1
|
Lapeña-Motilva J, Fouz-Ruiz D, Ruiz-Ortiz M, Sanpedro-Murillo E, Gómez-Enjuto S, Hernando-Jimenez I, Frias-González A, Suso AS, Merida-Herrero E, Benito-León J. Cerebral Hemodynamic Alterations in Dialysis COVID-19 Survivors: A Transcranial Doppler Ultrasound Study on Intracranial Pressure Dynamics. KIDNEY AND DIALYSIS 2025; 5:12. [PMID: 40336917 PMCID: PMC12056549 DOI: 10.3390/kidneydial5020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Background We observed a COVID-19 survivor with a ventriculoperitoneal shunt who developed increased intracranial pressure during hemodialysis. We hypothesized that post-SARS-CoV-2 infection, patients may have altered cerebral perfusion pressure regulation in response to intracranial pressure changes. Methods From April to July 2021, we recruited dialysis patients with prior COVID-19 from two Madrid nephrology departments. We also recruited age- and sex-matched dialysis patients without prior SARS-CoV-2 infection. Transcranial Doppler ultrasound was used to measure the middle cerebral artery velocity before dialysis and 30, 60, and 90 min after the initiation of dialysis. Results The final sample included 37 patients (16 post-COVID-19 and 21 without). The COVID-19 survivors showed a significant pulsatility index increase between 30 and 60 min compared to those without COVID-19. They also had lower heart rates. Conclusions We propose two mechanisms: an increase in intracranial pressure or a decreased arterial elasticity. A lower heart rate was also observed in the COVID-19 survivors. This study highlights SARS-CoV-2's multifaceted effects, including potential long-term vascular and cerebral repercussions.
Collapse
Affiliation(s)
- José Lapeña-Motilva
- Department of Neurology, 12 de Octubre University Hospital, Av. de Córdoba, s/n, 28041 Madrid, Spain
| | - Daniel Fouz-Ruiz
- Department of Neurology, Severo Ochoa University Hospital, Av. de Orellana, s/n, 28914 Leganés, Spain
| | - Mariano Ruiz-Ortiz
- Department of Neurology, 12 de Octubre University Hospital, Av. de Córdoba, s/n, 28041 Madrid, Spain
| | - Eduardo Sanpedro-Murillo
- Department of Neurology, 12 de Octubre University Hospital, Av. de Córdoba, s/n, 28041 Madrid, Spain
| | - Sara Gómez-Enjuto
- Department of Neurology, Severo Ochoa University Hospital, Av. de Orellana, s/n, 28914 Leganés, Spain
| | - Inés Hernando-Jimenez
- Department of Neurology, Severo Ochoa University Hospital, Av. de Orellana, s/n, 28914 Leganés, Spain
| | - Aida Frias-González
- Department of Nephrology, 12 de Octubre University Hospital, Av. de Córdoba, s/n, 28041 Madrid, Spain
| | - Andrea Soledad Suso
- Department of Nephrology, Severo Ochoa University Hospital, Av. de Orellana, s/n, 28914 Leganés, Spain
| | - Evangelina Merida-Herrero
- Department of Nephrology, 12 de Octubre University Hospital, Av. de Córdoba, s/n, 28041 Madrid, Spain
| | - Julián Benito-León
- Department of Neurology, 12 de Octubre University Hospital, Av. de Córdoba, s/n, 28041 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Av. de Córdoba, s/n, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo, 5, 28031 Madrid, Spain
- Department of Medicine, Complutense University, Pl. de Ramón y Cajal, s/n, 28040 Madrid, Spain
| |
Collapse
|
2
|
Loboda D, Golba KS, Gurowiec P, Bredelytė A, Razbadauskas A, Sarecka-Hujar B. Variability in Arterial Stiffness and Vascular Endothelial Function After COVID-19 During 1.5 Years of Follow-Up-Systematic Review and Meta-Analysis. Life (Basel) 2025; 15:520. [PMID: 40283075 PMCID: PMC12028431 DOI: 10.3390/life15040520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
Increasing long-term observations suggest that coronavirus disease 2019 (COVID-19) vasculopathy may persist even 1.5 years after the acute phase, potentially accelerating the development of atherosclerotic cardiovascular diseases. This study systematically reviewed the variability of brachial flow-mediated dilation (FMD) and carotid-femoral pulse wave velocity (cfPWV) from the acute phase of COVID-19 through 16 months of follow-up (F/U). Databases including PubMed, Web of Science, MEDLINE, and Embase were screened for a meta-analysis without language or date restrictions (PROSPERO reference CRD42025642888, last search conducted on 1 February 2025). The quality of the included studies was assessed using the Newcastle-Ottawa Quality Scale. We considered all studies (interventional pre-post studies, prospective observational studies, prospective randomized, and non-randomized trials) that assessed FMD or cfPWV in adults (aged ≥ 18 years) with or after laboratory-confirmed COVID-19 compared with non-COVID-19 controls or that assessed changes in these parameters during the F/U. Twenty-one studies reported differences in FMD, and 18 studies examined cfPWV between COVID-19 patients and control groups during various stages: acute/subacute COVID-19 (≤30 days from disease onset), early (>30-90 days), mid-term (>90-180 days), late (>180-270 days), and very late (>270 days) post-COVID-19 recovery. Six studies assessed variability in FMD, while nine did so for cfPWV during the F/U. Data from 14 FMD studies (627 cases and 694 controls) and 15 cfPWV studies (578 cases and 703 controls) were included in our meta-analysis. FMD showed a significant decrease compared to controls during the acute/subacute phase (standardized mean difference [SMD]= -2.02, p < 0.001), with partial improvements noted from the acute/subacute phase to early recovery (SMD = 0.95, p < 0.001) and from early to mid-term recovery (SMD = 0.92, p = 0.006). Normalization compared to controls was observed in late recovery (SMD = 0.12, p = 0.69). In contrast, cfPWV values, which were higher than controls in the acute/subacute phase (SMD = 1.27, p < 0.001), remained elevated throughout the F/U, with no significant changes except for a decrease from mid-term to very late recovery (SMD= -0.39, p < 0.001). In the very late recovery, cfPWV values remained higher than those of controls (SMD = 0.45, p = 0.010). In the manuscript, we discuss how various factors, including the severity of acute COVID-19, the persistence of long-term COVID-19 syndrome, and the patient's initial vascular age, depending on metrics age and cardiovascular risk factors, influenced the time and degree of FMD and cfPWV improvement.
Collapse
Affiliation(s)
- Danuta Loboda
- Department of Electrocardiology and Heart Failure, Medical University of Silesia in Katowice, 40-635 Katowice, Poland; (K.S.G.); (P.G.)
| | - Krzysztof S. Golba
- Department of Electrocardiology and Heart Failure, Medical University of Silesia in Katowice, 40-635 Katowice, Poland; (K.S.G.); (P.G.)
| | - Piotr Gurowiec
- Department of Electrocardiology and Heart Failure, Medical University of Silesia in Katowice, 40-635 Katowice, Poland; (K.S.G.); (P.G.)
| | - Aelita Bredelytė
- Faculty of Health Sciences, Klaipėda University, LT-92294 Klaipeda, Lithuania; (A.B.); (A.R.)
| | - Artūras Razbadauskas
- Faculty of Health Sciences, Klaipėda University, LT-92294 Klaipeda, Lithuania; (A.B.); (A.R.)
- Chemotherapy Unit, Department of Oncology, Klaipeda University Hospital, LT-92288 Klaipeda, Lithuania
| | - Beata Sarecka-Hujar
- Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland;
| |
Collapse
|
3
|
Choi TG, Kim JY, Seong JY, Min HJ, Jung YJ, Kim YW, Cho MJ, Kim HJ, Kunutsor SK, Heffernan KS, Jae SY. Impaired Endothelial Function in Individuals With Post-Acute Sequelae of COVID-19: Effects of Combined Exercise Training. J Cardiopulm Rehabil Prev 2025; 45:146-152. [PMID: 40014640 DOI: 10.1097/hcr.0000000000000928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
PURPOSE We investigated the presence of impaired endothelial function in individuals with post-acute sequelae of coronavirus disease-2019 (PASC) compared to healthy individuals and explored the efficacy of combined exercise training in restoring or improving endothelial function in those with PASC. METHODS Study I was a cross-sectional study which compared endothelial function between individuals with PASC (n = 29, mean age 22.9 ± 3.9 year) and healthy individuals (n = 42, mean age 21.7 ± 2.0 year). Study II, an intervention design, explored if combined exercise training (n = 14) could reverse the decline in endothelial function associated with PASC compared to controls (n = 14). The combined exercise program included aerobic, resistance, and inspiratory muscle training administered for 8 weeks. We measured endothelial function using flow-mediated dilation of the brachial artery and assessed peak oxygen uptake (VO2peak), dyspnea, and fatigue before and after the intervention. RESULTS Individuals with PASC exhibited significantly lower endothelial function compared to healthy controls (4.95 ± 2.0% vs 8.00 ± 2.4%, P < .001). The exercise group showed a significant increase in endothelial function (4.73 ± 1.5% to 7.98 ± 2.4%) as opposed to the control group (5.31 ± 2.5% to 6.30 ± 2.5%) (interaction effect: P = .008), reaching levels similar to those in healthy individuals. Additionally, the exercise group demonstrated improvement in VO2peak (38.3 ± 6.4 ml/min/kg to 42.8 ± 7.3 ml/min/kg, P < .001) and a reduction in dyspnea and fatigue compared to the control group (P < .001). CONCLUSIONS Having PASC is associated with impaired endothelial function, but combined exercise training effectively restores it, making it a promising lifestyle intervention for vascular function in PASC.
Collapse
Affiliation(s)
- Tae Gu Choi
- Author Affiliations: Department of Sport Science, University of Seoul, Seoul, Republic of Korea (Mrs Choi, J.Y. Kim, Seong, Jung and Y.W. Kim, Ms Min, and Drs Cho, H.J. Kim, and Jae); Diabetes Research Centre, Real World Evidence Unit, Leicester General Hospital, University of Leicester, Leicester, UK (Dr Kunutsor); Section of Cardiology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Saint Boniface Hospital, Winnipeg, Canada (Dr Kunutsor); Graduate Program of Movement Science and Education, Columbia University, New York, NY, USA (Dr Heffernan); and Graduate School of Urban Public Health, University of Seoul, Seoul, Republic of Korea (Dr Jae)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Mauriello A, Correra A, Maratea AC, Caturano A, Liccardo B, Perrone MA, Giordano A, Nigro G, D’Andrea A, Russo V. Serum Lipids, Inflammation, and the Risk of Atrial Fibrillation: Pathophysiological Links and Clinical Evidence. J Clin Med 2025; 14:1652. [PMID: 40095683 PMCID: PMC11899858 DOI: 10.3390/jcm14051652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/19/2025] Open
Abstract
Dyslipidemia is a metabolic disorder characterized by quantitative and/or qualitative abnormalities in serum lipid levels. Elevated serum cholesterol levels can modify the turnover and recruitment of ionic channels in myocytes and cellular homeostasis, including those of inflammatory cells. Experimental and clinical data indicate that inflammation is implicated in the pathophysiology of atrial remodeling, which is the substrate of atrial fibrillation (AF). Data about the association between increased lipid serum levels and AF are few and contrasting. Lipoprotein (a), adiposity, and inflammation seem to be the main drivers of AF; in contrast, low-density lipoproteins, high-density lipoproteins and triglycerides are not directly involved in AF onset. The present review aimed to describe the pathophysiological link between dyslipidemia and AF, the efficacy of lipid-lowering therapies in atherosclerotic cardiovascular disease (ASCVD) patients with and without AF, and the impact of lipid-lowering therapies on AF incidence.
Collapse
Affiliation(s)
- Alfredo Mauriello
- Cardiology Unit, Department of Medical and Translational Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (A.M.); (A.C.M.); (B.L.); (G.N.)
- Cardiology and Intensive Care Unit, Department of Cardiology, “Umberto I” Hospital, 84014 Nocera Inferiore, Italy;
- Intensive Cardiac Care Unit, “San Giuseppe Moscati” Hospital, ASL Caserta 81031 Aversa, Italy;
| | - Adriana Correra
- Intensive Cardiac Care Unit, “San Giuseppe Moscati” Hospital, ASL Caserta 81031 Aversa, Italy;
| | - Anna Chiara Maratea
- Cardiology Unit, Department of Medical and Translational Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (A.M.); (A.C.M.); (B.L.); (G.N.)
| | - Alfredo Caturano
- Internal Medicine Unit, Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy;
| | - Biagio Liccardo
- Cardiology Unit, Department of Medical and Translational Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (A.M.); (A.C.M.); (B.L.); (G.N.)
| | - Marco Alfonso Perrone
- Department of Cardiology and CardioLab, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Gerardo Nigro
- Cardiology Unit, Department of Medical and Translational Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (A.M.); (A.C.M.); (B.L.); (G.N.)
| | - Antonello D’Andrea
- Cardiology and Intensive Care Unit, Department of Cardiology, “Umberto I” Hospital, 84014 Nocera Inferiore, Italy;
| | - Vincenzo Russo
- Cardiology Unit, Department of Medical and Translational Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (A.M.); (A.C.M.); (B.L.); (G.N.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| |
Collapse
|
5
|
Leitzke M, Roach DT, Hesse S, Schönknecht P, Becker GA, Rullmann M, Sattler B, Sabri O. Long COVID - a critical disruption of cholinergic neurotransmission? Bioelectron Med 2025; 11:5. [PMID: 40011942 DOI: 10.1186/s42234-025-00167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Following the COVID-19 pandemic, there are many chronically ill Long COVID (LC) patients with different symptoms of varying degrees of severity. The pathological pathways of LC remain unclear until recently and make identification of path mechanisms and exploration of therapeutic options an urgent challenge. There is an apparent relationship between LC symptoms and impaired cholinergic neurotransmission. METHODS This paper reviews the current literature on the effects of blocked nicotinic acetylcholine receptors (nAChRs) on the main affected organ and cell systems and contrasts this with the unblocking effects of the alkaloid nicotine. In addition, mechanisms are presented that could explain the previously unexplained phenomenon of post-vaccination syndrome (PVS). The fact that not only SARS-CoV-2 but numerous other viruses can bind to nAChRs is discussed under the assumption that numerous other post-viral diseases and autoimmune diseases (ADs) may also be due to impaired cholinergic transmission. We also present a case report that demonstrates changes in cholinergic transmission, specifically, the availability of α4β2 nAChRs by using (-)-[18F]Flubatine whole-body positron emission tomography (PET) imaging of cholinergic dysfunction in a LC patient along with a significant neurological improvement before and after low-dose transcutaneous nicotine (LDTN) administration. Lastly, a descriptive analysis and evaluation were conducted on the results of a survey involving 231 users of LDTN. RESULTS A substantial body of research has emerged that offers a compelling explanation for the phenomenon of LC, suggesting that it can be plausibly explained because of impaired nAChR function in the human body. Following a ten-day course of transcutaneous nicotine administration, no enduring neuropathological manifestations were observed in the patient. This observation was accompanied by a significant increase in the number of free ligand binding sites (LBS) of nAChRs, as determined by (-)-[18F]Flubatine PET imaging. The analysis of the survey shows that the majority of patients (73.5%) report a significant improvement in the symptoms of their LC/MEF/CFS disease as a result of LDTN. CONCLUSIONS In conclusion, based on current knowledge, LDTN appears to be a promising and safe procedure to relieve LC symptoms with no expected long-term harm.
Collapse
Affiliation(s)
- Marco Leitzke
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany.
- Department of Anesthesiology, Intensive Care Medicine, Pain- and Palliative Therapy Helios Clinics, Colditzer Straße 48, Leisnig, 04703, Germany.
| | - Donald Troy Roach
- School of Comillas University, Renegade Research, Madrid, 28015, Spain
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Peter Schönknecht
- Department of Psychiatry and Neurology Altscherbitz, Schkeuditz, 04435, Germany
- Outpatient Department for Forensic-Psychiatric Research, University of Leipzig, Leipzig, 04103, Germany
| | - Georg-Alexander Becker
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Michael Rullmann
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Bernhardt Sattler
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| |
Collapse
|
6
|
Munteanu AM, Lighezan DF, Nicoras VA, Dumitrescu P, Bodea OM, Velimirovici DE, Otiman G, Banciu C, Nisulescu DD. Effects of COVID-19 Infection on Endothelial Vascular Function. Viruses 2025; 17:305. [PMID: 40143236 PMCID: PMC11946056 DOI: 10.3390/v17030305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/15/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Most studies analyzing data from patients who experienced at least one episode of acute COVID-19 infection have attributed the cascade of immediate and late complications to disruption of the inflammatory system and neutrophil activity in particular. Among the various functions of neutrophils is the release of pro-inflammatory mediators, including interleukin-6 (IL-6). Oxidative stress induced by pro-inflammatory mediators secreted by neutrophils leads to vascular endothelial dysfunction. Neutrophil counts and the neutrophil-to-lymphocyte ratio (NLR) are directly associated with COVID-19 patient survival, with higher values correlating with increased mortality. To assess endothelial dysfunction secondary to COVID-19 infection, we conducted a retrospective study involving two patient cohorts, each comprising 99 participants: one group with a history of COVID-19 infection and another without. The study aimed to demonstrate the presence of endothelial dysfunction in patients with moderate COVID-19 infection using flow-mediated dilatation (FMD) of the brachial artery and to evaluate its correlation with key inflammatory markers (erythrocyte sedimentation rate-ESR, fibrinogen, NLR, IL-6). FMD values were significantly reduced (p < 0.0001) in post-COVID-19 patients compared to those without prior infection. ESR (p < 0.0001), fibrinogen (p < 0.0001), C-reactive protein (CRP) (p < 0.0001), leukocyte count (p < 0.0001), and granulocyte count (p < 0.0001) were inversely correlated with FMD values. Among post-COVID-19 patients, all analyzed parameters demonstrated a statistically significant impact on FMD, with ESR showing the strongest effect, accounting for nearly 63% of the dependency. ANOVA testing confirmed an inverse association between NLR quartiles and FMD, as well as between IL-6 levels and FMD. In conclusion, this study highlights the presence of endothelial dysfunction in post-COVID-19 patients, as assessed by FMD, and demonstrates statistically significant inverse correlations between FMD values, IL-6 levels, and the neutrophil-to-lymphocyte ratio.
Collapse
Affiliation(s)
- Andreea Mara Munteanu
- Department V, Internal Medicine I—Discipline of Internal Medicine IV, Center of Advanced Research in Cardiology and Hemostasology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Daniel Florin Lighezan
- Department V, Internal Medicine I—Discipline of Medical Semiology I, Center of Advanced Research in Cardiology and Hemostasology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Violeta Ariana Nicoras
- General Medicine Faculty, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Patrick Dumitrescu
- General Medicine Faculty, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Olivia-Maria Bodea
- Department VI—Cardiology, University Clinic of Internal Medicine and Ambulatory Care, Prevention and Cardiovascular Recovery, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Dana Emilia Velimirovici
- Department VI—Cardiology, University Clinic of Internal Medicine and Ambulatory Care, Prevention and Cardiovascular Recovery, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Gabriela Otiman
- Department VI—Cardiology, University Clinic of Internal Medicine and Ambulatory Care, Prevention and Cardiovascular Recovery, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Christian Banciu
- Department V, Internal Medicine I—Discipline of Internal Medicine IV, Center of Advanced Research in Cardiology and Hemostasology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Daniel-Dumitru Nisulescu
- General Medicine Faculty, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| |
Collapse
|
7
|
Han E, Müller-Zlabinger K, Hasimbegovic E, Poschenreithner L, Kastner N, Maleiner B, Hamzaraj K, Spannbauer A, Riesenhuber M, Vavrikova A, Domanig A, Nitsche C, Lukovic D, Zelniker TA, Gyöngyösi M. Circulating Autoantibodies Against Vasoactive Biomarkers Related to Orthostatic Intolerance in Long COVID Patients Compared to No-Long-COVID Populations: A Case-Control Study. Biomolecules 2025; 15:300. [PMID: 40001603 PMCID: PMC11853648 DOI: 10.3390/biom15020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/15/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
Endothelial dysfunction mediated by elevated levels of autoantibodies against vasoactive peptides occurring after COVID-19 infection is proposed as a possible pathomechanism for orthostatic intolerance in long COVID patients. This case-control study comprised 100 long COVID patients from our prospective POSTCOV registry and three control groups, each consisting of 20 individuals (Asymptomatic post-COVID group; Healthy group = pan-negative for antispike protein of SARS-CoV-2; Vaccinated healthy group = no history of COVID-19 and vaccinated). Autoantibodies towards muscarinic acetylcholine receptor M3, endothelin type A receptor (ETAR), beta-2 adrenergic receptor (Beta-2 AR), angiotensin II receptor 1 and angiotensin 1-7 (Ang1-7) concentrations were measured by enzyme-linked immunosorbent assay in long COVID patients and controls. Orthostatic intolerance was defined as inappropriate sinus tachycardia, postural tachycardia, orthostatic hypotonia and other dysautonomia symptoms, such as dizziness or blurred vision (n = 38 long COVID patients). Autoantibody concentrations were compared with routine laboratory parameters and quality of life questionnaires (EQ-5D). The concentration of ETAR autoantibodies were significantly higher in long COVID, Asymptomatic and Vaccinated groups compared to the antispike protein pan-negative Healthy group. A trend towards higher plasma levels of Beta-2 AR and Ang1-7 was measured in long COVID patients, not related to presence of orthostatic intolerance. ETAR autoantibody concentration showed significant positive correlation with the EQ-5D item "Problems in performing usual activities".
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mariann Gyöngyösi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria (T.A.Z.)
| |
Collapse
|
8
|
Gáspár Z, Szabó BG, Ceglédi A, Lakatos B. Human herpesvirus reactivation and its potential role in the pathogenesis of post-acute sequelae of SARS-CoV-2 infection. GeroScience 2025; 47:167-187. [PMID: 39207648 PMCID: PMC11872864 DOI: 10.1007/s11357-024-01323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
The emergence of SARS-CoV-2 has precipitated a global pandemic with substantial long-term health implications, including the condition known as post-acute sequelae of SARS-CoV-2 infection (PASC), commonly referred to as Long COVID. PASC is marked by persistent symptoms such as fatigue, neurological issues, and autonomic dysfunction that persist for months beyond the acute phase of COVID-19. This review examines the potential role of herpesvirus reactivation, specifically Epstein-Barr virus (EBV) and cytomegalovirus (CMV), in the pathogenesis of PASC. Elevated antibody titers and specific T cell responses suggest recent herpesvirus reactivation in some PASC patients, although viremia is not consistently detected. SARS-CoV-2 exhibits endothelial trophism, directly affecting the vascular endothelium and contributing to microvascular pathologies. These pathologies are significant in PASC, where microvascular dysfunction may underlie various chronic symptoms. Similarly, herpesviruses like CMV also exhibit endothelial trophism, which may exacerbate endothelial damage when reactivated. Evidence suggests that EBV and CMV reactivation could indirectly contribute to the immune dysregulation, immunosenescence, and autoimmune responses observed in PASC. Additionally, EBV may play a role in the genesis of neurological symptoms through creating mitochondrial dysfunction, though direct confirmation remains elusive. The reviewed evidence suggests that while herpesviruses may not play a direct role in the pathogenesis of PASC, their potential indirect effects, especially in the context of endothelial involvement, warrant further investigation.
Collapse
Affiliation(s)
- Zsófia Gáspár
- School of PhD Studies, Semmelweis University, Üllői Street 26, 1085, Budapest, Hungary
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Flórián Street 5-7, 1097, Budapest, Hungary
| | - Bálint Gergely Szabó
- School of PhD Studies, Semmelweis University, Üllői Street 26, 1085, Budapest, Hungary.
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Flórián Street 5-7, 1097, Budapest, Hungary.
- Departmental Group of Infectious Diseases, Department of Internal Medicine and Haematology, Semmelweis University, Albert Flórián Street 5-7, 1097, Budapest, Hungary.
| | - Andrea Ceglédi
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Flórián Street 5-7, 1097, Budapest, Hungary
| | - Botond Lakatos
- School of PhD Studies, Semmelweis University, Üllői Street 26, 1085, Budapest, Hungary
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Flórián Street 5-7, 1097, Budapest, Hungary
- Departmental Group of Infectious Diseases, Department of Internal Medicine and Haematology, Semmelweis University, Albert Flórián Street 5-7, 1097, Budapest, Hungary
| |
Collapse
|
9
|
Fekete M, Lehoczki A, Szappanos Á, Toth A, Mahdi M, Sótonyi P, Benyó Z, Yabluchanskiy A, Tarantini S, Ungvari Z. Cerebromicrovascular mechanisms contributing to long COVID: implications for neurocognitive health. GeroScience 2025; 47:745-779. [PMID: 39777702 PMCID: PMC11872997 DOI: 10.1007/s11357-024-01487-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Long COVID (also known as post-acute sequelae of SARS-CoV-2 infection [PASC] or post-COVID syndrome) is characterized by persistent symptoms that extend beyond the acute phase of SARS-CoV-2 infection, affecting approximately 10% to over 30% of those infected. It presents a significant clinical challenge, notably due to pronounced neurocognitive symptoms such as brain fog. The mechanisms underlying these effects are multifactorial, with mounting evidence pointing to a central role of cerebromicrovascular dysfunction. This review investigates key pathophysiological mechanisms contributing to cerebrovascular dysfunction in long COVID and their impacts on brain health. We discuss how endothelial tropism of SARS-CoV-2 and direct vascular infection trigger endothelial dysfunction, impaired neurovascular coupling, and blood-brain barrier disruption, resulting in compromised cerebral perfusion. Furthermore, the infection appears to induce mitochondrial dysfunction, enhancing oxidative stress and inflammation within cerebral endothelial cells. Autoantibody formation following infection also potentially exacerbates neurovascular injury, contributing to chronic vascular inflammation and ongoing blood-brain barrier compromise. These factors collectively contribute to the emergence of white matter hyperintensities, promote amyloid pathology, and may accelerate neurodegenerative processes, including Alzheimer's disease. This review also emphasizes the critical role of advanced imaging techniques in assessing cerebromicrovascular health and the need for targeted interventions to address these cerebrovascular complications. A deeper understanding of the cerebrovascular mechanisms of long COVID is essential to advance targeted treatments and mitigate its long-term neurocognitive consequences.
Collapse
Affiliation(s)
- Monika Fekete
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Andrea Lehoczki
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary.
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary.
| | - Ágnes Szappanos
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary
| | - Attila Toth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Mohamed Mahdi
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, 4032, Debrecen, Hungary
- Infectology Clinic, University of Debrecen Clinical Centre, 4031, Debrecen, Hungary
| | - Péter Sótonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN , Semmelweis University, 1094, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
10
|
de Almeida LV, Santos-de-Araújo AD, da Silva LCN, Santos PM, Maia MC, Frutuoso VP, Rocha DS, Rêgo AS, Bassi-Dibai D. Cholesterol, triglycerides, HDL, and nitric oxide as determinants of resting heart rate variability in non-hospitalized mild post-COVID individuals: a cross-sectional study. BMC Cardiovasc Disord 2025; 25:69. [PMID: 39891044 PMCID: PMC11783953 DOI: 10.1186/s12872-025-04523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND The association between plasma lipids, nitric oxide (NO) and cardiovascular risk has been well documented in the literature, however, the association between these outcomes and heart rate variability (HRV) in COVID-19 remains incipient as there is no scientific evidence that has investigated this outcome. OBJECTIVE Investigate whether metabolic outcomes may be associated with cardiac autonomic behavior arising from short-term HRV variables in non-hospitalized mild post-COVID individuals. METHODS This is a cross-sectional study. Individuals of both sexes, aged ≥ 18 years, who tested positive for SARS-CoV-2 according to the RT-PCR test, without the need for hospitalization, were included. The HRV was collected in the supine position for at least 10 min for later analysis in the Kubios software. Metabolic outcomes [high density lipoprotein (HDL) (mg/dL), cholesterol (mg/dL), triglycerides (mg/dL) and NO (µmol/L)] were collected through a blood sample. RESULTS Seventy-three individuals were included (post-COVID = 32; control = 41). HRV was worse in the post-COVID group when compared to the control group (p < 0.05). Cholesterol, HDL, triglycerides and NO showed significant correlations with HRV indices. Regression models indicated that cholesterol and triglycerides, as well as NO, explain up to 30.3% of the variations in certain HRV indices, suggesting an impact of metabolic outcomes on autonomic modulation. CONCLUSION There is a relationship between plasma lipids, NO and HRV in non-hospitalized individuals with mild COVID-19. Metabolic outcomes are associated and explain between 16.6% and 30.30% of certain variables of resting HRV in post-COVID individuals. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Lucivalda Viegas de Almeida
- Postgraduate Program in Programs Management and Health Services, Universidade Ceuma, Josué Montello, number 1, São Luís, 65075-120, MA, Brazil
| | - Aldair Darlan Santos-de-Araújo
- Postgraduate Program in Physical Therapy, Department of Physical Therapy, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | | | | | | | | | - Daniel Santos Rocha
- Postgraduate program in Physical Education, Universidade Federal do Maranhão, São Luís, MA, Brazil
| | - Adriana Sousa Rêgo
- Postgraduate Program in Environment, Universidade Ceuma, São Luís, MA, Brazil
| | - Daniela Bassi-Dibai
- Postgraduate Program in Programs Management and Health Services, Universidade Ceuma, Josué Montello, number 1, São Luís, 65075-120, MA, Brazil.
- Department of Physical Therapy, Universidade CEUMA, São Luís, MA, Brazil.
- Postgraduate program in Dentistry, Universidade Ceuma, São Luís, MA, Brazil.
- Healthy Living for Pandemic Event Protection (HL - PIVOT) Network, Chicago, IL, USA.
| |
Collapse
|
11
|
Reina-Couto M, Alves D, Silva-Pereira C, Pereira-Terra P, Martins S, Bessa J, Teixeira-Santos L, Pinho D, Morato M, Dias CC, Sarmento A, Tavares M, Guimarães JT, Roncon-Albuquerque R, Paiva JA, Albino-Teixeira A, Sousa T. Endocan as a marker of endotheliitis in COVID-19 patients: modulation by veno-venous extracorporeal membrane oxygenation, arterial hypertension and previous treatment with renin-angiotensin-aldosterone system inhibitors. Inflamm Res 2025; 74:26. [PMID: 39862311 PMCID: PMC11762693 DOI: 10.1007/s00011-024-01964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 10/30/2024] [Accepted: 12/16/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND AND AIMS Endocan has been scarcely explored in COVID-19, especially regarding its modulation by veno-venous extracorporeal membrane oxygenation (VV-ECMO), hypertension or previous renin-angiotensin-aldosterone system (RAAS) inhibitors treatment. We compared endocan and other endotheliitis markers in hospitalized COVID-19 patients and assessed their modulation by VV-ECMO, hypertension and previous RAAS inhibitors treatment. MATERIAL AND METHODS Serum endocan, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-selectin were measured in "severe" (n = 27), "critically ill" (n = 17) and "critically ill on VV-ECMO" (n = 17) COVID-19 patients at admission, days 3-4, 5-8 and weekly thereafter, and in controls (n = 23) at a single time point. RESULTS Admission endocan and VCAM-1 were increased in all patients, but "critically ill on VV-ECMO" patients had higher endocan and E-Selectin. Endocan remained elevated throughout hospitalization in all groups. "Severe" and "critically ill" hypertensive patients or previously treated with RAAS inhibitors had higher endocan and/or VCAM-1, but in VV-ECMO patients the raised endocan values seemed unrelated with these factors. Among all COVID-19 hypertensive patients, those with previous RAAS inhibitors treatment had higher endocan. CONCLUSIONS In our study, endocan stands out as the best marker of endotheliitis in hospitalized COVID-19 patients, being upregulated by VV-ECMO support, hypertension and previous RAAS inhibitor treatment.
Collapse
Affiliation(s)
- Marta Reina-Couto
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Rua Dr. Plácido da Costa, S/N, Edifício Poente, Piso 3, 4200-450, Porto, Portugal.
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
- Serviço de Medicina Intensiva, Centro Hospitalar e Universitário São João (CHUSJ), Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
- Serviço de Farmacologia Clínica, CHUSJ, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
| | - David Alves
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Rua Dr. Plácido da Costa, S/N, Edifício Poente, Piso 3, 4200-450, Porto, Portugal
| | - Carolina Silva-Pereira
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Rua Dr. Plácido da Costa, S/N, Edifício Poente, Piso 3, 4200-450, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Patrícia Pereira-Terra
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Rua Dr. Plácido da Costa, S/N, Edifício Poente, Piso 3, 4200-450, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Sandra Martins
- Serviço de Patologia Clínica, CHUSJ, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - João Bessa
- Serviço de Nefrologia, Centro Hospitalar Universitário de Santo António, Largo Prof. Abel Salazar, 4099-001, Porto, Portugal
| | - Luísa Teixeira-Santos
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Rua Dr. Plácido da Costa, S/N, Edifício Poente, Piso 3, 4200-450, Porto, Portugal
- iNOVA4Health, NOVA Medical School| Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056, Lisboa, Portugal
| | - Dora Pinho
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Rua Dr. Plácido da Costa, S/N, Edifício Poente, Piso 3, 4200-450, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Manuela Morato
- Departamento de Ciências do Medicamento, Laboratório de Farmacologia, Faculdade de Farmácia da Universidade do Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313, Porto, Portugal
- LAQV/REQUIMTE, Faculdade de Farmácia da Universidade do Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313, Porto, Portugal
| | - Cláudia Camila Dias
- Departamento de Medicina da Comunidade, Informação e Decisão em Saúde, FMUP, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- CINTESIS-Centro de Investigação em Tecnologias e Serviços de Saúde, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - António Sarmento
- Serviço de Doenças Infecciosas, CHUSJ, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Departamento de Medicina, FMUP, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Margarida Tavares
- Serviço de Doenças Infecciosas, CHUSJ, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Unidade de Investigação em Epidemiologia (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas 135, 4050-600, Porto, Portugal
| | - João T Guimarães
- Serviço de Patologia Clínica, CHUSJ, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Unidade de Investigação em Epidemiologia (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas 135, 4050-600, Porto, Portugal
- Departamento de Biomedicina- Unidade de Bioquímica, FMUP, Rua Dr. Plácido da Costa, S/N, Edifício Poente, Piso 2, 4200-450, Porto, Portugal
| | - Roberto Roncon-Albuquerque
- Serviço de Medicina Intensiva, Centro Hospitalar e Universitário São João (CHUSJ), Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Departamento de Cirurgia e Fisiologia, FMUP, Rua Dr. Plácido da Costa, S/N, Piso 6, 4200-450, Porto, Portugal
| | - José-Artur Paiva
- Serviço de Medicina Intensiva, Centro Hospitalar e Universitário São João (CHUSJ), Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Departamento de Medicina, FMUP, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - António Albino-Teixeira
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Rua Dr. Plácido da Costa, S/N, Edifício Poente, Piso 3, 4200-450, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Teresa Sousa
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Rua Dr. Plácido da Costa, S/N, Edifício Poente, Piso 3, 4200-450, Porto, Portugal.
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
| |
Collapse
|
12
|
Rahman M, Russell SL, Okwose NC, McGregor G, Maddock H, Banerjee P, Jakovljevic DG. COVID-19 is associated with cardiac structural and functional remodelling in healthy middle-aged and older individuals. Clin Physiol Funct Imaging 2025; 45:e12909. [PMID: 39377164 DOI: 10.1111/cpf.12909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/19/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) was declared a global pandemic in 2019. It remains uncertain to what extent COVID-19 effects the heart in heathy individuals. To evaluate the effect of the COVID-19 on cardiac structure and function in middle-aged and older individuals. METHODS A single-centre prospective observational study enroled a total of 124 participants (84 with history of COVID-19 [COVID-19 group] and 40 without a history of COVID-19 [non-COVID group]). All participants underwent echocardiography with speckle tracking to assess cardiac structure and function at rest and during peak exercise. RESULTS There were no differences in left and right ventricular diastolic function (p ≥ 0.05) between the COVID-19 and non-COVID-19 groups. Participants in COVID-19 group demonstrated higher left ventricular mass (130 ± 39.8 vs. 113 ± 27.2 g, p = 0.008) and relative wall thickness (0.38 ± 0.07 vs. 0.36 ± 0.13, p = 0.049). Left ventricular global longitudinal strain was reduced in the COVID-19 group at rest and at peak-exercise (rest: 18.3 ± 2.01 vs. 19.3 ± 1.53%, p = 0.004; peak exercise: 19.1 ± 2.20 vs. 21.0 ± 1.58%, p ≤ 0.001). However, no difference was seen in resting left ventricular ejection fraction (58 ± 2.89 vs. 59 ± 2.51%, p = 0.565) between groups. Right ventricular fractional area change was reduced in the COVID-19 group (p = 0.012). CONCLUSION Cardiac structural and functional remodelling was observed in middle-aged and older otherwise healthy individuals with a history of COVID-19.
Collapse
Affiliation(s)
- Mushidur Rahman
- Research Centre for Health and Life Sciences, Institute for Health and Wellbeing, Coventry University, Coventry, UK
- Department of Cardiology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Sophie L Russell
- Research Centre for Health and Life Sciences, Institute for Health and Wellbeing, Coventry University, Coventry, UK
- Department of Cardiology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Nduka C Okwose
- Research Centre for Health and Life Sciences, Institute for Health and Wellbeing, Coventry University, Coventry, UK
- Department of Cardiology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Gordon McGregor
- Department of Cardiology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Research Centre for Healthcare and Community, Institute of Health and Wellbeing, Coventry University, Coventry, UK
| | - Helen Maddock
- Research Centre for Health and Life Sciences, Institute for Health and Wellbeing, Coventry University, Coventry, UK
| | - Prithwish Banerjee
- Research Centre for Health and Life Sciences, Institute for Health and Wellbeing, Coventry University, Coventry, UK
- Department of Cardiology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Djordje G Jakovljevic
- Research Centre for Health and Life Sciences, Institute for Health and Wellbeing, Coventry University, Coventry, UK
- Department of Cardiology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| |
Collapse
|
13
|
Kuchler T, Hausinger R, Braunisch MC, Günthner R, Wicklein R, Knier B, Bleidißel N, Maier M, Ribero A, Lech M, Adorjan K, Stubbe H, Kotilar K, Heemann U, Schmaderer C. All eyes on PCS: analysis of the retinal microvasculature in patients with post-COVID syndrome-study protocol of a 1 year prospective case-control study. Eur Arch Psychiatry Clin Neurosci 2024; 274:1847-1856. [PMID: 38041762 PMCID: PMC11579198 DOI: 10.1007/s00406-023-01724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/04/2023] [Indexed: 12/03/2023]
Abstract
Since widespread vaccination against COVID-19, the development of effective antiviral drugs, and the decreasing number of patients with COVID-19 in intensive care, the risk from SARS-CoV-2 infection appears less threatening. However, studies show that a significant number of patients suffer from long-term sequelae, even months after SARS-CoV-2 infection. The so-called post-COVID syndrome (PCS) often presents a diagnostic and treatment challenge for physicians. This study protocol describes the "All Eyes on PCS" study, which aims to investigate the retinal microvasculature in PCS patients and COVID-19-recovered patients to provide new insights into the pathophysiology of PCS. "All Eyes on PCS" is a prospective, case-control study with the primary objective of detecting endothelial dysfunction (ED) in patients with PCS. Therefore, we intend to recruit patients with PCS, fully SARS-CoV-2-infection-recovered (CR) participants, and SARS-CoV-2-infection-naïve (CN) participants. Baseline measurements will include: (1) patient-specific characteristics, (2) biochemistry, (3) retinal vessel analysis (RVA), (4) survey questionnaires as patient-reported outcomes measurements (PROMs), (5) optical coherence tomography (OCT), OCT angiography (OCTA), and adaptive optics (AO), (6) blood pressure recordings, (7) handgrip strength test. After 6 months, baseline measurements will be repeated in the PCS cohort, and after 1 year, a telephone query will be conducted to assess residual symptoms and treatment needs. The aim of this study is to gain insight into the pathophysiology of PCS and to provide an objective biomarker for diagnosis and treatment, while also creating a comprehensive clinical database of PCS patients.ClinicalTrials.gov Identifier: NCT05635552; Date: 2.12.2022.
Collapse
Affiliation(s)
- Timon Kuchler
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Renate Hausinger
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Matthias C Braunisch
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Roman Günthner
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Rebecca Wicklein
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Benjamin Knier
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Nathalie Bleidißel
- Department of Ophthalmology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Matthias Maier
- Department of Ophthalmology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Andrea Ribero
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- Medizinische Klinik und Poliklinik IV, LMU University Hospital Munich, Ziemssenstraße 5, 80336, Munich, Germany
| | - Maciej Lech
- Medizinische Klinik und Poliklinik IV, LMU University Hospital Munich, Ziemssenstraße 5, 80336, Munich, Germany
| | - Kristina Adorjan
- Department of Psychiatry and Psychotherapy, LMU University Hospital Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Hans Stubbe
- Medizinische Klinik und Poliklinik II, LMU University Hospital Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Konstantin Kotilar
- Aachen University of Applied Sciences, Heinrich-Mussmann-Str. 1, 52428, Jülich, Germany
| | - Uwe Heemann
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Christoph Schmaderer
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
14
|
Páramo JA, Marcos-Jubilar M. [Immunothrombosis: A key mechanism in the COVID-19 pandemic]. Med Clin (Barc) 2024; 163:517-521. [PMID: 39085002 DOI: 10.1016/j.medcli.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 08/02/2024]
Affiliation(s)
- José A Páramo
- Servicio de Hematología, Clínica Universidad de Navarra, Pamplona, España.
| | | |
Collapse
|
15
|
Moulias A, Koros R, Papageorgiou A, Katechis S, Patrinos P, Trigka-Vasilakopoulou A, Papageorgiou A, Papaioannou O, Akinosoglou K, Leventopoulos G, Tsigkas G, Tzouvelekis A, Davlouros P. Assessment of Endothelial Function in Patients with COVID-19 Using Peripheral Arterial Tonometry. Life (Basel) 2024; 14:1512. [PMID: 39598310 PMCID: PMC11595729 DOI: 10.3390/life14111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
There is increasing evidence that COVID-19 induces endothelial dysfunction that may precede thrombotic and cardiovascular complications. The aim of this study is to evaluate endothelial function using peripheral arterial tonometry (EndoPAT). The primary endpoint is the hyperemic vascular response index (LnRHI) at two months post-discharge. Secondary endpoints include the LnRHI during hospitalization and at six-month follow-up, the proportion of patients with endothelial dysfunction (LnRHI ≤ 0.51), and the incidence of thrombotic events, cardiovascular complications, and mortality during the follow-up period. The study included 23 COVID-19 patients and 22 COVID-19-negative, matched controls. The patients exhibited a significant reduction in the LnRHI at two months post-discharge compared to the controls (median = 0.55 [IQR: 0.49-0.68] vs. median = 0.70 [IQR: 0.62-0.83]; p = 0.012). The difference in the LnRHI between patients and controls was evident from hospitalization and persisted at two and six months without significant temporal changes. The proportion of COVID-19 patients with endothelial dysfunction (LnRHI ≤ 0.51) was 61% during hospitalization and 55% at six months. There was no significant difference in thrombotic or cardiovascular events, nor in mortality. This study demonstrates that COVID-19 adversely affects endothelial function, as evidenced by a reduction in the hyperemic vascular response index, and endothelial dysfunction may also persist.
Collapse
Affiliation(s)
- Athanasios Moulias
- Department of Cardiology, General University Hospital of Patras, 26504 Patras, Greece; (A.M.); (R.K.); (P.P.); (A.T.-V.); (A.P.); (G.L.); (G.T.); (P.D.)
| | - Rafail Koros
- Department of Cardiology, General University Hospital of Patras, 26504 Patras, Greece; (A.M.); (R.K.); (P.P.); (A.T.-V.); (A.P.); (G.L.); (G.T.); (P.D.)
| | - Angeliki Papageorgiou
- Department of Cardiology, General University Hospital of Patras, 26504 Patras, Greece; (A.M.); (R.K.); (P.P.); (A.T.-V.); (A.P.); (G.L.); (G.T.); (P.D.)
- Department of Inherited and Rare Cardiovascular Diseases, Onassis Cardiac Surgery Center, 17674 Athens, Greece
| | - Spyridon Katechis
- Department of Rheumatology, General Hospital of Asklipieio Voulas, 16673 Athens, Greece;
| | - Panagiotis Patrinos
- Department of Cardiology, General University Hospital of Patras, 26504 Patras, Greece; (A.M.); (R.K.); (P.P.); (A.T.-V.); (A.P.); (G.L.); (G.T.); (P.D.)
| | - Aikaterini Trigka-Vasilakopoulou
- Department of Cardiology, General University Hospital of Patras, 26504 Patras, Greece; (A.M.); (R.K.); (P.P.); (A.T.-V.); (A.P.); (G.L.); (G.T.); (P.D.)
| | - Athanasios Papageorgiou
- Department of Cardiology, General University Hospital of Patras, 26504 Patras, Greece; (A.M.); (R.K.); (P.P.); (A.T.-V.); (A.P.); (G.L.); (G.T.); (P.D.)
| | - Ourania Papaioannou
- Department of Pneumonology, General University Hospital of Patras, 26504 Patras, Greece; (O.P.); (A.T.)
| | - Karolina Akinosoglou
- Department of Internal Medicine, General University Hospital of Patras, 26504 Patras, Greece;
| | - Georgios Leventopoulos
- Department of Cardiology, General University Hospital of Patras, 26504 Patras, Greece; (A.M.); (R.K.); (P.P.); (A.T.-V.); (A.P.); (G.L.); (G.T.); (P.D.)
| | - Grigorios Tsigkas
- Department of Cardiology, General University Hospital of Patras, 26504 Patras, Greece; (A.M.); (R.K.); (P.P.); (A.T.-V.); (A.P.); (G.L.); (G.T.); (P.D.)
| | - Argyrios Tzouvelekis
- Department of Pneumonology, General University Hospital of Patras, 26504 Patras, Greece; (O.P.); (A.T.)
| | - Periklis Davlouros
- Department of Cardiology, General University Hospital of Patras, 26504 Patras, Greece; (A.M.); (R.K.); (P.P.); (A.T.-V.); (A.P.); (G.L.); (G.T.); (P.D.)
| |
Collapse
|
16
|
Pililis S, Lampsas S, Kountouri A, Pliouta L, Korakas E, Livadas S, Thymis J, Peppa M, Kalantaridou S, Oikonomou E, Ikonomidis I, Lambadiari V. The Cardiometabolic Risk in Women with Polycystic Ovarian Syndrome (PCOS): From Pathophysiology to Diagnosis and Treatment. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1656. [PMID: 39459443 PMCID: PMC11509436 DOI: 10.3390/medicina60101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
Polycystic Ovarian Syndrome (PCOS) is a prevalent endocrine disorder affecting women of reproductive age, with significant variations in presentation characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovarian morphology. Beyond reproductive health, it may also pose crucial long-term cardiometabolic risks, especially for women with specific types of PCOS, contributing to early subclinical cardiovascular atherosclerotic alterations such as endothelial dysfunction, increased arterial stiffness, and coronary artery calcium levels, respectively. Moreover, the precise relationship between clinical cardiovascular disease (CVD) and PCOS remains debated, with studies demonstrating an elevated risk while others report no significant association. This review investigates the pathophysiology of PCOS, focusing on insulin resistance and its link to subclinical and clinical cardiovascular disease. Diagnostic challenges and novel management strategies, including lifestyle interventions, medications like metformin and glucagon-like peptide-1 receptor agonists (GLP-1RAs), hormonal contraceptives, and bariatric surgery, are further discussed. Recognizing the cardiometabolic risks associated with PCOS, a comprehensive approach and early intervention should address both the reproductive and cardiometabolic dimensions of the syndrome.
Collapse
Affiliation(s)
- Sotirios Pililis
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.P.); (A.K.); (E.K.)
| | - Stamatios Lampsas
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.P.); (A.K.); (E.K.)
- 2nd Department of Ophthalmology, Attikon Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Aikaterini Kountouri
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.P.); (A.K.); (E.K.)
| | - Loukia Pliouta
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.P.); (A.K.); (E.K.)
| | - Emmanouil Korakas
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.P.); (A.K.); (E.K.)
| | | | - John Thymis
- 2nd Cardiology Department, Attikon University Hospital, National & Kapodistrian University of Athens, 12462 Athens, Greece; (J.T.)
| | - Melpomeni Peppa
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.P.); (A.K.); (E.K.)
| | - Sophia Kalantaridou
- 3rd Department of Obstetrics and Gynecology, Attikon Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Medical School, “Sotiria” Chest Diseases Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ignatios Ikonomidis
- 2nd Cardiology Department, Attikon University Hospital, National & Kapodistrian University of Athens, 12462 Athens, Greece; (J.T.)
| | - Vaia Lambadiari
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.P.); (A.K.); (E.K.)
| |
Collapse
|
17
|
Triantafyllis AS, Sfantou D, Karapedi E, Peteinaki K, Kotoulas SC, Saad R, Fountoulakis PN, Tsamakis K, Tsiptsios D, Rallidis L, Tsoporis JN, Varvarousis D, Hamodraka E, Giannakopoulos A, Poulimenos LE, Ikonomidis I. Coronary Implications of COVID-19. Med Princ Pract 2024; 34:1-12. [PMID: 39307131 PMCID: PMC11805551 DOI: 10.1159/000541553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Patients with SARS-CoV-2 infection carry an increased risk of cardiovascular disease encompassing various implications, including acute myocardial injury or infarction, myocarditis, heart failure, and arrhythmias. A growing volume of evidence correlates SARS-CoV-2 infection with myocardial injury, exposing patients to higher mortality risk. SARS-CoV-2 attacks the coronary arterial bed with various mechanisms including thrombosis/rupture of preexisting atherosclerotic plaque, de novo coronary thrombosis, endotheliitis, microvascular dysfunction, vasculitis, vasospasm, and ectasia/aneurysm formation. The angiotensin-converting enzyme 2 receptor plays pivotal role on the cardiovascular homeostasis and the unfolding of COVID-19. The activation of immune system, mediated by proinflammatory cytokines along with the dysregulation of the coagulation system, can pose an insult on the coronary artery, which usually manifests as an acute coronary syndrome (ACS). Electrocardiogram, echocardiography, cardiac biomarkers, and coronary angiography are essential tools to set the diagnosis. Revascularization is the first-line treatment in all patients with ACS and obstructed coronary arteries, whereas in type 2 myocardial infarction treatment of hypoxia, anemia and systemic inflammation are indicated. In patients presenting with coronary vasospasm, nitrates and calcium channel blockers are preferred, while treatment of coronary ectasia/aneurysm mandates the use of antiplatelets/anticoagulants, corticosteroids, immunoglobulin, and biologic agents. It is crucial to untangle the exact mechanisms of coronary involvement in COVID-19 in order to ensure timely diagnosis and appropriate treatment. We have reviewed the current literature and provide a detailed overview of the pathophysiology and clinical spectrum associated with coronary implications of SARS-COV-2 infection. Patients with SARS-CoV-2 infection carry an increased risk of cardiovascular disease encompassing various implications, including acute myocardial injury or infarction, myocarditis, heart failure, and arrhythmias. A growing volume of evidence correlates SARS-CoV-2 infection with myocardial injury, exposing patients to higher mortality risk. SARS-CoV-2 attacks the coronary arterial bed with various mechanisms including thrombosis/rupture of preexisting atherosclerotic plaque, de novo coronary thrombosis, endotheliitis, microvascular dysfunction, vasculitis, vasospasm, and ectasia/aneurysm formation. The angiotensin-converting enzyme 2 receptor plays pivotal role on the cardiovascular homeostasis and the unfolding of COVID-19. The activation of immune system, mediated by proinflammatory cytokines along with the dysregulation of the coagulation system, can pose an insult on the coronary artery, which usually manifests as an acute coronary syndrome (ACS). Electrocardiogram, echocardiography, cardiac biomarkers, and coronary angiography are essential tools to set the diagnosis. Revascularization is the first-line treatment in all patients with ACS and obstructed coronary arteries, whereas in type 2 myocardial infarction treatment of hypoxia, anemia and systemic inflammation are indicated. In patients presenting with coronary vasospasm, nitrates and calcium channel blockers are preferred, while treatment of coronary ectasia/aneurysm mandates the use of antiplatelets/anticoagulants, corticosteroids, immunoglobulin, and biologic agents. It is crucial to untangle the exact mechanisms of coronary involvement in COVID-19 in order to ensure timely diagnosis and appropriate treatment. We have reviewed the current literature and provide a detailed overview of the pathophysiology and clinical spectrum associated with coronary implications of SARS-COV-2 infection.
Collapse
Affiliation(s)
| | - Danai Sfantou
- Department of Cardiology, Asklepeion General Hospital, Athens, Greece
| | - Eleni Karapedi
- Department of Cardiology, Asklepeion General Hospital, Athens, Greece
| | | | | | - Richard Saad
- Department of Cardiology, Asklepeion General Hospital, Athens, Greece
| | | | | | - Dimitrios Tsiptsios
- Department of Neurology, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Loukianos Rallidis
- Second Department of Cardiology, Attikon University Hospital, Athens, Greece
| | - James N. Tsoporis
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | - Ignatios Ikonomidis
- Second Department of Cardiology, Attikon University Hospital, Athens, Greece
| |
Collapse
|
18
|
Li B, Bai J, Xiong Y, Guo D, Fu B, Deng G, Wu H. Understanding the mechanisms and treatments of long COVID to address future public health risks. Life Sci 2024; 353:122938. [PMID: 39084516 DOI: 10.1016/j.lfs.2024.122938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
The 2019 coronavirus disease (COVID-19), triggered by the severe acute respiratory syndrome coronavirus (SARS-CoV-2), has seen numerous individuals undergo and recover from it, drawing extensive attention to their health conditions. Extensive studies indicate that even after surpassing the acute phase of infection, patients continue to experience persistent symptoms such as fatigue, pain, depression, weakening, and anosmia. COVID-19 appears not to have concluded but rather to persist long-term in certain individuals, termed as "long COVID." This represents a heterogeneous ailment involving multiple organ systems, with a perceived complex and still elusive pathogenesis. Among patients with long COVID, observations reveal immune dysregulation, coagulation impairments, and microbial dysbiosis, considered potential mechanisms explaining sustained adverse outcomes post COVID-19. Based on the multifactorial nature, varied symptoms, and heterogeneity of long COVID, we have summarized several categories of current therapeutic approaches. Furthermore, the symptoms of long COVID resemble those of other viral illnesses, suggesting that existing knowledge may offer novel insights into long-term COVID implications. Here, we provide an overview of existing literature associated with long COVID and summarize potential mechanisms, treatment modalities, and other analogous conditions. Lastly, we underscore the inadequacies in long COVID treatment approaches and emphasize the significance of conducting further research and clinical trials.
Collapse
Affiliation(s)
- Bohao Li
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Junlu Bai
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Guohong Deng
- Department of Infectious Diseases, First Affiliated Hospital, Army Medical University, Chongqing, China.
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
19
|
Gounaridi MI, Souvaliotis N, Vontetsianos A, Chynkiamis N, Lampsas S, Theofilis P, Anastasiou A, Goliopoulou A, Tzima I, Katsarou O, Bakakos P, Vavouranakis M, Koulouris N, Siasos G, Oikonomou E. The Impact of Cardiopulmonary Rehabilitation on Ventriculoarterial Coupling in Post-Coronavirus Disease-2019 Patients. J Cardiopulm Rehabil Prev 2024; 44:361-368. [PMID: 39185908 DOI: 10.1097/hcr.0000000000000885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
PURPOSE Coronavirus disease-2019 (COVID-19) affects the cardiovascular system even after the acute phase of the disease. Cardiopulmonary rehabilitation may improve post-COVID-19 symptoms. This study aims to evaluate the impact of a cardiopulmonary rehabilitation program after acute COVID-19 on arterial stiffness, left ventricular function, and ventriculoarterial coupling (VAC). METHODS Forty-eight adults were examined 1 (T0) and 3-mo (T1) following recovery from COVID-19 and randomized 1:1 to participate or not in a 3-mo rehabilitation program. Matched subjects were enrolled as a non-COVID-19 group. Arterial stiffness was evaluated by carotid-femoral pulse wave velocity (PWV). Left ventricular (LV) systolic performance was evaluated with global longitudinal strain (GLS). The PWV/LV-GLS ratio was calculated as an index of VAC. High-sensitivity C reactive protein (hs-CRP) was measured. RESULTS At T0, convalescent patients with COVID-19 had impaired PWV ( P = .001) and reduced VAC ( P = .001) compared to non-COVID-19 subjects. PWV (8.15 ± 1.37 to 6.55 ± 0.98 m/sec, P < .001) and LV-GLS (-19.67 ± 1.98 to -21.3 ± 1.93%, P < .001) improved only in convalescent patients with COVID-19 undergoing rehabilitation. Similarly, VAC was only improved in the rehabilitation group (-0.42 ± 0.11 to -0.31 ± 0.06 m · sec -1 ·% -1 , P < .001). A significant improvement in VO 2max was noted after rehabilitation (15.70 [13.05, 21.45] to 18.30 [13.95, 23.75] ml · kg -1 · min -1 , P = .01). Finally, hs-CRP was improved in both groups with a significantly greater improvement in the rehabilitation group. CONCLUSION A 3-mo rehabilitation program in convalesced patients with COVID-19 enhances the recovery of arterial stiffness, left ventricular function, and VAC, highlighting the beneficial mechanisms of rehabilitation in this patient population.
Collapse
Affiliation(s)
- Maria-Ioanna Gounaridi
- Author Affiliations: Department of Cardiology, "Sotiria" Chest Disease Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece (Drs Gounaridi, Souvaliotis, Lampsas, Anastasiou, Goliopoulou, Tzima, Katsarou, Vavouranakis, Siasos, and Oikonomou); Rehabilitation Unit-1st Respiratory Medicine Department, "Sotiria" Chest Disease Hospital, National and Kapodistrian University of Athens, Greece (Dr Vontetsianos, Chynkiamis, Bakakos, and Koulouris); 1st Department of Cardiology, "Hippokration" General Hospital of Athens, National and Kapodistrian University of Athens, Medical School, Athens, Greece (Dr Theofilis)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yanai H, Adachi H, Hakoshima M, Katsuyama H, Sako A. The Significance of Endothelial Dysfunction in Long COVID-19 for the Possible Future Pandemic of Chronic Kidney Disease and Cardiovascular Disease. Biomolecules 2024; 14:965. [PMID: 39199353 PMCID: PMC11352301 DOI: 10.3390/biom14080965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Various symptoms have been reported to persist beyond the acute phase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which is referred to as long coronavirus disease 19 (long COVID-19). Over 65 million individuals suffer from long COVID-19. However, the causes of long COVID-19 are largely unknown. Since long COVID-19 symptoms are observed throughout the body, vascular endothelial dysfunction is a strong candidate explaining the induction of long COVID-19. The angiotensin-converting enzyme 2 (ACE2), the entry receptor for SARS-CoV-2, is ubiquitously expressed in endothelial cells. We previously found that the risk factors for atherosclerotic cardiovascular disease (ASCVD) and a history of ASCVD raise the risk of severe COVID-19, suggesting a contribution of pre-existing endothelial dysfunction to severe COVID-19. Here, we show a significant association of endothelial dysfunction with the development of long COVID-19 and show that biomarkers for endothelial dysfunction in patients with long COVID-19 are also crucial players in the development of ASCVD. We consider the influence of long COVID-19 on the development of chronic kidney disease (CKD) and ASCVD. Future assessments of the outcomes of long COVID-19 in patients resulting from therapeutic interventions that improve endothelial function may imply the significance of endothelial dysfunction in the development of long COVID-19.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (H.A.); (M.H.); (H.K.)
| | - Hiroki Adachi
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (H.A.); (M.H.); (H.K.)
| | - Mariko Hakoshima
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (H.A.); (M.H.); (H.K.)
| | - Hisayuki Katsuyama
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (H.A.); (M.H.); (H.K.)
| | - Akahito Sako
- Department of General Medicine, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan;
| |
Collapse
|
21
|
Hebert KJ, Matta R, Horns JJ, Paudel N, Das R, McCormick BJ, Myers JB, Hotaling JM. Prior COVID-19 infection associated with increased risk of newly diagnosed erectile dysfunction. Int J Impot Res 2024; 36:521-525. [PMID: 36922696 PMCID: PMC10015534 DOI: 10.1038/s41443-023-00687-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023]
Abstract
We sought to assess if COVID-19 infection recovery is associated with increased rates of newly diagnosed erectile dysfunction. Using IBM MarketScan, a commercial claims database, men with prior COVID-19 infection were identified using ICD-10 diagnosis codes. Using this cohort along with an age-matched cohort of men without prior COVID-19 infection, we assessed the incidence of newly diagnosed erectile dysfunction. Covariates were assessed using a multivariable model to determine association of prior COVID-19 infection with newly diagnosed erectile dysfunction. 42,406 men experienced a COVID-19 infection between January 2020 and January 2021 of which 601 (1.42%) developed new onset erectile dysfunction within 6.5 months follow up. On multivariable analysis while controlling for diabetes, cardiovascular disease, smoking, obesity, hypogonadism, thromboembolism, and malignancy, prior COVID-19 infection was associated with increased risk of new onset erectile dysfunction (HR 1.27; 95% CI 1.1-1.5; P = 0.002). Prior to the widespread implementation of the COVID-19 vaccine, the incidence of newly diagnosed erectile dysfunction is higher in men with prior COVID-19 infection compared to age-matched controls. Prior COVID-19 infection was associated with a 27% increased likelihood of developing new-onset erectile dysfunction when compared to those without prior infection.
Collapse
Affiliation(s)
- Kevin J Hebert
- Division of Urology, University of Utah, Salt Lake City, UT, USA.
| | - Rano Matta
- Division of Urology, University of Utah, Salt Lake City, UT, USA
| | - Joshua J Horns
- Surgical Population Analysis Research Core, University of Utah, Salt Lake City, UT, USA
| | - Niraj Paudel
- Surgical Population Analysis Research Core, University of Utah, Salt Lake City, UT, USA
| | - Rupam Das
- Surgical Population Analysis Research Core, University of Utah, Salt Lake City, UT, USA
| | | | - Jeremy B Myers
- Division of Urology, University of Utah, Salt Lake City, UT, USA
| | - James M Hotaling
- Division of Urology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
22
|
Aljadah M, Khan N, Beyer AM, Chen Y, Blanker A, Widlansky ME. Clinical Implications of COVID-19-Related Endothelial Dysfunction. JACC. ADVANCES 2024; 3:101070. [PMID: 39055276 PMCID: PMC11269277 DOI: 10.1016/j.jacadv.2024.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/10/2024] [Accepted: 05/24/2024] [Indexed: 07/27/2024]
Abstract
Endothelial dysfunction represents a measurable and early manifestation of vascular disease. Emerging evidence suggests cardiovascular risk remains elevated after COVID-19 infection for at least 12 months, regardless of cardiovascular disease status prior to infection. We review the relationship between the severity of endothelial dysfunction and the severity of acute COVID-19 illness, the degree of impairment following recovery in both those with and without postacute sequalae SARS-CoV-2 infection, and current therapeutic efforts targeting endothelial function in patients following COVID-19 infection. We identify gaps in the literature to highlight specific areas where clinical research efforts hold promise for progress in understanding the connections between endothelial function, COVID-19, and clinical outcomes that will lead to beneficial therapeutics.
Collapse
Affiliation(s)
- Michael Aljadah
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Nabeel Khan
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Andreas M. Beyer
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yiliang Chen
- Division of Endocrinology and Molecular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Versiti Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
| | - Andrew Blanker
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael E. Widlansky
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
23
|
Chidambaram V, Kumar A, Sadaf MI, Lu E, Al’Aref SJ, Tarun T, Galiatsatos P, Gulati M, Blumenthal RS, Leucker TM, Karakousis PC, Mehta JL. COVID-19 in the Initiation and Progression of Atherosclerosis: Pathophysiology During and Beyond the Acute Phase. JACC. ADVANCES 2024; 3:101107. [PMID: 39113913 PMCID: PMC11304887 DOI: 10.1016/j.jacadv.2024.101107] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/24/2024] [Accepted: 06/01/2024] [Indexed: 08/10/2024]
Abstract
The incidence of atherosclerotic cardiovascular disease is increasing globally, especially in low- and middle-income countries, despite significant efforts to reduce traditional risk factors. Premature subclinical atherosclerosis has been documented in association with several viral infections. The magnitude of the recent COVID-19 pandemic has highlighted the need to understand the association between SARS-CoV-2 and atherosclerosis. This review examines various pathophysiological mechanisms, including endothelial dysfunction, platelet activation, and inflammatory and immune hyperactivation triggered by SARS-CoV-2 infection, with specific attention on their roles in initiating and promoting the progression of atherosclerotic lesions. Additionally, it addresses the various pathogenic mechanisms by which COVID-19 in the post-acute phase may contribute to the development of vascular disease. Understanding the overlap of these syndromes may enable novel therapeutic strategies. We further explore the need for guidelines for closer follow-up for the often-overlooked evidence of atherosclerotic cardiovascular disease among patients with recent COVID-19, particularly those with cardiometabolic risk factors.
Collapse
Affiliation(s)
- Vignesh Chidambaram
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Amudha Kumar
- Division of Cardiology, Department of Medicine, Loyola University Medical Center, Maywood, Illinois, USA
| | - Murrium I. Sadaf
- Division of Cardiovascular Medicine, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Emily Lu
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Subhi J. Al’Aref
- Division of Cardiovascular Medicine, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Tushar Tarun
- Division of Cardiovascular Medicine, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Panagis Galiatsatos
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Martha Gulati
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Roger S. Blumenthal
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thorsten M. Leucker
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Petros C. Karakousis
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jawahar L. Mehta
- Division of Cardiovascular Medicine, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Division of Cardiovascular Medicine, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| |
Collapse
|
24
|
Peng J, Guo W, Li P, Leng L, Gao D, Yu Z, Huang J, Guo J, Wang S, Hu M, Huang J. Long-term effects of COVID-19 on endothelial function, arterial stiffness, and blood pressure in college students: a pre-post-controlled study. BMC Infect Dis 2024; 24:742. [PMID: 39068389 PMCID: PMC11282677 DOI: 10.1186/s12879-024-09646-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND The COVID-19 has been shown to have negative effects on the cardiovascular system, but it is unclear how long these effects last in college students. This study aimed to assess the long-term impact of COVID-19 on arterial stiffness, endothelial function, and blood pressure in college students. METHODS We enrolled 37 college students who had been infected with COVID-19 for more than 2 months. Brachial artery flow-mediated dilation (FMD) was used to assess endothelial function, while arterial stiffness was evaluated using the ABI Systems 100, including variables such as ankle-brachial index (ABI), brachial-ankle pulse wave velocity (baPWV), carotid-femoral pulse wave velocity (cfPWV), heart rate (HR), and blood pressure (BP). RESULTS Our results showed that FMD was significantly impaired after COVID-19 infection (p < 0.001), while cfPWV and systolic blood pressure (SBP) were significantly increased (p < 0.05). Simple linear regression models revealed a significant negative correlation between post-COVID-19 measurement time and baPWV change (p < 0.01), indicating an improvement in arterial stiffness over time. However, there was a significant positive correlation between post-COVID-19 measurement time and diastolic blood pressure (DBP) change (p < 0.05), suggesting an increase in BP over time. There were no significant differences in ABI and HR between pre- and post-COVID-19 measurements, and no significant correlations were observed with other variables (p > 0.05). CONCLUSION Our study demonstrated that COVID-19 has long-term detrimental effects on vascular function in college students. However, arterial stiffness tends to improve over time, while BP may exhibit the opposite trend.
Collapse
Affiliation(s)
- Jianwei Peng
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, 1268 Middle Guangzhou Avenue, Guangzhou, 510500, Guangdong, China
| | - Wenhuang Guo
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, 1268 Middle Guangzhou Avenue, Guangzhou, 510500, Guangdong, China
| | - Peilun Li
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, 1268 Middle Guangzhou Avenue, Guangzhou, 510500, Guangdong, China
| | - Lu Leng
- College of Foreign Languages, Jinan University, Guangzhou, Guangdong, China
| | - Dongdong Gao
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, 1268 Middle Guangzhou Avenue, Guangzhou, 510500, Guangdong, China
| | - Zhendong Yu
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, 1268 Middle Guangzhou Avenue, Guangzhou, 510500, Guangdong, China
| | - Jinglin Huang
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, 1268 Middle Guangzhou Avenue, Guangzhou, 510500, Guangdong, China
| | - Jinghui Guo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Shen Wang
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, 1268 Middle Guangzhou Avenue, Guangzhou, 510500, Guangdong, China.
| | - Min Hu
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, 1268 Middle Guangzhou Avenue, Guangzhou, 510500, Guangdong, China.
| | - Junhao Huang
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, 1268 Middle Guangzhou Avenue, Guangzhou, 510500, Guangdong, China.
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
25
|
Vontetsianos A, Chynkiamis N, Gounaridi MI, Anagnostopoulou C, Lekka C, Zaneli S, Anagnostopoulos N, Oikonomou E, Vavuranakis M, Rovina N, Papaioannou AI, Kaltsakas G, Koulouris N, Vogiatzis I. Exercise Intolerance Is Associated with Cardiovascular Dysfunction in Long COVID-19 Syndrome. J Clin Med 2024; 13:4144. [PMID: 39064183 PMCID: PMC11278210 DOI: 10.3390/jcm13144144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Background/Objectives: Cardiorespiratory complications are commonly reported among patients with long COVID-19 syndrome. However, their effects on exercise capacity remain inconclusive. We investigated the impact of long COVID-19 on exercise tolerance combining cardiopulmonary exercise testing (CPET) with resting echocardiographic data. Methods: Forty-two patients (55 ± 13 years), 149 ± 92 days post-hospital discharge, and ten healthy age-matched participants underwent resting echocardiography and an incremental CPET to the limit of tolerance. Left ventricular global longitudinal strain (LV-GLS) and the left ventricular ejection fraction (LVEF) were calculated to assess left ventricular systolic function. The E/e' ratio was estimated as a surrogate of left ventricular end-diastolic filling pressures. Tricuspid annular systolic velocity (SRV) was used to assess right ventricular systolic performance. Through tricuspid regurgitation velocity and inferior vena cava diameter, end-respiratory variations in systolic pulmonary artery pressure (PASP) were estimated. Peak work rate (WRpeak) and peak oxygen uptake (VO2peak) were measured via a ramp incremental symptom-limited CPET. Results: Compared to healthy participants, patients had a significantly (p < 0.05) lower LVEF (59 ± 4% versus 49 ± 5%) and greater left ventricular end-diastolic diameter (48 ± 2 versus 54 ± 5 cm). In patients, there was a significant association of E/e' with WRpeak (r = -0.325) and VO2peak (r = -0.341). SRV was significantly associated with WRpeak (r = 0.432) and VO2peak (r = 0.556). LV-GLS and PASP were significantly correlated with VO2peak (r = -0.358 and r = -0.345, respectively). Conclusions: In patients with long COVID-19 syndrome, exercise intolerance is associated with left ventricular diastolic performance, left ventricular end-diastolic pressure, PASP and SRV. These findings highlight the interrelationship of exercise intolerance with left and right ventricular performance in long COVID-19 syndrome.
Collapse
Affiliation(s)
- Angelos Vontetsianos
- Rehabilitation Unit, 1st Respiratory Medicine Department, “Sotiria” Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.V.); (C.A.); (C.L.); (S.Z.); (N.A.); (A.I.P.); (G.K.); (N.K.); (I.V.)
| | - Nikolaos Chynkiamis
- Rehabilitation Unit, 1st Respiratory Medicine Department, “Sotiria” Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.V.); (C.A.); (C.L.); (S.Z.); (N.A.); (A.I.P.); (G.K.); (N.K.); (I.V.)
- Thorax Research Foundation, 11521 Athens, Greece
| | - Maria Ioanna Gounaridi
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.I.G.); (E.O.); (M.V.)
| | - Christina Anagnostopoulou
- Rehabilitation Unit, 1st Respiratory Medicine Department, “Sotiria” Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.V.); (C.A.); (C.L.); (S.Z.); (N.A.); (A.I.P.); (G.K.); (N.K.); (I.V.)
| | - Christiana Lekka
- Rehabilitation Unit, 1st Respiratory Medicine Department, “Sotiria” Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.V.); (C.A.); (C.L.); (S.Z.); (N.A.); (A.I.P.); (G.K.); (N.K.); (I.V.)
| | - Stavroula Zaneli
- Rehabilitation Unit, 1st Respiratory Medicine Department, “Sotiria” Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.V.); (C.A.); (C.L.); (S.Z.); (N.A.); (A.I.P.); (G.K.); (N.K.); (I.V.)
| | - Nektarios Anagnostopoulos
- Rehabilitation Unit, 1st Respiratory Medicine Department, “Sotiria” Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.V.); (C.A.); (C.L.); (S.Z.); (N.A.); (A.I.P.); (G.K.); (N.K.); (I.V.)
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.I.G.); (E.O.); (M.V.)
| | - Manolis Vavuranakis
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.I.G.); (E.O.); (M.V.)
| | - Nikoletta Rovina
- 1st Respiratory Medicine Department, “Sotiria” Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Andriana I. Papaioannou
- Rehabilitation Unit, 1st Respiratory Medicine Department, “Sotiria” Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.V.); (C.A.); (C.L.); (S.Z.); (N.A.); (A.I.P.); (G.K.); (N.K.); (I.V.)
| | - Georgios Kaltsakas
- Rehabilitation Unit, 1st Respiratory Medicine Department, “Sotiria” Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.V.); (C.A.); (C.L.); (S.Z.); (N.A.); (A.I.P.); (G.K.); (N.K.); (I.V.)
- Lane Fox Respiratory Service, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
- Centre of Human and Applied Physiological Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 1UL, UK
| | - Nikolaos Koulouris
- Rehabilitation Unit, 1st Respiratory Medicine Department, “Sotiria” Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.V.); (C.A.); (C.L.); (S.Z.); (N.A.); (A.I.P.); (G.K.); (N.K.); (I.V.)
| | - Ioannis Vogiatzis
- Rehabilitation Unit, 1st Respiratory Medicine Department, “Sotiria” Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.V.); (C.A.); (C.L.); (S.Z.); (N.A.); (A.I.P.); (G.K.); (N.K.); (I.V.)
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle upon Tyne NE1 8ST, UK
| |
Collapse
|
26
|
Theofilis P, Oikonomou E, Vasileiadou M, Tousoulis D. A Narrative Review on Prolonged Neuropsychiatric Consequences of COVID-19: A Serious Concern. HEART AND MIND 2024; 8:177-183. [DOI: 10.4103/hm.hm-d-24-00019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/09/2024] [Indexed: 03/03/2025] Open
Abstract
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is characterized by prolonged, postacute sequelae of COVID-19 (PASC). Marked by persistent or new-onset symptoms within 3 months following COVID-19 recovery, PASC significantly affects a diverse spectrum of survivors. Beyond cardiovascular implications, neuropsychiatric PASC demonstrates prolonged symptoms with diverse phenotypic profiles affecting memory, attention, and mood. The pathophysiologic basis points to SARS-CoV-2’s neurotropism, instigating inflammatory responses in the central nervous system. A comprehensive multimodal assessment, integrating psychological evaluations, fluid examinations, neurophysiology, and imaging, emerges as a critical diagnostic approach. Managing neuropsychiatric PASC necessitates personalized interventions to enhance resilience and coping mechanisms, emphasizing the role of physical fitness, creative engagement, and social support in mitigating its impact on identity and well-being. In addition, early initiation of cognitive rehabilitation and cognitive behavioral therapy is proposed to address symptom chronicity, emotional distress, and cognitive dysfunction, enhancing the quality of life. The urgency for targeted interventions, early neuropsychological support, and ongoing research to comprehensively address the multifaceted neuropsychiatric effects of COVID-19 is underscored in this review. Collaborative efforts involving health-care professionals, support networks, and affected individuals are imperative to navigate the evolving landscape of PASC and its persistent neuropsychiatric implications.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- 1Department of Cardiology, General Hospital of Athens “Ippokrateio”, Athens, Greece
| | - Evangelos Oikonomou
- 3Department of Cardiology, Regional Chest Disease Hospital “Sotiria”, Athens, Greece
| | | | - Dimitris Tousoulis
- 1Department of Cardiology, General Hospital of Athens “Ippokrateio”, Athens, Greece
| |
Collapse
|
27
|
Berber NK, Kurt O, Altıntop Geçkil A, Erdem M, Kıran TR, Otlu Ö, Ecin SM, İn E. Evaluation of Oxidative Stress and Endothelial Dysfunction in COVID-19 Patients. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1041. [PMID: 39064471 PMCID: PMC11279166 DOI: 10.3390/medicina60071041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: Heat shock proteins (HSPs) are stress proteins. The endogenous nitric oxide (NO) synthase inhibitor asymmetric dimethyl arginine (ADMA) is a mediator of endothelial dysfunction. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus causes endothelial dysfunction and coagulopathy through severe inflammation and oxidative stress. Using these markers, we analyzed the prognostic value of serum ADMA and HSP-90 levels for early prediction of severe coronavirus disease (COVID-19) patients. Materials and Methods: A total of 76 COVID-19 patients and 35 healthy control subjects were included in this case-control study. COVID-19 patients were divided into two groups: mild and severe. Results: Serum ADMA and HSP-90 levels were significantly higher in the COVID-19 patients compared to the control subjects (p < 0.001). Additionally, serum ADMA and HSP-90 levels were determined to be higher in a statistically significant way in severe COVID-19 compared to mild COVID-19 (p < 0.001). Univariable logistic regression analysis revealed that ADMA and HSP-90, respectively, were independent predictors of severe disease in COVID-19 patients (ADMA (OR = 1.099, 95% CI = 1.048-1.152, p < 0.001) and HSP-90 (OR = 5.296, 95% CI = 1.719-16.316, p = 0.004)). When the cut-off value for ADMA was determined as 208.94 for the prediction of the severity of COVID-19 patients, the sensitivity was 72.9% and the specificity was 100% (AUC = 0.938, 95%CI = 0.858-0.981, p < 0.001). When the cut-off value for HSP-90 was determined as 12.68 for the prediction of the severity of COVID-19 patients, the sensitivity was 88.1% and the specificity was 100% (AUC = 0.975, 95% CI= 0.910-0.997, p < 0.001). Conclusions: Increased levels of Heat shock proteins-90 (HSP-90) and ADMA were positively correlated with increased endothelial damage in COVID-19 patients, suggesting that treatments focused on preventing and improving endothelial dysfunction could significantly improve the outcomes and reduce the mortality rate of COVID-19. ADMA and HSP-90 might be simple, useful, and prognostic biomarkers that can be utilized to predict patients who are at high risk of severe disease due to COVID-19.
Collapse
Affiliation(s)
- Nurcan Kırıcı Berber
- Department of Chest Diseases, Malatya Turgut Özal University, Malatya 44210, Turkey;
| | - Osman Kurt
- Department of Public Health, Faculty of Medicine, Inonu University, Malatya 44210, Turkey;
| | | | - Mehmet Erdem
- Department of Medical Biochemistry, Malatya Turgut Özal University, Malatya 44210, Turkey; (M.E.); (T.R.K.); (Ö.O.)
| | - Tuğba Raika Kıran
- Department of Medical Biochemistry, Malatya Turgut Özal University, Malatya 44210, Turkey; (M.E.); (T.R.K.); (Ö.O.)
| | - Önder Otlu
- Department of Medical Biochemistry, Malatya Turgut Özal University, Malatya 44210, Turkey; (M.E.); (T.R.K.); (Ö.O.)
| | - Seval Müzeyyen Ecin
- Department of Occupational Medicine and Internal Medicine Clinic, Mersin City Training and Research Hospital, Mersin 33240, Turkey;
| | - Erdal İn
- Department of Pulmonary Diseases, Faculty of Medicine, İzmir University of Economics, İzmir 35330, Turkey;
| |
Collapse
|
28
|
Pszczołowska M, Walczak K, Misków W, Antosz K, Batko J, Karska J, Leszek J. Molecular cross-talk between long COVID-19 and Alzheimer's disease. GeroScience 2024; 46:2885-2899. [PMID: 38393535 PMCID: PMC11009207 DOI: 10.1007/s11357-024-01096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The long COVID (coronavirus disease), a multisystemic condition following severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, is one of the widespread problems. Some of its symptoms affect the nervous system and resemble symptoms of Alzheimer's disease (AD)-a neurodegenerative condition caused by the accumulation of amyloid beta and hyperphosphorylation of tau proteins. Multiple studies have found dependence between these two conditions. Patients with Alzheimer's disease have a greater risk of SARS-CoV-2 infection due to increased levels of angiotensin-converting enzyme 2 (ACE2), and the infection itself promotes amyloid beta generation which enhances the risk of AD. Also, the molecular pathways are alike-misregulations in folate-mediated one-carbon metabolism, a deficit of Cq10, and disease-associated microglia. Medical imaging in both of these diseases shows a decrease in the volume of gray matter, global brain size reduction, and hypometabolism in the parahippocampal gyrus, thalamus, and cingulate cortex. In some studies, a similar approach to applied medication can be seen, including the use of amino adamantanes and phenolic compounds of rosemary. The significance of these connections and their possible application in medical practice still needs further study but there is a possibility that they will help to better understand long COVID.
Collapse
Affiliation(s)
| | - Kamil Walczak
- Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Weronika Misków
- Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Katarzyna Antosz
- Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Joanna Batko
- Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Julia Karska
- Clinic of Psychiatry, Department of Psychiatry, Medical Department, Wrocław Medical University, Wrocław, Poland
| | - Jerzy Leszek
- Clinic of Psychiatry, Department of Psychiatry, Medical Department, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
29
|
Fedorowski A, Fanciulli A, Raj SR, Sheldon R, Shibao CA, Sutton R. Cardiovascular autonomic dysfunction in post-COVID-19 syndrome: a major health-care burden. Nat Rev Cardiol 2024; 21:379-395. [PMID: 38163814 DOI: 10.1038/s41569-023-00962-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 01/03/2024]
Abstract
Cardiovascular autonomic dysfunction (CVAD) is a malfunction of the cardiovascular system caused by deranged autonomic control of circulatory homeostasis. CVAD is an important component of post-COVID-19 syndrome, also termed long COVID, and might affect one-third of highly symptomatic patients with COVID-19. The effects of CVAD can be seen at both the whole-body level, with impairment of heart rate and blood pressure control, and in specific body regions, typically manifesting as microvascular dysfunction. Many severely affected patients with long COVID meet the diagnostic criteria for two common presentations of CVAD: postural orthostatic tachycardia syndrome and inappropriate sinus tachycardia. CVAD can also manifest as disorders associated with hypotension, such as orthostatic or postprandial hypotension, and recurrent reflex syncope. Advances in research, accelerated by the COVID-19 pandemic, have identified new potential pathophysiological mechanisms, diagnostic methods and therapeutic targets in CVAD. For clinicians who daily see patients with CVAD, knowledge of its symptomatology, detection and appropriate management is more important than ever. In this Review, we define CVAD and its major forms that are encountered in post-COVID-19 syndrome, describe possible CVAD aetiologies, and discuss how CVAD, as a component of post-COVID-19 syndrome, can be diagnosed and managed. Moreover, we outline directions for future research to discover more efficient ways to cope with this prevalent and long-lasting condition.
Collapse
Affiliation(s)
- Artur Fedorowski
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden.
- Department of Medicine, Karolinska Institute, Stockholm, Sweden.
- Department of Clinical Sciences, Lund University, Malmö, Sweden.
| | | | - Satish R Raj
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Autonomic Dysfunction Center, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert Sheldon
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cyndya A Shibao
- Autonomic Dysfunction Center, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Richard Sutton
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Cardiology, Hammersmith Hospital, National Heart & Lung Institute, Imperial College, London, UK
| |
Collapse
|
30
|
Kubrova E, Hallo-Carrasco AJ, Klasova J, Pagan Rosado RD, Prusinski CC, Trofymenko O, Schappell JB, Prokop LJ, Yuh CI, Gupta S, Hunt CL. Persistent chest pain following COVID-19 infection - A scoping review. PM R 2024; 16:605-625. [PMID: 37906499 DOI: 10.1002/pmrj.13098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/07/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023]
Abstract
Persistent chest pain (PCP) following acute COVID-19 infection is a commonly reported symptom with an unclear etiology, making its management challenging. This scoping review aims to address the knowledge gap surrounding the characteristics of PCP following COVID-19, its causes, and potential treatments. This is a scoping review of 64 studies, including observational (prospective, retrospective, cross-sectional, case series, and case-control) and one quasi-experimental study, from databases including Embase, PubMed/MEDLINE, Cochrane CENTRAL, Google Scholar, Cochrane Database of Systematic Reviews, and Scopus. Studies on patients with PCP following mild, moderate, and severe COVID-19 infection were included. Studies with patients of any age, with chest pain that persisted following acute COVID-19 disease, irrespective of etiology or duration were included. A total of 35 studies reported PCP symptoms following COVID-19 (0.24%-76.6%) at an average follow-up of 3 months or longer, 12 studies at 1-3 months and 17 studies at less than 1-month follow-up or not specified. PCP was common following mild-severe COVID-19 infection, and etiology was mostly not reported. Fourteen studies proposed potential etiologies including endothelial dysfunction, cardiac ischemia, vasospasm, myocarditis, cardiac arrhythmia, pneumonia, pulmonary embolism, postural tachycardia syndrome, or noted cardiac MRI (cMRI) changes. Evaluation methods included common cardiopulmonary tests, as well as less common tests such as flow-mediated dilatation, cMRI, single-photon emission computed tomography myocardial perfusion imaging, and cardiopulmonary exercise testing. Only one study reported a specific treatment (sulodexide). PCP is a prevalent symptom following COVID-19 infection, with various proposed etiologies. Further research is needed to establish a better understanding of the causes and to develop targeted treatments for PCP following COVID-19.
Collapse
Affiliation(s)
- Eva Kubrova
- Department of Physical Medicine and Rehabilitation, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | | | - Johana Klasova
- Department of Pain Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Robert D Pagan Rosado
- Department of Physical Medicine and Rehabilitation, Mayo Clinic Rochester, Rochester, Minnesota, USA
- Department of Pain Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | | | - Larry J Prokop
- Library and Public Services, Mayo Clinic, Rochester, Minnesota, USA
| | - Clara I Yuh
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, California, USA
| | - Sahil Gupta
- Department of Pain Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Christine L Hunt
- Department of Pain Medicine, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
31
|
Gómez-Moyano E, Pavón-Morón J, Rodríguez-Capitán J, Bardán-Rebollar D, Ramos-Carrera T, Villalobos-Sánchez A, Pérez de Pedro I, Ruiz-García FJ, Mora-Robles J, López-Sampalo A, Pérez-Velasco MA, Bernal-López MR, Gómez-Huelgas R, Jiménez-Navarro M, Romero-Cuevas M, Costa F, Trenas A, Pérez-Belmonte LM. The Role of Heparin in Postural Orthostatic Tachycardia Syndrome and Other Post-Acute Sequelae of COVID-19. J Clin Med 2024; 13:2405. [PMID: 38673677 PMCID: PMC11050777 DOI: 10.3390/jcm13082405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The therapeutic management and short-term consequences of the coronavirus disease 2019 (COVID-19) are well known. However, COVID-19 post-acute sequelae are less known and represent a public health problem worldwide. Patients with COVID-19 who present post-acute sequelae may display immune dysregulation, a procoagulant state, and persistent microvascular endotheliopathy that could trigger microvascular thrombosis. These elements have also been implicated in the physiopathology of postural orthostatic tachycardia syndrome, a frequent sequela in post-COVID-19 patients. These mechanisms, directly associated with post-acute sequelae, might determine the thrombotic consequences of COVID-19 and the need for early anticoagulation therapy. In this context, heparin has several potential benefits, including immunomodulatory, anticoagulant, antiviral, pro-endothelial, and vascular effects, that could be helpful in the treatment of COVID-19 post-acute sequelae. In this article, we review the evidence surrounding the post-acute sequelae of COVID-19 and the potential benefits of the use of heparin, with a special focus on the treatment of postural orthostatic tachycardia syndrome.
Collapse
Affiliation(s)
- Elisabeth Gómez-Moyano
- Servicio de Dermatología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Javier Pavón-Morón
- Servicio de Cardiología, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (J.P.-M.); (M.J.-N.); (M.R.-C.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), IBIMA-Plataforma BIONAND, Universidad de Málaga (UMA), 29010 Málaga, Spain;
| | - Jorge Rodríguez-Capitán
- Servicio de Cardiología, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (J.P.-M.); (M.J.-N.); (M.R.-C.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), IBIMA-Plataforma BIONAND, Universidad de Málaga (UMA), 29010 Málaga, Spain;
| | | | | | - Aurora Villalobos-Sánchez
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain (I.P.d.P.); (A.L.-S.); (M.-R.B.-L.); (R.G.-H.)
| | - Iván Pérez de Pedro
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain (I.P.d.P.); (A.L.-S.); (M.-R.B.-L.); (R.G.-H.)
| | | | - Javier Mora-Robles
- Servicio de Cardiología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Almudena López-Sampalo
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain (I.P.d.P.); (A.L.-S.); (M.-R.B.-L.); (R.G.-H.)
| | - Miguel A. Pérez-Velasco
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain (I.P.d.P.); (A.L.-S.); (M.-R.B.-L.); (R.G.-H.)
| | - Maria-Rosa Bernal-López
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain (I.P.d.P.); (A.L.-S.); (M.-R.B.-L.); (R.G.-H.)
- Centro de Investigación en Red Fisiopatología de la Obesidad y la Nutrtición (CIBERObn), IBIMA-Plataforma BIONAND, Universidad de Málaga (UMA), 29010 Málaga, Spain
| | - Ricardo Gómez-Huelgas
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain (I.P.d.P.); (A.L.-S.); (M.-R.B.-L.); (R.G.-H.)
- Centro de Investigación en Red Fisiopatología de la Obesidad y la Nutrtición (CIBERObn), IBIMA-Plataforma BIONAND, Universidad de Málaga (UMA), 29010 Málaga, Spain
| | - Manuel Jiménez-Navarro
- Servicio de Cardiología, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (J.P.-M.); (M.J.-N.); (M.R.-C.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), IBIMA-Plataforma BIONAND, Universidad de Málaga (UMA), 29010 Málaga, Spain;
| | - Miguel Romero-Cuevas
- Servicio de Cardiología, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (J.P.-M.); (M.J.-N.); (M.R.-C.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), IBIMA-Plataforma BIONAND, Universidad de Málaga (UMA), 29010 Málaga, Spain;
| | - Francesco Costa
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, A.O.U. Policlinic ‘G. Martino’, Via C. Valeria 1, 98165 Messina, Italy;
| | - Alicia Trenas
- Servicio de Medicina Interna, Área Sanitaria Norte de Málaga, Hospital de Antequera, 29200 Antequera, Spain;
| | - Luis M. Pérez-Belmonte
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), IBIMA-Plataforma BIONAND, Universidad de Málaga (UMA), 29010 Málaga, Spain;
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain (I.P.d.P.); (A.L.-S.); (M.-R.B.-L.); (R.G.-H.)
- Servicio de Medicina Interna, Hospital Helicópteros Sanitarios, 29660 Marbella, Spain
| |
Collapse
|
32
|
Violi F, Harenberg J, Pignatelli P, Cammisotto V. COVID-19 and Long-COVID Thrombosis: From Clinical and Basic Science to Therapeutics. Thromb Haemost 2024; 124:286-296. [PMID: 37967846 DOI: 10.1055/s-0043-1776713] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Coronavirus infectious disease-19 (COVID-19) is a pandemic characterized by serious lung disease and thrombotic events in the venous and circulation trees, which represent a harmful clinical sign of poor outcome. Thrombotic events are more frequent in patients with severe disease requiring intensive care units and are associated with platelet and clotting activation. However, after resolution of acute infection, patients may still have clinical sequelae, the so-called long-COVID-19, including thrombotic events again in the venous and arterial circulation. The mechanisms accounting for thrombosis in acute and long COVID-19 have not been fully clarified; interactions of COVID-19 with angiotensin converting enzyme 2 or toll-like receptor family or infection-induced cytokine storm have been suggested to be implicated in endothelial cells, leucocytes, and platelets to elicit clotting activation in acute as well in chronic phase of the disease. In acute COVID-19, prophylactic or full doses of anticoagulants exert beneficial effects even if the dosage choice is still under investigation; however, a residual risk still remains suggesting a need for a more appropriate therapeutic approach. In long COVID-19 preliminary data provided useful information in terms of antiplatelet treatment but definition of candidates for thrombotic prophylaxis is still undefined.
Collapse
Affiliation(s)
- Francesco Violi
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Via Orazio, Naples, Italy
| | - Job Harenberg
- Medical Faculty Mannheim, Ruprecht-karls University Heidelberg, Heidelberg, Germany
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Via Orazio, Naples, Italy
| | - Vittoria Cammisotto
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
33
|
Tamariz L, Bast E, Klimas N, Palacio A. Low-dose Naltrexone Improves post-COVID-19 condition Symptoms. Clin Ther 2024; 46:e101-e106. [PMID: 38267326 DOI: 10.1016/j.clinthera.2023.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/29/2023] [Accepted: 12/24/2023] [Indexed: 01/26/2024]
Abstract
PURPOSE Treatments for myalgic encephalomyelitis and chronic fatigue syndrome can be adapted for post-COVID-19 condition. Our aim was to compare treatments in patients from our post-COVID-19 clinic. METHODS We conducted a retrospective cohort study and included consecutive patients enrolled in our post-COVID-19 clinic. We included patients who received low-dose naltrexone, amitriptyline, duloxetine, and physical therapy, and evaluated improvements in fatigue, pain, dyspnea, and brain fog recorded in the electronic health record. We calculated the adjusted relative hazard of improvement using Cox proportional models. We adjusted for demographic characteristics, comorbidities, and prior COVID-19 hospitalization. FINDINGS We included the first 108 patients with post-COVID-19 enrolled in the clinic. Most of the patients received amitriptyline. The relative hazard of improvement for those taking low-dose naltrexone was 5.04 (95% CI, 1.22-20.77; P = 0.02) compared with physical therapy alone. Both fatigue and pain were improved in patients taking low-dose naltrexone; only fatigue was improved in patients taking amitriptyline. IMPLICATIONS Post-COVID-19 condition symptoms may improve in patients taking medications adapted from myalgic encephalomyelitis and chronic fatigue syndrome. Randomized controlled trials should evaluate these medications and translational studies should further evaluate their mechanisms of action.
Collapse
Affiliation(s)
- Leonardo Tamariz
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Miami, Florida; Department of Public Health Sciences, University of MIami, Miami, Florida.
| | - Elizabeth Bast
- Department of Ambulatory Medicine, Veterans Affairs Medical Center, Miami, Florida
| | - Nancy Klimas
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Miami, Florida; Institute for Neuro Immune Medicine, Dr. Kiran Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida
| | - Ana Palacio
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Miami, Florida; Department of Public Health Sciences, University of MIami, Miami, Florida
| |
Collapse
|
34
|
Turner S, Naidoo CA, Usher TJ, Kruger A, Venter C, Laubscher GJ, Khan MA, Kell DB, Pretorius E. Increased Levels of Inflammatory and Endothelial Biomarkers in Blood of Long COVID Patients Point to Thrombotic Endothelialitis. Semin Thromb Hemost 2024; 50:288-294. [PMID: 37207671 DOI: 10.1055/s-0043-1769014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The prevailing hypotheses for the persistent symptoms of Long COVID have been narrowed down to immune dysregulation and autoantibodies, widespread organ damage, viral persistence, and fibrinaloid microclots (entrapping numerous inflammatory molecules) together with platelet hyperactivation. Here we demonstrate significantly increased concentrations of von Willebrand factor (VWF), platelet factor 4 (PF4), serum amyloid A (SAA), α-2 antiplasmin (α-2AP), endothelial-leukocyte adhesion molecule 1 (E-selectin), and platelet endothelial cell adhesion molecule (PECAM-1) in the soluble part of the blood. It was noteworthy that the mean level of α-2 antiplasmin exceeded the upper limit of the laboratory reference range in Long COVID patients, and the other 5 were significantly elevated in Long COVID patients as compared to the controls. This is alarming if we take into consideration that a significant amount of the total burden of these inflammatory molecules has previously been shown to be entrapped inside fibrinolysis-resistant microclots (thus decreasing the apparent level of the soluble molecules). We conclude that presence of microclotting, together with relatively high levels of six biomarkers known to be key drivers of endothelial and clotting pathology, points to thrombotic endothelialitis as a key pathological process in Long COVID.
Collapse
Affiliation(s)
- Simone Turner
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Caitlin A Naidoo
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Thomas J Usher
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Arneaux Kruger
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Chantelle Venter
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | | | - M Asad Khan
- Department of Respiratory Medicine, Wythenshawe Hospital, Manchester University, Manchester, United Kingdom
| | - Douglas B Kell
- Department of Biochemistry and Systems Biology; Institute of Systems, Molecular and Integrative Biology; Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet Lyngby, Denmark
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet Lyngby, Denmark
| |
Collapse
|
35
|
Faghy MA, Tatler A, Chidley C, Fryer S, Stoner L, Laddu D, Arena R, Ashton RE. The physiologic benefits of optimizing cardiorespiratory fitness and physical activity - From the cell to systems level in a post-pandemic world. Prog Cardiovasc Dis 2024; 83:49-54. [PMID: 38417766 DOI: 10.1016/j.pcad.2024.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Cardiovascular (CV) disease (CVD) is a leading cause of premature death and hospitalization which places a significant strain on health services and economies around the World. Evidence from decades of empirical and observational research demonstrates clear associations between physical activity (PA) and cardiorespiratory fitness (CRF) which can offset the risk of mortality and increase life expectancy and the quality of life in patients. Whilst well documented, the narrative of increased CRF remained pertinent during the coronavirus disease 2019 (COVID-19) pandemic, where individuals with lower levels of CRF had more than double the risk of dying from COVID-19 compared to those with a moderate or high CRF. The need to better understand the mechanisms associated with COVID-19 and those that continue to be affected with persistent symptoms following infection (Long COVID), and CV health is key if we are to be able to effectively target the use of CRF and PA to improve the lives of those suffering its afflictions. Whilst there is a long way to go to optimise PA and CRF for improved health at a population level, particularly in a post-pandemic world, increasing the understanding using a cellular-to-systems approach, we hope to provide further insight into the benefits of engaging in PA.
Collapse
Affiliation(s)
- Mark A Faghy
- Biomedical and Clinical Exercise Science Research Theme, University of Derby, Derby, UK; Healthy Living for Pandemic Event Protection Network (HL-Pivot), Illinois, Chicago, USA.
| | - Amanda Tatler
- Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, UK
| | - Corinna Chidley
- Biomedical and Clinical Exercise Science Research Theme, University of Derby, Derby, UK
| | - Simon Fryer
- Department of Sport and Exercise Science, University of Gloucestershire, Gloucester, UK
| | - Lee Stoner
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Deepika Laddu
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois Chicago, Chicago, USA
| | - Ross Arena
- Healthy Living for Pandemic Event Protection Network (HL-Pivot), Illinois, Chicago, USA; Department of Physical Therapy, College of Applied Health Sciences, University of Illinois Chicago, Chicago, USA
| | - Ruth E Ashton
- Biomedical and Clinical Exercise Science Research Theme, University of Derby, Derby, UK; Healthy Living for Pandemic Event Protection Network (HL-Pivot), Illinois, Chicago, USA
| |
Collapse
|
36
|
Jakubiak GK. Cardiac Troponin Serum Concentration Measurement Is Useful Not Only in the Diagnosis of Acute Cardiovascular Events. J Pers Med 2024; 14:230. [PMID: 38540973 PMCID: PMC10971222 DOI: 10.3390/jpm14030230] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 08/01/2024] Open
Abstract
Cardiac troponin serum concentration is the primary marker used for the diagnosis of acute coronary syndrome. Moreover, the measurement of cardiac troponin concentration is important for risk stratification in patients with pulmonary embolism. The cardiac troponin level is also a general marker of myocardial damage, regardless of etiology. The purpose of this study is to conduct a literature review and present the most important information regarding the current state of knowledge on the cardiac troponin serum concentration in patients with chronic cardiovascular disease (CVD), as well as on the relationships between cardiac troponin serum concentration and features of subclinical cardiovascular dysfunction. According to research conducted to date, patients with CVDs, such as chronic coronary syndrome, chronic lower extremities' ischemia, and cerebrovascular disease, are characterized by higher cardiac troponin concentrations than people without a CVD. Moreover, the literature data indicate that the concentration of cardiac troponin is correlated with markers of subclinical dysfunction of the cardiovascular system, such as the intima-media thickness, pulse wave velocity, ankle-brachial index, coronary artery calcium index (the Agatston score), and flow-mediated dilation. However, further research is needed in various patient subpopulations and in different clinical contexts.
Collapse
Affiliation(s)
- Grzegorz K Jakubiak
- Department and Clinic of Internal Medicine, Angiology, and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St., 41-902 Bytom, Poland
| |
Collapse
|
37
|
Wu X, Xiang M, Jing H, Wang C, Novakovic VA, Shi J. Damage to endothelial barriers and its contribution to long COVID. Angiogenesis 2024; 27:5-22. [PMID: 37103631 PMCID: PMC10134732 DOI: 10.1007/s10456-023-09878-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/16/2023] [Indexed: 04/28/2023]
Abstract
The world continues to contend with COVID-19, fueled by the emergence of viral variants. At the same time, a subset of convalescent individuals continues to experience persistent and prolonged sequelae, known as long COVID. Clinical, autopsy, animal and in vitro studies all reveal endothelial injury in acute COVID-19 and convalescent patients. Endothelial dysfunction is now recognized as a central factor in COVID-19 progression and long COVID development. Different organs contain different types of endothelia, each with specific features, forming different endothelial barriers and executing different physiological functions. Endothelial injury results in contraction of cell margins (increased permeability), shedding of glycocalyx, extension of phosphatidylserine-rich filopods, and barrier damage. During acute SARS-CoV-2 infection, damaged endothelial cells promote diffuse microthrombi and destroy the endothelial (including blood-air, blood-brain, glomerular filtration and intestinal-blood) barriers, leading to multiple organ dysfunction. During the convalescence period, a subset of patients is unable to fully recover due to persistent endothelial dysfunction, contributing to long COVID. There is still an important knowledge gap between endothelial barrier damage in different organs and COVID-19 sequelae. In this article, we mainly focus on these endothelial barriers and their contribution to long COVID.
Collapse
Affiliation(s)
- Xiaoming Wu
- Department of Hematology, The First Hospital, Harbin Medical University, 150001, Harbin, China
| | - Mengqi Xiang
- Department of Hematology, The First Hospital, Harbin Medical University, 150001, Harbin, China
| | - Haijiao Jing
- Department of Hematology, The First Hospital, Harbin Medical University, 150001, Harbin, China
| | - Chengyue Wang
- Department of Hematology, The First Hospital, Harbin Medical University, 150001, Harbin, China
| | - Valerie A Novakovic
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, 150001, Harbin, China.
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, MA, Boston, USA.
| |
Collapse
|
38
|
Negrut N, Menegas G, Kampioti S, Bourelou M, Kopanyi F, Hassan FD, Asowed A, Taleouine FZ, Ferician A, Marian P. The Multisystem Impact of Long COVID: A Comprehensive Review. Diagnostics (Basel) 2024; 14:244. [PMID: 38337760 PMCID: PMC10855167 DOI: 10.3390/diagnostics14030244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
(1) Background: COVID-19 was responsible for the latest pandemic, shaking and reshaping healthcare systems worldwide. Its late clinical manifestations make it linger in medical memory as a debilitating illness over extended periods. (2) Methods: the recent literature was systematically analyzed to categorize and examine the symptomatology and pathophysiology of Long COVID across various bodily systems, including pulmonary, cardiovascular, gastrointestinal, neuropsychiatric, dermatological, renal, hematological, and endocrinological aspects. (3) Results: The review outlines the diverse clinical manifestations of Long COVID across multiple systems, emphasizing its complexity and challenges in diagnosis and treatment. Factors such as pre-existing conditions, initial COVID-19 severity, vaccination status, gender, and age were identified as influential in the manifestation and persistence of Long COVID symptoms. This condition is highlighted as a debilitating disease capable of enduring over an extended period and presenting new symptoms over time. (4) Conclusions: Long COVID emerges as a condition with intricate multi-systemic involvement, complicating its diagnosis and treatment. The findings underscore the necessity for a nuanced understanding of its diverse manifestations to effectively manage and address the evolving nature of this condition over time.
Collapse
Affiliation(s)
- Nicoleta Negrut
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Georgios Menegas
- Department of Orthopaedics, Achillopouleio General Hospital of Volos, Polymeri 134, 38222 Volos, Greece;
| | - Sofia Kampioti
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania (M.B.); (F.D.H.)
| | - Maria Bourelou
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania (M.B.); (F.D.H.)
| | - Francesca Kopanyi
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania (M.B.); (F.D.H.)
| | - Faiso Dahir Hassan
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania (M.B.); (F.D.H.)
| | - Anamaria Asowed
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania (M.B.); (F.D.H.)
| | - Fatima Zohra Taleouine
- University College London Hospitals NHS Foundation Trust, 250 Euston Road, London NW1 2PG, UK;
| | - Anca Ferician
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.F.)
| | - Paula Marian
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.F.)
| |
Collapse
|
39
|
Zhang C, Hung CY, Hsu CG. Epidemiology, Symptoms and Pathophysiology of Long Covid Complications. JOURNAL OF CELLULAR IMMUNOLOGY 2024; 6:219-230. [PMID: 40276305 PMCID: PMC12021439 DOI: 10.33696/immunology.6.209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Long COVID, or post-acute sequelae of SARS-CoV-2 infection, reports to affect a significant proportion of COVID-19 survivors, leading to persistent and multi-organ complications. This review examines the epidemiology, symptoms of long COVID complications, including cardiac, hematological, vascular, pulmonary, neuropsychiatric, renal, gastrointestinal, musculoskeletal, immune dysregulation, and dermatological issues. By synthesizing the latest research, this article provides a comprehensive overview of the prevalence and detailed pathophysiological mechanisms underlying these complications. The purpose of this review is to enhance the understanding of diverse and complex nature of long COVID and emphasize the need for ongoing research, seeking to support future studies for better management of long COVID.
Collapse
Affiliation(s)
- Chongyang Zhang
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Chiung-Yu Hung
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Chia George Hsu
- Department of Kinesiology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
40
|
Zisis SN, Durieux JC, Mouchati C, Funderburg N, Ailstock K, Chong M, Labbato D, McComsey GA. Arterial Stiffness and Oxidized LDL Independently Associated With Post-Acute Sequalae of SARS-CoV-2. Pathog Immun 2023; 8:1-15. [PMID: 38156116 PMCID: PMC10753933 DOI: 10.20411/pai.v8i2.634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/11/2023] [Indexed: 12/30/2023] Open
Abstract
OBJECTIVE COVID-19 survivors can experience lingering symptoms known as post-acute sequelae of SARS-CoV-2 (PASC) that appear in different phenotypes, and its etiology remains elusive. We assessed the relationship of endothelial dysfunction with having COVID and PASC. METHODS Data was collected from a prospectively enrolled cohort (n=379) of COVID-negative and COVID-positive participants with and without PASC. Primary outcomes, endothelial function (measured by reactive hyperemic index [RHI]), and arterial elasticity (measured by augmentation index standardized at 75 bpm [AI]), were measured using the FDA approved EndoPAT. Patient characteristics, labs, metabolic measures, markers of inflammation, and oxidized LDL (ox-LDL) were collected at each study visit, and PASC symptoms were categorized into 3 non-exclusive phenotypes: cardiopulmonary, neurocognitive, and general. COVID-negative controls were propensity score matched to COVID-negative-infected cases using the greedy nearest neighbor method. RESULTS There were 14.3% of participants who were fully recovered COVID positive and 28.5% who were COVID positive with PASC, averaging 8.64 ± 6.26 total number of symptoms. The mean RHI was similar across the cohort and having COVID or PASC was not associated with endothelial function (P=0.33). Age (P<0.0001), female sex (P<0.0001), and CRP P=0.04) were positively associated with arterial stiffness, and COVID positive PASC positive with neurological and/or cardiopulmonary phenotypes had the worst arterial elasticity (highest AI). Values for AI (P=0.002) and ox-LDL (P<0.0001) were independently and positively associated with an increased likelihood of having PASC. CONCLUSION There is evidence of an independent association between PASC, ox-LDL, and arterial stiffness with neurological and/or cardiopulmonary phenotypes having the worst arterial elasticity. Future studies should continue investigating the role of oxidative stress in the pathophysiology of PASC.
Collapse
Affiliation(s)
- Sokratis N Zisis
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jared C Durieux
- Clinical Research Center, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | | | - Nicholas Funderburg
- School of Health and Rehabilitation Sciences, Ohio State University, Columbus, Ohio
| | - Kate Ailstock
- School of Health and Rehabilitation Sciences, Ohio State University, Columbus, Ohio
| | - Mary Chong
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Danielle Labbato
- Clinical Research Center, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Grace A McComsey
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
- Clinical Research Center, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| |
Collapse
|
41
|
Machin DR, Sabouri M, Zheng X, Donato AJ. Therapeutic strategies targeting the endothelial glycocalyx. Curr Opin Clin Nutr Metab Care 2023; 26:543-550. [PMID: 37555800 PMCID: PMC10592259 DOI: 10.1097/mco.0000000000000973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
PURPOSE OF REVIEW This review will highlight recent studies that have examined the endothelial glycocalyx in a variety of health conditions, as well as potential glycocalyx-targeted therapies. RECENT FINDINGS A degraded glycocalyx is present in individuals that consume high sodium diet or have kidney disease, diabetes, preeclampsia, coronavirus disease 2019 (COVID-19), or sepsis. Specifically, these conditions are accompanied by elevated glycocalyx components in the blood, such as syndecan-1, syndecans-4, heparin sulfate, and enhanced heparinase activity. Impaired glycocalyx barrier function is accompanied by decreased nitric oxide bioavailability, increased leukocyte adhesion to endothelial cells, and vascular permeability. Glycocalyx degradation appears to play a key role in the progression of cardiovascular complications. However, studies that have used glycocalyx-targeted therapies to treat these conditions are scarce. Various therapeutics can restore the glycocalyx in kidney disease, diabetes, COVID-19, and sepsis. Exposing endothelial cells to glycocalyx components, such as heparin sulfate and hyaluronan protects the glycocalyx. SUMMARY We conclude that the glycocalyx is degraded in a variety of health conditions, although it remains to be determined whether glycocalyx degradation plays a causal role in disease progression and severity, and whether glycocalyx-targeted therapies improve patient health outcomes. Future studies are warranted to investigate therapeutic strategies that target the endothelial glycocalyx.
Collapse
Affiliation(s)
- Daniel R Machin
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Mostafa Sabouri
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Xiangyu Zheng
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Anthony J Donato
- Department of Internal Medicine, University of Utah, Utah
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, VA SLC
- Department of Nutrition and Integrative Physiology
- Department of Biochemistry
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
42
|
Abagnale L, Candia C, Motta A, Galloway B, Ambrosino P, Molino A, Maniscalco M. Flow-mediated dilation as a marker of endothelial dysfunction in pulmonary diseases: A narrative review. Respir Med Res 2023; 84:101049. [PMID: 37826872 DOI: 10.1016/j.resmer.2023.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/12/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023]
Abstract
The endothelium is an active and crucial component of vessels and produces several key regulatory factors for the homeostasis of the entire organism. Endothelial function can be investigated invasively or non-invasively, both in the coronary and peripheral circulation. A widely accepted method for the assessment of endothelial function is measurement of flow-mediated dilation (FMD), which evaluates the vascular response to changes in blood flow. In this current review, we describe FMD applications in the clinical setting of different respiratory diseases: acute SARS-COV2 infection, pulmonary embolism; post-acute SARS-COV2 infection, Chronic Obstructive Pulmonary Disease, Obstructive Sleep Apneas Syndrome, Pulmonary Hypertension, Interstitial Lung Diseases. Emerging evidence shows that FMD might be an effective tool to assess the cardiovascular risk in patients suffering from the undermentioned respiratory diseases as well as an independent predictive factor of disease severity and/or recovery.
Collapse
Affiliation(s)
- Lucia Abagnale
- Department of Medicine and Surgery, Federico II University, Naples, Italy
| | - Claudio Candia
- Department of Medicine and Surgery, Federico II University, Naples, Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, Naples, Italy
| | - Brurya Galloway
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, Telese Terme, Italy
| | - Pasquale Ambrosino
- Istituti Clinici Scientifici Maugeri IRCCS, Directorate of Telese Terme Institute, Telese Terme, Italy
| | - Antonio Molino
- Department of Medicine and Surgery, Federico II University, Naples, Italy
| | - Mauro Maniscalco
- Department of Medicine and Surgery, Federico II University, Naples, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, Telese Terme, Italy.
| |
Collapse
|
43
|
Fedorowski A, Olsén MF, Nikesjö F, Janson C, Bruchfeld J, Lerm M, Hedman K. Cardiorespiratory dysautonomia in post-COVID-19 condition: Manifestations, mechanisms and management. J Intern Med 2023; 294:548-562. [PMID: 37183186 DOI: 10.1111/joim.13652] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A significant proportion of COVID-19 patients experience debilitating symptoms for months after the acute infection. According to recent estimates, approximately 1 out of 10 COVID-19 convalescents reports persistent health issues more than 3 months after initial recovery. This 'post-COVID-19 condition' may include a large variety of symptoms from almost all domains and organs, and for some patients it may mean prolonged sick-leave, homestay and strongly limited activities of daily life. In this narrative review, we focus on the symptoms and signs of post-COVID-19 condition in adults - particularly those associated with cardiovascular and respiratory systems, such as postural orthostatic tachycardia syndrome or airway disorders - and explore the evidence for chronic autonomic dysfunction as a potential underlying mechanism. The most plausible hypotheses regarding cellular and molecular mechanisms behind the wide spectrum of observed symptoms - such as lingering viruses, persistent inflammation, impairment in oxygen sensing systems and circulating antibodies directed to blood pressure regulatory components - are discussed. In addition, an overview of currently available pharmacological and non-pharmacological treatment options is presented.
Collapse
Affiliation(s)
- Artur Fedorowski
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Cardiology, Karolinska University Hospital, Solna, Sweden
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Monika Fagevik Olsén
- Department of Occupational Therapy and Physiotherapy, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Health and Rehabilitation/Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Frida Nikesjö
- Department of Respiratory Medicine in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Christer Janson
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Judith Bruchfeld
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institute, Stockholm, Sweden
| | - Maria Lerm
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, Linköping, Sweden
| | - Kristofer Hedman
- Department of Clinical Physiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
44
|
Li J, Zhou Y, Ma J, Zhang Q, Shao J, Liang S, Yu Y, Li W, Wang C. The long-term health outcomes, pathophysiological mechanisms and multidisciplinary management of long COVID. Signal Transduct Target Ther 2023; 8:416. [PMID: 37907497 PMCID: PMC10618229 DOI: 10.1038/s41392-023-01640-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/04/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023] Open
Abstract
There have been hundreds of millions of cases of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). With the growing population of recovered patients, it is crucial to understand the long-term consequences of the disease and management strategies. Although COVID-19 was initially considered an acute respiratory illness, recent evidence suggests that manifestations including but not limited to those of the cardiovascular, respiratory, neuropsychiatric, gastrointestinal, reproductive, and musculoskeletal systems may persist long after the acute phase. These persistent manifestations, also referred to as long COVID, could impact all patients with COVID-19 across the full spectrum of illness severity. Herein, we comprehensively review the current literature on long COVID, highlighting its epidemiological understanding, the impact of vaccinations, organ-specific sequelae, pathophysiological mechanisms, and multidisciplinary management strategies. In addition, the impact of psychological and psychosomatic factors is also underscored. Despite these crucial findings on long COVID, the current diagnostic and therapeutic strategies based on previous experience and pilot studies remain inadequate, and well-designed clinical trials should be prioritized to validate existing hypotheses. Thus, we propose the primary challenges concerning biological knowledge gaps and efficient remedies as well as discuss the corresponding recommendations.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Zhou
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jiechao Ma
- AI Lab, Deepwise Healthcare, Beijing, China
| | - Qin Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Department of Postgraduate Student, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jun Shao
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Shufan Liang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yizhou Yu
- Department of Computer Science, The University of Hong Kong, Hong Kong, China.
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
45
|
Kuchler T, Günthner R, Ribeiro A, Hausinger R, Streese L, Wöhnl A, Kesseler V, Negele J, Assali T, Carbajo-Lozoya J, Lech M, Schneider H, Adorjan K, Stubbe HC, Hanssen H, Kotilar K, Haller B, Heemann U, Schmaderer C. Persistent endothelial dysfunction in post-COVID-19 syndrome and its associations with symptom severity and chronic inflammation. Angiogenesis 2023; 26:547-563. [PMID: 37507580 PMCID: PMC10542303 DOI: 10.1007/s10456-023-09885-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Post-COVID-19 syndrome (PCS) is a lingering disease with ongoing symptoms such as fatigue and cognitive impairment resulting in a high impact on the daily life of patients. Understanding the pathophysiology of PCS is a public health priority, as it still poses a diagnostic and treatment challenge for physicians. METHODS In this prospective observational cohort study, we analyzed the retinal microcirculation using Retinal Vessel Analysis (RVA) in a cohort of patients with PCS and compared it to an age- and gender-matched healthy cohort (n = 41, matched out of n = 204). MEASUREMENTS AND MAIN RESULTS PCS patients exhibit persistent endothelial dysfunction (ED), as indicated by significantly lower venular flicker-induced dilation (vFID; 3.42% ± 1.77% vs. 4.64% ± 2.59%; p = 0.02), narrower central retinal artery equivalent (CRAE; 178.1 [167.5-190.2] vs. 189.1 [179.4-197.2], p = 0.01) and lower arteriolar-venular ratio (AVR; (0.84 [0.8-0.9] vs. 0.88 [0.8-0.9], p = 0.007). When combining AVR and vFID, predicted scores reached good ability to discriminate groups (area under the curve: 0.75). Higher PCS severity scores correlated with lower AVR (R = - 0.37 p = 0.017). The association of microvascular changes with PCS severity were amplified in PCS patients exhibiting higher levels of inflammatory parameters. CONCLUSION Our results demonstrate that prolonged endothelial dysfunction is a hallmark of PCS, and impairments of the microcirculation seem to explain ongoing symptoms in patients. As potential therapies for PCS emerge, RVA parameters may become relevant as clinical biomarkers for diagnosis and therapy management. TRIAL REGISTRATION This study was previously registered at ClinicalTrials ("All Eyes on PCS-Analysis of the Retinal Microvasculature in Patients with Post-COVID-19 Syndrome". NCT05635552. https://clinicaltrials.gov/ct2/show/NCT05635552 ). Persistent endothelial dysfunction in post-COVID-19 syndrome. Acute SARS-CoV-2 infection indirectly or directly causes endotheliitis in patients. N = 41 PCS patients were recruited and retinal vessel analysis was performed to assess microvascular endothelial function. Images of SVA and DVA are illustrative for RVA data analysis. For each PCS patient and healthy cohort, venular vessel diameter of the three measurement cycles was calculated and plotted on a diameter-time curve. Patients exhibited reduced flicker-induced dilation in veins (vFID) measured by dynamic vessel analysis (DVA) and lower central retinal arteriolar equivalent (CRAE) and arteriolar-venular ratio (AVR) and a tendency towards higher central retinal venular equivalent (CRVE) when compared to SARS-CoV-2 infection naïve participants. Created with BioRender.com.
Collapse
Affiliation(s)
- Timon Kuchler
- School of Medicine, Klinikum Rechts Der Isar, Department of Nephrology, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Roman Günthner
- School of Medicine, Klinikum Rechts Der Isar, Department of Nephrology, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Andrea Ribeiro
- School of Medicine, Klinikum Rechts Der Isar, Department of Nephrology, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- Medizinische Klinik Und Poliklinik IV, LMU University Hospital Munich, Ziemssenstraße 5, 80336, Munich, Germany
| | - Renate Hausinger
- School of Medicine, Klinikum Rechts Der Isar, Department of Nephrology, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Lukas Streese
- Faculty of Health Care, Niederrhein University of Applied Sciences, Krefeld, Germany
| | - Anna Wöhnl
- School of Medicine, Klinikum Rechts Der Isar, Department of Nephrology, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Veronika Kesseler
- School of Medicine, Klinikum Rechts Der Isar, Department of Nephrology, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Johanna Negele
- School of Medicine, Klinikum Rechts Der Isar, Department of Nephrology, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Tarek Assali
- School of Medicine, Klinikum Rechts Der Isar, Department of Nephrology, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Javier Carbajo-Lozoya
- School of Medicine, Klinikum Rechts Der Isar, Department of Nephrology, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Maciej Lech
- Medizinische Klinik Und Poliklinik IV, LMU University Hospital Munich, Ziemssenstraße 5, 80336, Munich, Germany
| | - Heike Schneider
- School of Medicine, Klinikum Rechts Der Isar, Department of Clinical Chemistry and Pathobiochemistry, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Kristina Adorjan
- Department of Psychiatry and Psychotherapy, LMU University Hospital Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Hans Christian Stubbe
- Medizinische Klinik Und Poliklinik II, LMU University Hospital Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Henner Hanssen
- Department of Sport, Exercise and Health, Preventive Sports Medicine and Systems Physiology, University of Basel, Basel, Switzerland
| | - Konstantin Kotilar
- Aachen University of Applied Sciences, Heinrich-Mussmann-Str. 1, 52428, Jülich, Germany
| | - Bernhard Haller
- School of Medicine, Institute for AI and Informatics in Medicine, Technical University of Munich, Klinikum Rechts Der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Uwe Heemann
- School of Medicine, Klinikum Rechts Der Isar, Department of Nephrology, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Christoph Schmaderer
- School of Medicine, Klinikum Rechts Der Isar, Department of Nephrology, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| |
Collapse
|
46
|
Trager RJ, Cupler ZA, Theodorou EC, Dusek JA. COVID-19 Does Not Increase the Risk of Spontaneous Cervical Artery Dissection. Cureus 2023; 15:e47524. [PMID: 38022016 PMCID: PMC10664733 DOI: 10.7759/cureus.47524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background Case reports have raised the possibility of an association between coronavirus disease 2019 (COVID-19) and spontaneous cervical artery dissection (sCeAD), yet no large studies have examined this association. We hypothesized that adults with confirmed COVID-19 would have an increased risk of sCeAD over the subsequent six months compared to test-negative controls after adjusting for confounding variables. Methods We obtained data from a United States medical records network (TriNetX, Inc., Cambridge, MA) of >106 million patients, providing adequate power needed for this rare outcome. We identified two cohorts of adults meeting the criteria of (1) test-confirmed COVID-19 or (2) non-COVID-19 test-negative controls, from April 1, 2020, to December 31, 2022. Patients with previous COVID-19 or conditions predisposing to sCeAD were excluded. Propensity matching was used to control for variables associated with sCeAD and markers of healthcare utilization. Results The number of patients reduced from before matching (COVID-19: 491,592; non-COVID-19: 1,472,895) to after matching, resulting in 491,115 patients per cohort. After matching, there were 22 cases of sCeAD in the COVID-19 cohort (0.0045%) and 20 cases in the non-COVID-19 cohort (0.0041%), yielding a risk ratio of 1.10 (95% CI: 0.60-2.02; P = 0.7576). Both cohorts had a median of five healthcare visits during follow-up. Conclusions Our results suggest that COVID-19 is not a risk factor for sCeAD. This null finding alleviates the concern raised by initial case reports and may better direct future research efforts on this topic.
Collapse
Affiliation(s)
- Robert J Trager
- Department of Chiropractic, Connor Whole Health, University Hospitals Cleveland Medical Center, Cleveland, USA
- Department of Family Medicine and Community Health, School of Medicine, Case Western Reserve University, Cleveland, USA
- Department of Biostatistics and Bioinformatics, Clinical Research Training Program, Duke University School of Medicine, Durham, USA
| | - Zachary A Cupler
- Physical Medicine & Rehabilitative Services, Butler VA (Veterans Affairs) Health Care System, Butler, USA
- Institute for Clinical Research Education, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Elainie C Theodorou
- Science Research and Engineering Program, Hathaway Brown School, Cleveland, USA
| | - Jeffery A Dusek
- Department of Family Medicine and Community Health, School of Medicine, Case Western Reserve University, Cleveland, USA
| |
Collapse
|
47
|
Greistorfer T, Jud P. Pathophysiological Aspects of COVID-19-Associated Vasculopathic Diseases. Thromb Haemost 2023; 123:931-944. [PMID: 37172941 DOI: 10.1055/s-0043-1768969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Since the beginning of coronavirus disease 2019 (COVID-19) pandemic, numerous data reported potential effects on the cardiovascular system due to infection by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), which may lead to COVID-19-associated vasculopathies during the acute phase and measurable vascular changes in the convalescent phase. Infection by SARS-CoV-2 seems to have specific direct and indirect effects on the endothelium, immune and coagulation systems thus promoting endothelial dysfunction, immunothrombosis, and formation of neutrophil extracellular traps although the exact mechanisms still need to be elucidated. This review represents a recent update of pathophysiological pathways of the respective three major mechanisms contributing to COVID-19 vasculopathies and vascular changes and includes clinical implications and significance of outcome data.
Collapse
Affiliation(s)
- Thiemo Greistorfer
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Philipp Jud
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
48
|
Kovanen PT, Vuorio A. SARS-CoV-2 reinfection: Adding insult to dysfunctional endothelium in patients with atherosclerotic cardiovascular disease. ATHEROSCLEROSIS PLUS 2023; 53:1-5. [PMID: 37293388 PMCID: PMC10238112 DOI: 10.1016/j.athplu.2023.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
In this short narrative review, we aim at defining the pathophysiological role endothelial dysfunction in the observed COVID-19-associated rise in risk of cardiovascular disease. Variants of the SARS-CoV-2 virus have caused several epidemic waves of COVID-19, and the emergence and rapid spread of new variants and subvariants are likely. Based on a large cohort study, the incidence rate of SARS-CoV-2 reinfection is about 0.66 per 10 000 person-weeks. Both the first infection and reinfection with SARS-CoV-2 increase cardiac event risk, particularly in vulnerable patients with cardiovascular risk factors and the accompanying systemic endothelial dysfunction. By worsening pre-existing endothelial dysfunction, both the first infection and reinfection with ensuing COVID-19 may turn the endothelium procoagulative and prothrombotic, and ultimately lead to local thrombus formation. When occurring in an epicardial coronary artery, the risk of an acute coronary syndrome increases, and when occurring in intramyocardial microvessels, scattered myocardial injuries will ensue, both predisposing the COVID-19 patients to adverse cardiovascular outcomes. In conclusion, considering weakened protection against the cardiovascular risk-enhancing reinfections with emerging new subvariants of SARS-CoV-2, treatment of COVID-19 patients with statins during the illness and thereafter is recommended, partly because the statins tend to reduce endothelial dysfunction.
Collapse
Affiliation(s)
| | - Alpo Vuorio
- Mehiläinen, Airport Health Center, Vantaa, Finland
- University of Helsinki, Department of Forensic Medicine, Helsinki, Finland
| |
Collapse
|
49
|
Montezano AC, Camargo LL, Mary S, Neves KB, Rios FJ, Stein R, Lopes RA, Beattie W, Thomson J, Herder V, Szemiel AM, McFarlane S, Palmarini M, Touyz RM. SARS-CoV-2 spike protein induces endothelial inflammation via ACE2 independently of viral replication. Sci Rep 2023; 13:14086. [PMID: 37640791 PMCID: PMC10462711 DOI: 10.1038/s41598-023-41115-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
COVID-19, caused by SARS-CoV-2, is a respiratory disease associated with inflammation and endotheliitis. Mechanisms underling inflammatory processes are unclear, but angiotensin converting enzyme 2 (ACE2), the receptor which binds the spike protein of SARS-CoV-2 may be important. Here we investigated whether spike protein binding to ACE2 induces inflammation in endothelial cells and determined the role of ACE2 in this process. Human endothelial cells were exposed to SARS-CoV-2 spike protein, S1 subunit (rS1p) and pro-inflammatory signaling and inflammatory mediators assessed. ACE2 was modulated pharmacologically and by siRNA. Endothelial cells were also exposed to SARS-CoV-2. rSP1 increased production of IL-6, MCP-1, ICAM-1 and PAI-1, and induced NFkB activation via ACE2 in endothelial cells. rS1p increased microparticle formation, a functional marker of endothelial injury. ACE2 interacting proteins involved in inflammation and RNA biology were identified in rS1p-treated cells. Neither ACE2 expression nor ACE2 enzymatic function were affected by rSP1. Endothelial cells exposed to SARS-CoV-2 virus did not exhibit viral replication. We demonstrate that rSP1 induces endothelial inflammation via ACE2 through processes that are independent of ACE2 enzymatic activity and viral replication. We define a novel role for ACE2 in COVID-19- associated endotheliitis.
Collapse
Affiliation(s)
- Augusto C Montezano
- Research Institute of the McGill University Health Centre (RI-MUHC), Site Glen-Block E-Office: E01.3362, 1001, Boul. Decarie, Montreal, QC, H4A3J1, Canada.
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK.
| | - Livia L Camargo
- Research Institute of the McGill University Health Centre (RI-MUHC), Site Glen-Block E-Office: E01.3362, 1001, Boul. Decarie, Montreal, QC, H4A3J1, Canada
| | - Sheon Mary
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Karla B Neves
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Francisco J Rios
- Research Institute of the McGill University Health Centre (RI-MUHC), Site Glen-Block E-Office: E01.3362, 1001, Boul. Decarie, Montreal, QC, H4A3J1, Canada
| | - Ross Stein
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Rheure A Lopes
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Wendy Beattie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Jacqueline Thomson
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Vanessa Herder
- MRC Centre for Virus Research, University of Glasgow, Glasgow, UK
| | | | - Steven McFarlane
- MRC Centre for Virus Research, University of Glasgow, Glasgow, UK
| | | | - Rhian M Touyz
- Research Institute of the McGill University Health Centre (RI-MUHC), Site Glen-Block E-Office: E01.3362, 1001, Boul. Decarie, Montreal, QC, H4A3J1, Canada.
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK.
- McGill University, Montreal, Canada.
| |
Collapse
|
50
|
Parotto M, Gyöngyösi M, Howe K, Myatra SN, Ranzani O, Shankar-Hari M, Herridge MS. Post-acute sequelae of COVID-19: understanding and addressing the burden of multisystem manifestations. THE LANCET. RESPIRATORY MEDICINE 2023:S2213-2600(23)00239-4. [PMID: 37475125 DOI: 10.1016/s2213-2600(23)00239-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023]
Abstract
Individuals with SARS-CoV-2 infection can develop symptoms that persist well beyond the acute phase of COVID-19 or emerge after the acute phase, lasting for weeks or months after the initial acute illness. The post-acute sequelae of COVID-19, which include physical, cognitive, and mental health impairments, are known collectively as long COVID or post-COVID-19 condition. The substantial burden of this multisystem condition is felt at individual, health-care system, and socioeconomic levels, on an unprecedented scale. Survivors of COVID-19-related critical illness are at risk of the well known sequelae of acute respiratory distress syndrome, sepsis, and chronic critical illness, and these multidimensional morbidities might be difficult to differentiate from the specific effects of SARS-CoV-2 and COVID-19. We provide an overview of the manifestations of post-COVID-19 condition after critical illness in adults. We explore the effects on various organ systems, describe potential pathophysiological mechanisms, and consider the challenges of providing clinical care and support for survivors of critical illness with multisystem manifestations. Research is needed to reduce the incidence of post-acute sequelae of COVID-19-related critical illness and to optimise therapeutic and rehabilitative care and support for patients.
Collapse
Affiliation(s)
- Matteo Parotto
- Department of Anesthesiology and Pain Medicine, University of Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, ON, Canada; Department of Anesthesia and Pain Medicine, Toronto General Hospital, Toronto, ON, Canada.
| | - Mariann Gyöngyösi
- Division of Cardiology, 2nd Department of Internal Medicine, Medical University of Vienna, Vienna, Austria
| | - Kathryn Howe
- Division of Vascular Surgery, University Health Network, Toronto, ON, Canada
| | - Sheila N Myatra
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Otavio Ranzani
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Pulmonary Division, Heart Institute, Faculty of Medicine, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Manu Shankar-Hari
- The Queen's Medical Research Institute, Edinburgh BioQuarter, Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Margaret S Herridge
- Department of Medicine, University of Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, ON, Canada; Department of Medicine, University Health Network, Toronto, ON, Canada
| |
Collapse
|