, Apo B, and Apo A1. Effects of CO on TC and LDL significantly decreased after CO consumption in subgroups of >50 years of age participants and >30 intervention duration subgroup. Moreover, CO decreased LDL and TC compared to sunflower oil and saturated fat. This meta-analysis suggested that CO consumption improves serum TC and LDL, which could postpone heart disease progression. Key Teaching Points CO consumption could decrease serum TC and LDL, although it had no effects on other blood lipids. There was an overall significant effect of canola oil on TC and LDL compared to sunflower oil and saturated fats. CO could have beneficial effects on serum TC and LDL just when consumed longer than 30 days. CO consumption improved lipid profiles in participants older than 50 years.
Collapse
Affiliation(s)
- Saeed Ghobadi
- a Social Determinants of Health Research Center, Saveh University of Medical Sciences , Saveh , Iran.,b Nutrition Research Center, School of Nutrition and Food Sciences , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Zahra Hassanzadeh-Rostami
- c Department of Community Nutrition, School of Nutrition and Food Sciences , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Fatemeh Mohammadian
- d Department of Physiology, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Morteza Zare
- e Neuroscience Research Center , Institute of Neuropharmacology, Kerman University of Medical Sciences , Kerman , Iran
| | - Shiva Faghih
- b Nutrition Research Center, School of Nutrition and Food Sciences , Shiraz University of Medical Sciences , Shiraz , Iran.,c Department of Community Nutrition, School of Nutrition and Food Sciences , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
9
|
Adorni MP, Ferri N, Marchianò S, Trimarco V, Rozza F, Izzo R, Bernini F, Zimetti F. Effect of a novel nutraceutical combination on serum lipoprotein functional profile and circulating PCSK9. Ther Clin Risk Manag 2017; 13:1555-1562. [PMID: 29270015 PMCID: PMC5729828 DOI: 10.2147/tcrm.s144121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background A beneficial effect on cardiovascular risk may be obtained by improving lipid-related serum lipoprotein functions such as high-density lipoproteins (HDLs) cholesterol efflux capacity (CEC) and serum cholesterol loading capacity (CLC) and by reducing proprotein convertase subtilisin kexin type 9 (PCSK9), independently of lipoprotein concentrations. Aim We aimed to evaluate the effect of an innovative nutraceutical (NUT) combination containing red yeast rice (monacolin K 3.3 mg), berberine 531.25 mg and leaf extract of Morus alba 200 mg (LopiGLIK®), on HDL-CEC, serum CLC and on circulating PCSK9 levels. Materials and methods Twenty three dyslipidemic subjects were treated for 4 weeks with the above NUT combination. HDL-CEC was measured using specific cell-based radioisotopic assays; serum CLC and PCSK9 concentrations were measured fluorimetrically and by enzyme-linked immunosorbent assay, respectively. Results The NUT combination significantly reduced plasma level of the total cholesterol and low-density lipoprotein cholesterol (−9.8% and −12.6%, respectively). Despite no changes in HDL-cholesterol, the NUT combination improved total HDL-CEC in 83% of the patients, by an average of 16%, as a consequence of the increase mainly of the ATP-binding cassette A1-mediated CEC (+28.5%). The NUT combination significantly reduced serum CLC (−11.4%) while it did not change PCSK9 plasma levels (312.9±69.4 ng/mL vs 334.8±103.5 mg/L, before and after treatment, respectively). Conclusion The present NUT combination improves the serum lipoprotein functional profile providing complementary beneficial effects, without any detrimental increase of PCSK9 plasma levels.
Collapse
Affiliation(s)
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua
| | - Silvia Marchianò
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan
| | | | - Francesco Rozza
- Hypertension Research Center, Federico II University, Naples, Italy
| | - Raffaele Izzo
- Hypertension Research Center, Federico II University, Naples, Italy
| | | | | |
Collapse
|
10
|
Xu D, Chen J, Wu C, Guo Y, Gui Y. Questions to the article by Boyer et al. J Clin Lipidol 2017; 11:579. [PMID: 28502517 DOI: 10.1016/j.jacl.2016.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingyuan Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chenlu Wu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuan Guo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yajun Gui
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Saely CH, Drexel H. Impact of diet and exercise on proprotein convertase subtilisin/kexin 9: A mini-review. Vascul Pharmacol 2016; 87:10-13. [PMID: 27746375 DOI: 10.1016/j.vph.2016.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/20/2016] [Accepted: 10/02/2016] [Indexed: 02/07/2023]
Abstract
Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) plays an important role in the regulation of blood cholesterol levels, and inhibition of PCSK9 with monoclonal antibodies reduces LDL cholesterol by more than 50% over and above what can be achieved with statins or ezetimibe alone. Diet and exercise influence PCSK9 levels; however data on this issue are scarce. Regarding diet, a high oleic canola/docosahexaenoic acid oil blend, marine n-3 polyunsaturated fatty acids, vegetable n-6 polyunsaturated fatty acids, a Mediterranean style diet and acute fasting, but not necessarily weight reduction are associated with low PCSK9 concentrations, whereas a high fructose diet is associated with high PCSK9 concentrations. Animal data regarding the effect of diet on PCSK9 must be interpreted with caution, because even between rodent species, significant differences become apparent. Regarding exercise, a decrease in PCSK9 has been reported in one investigation along with an intervention promoting active use of stairs rather than elevators. Reports from sparse animal studies regarding the effect of exercise on PCSK9 have yielded varying results.
Collapse
Affiliation(s)
- Christoph H Saely
- Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria; Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria; Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Heinz Drexel
- Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria; Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria; Private University of the Principality of Liechtenstein, Triesen, Liechtenstein; Drexel College University of Medicine, Philadelphia, PA, USA.
| |
Collapse
|