1
|
López-Aguilar KK, Vargas-Camaño ME, Lozano-Patiño F, Castrejón Vázquez MI. Recurrent respiratory papillomatosis: Immunological mechanisms involved in recurrence. Int Rev Immunol 2025; 44:113-126. [PMID: 39509110 DOI: 10.1080/08830185.2024.2425428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Recurrent respiratory papillomatosis is a benign neoplastic pathology in children, young people, and adults. It causes a significant deterioration in the quality of life, with symptoms typically referred to as dysphonia and hoarseness. This disease, with variable clinical courses ranging from spontaneous resolution to dissemination of the lower airway or airway obstruction that puts the individual's life at risk, characteristically requires multiple surgical interventions. Therapy with adjuvant drugs does not yet prove the effectiveness necessary to limit the recurrence and need for surgical reoperation in this condition. The review aimed to synthesize the immunopathogenic mechanisms of relapse in recurrent respiratory papillomatosis published in the current literature and the immunological implication of risk factors and treatment.
Collapse
Affiliation(s)
- Katya Karen López-Aguilar
- Centro Medico Nacional "20 de Noviembre" Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - María Eugenia Vargas-Camaño
- Centro Medico Nacional "20 de Noviembre" Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - Fernando Lozano-Patiño
- Centro Medico Nacional "20 de Noviembre" Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - María Isabel Castrejón Vázquez
- Centro Medico Nacional "20 de Noviembre" Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| |
Collapse
|
2
|
Yuan J, Liao Z, Zhu X, Zhu Y, Wu S, Guo L, Fu Y, Liu Y. PM 2.5 exacerbates nasal epithelial barrier dysfunction in allergic rhinitis by inducing NLRP3-mediated pyroptosis via the AhR/CYP1A1/ROS axis. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138145. [PMID: 40209413 DOI: 10.1016/j.jhazmat.2025.138145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/10/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
Fine particulate matter (PM2.5), a major air pollutant, plays a critical role in exacerbating respiratory diseases such as allergic rhinitis (AR) by inducing inflammation. While its association with AR is well established, the precise mechanisms by which PM2.5 triggers pyroptosis and compromises nasal epithelial barrier integrity remain unclear. This study investigates the role of PM2.5 in promoting pyroptosis in nasal epithelial cells and its contribution to AR pathogenesis. Clinical analysis revealed significantly elevated levels of NLRP3 inflammasomes and pyroptosis-related proteins in the nasal mucosa of patients with AR compared with the control group. In vitro and in vivo experiments further demonstrated that PM2.5 exposure led to a dose-dependent increase in these markers in nasal epithelial cells and AR mouse models. Functional studies using NLRP3 agonists and inhibitors confirmed that PM2.5 induces NLRP3-mediated pyroptosis, resulting in tight junction protein degradation and compromised epithelial barrier integrity. Mechanistic investigations showed that PM2.5 activates the aryl hydrocarbon receptor (AhR) pathway, driving the transcription of cytochrome P450 1A1 (CYP1A1) and increasing reactive oxygen species (ROS) production. Notably, AhR downregulation alleviated PM2.5-induced pyroptosis and epithelial barrier dysfunction, whereas CYP1A1 overexpression reversed these protective effects, highlighting the pivotal role of the AhR/CYP1A1/ROS axis in mediating PM2.5-induced epithelial damage. In conclusion, this study uncovers a novel mechanism by which PM2.5 promotes NLRP3-mediated pyroptosis through the AhR/CYP1A1/ROS signaling pathway, ultimately leading to epithelial barrier disruption and AR exacerbation. These findings highlight the urgent need for strategies to minimize PM2.5 exposure and mitigate its detrimental effects on respiratory health.
Collapse
Affiliation(s)
- Jiasheng Yuan
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Zhihuai Liao
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Xinhua Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yaqiong Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Shuhong Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Liqing Guo
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yanpeng Fu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yuehui Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
3
|
Solé D, Kuschnir FC, Pastorino AC, Constantino CF, Galvão C, Chong E Silva DC, Baptistella E, Goudouris ES, Sakano E, Ejzenbaum F, Matsumoto FY, Mizoguchi FM, Aarestrup FM, Wandalsen GF, Chong Neto HJ, Brito de Oliveira JV, Lubianca Neto JF, Rizzo MCV, Silva Chavarria MLF, Urrutia-Pereira M, Filho NAR, de Paula Motta Rubini N, Mion O, Piltcher OB, Ramos RT, Francesco RD, Roithmann R, Anselmo-Lima WT, Romano FR, de Mello Júnior JF. V Brazilian Consensus on Rhinitis - 2024. Braz J Otorhinolaryngol 2025; 91:101500. [PMID: 39388827 PMCID: PMC11497470 DOI: 10.1016/j.bjorl.2024.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 10/12/2024] Open
Abstract
Since we published the "IV Brazilian Consensus on Rhinitis", in2017, several advances have been achieved and have enabled a further understanding of the different aspects of "Rhinitis". This new guideline, developed jointly by ASBAI, SBP and SBORL, represents a relevant milestone in the updated and integrated management of the different forms of the disease, and it aims to unify evidence-based approaches to improve the diagnosis and treatment of this common and often underestimated condition. The document covers a wide range of topics, including clear definitions of the different phenotypes and endotypes of rhinitis, risk factors, updated diagnostic criteria, and recommended methods for clinical and laboratory investigation. We stress the importance of detailed clinical history and objective assessment, as well as tools for control and assessing severity tools an accurate diagnostic approach to the disease. Regarding treatment, it emphasizes the treatment customization, considering the severity of symptoms, the presence of comorbidities and the impact on the patient's quality of life. We discuss different drug treatment, in addition to non-pharmacological measures, such as environmental control and specific immunotherapy; and the possible role of immunobiological agents. Furthermore, the consensus addresses issues related to patient education, prevention and management of special situations, such as rhinitis in children, in pregnant women and in the elderly. In short, the "V Brazilian Consensus on Rhinitis" represents a comprehensive and updated guide for healthcare professionals involved in the diagnosis and management of rhinitis, aiming to improve patients' quality of life through an integrated and evidence-based approach.
Collapse
Affiliation(s)
- Dirceu Solé
- Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil; Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil
| | - Fábio Chigres Kuschnir
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antônio Carlos Pastorino
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade de São Paulo, São Paulo, SP, Brazil
| | - Clóvis F Constantino
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade de Santo Amaro, São Paulo, SP, Brazil
| | - Clóvis Galvão
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade de São Paulo, São Paulo, SP, Brazil
| | - Débora Carla Chong E Silva
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade Federal do Paraná́, Curitiba, PR, Brazil
| | - Eduardo Baptistella
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil
| | - Ekaterini Simões Goudouris
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eulália Sakano
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil; Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Fábio Ejzenbaum
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brazil
| | - Fausto Yoshio Matsumoto
- Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil; Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil
| | - Flavio Massao Mizoguchi
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil
| | - Fernando Monteiro Aarestrup
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Gustavo F Wandalsen
- Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil; Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil
| | - Herberto José Chong Neto
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade Federal do Paraná́, Curitiba, PR, Brazil
| | | | - José Faibes Lubianca Neto
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Fundação Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | | | | | - Marilyn Urrutia-Pereira
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Nelson Augusto Rosário Filho
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade Federal do Paraná́, Curitiba, PR, Brazil
| | - Norma de Paula Motta Rubini
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Olavo Mion
- Universidade de São Paulo, São Paulo, SP, Brazil; Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil
| | - Otávio Bejzman Piltcher
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil; Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazi
| | - Regina Terse Ramos
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Renata Di Francesco
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade de São Paulo, São Paulo, SP, Brazil
| | - Renato Roithmann
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil; Universidade Luterana do Brasil, Canos, RS, Brazil
| | - Wilma Terezinha Anselmo-Lima
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil; Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Fabrizio Ricci Romano
- Universidade de São Paulo, São Paulo, SP, Brazil; Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil
| | - João Ferreira de Mello Júnior
- Universidade de São Paulo, São Paulo, SP, Brazil; Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil.
| |
Collapse
|
4
|
Hansi RK, Ranjbar M, Whetstone CE, Gauvreau GM. Regulation of Airway Epithelial-Derived Alarmins in Asthma: Perspectives for Therapeutic Targets. Biomedicines 2024; 12:2312. [PMID: 39457624 PMCID: PMC11505104 DOI: 10.3390/biomedicines12102312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Asthma is a chronic respiratory condition predominantly driven by a type 2 immune response. Epithelial-derived alarmins such as thymic stromal lymphopoietin (TSLP), interleukin (IL)-33, and IL-25 orchestrate the activation of downstream Th2 cells and group 2 innate lymphoid cells (ILC2s), along with other immune effector cells. While these alarmins are produced in response to inhaled triggers, such as allergens, respiratory pathogens or particulate matter, disproportionate alarmin production by airway epithelial cells can lead to asthma exacerbations. With alarmins produced upstream of the type 2 inflammatory cascade, understanding the pathways by which these alarmins are regulated and expressed is critical to further explore new therapeutics for the treatment of asthmatic patients. This review emphasizes the critical role of airway epithelium and epithelial-derived alarmins in asthma pathogenesis and highlights the potential of targeting alarmins as a promising therapeutic to improve outcomes for asthma patients.
Collapse
Affiliation(s)
| | | | | | - Gail M. Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (R.K.H.); (M.R.); (C.E.W.)
| |
Collapse
|
5
|
Ndongo Sonfack DJ, Tanguay Boivin C, Touzel Deschênes L, Maurand T, Maguemoun C, Berthod F, Gros-Louis F, Champagne PO. Bioengineering Human Upper Respiratory Mucosa: A Systematic Review of the State of the Art of Cell Culture Techniques. Bioengineering (Basel) 2024; 11:826. [PMID: 39199784 PMCID: PMC11352167 DOI: 10.3390/bioengineering11080826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND The upper respiratory mucosa plays a crucial role in both the physical integrity and immunological function of the respiratory tract. However, in certain situations such as infections, trauma, or surgery, it might sustain damage. Tissue engineering, a field of regenerative medicine, has found applications in various medical fields including but not limited to plastic surgery, ophthalmology, and urology. However, its application to the respiratory system remains somewhat difficult due to the complex morphology and histology of the upper respiratory tract. To date, a culture protocol for producing a handleable, well-differentiated nasal mucosa has yet to be developed. The objective of this review is to describe the current state of research pertaining to cell culture techniques used for producing autologous healthy human upper respiratory cells and mucosal tissues, as well as describe its clinical applications. METHODS A search of the relevant literature was carried out with no time restriction across Embase, Cochrane, PubMed, and Medline Ovid databases. Keywords related to "respiratory mucosa" and "culture techniques of the human airway" were the focus of the search strategy for this review. The risk of bias in retained studies was assessed using the Joanna Briggs Institute's (JBI) critical appraisal tools for qualitative research. A narrative synthesis of our results was then conducted. RESULTS A total of 33 studies were included in this review, and thirteen of these focused solely on developing a cell culture protocol without further use. The rest of the studies used their own developed protocol for various applications such as cystic fibrosis, pharmacological, and viral research. One study was able to develop a promising model for nasal mucosa that could be employed as a replacement in nasotracheal reconstructive surgery. CONCLUSIONS This systematic review extensively explored the current state of research regarding cell culture techniques for producing tissue-engineered nasal mucosa. Bioengineering the nasal mucosa holds great potential for clinical use. However, further research on mechanical properties is essential, as the comparison of engineered tissues is currently focused on morphology rather than comprehensive mechanical assessments.
Collapse
Affiliation(s)
- Davaine Joel Ndongo Sonfack
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
- LOEX, CHU de Québec—Laval University Research Center, Quebec, QC G1J 5B3, Canada;
- Laval University Neurosurgery Innovation Laboratory (LINUL), Quebec, QC G1J 5B3, Canada
- Department of Neurosurgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| | - Clémence Tanguay Boivin
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
| | - Lydia Touzel Deschênes
- LOEX, CHU de Québec—Laval University Research Center, Quebec, QC G1J 5B3, Canada;
- Laval University Neurosurgery Innovation Laboratory (LINUL), Quebec, QC G1J 5B3, Canada
| | - Thibault Maurand
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
| | - Célina Maguemoun
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
| | - François Berthod
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
- LOEX, CHU de Québec—Laval University Research Center, Quebec, QC G1J 5B3, Canada;
| | - François Gros-Louis
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
- LOEX, CHU de Québec—Laval University Research Center, Quebec, QC G1J 5B3, Canada;
| | - Pierre-Olivier Champagne
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
- LOEX, CHU de Québec—Laval University Research Center, Quebec, QC G1J 5B3, Canada;
- Laval University Neurosurgery Innovation Laboratory (LINUL), Quebec, QC G1J 5B3, Canada
- Department of Neurosurgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
6
|
Ouyang Y, Yang J, Zhang J, Yan Y, Sun S, Wang J, Li X, Chen R, Zhang L. Airborne pollen exposure and risk of hospital admission for allergic rhinitis in Beijing: A time-stratified case-crossover study. Clin Transl Allergy 2024; 14:e12380. [PMID: 38956945 PMCID: PMC11220181 DOI: 10.1002/clt2.12380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/16/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Airborne pollen is a crucial risk factor in allergic rhinitis (AR). The severity of AR symptoms can vary based on pollen type and concentration. This study aimed to estimate the association between exposure to different pollen types and AR risk. METHODS We obtained data from patients admitted to the Beijing Tongren Hospital for AR, and data on pollen concentration, meteorological factors, and fine particulate matter (PM2.5) from 13 districts in Beijing from 2016 to 2019. We used a time-stratified case-crossover study design and calculated odds ratios (ORs) related to the risk of AR associated with a 10 grain/1000 mm2 increase in total pollen concentrations for specific pollen types. A stratified analysis was conducted to assess whether the associations were varied by age and sex. RESULTS The OR of AR associated with a 10 grain/1000 mm2 increase in the 7-day average pollen concentration was 1.014 (95% CI: 1.014, 1.015), 1.076 (95% CI: 1.070, 1.082), 1.024 (95% CI: 1.023, 1.025), 1.042 (95% CI: 1.039, 1.045), 1.142 (95% CI: 1.137, 1.147), 1.092 (95% CI: 1.088, 1.097), 1.046 (95% CI: 1.035, 1.058), and 1.026 (95% CI: 1.024, 1.028) for total pollen, Ulmus, Cupressaceae, Populus, Fraxinus, Pinus, Betula, and Artemisia, respectively. Both tree pollen (Ulmus, Cupressaceae, Populus, Fraxinus, Betula, and Pinus) and weed pollen (Artemisia, Chenopodium, and Humulus) were correlated with an increased risk of AR. These associations remained consistent across distinct subgroups defined by both age and sex. CONCLUSION Exposure to pollen from trees and weeds might be associated with an increased risk of AR. This research provides valuable scientific support for both clinical practitioners and patients with AR regarding the hazards of pollen exposure.
Collapse
Affiliation(s)
- Yuhui Ouyang
- Department of AllergyBeijing Tongren HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Nasal DiseasesBeijing Institute of OtolaryngologyBeijingChina
- Research Unit of Diagnosis and Treatment of Chronic Nasal DiseasesChinese Academy of Medical SciencesBeijingChina
| | - Jun Yang
- Beijing Key Laboratory of Nasal DiseasesBeijing Institute of OtolaryngologyBeijingChina
| | - Jingxuan Zhang
- Department of AllergyBeijing Tongren HospitalCapital Medical UniversityBeijingChina
| | - Yun Yan
- Department of AllergyBeijing Tongren HospitalCapital Medical UniversityBeijingChina
| | - Shengzhi Sun
- School of Public HealthCapital Medical UniversityBeijingChina
| | - Jiajia Wang
- School of Public HealthCapital Medical UniversityBeijingChina
| | - Xiaobo Li
- School of Public HealthCapital Medical UniversityBeijingChina
| | - Rui Chen
- School of Public HealthCapital Medical UniversityBeijingChina
- Beijing Laboratory of Allergic DiseasesCapital Medical UniversityBeijingChina
| | - Luo Zhang
- Department of AllergyBeijing Tongren HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Nasal DiseasesBeijing Institute of OtolaryngologyBeijingChina
- Research Unit of Diagnosis and Treatment of Chronic Nasal DiseasesChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
7
|
Zhou Y, Chen R, Kong L, Sun Y, Deng J. Neuroimmune communication in allergic rhinitis. Front Neurol 2023; 14:1282130. [PMID: 38178883 PMCID: PMC10764552 DOI: 10.3389/fneur.2023.1282130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
The prevalence rate of allergic rhinitis (AR) is high worldwide. The inhalation of allergens induces AR, which is an immunoglobulin E-mediated and type 2 inflammation-driven disease. Recently, the role of neuroimmune communication in AR pathogenesis has piqued the interest of the scientific community. Various neuropeptides, such as substance P (SP), vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP), nerve growth factor (NGF), and neuromedin U (NMU), released via "axon reflexes" or "central sensitization" exert regulatory effects on immune cells to elicit "neurogenic inflammation," which contributes to nasal hyperresponsiveness (NHR) in AR. Additionally, neuropeptides can be produced in immune cells. The frequent colocalization of immune and neuronal cells at certain anatomical regions promotes the establishment of neuroimmune cell units, such as nerve-mast cells, nerve-type 2 innate lymphoid cells (ILC2s), nerve-eosinophils and nerve-basophils units. Receptors expressed both on immune cells and neurons, such as TRPV1, TRPA1, and Mas-related G protein-coupled receptor X2 (MRGPRX2) mediate AR pathogenesis. This review focused on elucidating the mechanisms underlying neuroimmune communication in AR.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Otolaryngology, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Zhejiang, China
- Department of Otolaryngology, The First Hospital of Jiaxing, Jiaxing, China
| | - Ru Chen
- Department of Otolaryngology, The First Hospital of Jiaxing, Jiaxing, China
| | - Lili Kong
- Department of Otolaryngology, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Zhejiang, China
- Department of Otolaryngology, The First Hospital of Jiaxing, Jiaxing, China
| | - Yaoyao Sun
- Department of Otolaryngology, The First Hospital of Jiaxing, Jiaxing, China
| | - Jing Deng
- Department of Otolaryngology, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Zhejiang, China
- Department of Otolaryngology, The First Hospital of Jiaxing, Jiaxing, China
| |
Collapse
|
8
|
Tossavainen T, Martikainen MV, Loukola H, Roponen M. Common Pollen Modulate Immune Responses against Viral-Like Challenges in Airway Coculture Model. J Immunol Res 2023; 2023:6639092. [PMID: 37965270 PMCID: PMC10643028 DOI: 10.1155/2023/6639092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Recent research indicates that exposure to pollen increases the risk and severity of respiratory infections, while studies also suggest that it may possess a protective function. Our aim was to investigate how exposure to common pollen modifies airway cells' responses to viral- or bacterial-like challenges and vice versa. Cocultured A549 and THP-1 cells were exposed to three doses of four different pollens (Alnus glutinosa, Betula pendula, Phleum pratense, or Ambrosia artemisiifolia) and subsequently to Toll-like receptor (TLR) ligands mimicking bacterial and viral challenges (TLR3, TLR4, TLR7/8). The stimulation experiment was replicated in reverse order. Toxicological and immunological end points were analyzed. When cells were primed with pollen, especially with grass (P. pratense) or weed (A. artemisiifolia), the ability of cells to secrete cytokines in response to bacterial- and viral-like exposure was decreased. In contrast, cells primed with viral ligand TLR7/8 showed greater cytokine responses against pollen than cells exposed to ligands or pollen alone. Our results suggest that pollen exposure potentially weakens immune reactions to bacterial- or viral-like challenges by modulating cytokine production. They also indicate that TLR7/8-mediated viral challenges could elicit exaggerated immune responses against pollen. Both mechanisms could contribute to the acceleration and complication of infections during the pollen season.
Collapse
Affiliation(s)
- Tarleena Tossavainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maria-Viola Martikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Hanna Loukola
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
9
|
Raith M, Swoboda I. Birch pollen-The unpleasant herald of spring. FRONTIERS IN ALLERGY 2023; 4:1181675. [PMID: 37255542 PMCID: PMC10225653 DOI: 10.3389/falgy.2023.1181675] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023] Open
Abstract
Type I respiratory allergies to birch pollen and pollen from related trees of the order Fagales are increasing in industrialized countries, especially in the temperate zone of the Northern hemisphere, but the reasons for this increase are still debated and seem to be multifaceted. While the most important allergenic molecules of birch pollen have been identified and characterized, the contribution of other pollen components, such as lipids, non-allergenic immunomodulatory proteins, or the pollen microbiome, to the development of allergic reactions are sparsely known. Furthermore, what also needs to be considered is that pollen is exposed to external influences which can alter its allergenicity. These external influences include environmental factors such as gaseous pollutants like ozone or nitrogen oxides or particulate air pollutants, but also meteorological events like changes in temperature, humidity, or precipitation. In this review, we look at the birch pollen from different angles and summarize current knowledge on internal and external influences that have an impact on the allergenicity of birch pollen and its interactions with the epithelial barrier. We focus on epithelial cells since these cells are the first line of defense in respiratory disease and are increasingly considered to be a regulatory tissue for the protection against the development of respiratory allergies.
Collapse
|
10
|
Wise SK, Damask C, Roland LT, Ebert C, Levy JM, Lin S, Luong A, Rodriguez K, Sedaghat AR, Toskala E, Villwock J, Abdullah B, Akdis C, Alt JA, Ansotegui IJ, Azar A, Baroody F, Benninger MS, Bernstein J, Brook C, Campbell R, Casale T, Chaaban MR, Chew FT, Chambliss J, Cianferoni A, Custovic A, Davis EM, DelGaudio JM, Ellis AK, Flanagan C, Fokkens WJ, Franzese C, Greenhawt M, Gill A, Halderman A, Hohlfeld JM, Incorvaia C, Joe SA, Joshi S, Kuruvilla ME, Kim J, Klein AM, Krouse HJ, Kuan EC, Lang D, Larenas-Linnemann D, Laury AM, Lechner M, Lee SE, Lee VS, Loftus P, Marcus S, Marzouk H, Mattos J, McCoul E, Melen E, Mims JW, Mullol J, Nayak JV, Oppenheimer J, Orlandi RR, Phillips K, Platt M, Ramanathan M, Raymond M, Rhee CS, Reitsma S, Ryan M, Sastre J, Schlosser RJ, Schuman TA, Shaker MS, Sheikh A, Smith KA, Soyka MB, Takashima M, Tang M, Tantilipikorn P, Taw MB, Tversky J, Tyler MA, Veling MC, Wallace D, Wang DY, White A, Zhang L. International consensus statement on allergy and rhinology: Allergic rhinitis - 2023. Int Forum Allergy Rhinol 2023; 13:293-859. [PMID: 36878860 DOI: 10.1002/alr.23090] [Citation(s) in RCA: 160] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/11/2022] [Accepted: 09/13/2022] [Indexed: 03/08/2023]
Abstract
BACKGROUND In the 5 years that have passed since the publication of the 2018 International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis (ICAR-Allergic Rhinitis 2018), the literature has expanded substantially. The ICAR-Allergic Rhinitis 2023 update presents 144 individual topics on allergic rhinitis (AR), expanded by over 40 topics from the 2018 document. Originally presented topics from 2018 have also been reviewed and updated. The executive summary highlights key evidence-based findings and recommendation from the full document. METHODS ICAR-Allergic Rhinitis 2023 employed established evidence-based review with recommendation (EBRR) methodology to individually evaluate each topic. Stepwise iterative peer review and consensus was performed for each topic. The final document was then collated and includes the results of this work. RESULTS ICAR-Allergic Rhinitis 2023 includes 10 major content areas and 144 individual topics related to AR. For a substantial proportion of topics included, an aggregate grade of evidence is presented, which is determined by collating the levels of evidence for each available study identified in the literature. For topics in which a diagnostic or therapeutic intervention is considered, a recommendation summary is presented, which considers the aggregate grade of evidence, benefit, harm, and cost. CONCLUSION The ICAR-Allergic Rhinitis 2023 update provides a comprehensive evaluation of AR and the currently available evidence. It is this evidence that contributes to our current knowledge base and recommendations for patient evaluation and treatment.
Collapse
Affiliation(s)
- Sarah K Wise
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Cecelia Damask
- Otolaryngology-HNS, Private Practice, University of Central Florida, Lake Mary, Florida, USA
| | - Lauren T Roland
- Otolaryngology-HNS, Washington University, St. Louis, Missouri, USA
| | - Charles Ebert
- Otolaryngology-HNS, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Joshua M Levy
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Sandra Lin
- Otolaryngology-HNS, University of Wisconsin, Madison, Wisconsin, USA
| | - Amber Luong
- Otolaryngology-HNS, McGovern Medical School of the University of Texas, Houston, Texas, USA
| | - Kenneth Rodriguez
- Otolaryngology-HNS, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Ahmad R Sedaghat
- Otolaryngology-HNS, University of Cincinnati, Cincinnati, Ohio, USA
| | - Elina Toskala
- Otolaryngology-HNS, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Baharudin Abdullah
- Otolaryngology-HNS, Universiti Sains Malaysia, Kubang, Kerian, Kelantan, Malaysia
| | - Cezmi Akdis
- Immunology, Infectious Diseases, Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | - Jeremiah A Alt
- Otolaryngology-HNS, University of Utah, Salt Lake City, Utah, USA
| | | | - Antoine Azar
- Allergy/Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Fuad Baroody
- Otolaryngology-HNS, University of Chicago, Chicago, Illinois, USA
| | | | | | - Christopher Brook
- Otolaryngology-HNS, Harvard University, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Raewyn Campbell
- Otolaryngology-HNS, Macquarie University, Sydney, NSW, Australia
| | - Thomas Casale
- Allergy/Immunology, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Mohamad R Chaaban
- Otolaryngology-HNS, Cleveland Clinic, Case Western Reserve University, Cleveland, Ohio, USA
| | - Fook Tim Chew
- Allergy/Immunology, Genetics, National University of Singapore, Singapore, Singapore
| | - Jeffrey Chambliss
- Allergy/Immunology, University of Texas Southwestern, Dallas, Texas, USA
| | - Antonella Cianferoni
- Allergy/Immunology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | - Anne K Ellis
- Allergy/Immunology, Queens University, Kingston, ON, Canada
| | | | - Wytske J Fokkens
- Otorhinolaryngology, Amsterdam University Medical Centres, Amsterdam, Netherlands
| | | | - Matthew Greenhawt
- Allergy/Immunology, Pediatrics, University of Colorado, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Amarbir Gill
- Otolaryngology-HNS, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashleigh Halderman
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Jens M Hohlfeld
- Respiratory Medicine, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover Medical School, German Center for Lung Research, Hannover, Germany
| | | | - Stephanie A Joe
- Otolaryngology-HNS, University of Illinois Chicago, Chicago, Illinois, USA
| | - Shyam Joshi
- Allergy/Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | | | - Jean Kim
- Otolaryngology-HNS, Johns Hopkins University, Baltimore, Maryland, USA
| | - Adam M Klein
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Helene J Krouse
- Otorhinolaryngology Nursing, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Edward C Kuan
- Otolaryngology-HNS, University of California Irvine, Orange, California, USA
| | - David Lang
- Allergy/Immunology, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - Matt Lechner
- Otolaryngology-HNS, University College London, Barts Health NHS Trust, London, UK
| | - Stella E Lee
- Otolaryngology-HNS, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Victoria S Lee
- Otolaryngology-HNS, University of Illinois Chicago, Chicago, Illinois, USA
| | - Patricia Loftus
- Otolaryngology-HNS, University of California San Francisco, San Francisco, California, USA
| | - Sonya Marcus
- Otolaryngology-HNS, Stony Brook University, Stony Brook, New York, USA
| | - Haidy Marzouk
- Otolaryngology-HNS, State University of New York Upstate, Syracuse, New York, USA
| | - Jose Mattos
- Otolaryngology-HNS, University of Virginia, Charlottesville, Virginia, USA
| | - Edward McCoul
- Otolaryngology-HNS, Ochsner Clinic, New Orleans, Louisiana, USA
| | - Erik Melen
- Pediatric Allergy, Karolinska Institutet, Stockholm, Sweden
| | - James W Mims
- Otolaryngology-HNS, Wake Forest University, Winston Salem, North Carolina, USA
| | - Joaquim Mullol
- Otorhinolaryngology, Hospital Clinic Barcelona, Barcelona, Spain
| | - Jayakar V Nayak
- Otolaryngology-HNS, Stanford University, Palo Alto, California, USA
| | - John Oppenheimer
- Allergy/Immunology, Rutgers, State University of New Jersey, Newark, New Jersey, USA
| | | | - Katie Phillips
- Otolaryngology-HNS, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michael Platt
- Otolaryngology-HNS, Boston University, Boston, Massachusetts, USA
| | | | | | - Chae-Seo Rhee
- Rhinology/Allergy, Seoul National University Hospital and College of Medicine, Seoul, Korea
| | - Sietze Reitsma
- Otolaryngology-HNS, University of Amsterdam, Amsterdam, Netherlands
| | - Matthew Ryan
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Joaquin Sastre
- Allergy, Fundacion Jiminez Diaz, University Autonoma de Madrid, Madrid, Spain
| | - Rodney J Schlosser
- Otolaryngology-HNS, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Theodore A Schuman
- Otolaryngology-HNS, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Marcus S Shaker
- Allergy/Immunology, Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Aziz Sheikh
- Primary Care, University of Edinburgh, Edinburgh, Scotland
| | - Kristine A Smith
- Otolaryngology-HNS, University of Utah, Salt Lake City, Utah, USA
| | - Michael B Soyka
- Otolaryngology-HNS, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Masayoshi Takashima
- Otolaryngology-HNS, Houston Methodist Academic Institute, Houston, Texas, USA
| | - Monica Tang
- Allergy/Immunology, University of California San Francisco, San Francisco, California, USA
| | | | - Malcolm B Taw
- Integrative East-West Medicine, University of California Los Angeles, Westlake Village, California, USA
| | - Jody Tversky
- Allergy/Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Matthew A Tyler
- Otolaryngology-HNS, University of Minnesota, Minneapolis, Minnesota, USA
| | - Maria C Veling
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Dana Wallace
- Allergy/Immunology, Nova Southeastern University, Ft. Lauderdale, Florida, USA
| | - De Yun Wang
- Otolaryngology-HNS, National University of Singapore, Singapore, Singapore
| | - Andrew White
- Allergy/Immunology, Scripps Clinic, San Diego, California, USA
| | - Luo Zhang
- Otolaryngology-HNS, Beijing Tongren Hospital, Beijing, China
| |
Collapse
|
11
|
Buhner S, Schäuffele S, Giesbertz P, Demir IE, Zeller F, Traidl-Hoffmann C, Schemann M, Gilles S. Allergen-free extracts from birch, ragweed, and hazel pollen activate human and guinea-pig submucous and spinal sensory neurons. Neurogastroenterol Motil 2023:e14559. [PMID: 36989179 DOI: 10.1111/nmo.14559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 01/16/2023] [Accepted: 02/24/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Non-allergenic, low molecular weight components of pollen grains are suspected to trigger changes in gut functions, sometimes leading to inflammatory conditions. Based on extensive neuroimmune communication in the gut wall, we investigated the effects of aqueous pollen extracts (APE) on enteric and spinal sensory neurons. METHODS Using Ca2+ and fast potentiometric imaging, we recorded the responses of guinea-pig and human submucous and guinea-pig dorsal root ganglion (DRG) neurons to microejection of low (<3 kDa) and high (≥3 kDa) molecular weight APEs of birch, ragweed, and hazel. Histamine was determined pharmacologically and by mass spectrometry (LC-MS/MS). KEY RESULTS Birch APE<3kDa evoked strong [Ca+2 ]i signals in the vast majority of guinea-pig DRG neurons, and in guinea-pig and human enteric neurons. The effect of birch APE≥3kDa was much weaker. Fast neuroimaging in human enteric neurons revealed an instantaneous spike discharge after microejection of birch, ragweed, and hazel APE<3kDa [median (interquartile range) at 7.0 Hz (6.2/9.8), 5.7 Hz (4.4/7.1), and 8.4 Hz (4.3/12.5), respectively]. The percentage of responding neurons per ganglion were similar [birch 40.0% (33.3/100.0), ragweed 50.8% (34.4/85.6), and hazel 83.3% (57.1/100.0)]. A mixture of histamine receptor (H1-H3) blockers significantly reduced nerve activation evoked by birch and ragweed APEs<3kDa , but was ineffective on hazel. Histamine concentrations in ragweed, birch and hazel APE's < 3 kDa were 0.764, 0.047, and 0.013 μM, respectively. CONCLUSIONS Allergen-free APEs from birch, ragweed, and hazel evoked strong nerve activation. Altered nerve-immune signaling as a result of severe pollen exposure could be a pathophysiological feature of allergic and non-allergic gut inflammation.
Collapse
Affiliation(s)
- Sabine Buhner
- Chair of Human Biology, Technical University Munich, Freising, Germany
| | | | - Pieter Giesbertz
- Molecular Nutrition Unit, Technical University Munich, Freising, Germany
| | - Ihsan Ekin Demir
- University Hospital Rechts der Isar, Technical University Munich, Munich, Germany
| | - Florian Zeller
- Department of Surgery, Academic Hospital Freising, Freising, Germany
| | - Claudia Traidl-Hoffmann
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Christine Kühne Center for Allergy Research and Education (CK-Care), Davos, Switzerland
| | - Michael Schemann
- Chair of Human Biology, Technical University Munich, Freising, Germany
| | - Stefanie Gilles
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
12
|
Martikainen MV, Tossavainen T, Hannukka N, Roponen M. Pollen, respiratory viruses, and climate change: Synergistic effects on human health. ENVIRONMENTAL RESEARCH 2023; 219:115149. [PMID: 36566960 DOI: 10.1016/j.envres.2022.115149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
In recent years, evidence of the synergistic effects of pollen and viruses on respiratory health has begun to accumulate. Pollen exposure is a known risk factor for the incidence and severity of respiratory viral infections. However, recent evidence suggests that pollen exposure may also inhibit or weaken viral infections. A comprehensive summary has not been made and a consensus on the synergistic health effects has not been reached. It is highly possible that climate change will increase the significance of pollen exposure as a cause of respiratory problems and, at the same time, affect the risk of infectious disease outbreaks. It is important to accurately assess how these two factors affect human health separately and concurrently. In this review article, for the first time, the data from previous studies are combined and reviewed and potential research gaps concerning the synergistic effects of pollen and viral exposure are identified.
Collapse
Affiliation(s)
- Maria-Viola Martikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Tarleena Tossavainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Noora Hannukka
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
13
|
Wang HR, Wei SZ, Song XY, Wang Y, Zhang WB, Ren C, Mou YK, Song XC. IL-1 β and Allergy: Focusing on Its Role in Allergic Rhinitis. Mediators Inflamm 2023; 2023:1265449. [PMID: 37091903 PMCID: PMC10115535 DOI: 10.1155/2023/1265449] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
Allergic rhinitis (AR) is a chronic upper airway immune-inflammation response mediated by immunoglobulin E (IgE) to allergens and can seriously affect the quality of life and work efficiency. Previous studies have shown that interleukin-1β (IL-1β) acts as a key cytokine to participate in and promote the occurrence and development of allergic diseases. It has been proposed that IL-1β may be a potential biomarker of AR. However, its definitive role and potential mechanism in AR have not been fully elucidated, and the clinical sample collection and detection methods were inconsistent among different studies, which have limited the use of IL-1β as a clinical diagnosis and treatment marker for AR. This article systematically summarizes the research advances in the roles of IL-1β in allergic diseases, focusing on the changes of IL-1β in AR and the possible interventions. In addition, based on the findings by our team, we provided new insights into the use of IL-1β in AR diagnosis and treatment, in an attempt to further promote the clinical application of IL-1β in AR and other allergic diseases.
Collapse
Affiliation(s)
- Han-Rui Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Shi-Zhuang Wei
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Xiao-Yu Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Yao Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Wen-Bin Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Chao Ren
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Ya-Kui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Xi-Cheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
14
|
Hu Y, Cheng J, Liu S, Tan J, Yan C, Yu G, Yin Y, Tong S. Evaluation of climate change adaptation measures for childhood asthma: A systematic review of epidemiological evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156291. [PMID: 35644404 DOI: 10.1016/j.scitotenv.2022.156291] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Global climate change (GCC) is widely accepted as the biggest threat to human health of the 21st century. Children are particularly vulnerable to GCC due to developing organ systems, psychological immaturity, nature of daily activities, and higher level of per-body-unit exposure. There is a rising trend in the disease burden of childhood asthma and allergies in many parts of the world. The associations of CC, air pollution and other environmental exposures with childhood asthma are attracting more research attention, but relatively few studies have focused on CC adaptation measures and childhood asthma. This study aimed to bridge this knowledge gap and conducted the first systematic review on CC adaptation measures and childhood asthma. We searched electronic databases including PubMed, Embase, and Web of Science using a set of MeSH terms and related synonyms, and identified 20 eligible studies included for review. We found that there were a number of adaptation measures proposed for childhood asthma in response to GCC, including vulnerability assessment, improving ventilation and heating, enhancing community education, and developing forecast models and early warning systems. Several randomized controlled trials show that improving ventilation and installing heating in the homes appear to be an effective way to relieve childhood asthma symptoms, especially in winter. However, the effectiveness of most adaptation measures, except for improving ventilation and heating, have not been explored and quantified. Given more extreme weather events (e.g., cold spells and heatwaves) may occur as climate change progresses, this finding may have important implications. Evidently, further research is urgently warranted to evaluate the impacts of CC adaptation measures on childhood asthma. These adaptation measures, if proven to be effective, should be integrated in childhood asthma control and prevention programs as GCC continues.
Collapse
Affiliation(s)
- Yabin Hu
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Shijian Liu
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianguo Tan
- Shanghai Key Laboratory of Meteorology and Health (Shanghai Meteorological Service), Shanghai, China
| | - Chonghuai Yan
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangjun Yu
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China
| | - Yong Yin
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Shilu Tong
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; School of Public Health, Institute of Environment and Population Health, Anhui Medical University, Hefei, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
15
|
Guryanova SV, Finkina EI, Melnikova DN, Bogdanov IV, Bohle B, Ovchinnikova TV. How Do Pollen Allergens Sensitize? Front Mol Biosci 2022; 9:900533. [PMID: 35782860 PMCID: PMC9245541 DOI: 10.3389/fmolb.2022.900533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Plant pollen is one of the main sources of allergens causing allergic diseases such as allergic rhinitis and asthma. Several allergens in plant pollen are panallergens which are also present in other allergen sources. As a result, sensitized individuals may also experience food allergies. The mechanism of sensitization and development of allergic inflammation is a consequence of the interaction of allergens with a large number of molecular factors that often are acting in a complex with other compounds, for example low-molecular-mass ligands, which contribute to the induction a type 2-driven response of immune system. In this review, special attention is paid not only to properties of allergens but also to an important role of their interaction with lipids and other hydrophobic molecules in pollen sensitization. The reactions of epithelial cells lining the nasal and bronchial mucosa and of other immunocompetent cells will also be considered, in particular the mechanisms of the activation of B and T lymphocytes and the formation of allergen-specific antibody responses.
Collapse
Affiliation(s)
- Svetlana V. Guryanova
- Science-Educational Center, M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
- Medical Institute, Peoples’ Friendship University of Russia, The Ministry of Science and Higher Education of the Russian Federation, Moscow, Russia
| | - Ekaterina I. Finkina
- Science-Educational Center, M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Daria N. Melnikova
- Science-Educational Center, M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Ivan V. Bogdanov
- Science-Educational Center, M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Tatiana V. Ovchinnikova
- Science-Educational Center, M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
- Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- *Correspondence: Tatiana V. Ovchinnikova,
| |
Collapse
|
16
|
Suzuki M, Cooksley C, Suzuki T, Ramezanpour M, Nakazono A, Nakamaru Y, Homma A, Vreugde S. TLR Signals in Epithelial Cells in the Nasal Cavity and Paranasal Sinuses. FRONTIERS IN ALLERGY 2022; 2:780425. [PMID: 35387020 PMCID: PMC8974762 DOI: 10.3389/falgy.2021.780425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
The respiratory tract is constantly at risk of invasion by microorganisms such as bacteria, viruses, and fungi. In particular, the mucosal epithelium of the nasal cavity and paranasal sinuses is at the very forefront of the battles between the host and the invading pathogens. Recent studies have revealed that the epithelium not only constitutes a physical barrier but also takes an essential role in the activation of the immune system. One of the mechanisms equipped in the epithelium to fight against microorganisms is the Toll-like receptor (TLR) response. TLRs recognize common structural components of microorganisms and activate the innate immune system, resulting in the production of a plethora of cytokines and chemokines in the response against microbes. As the epithelia-derived cytokines are deeply involved in the pathogenesis of inflammatory conditions in the nasal cavity and paranasal sinuses, such as chronic rhinosinusitis (CRS) and allergic rhinitis (AR), the molecules involved in the TLR response may be utilized as therapeutic targets for these diseases. There are several differences in the TLR response between nasal and bronchial epithelial cells, and knowledge of the TLR signals in the upper airway is sparse compared to that in the lower airway. In this review, we provide recent evidence on TLR signaling in the upper airway, focusing on the expression, regulation, and responsiveness of TLRs in human nasal epithelial cells (HNECs). We also discuss how TLRs in the epithelium are involved in the pathogenesis of, and possible therapeutic targeting, for CRS and AR.
Collapse
Affiliation(s)
- Masanobu Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Clare Cooksley
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, Central Adelaide Local Health Network and the University of Adelaide, Adelaide, SA, Australia
| | - Takayoshi Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mahnaz Ramezanpour
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, Central Adelaide Local Health Network and the University of Adelaide, Adelaide, SA, Australia
| | - Akira Nakazono
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuji Nakamaru
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akihiro Homma
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Sarah Vreugde
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, Central Adelaide Local Health Network and the University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
17
|
Caruso C, Giancaspro R, Guida G, Macchi A, Landi M, Heffler E, Gelardi M. Nasal Cytology: A Easy Diagnostic Tool in Precision Medicine for Inflammation in Epithelial Barrier Damage in the Nose. A Perspective Mini Review. FRONTIERS IN ALLERGY 2022; 3:768408. [PMID: 35966227 PMCID: PMC9365292 DOI: 10.3389/falgy.2022.768408] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Nasal cytology is a diagnostic tool that can be used in precision rhinology medicine. Particularly in non-allergic rhinitis and chronic rhinosinusitis forms it can be useful to evaluate biomarkers of both surgical or biological therapy and especially in the follow-up it must be used to predict the prognostic index of recurrence of nasal polyposis. All inflammatory cytokines are also linked to the presence of cells such as eosinophils and mastcells and nasal cytology is a non-invasive and repeatable method to assess the situation in real life.
Collapse
Affiliation(s)
- Cristiano Caruso
- Unit of Internal Medicine and Gastroenterology, Department of Medical and Surgical Sciences, Agostino Gemelli University Polyclinic (IRCCS), Rome, Italy
- Allergy Unit, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
- *Correspondence: Cristiano Caruso
| | - Rossana Giancaspro
- Unit of Otolaryngology, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Guida
- Allergy and Pneumology Unit, A.O. S.Croce e Carle, Cuneo, Italy
- Giuseppe Guida
| | - Alberto Macchi
- Italian Academy of Rhinology Asst Settelaghi-University of Insubriae, Varese, Italy
| | - Massimo Landi
- Paediatric National Healthcare System, Torino, Italy
| | - Enrico Heffler
- Personalized Medicine Center: Asthma and Allergology, Humanitas Research Hospital, Rozzano (MI), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
| | - Matteo Gelardi
- Unit of Otolaryngology, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
18
|
Altered secretome by diesel exhaust particles and lipopolysaccharide in primary human nasal epithelium. J Allergy Clin Immunol 2022; 149:2126-2138. [DOI: 10.1016/j.jaci.2021.12.793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/01/2021] [Accepted: 12/30/2021] [Indexed: 11/24/2022]
|
19
|
Pacheco SE, Guidos G, Annesi-Maesano I, Pawankar R, Amato GD, Latour-Staffeld P, Urrutia-Pereira M, Kesic MJ, Hernandez ML. Climate Change and Global Issues in Allergy and Immunology. J Allergy Clin Immunol 2021; 148:1366-1377. [PMID: 34688774 DOI: 10.1016/j.jaci.2021.10.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022]
Abstract
The steady increase in global temperatures, resulting from the combustion of fossil fuels and the accumulation of greenhouse gases (GHG), continues to destabilize all ecosystems worldwide. Although annual emissions must halve by 2030 and reach net-zero by 2050 to limit some of the most catastrophic impacts associated with a warming planet, the world's efforts to curb GHG emissions fall short of the commitments made in the 2015 Paris Agreement (1). To this effect, July 2021 was recently declared the hottest month ever recorded in 142 years (2). The ramifications of these changes on global temperatures are complex and further promote outdoor air pollution, pollen exposure, and extreme weather events. Besides worsening respiratory health, air pollution, promotes atopy and susceptibility to infections. The GHG effects on pollen affect the frequency and severity of asthma and allergic rhinitis. Changes in temperature, air pollution, and extreme weather events exert adverse multisystemic health effects and disproportionally affect disadvantaged and vulnerable populations. This article is an update for allergists and immunologists about the health impacts of climate change, already evident in our daily practices. It is also a call to action and advocacy, including integrating climate change-related mitigation, education, and adaptation measures to protect our patients and avert further injury to our planet.
Collapse
Affiliation(s)
- Susan E Pacheco
- Professor of Pediatrics, University of Texas McGovern Medical School, MSB3.228, Houston, Texas 77030.
| | - Guillermo Guidos
- Professor of Immunology, School of Medicine, ENMH, Instituto Politecnico Nacional, Mexico City
| | - Isabella Annesi-Maesano
- Deputy Director of Institute Desbrest of Epiddemioloy and Public Health, INSERM and Montpellier University, Montpellier, France
| | - Ruby Pawankar
- Professor, Division of Allergy, Dept. of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Gennaro D' Amato
- Fellow and Honorary member of EAACI, FAAAAI, FERS. , Chairman Committee World Allergy Organization on "Aerobiology, Climate change, Biodiversity and Allergy"; Division of Respiratory Diseases and Allergy, High Specialty Hospital A. Cardarelli, Naples
| | - Patricia Latour-Staffeld
- Allergy and Clinical Immunology, Distinguished Graduate Universidad Nacional Pedro Henriquez Ureña, Medical director of Centro Avanzado De Alergia y Asma Santo Domingo, President Latin American Society of Allergy, Asthma and Immunology, Associate Professor School of Medicine Universidad Nacional Pedro Henriquez Ureña, Dominican Republic
| | | | - Matthew J Kesic
- Campbell University, Physician Assistant Program, College of Pharmacy and Health Sciences, 4150 US HWY 421 South, Lillington, NC 27546
| | - Michelle L Hernandez
- Professor of Pediatrics Division of Allergy & Immunology Director, Clinical Research Unit, Children's Research Institute, UNC School of Medicine, 5008C Mary Ellen Jones Building, 116 Manning Drive, CB #7231 Chapel Hill, NC 27599-7231
| | | |
Collapse
|
20
|
Sacchetti M, Nebbioso M, Segatto M, Abicca I, Bruscolini A, Zicari AM, Lambiase A. Vernal keratoconjunctivitis activity induces decrease of ocular surface CD14, TLR-4 and TLR-9 expression. Eur J Ophthalmol 2021; 32:2274-2281. [PMID: 34609157 DOI: 10.1177/11206721211048814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE CD14 is involved in the modulation of immune reaction via toll-like receptors (TLR) and may influence the development of allergic diseases. The role of CD14 in vernal keratoconjunctivitis (VKC) has not yet been investigated. The aim of this study is to evaluate changes of tear soluble sCD14 and conjunctival CD14, TLR-4 and 9 expression in patients with VKC in the active and quiescent phases. METHODS Eighteen patients with VKC during active inflammation (group A, N = 9), in the quiescent phase (group Q, N = 5) and after recovery (group R, N = 4) and 10 healthy subjects were included. Expression of sCD14 in tears and of CD14, TLR-4, and TLR-9 by conjunctival epithelium were evaluated by Western Blot in all groups. RESULTS Expression of tear sCD14 and of conjunctival CD14, TLR-4, and TLR-9 was significantly decreased in group A when compared with healthy subjects and with VKC group Q and R. Lower expression of sCD14, CD14, TLR-4, and TLR-9 were significantly correlated with the severity of papillary reaction, while the lower sCD14 was correlated with severity of conjunctival hyperemia. CONCLUSIONS Tear sCD14, and conjunctival CD14, TLR4, and TLR-9 decreased during ocular surface inflammatory reaction in patients with VKC. CD14 and TLRs ocular surface evaluation may represent biomarkers of VKC activity and novel therapeutic target.
Collapse
Affiliation(s)
- Marta Sacchetti
- Department of Sense Organs, University Sapienza of Rome, Rome, Italy
| | - Marcella Nebbioso
- Department of Sense Organs, University Sapienza of Rome, Rome, Italy
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Pesche (Is), Italy
| | | | - Alice Bruscolini
- Department of Sense Organs, University Sapienza of Rome, Rome, Italy
| | | | | |
Collapse
|
21
|
Ogi K, Ramezanpour M, Liu S, Ferdoush Tuli J, Bennett C, Suzuki M, Fujieda S, Psaltis AJ, Wormald PJ, Vreugde S. Der p 1 Disrupts the Epithelial Barrier and Induces IL-6 Production in Patients With House Dust Mite Allergic Rhinitis. FRONTIERS IN ALLERGY 2021; 2:692049. [PMID: 35387029 PMCID: PMC8974687 DOI: 10.3389/falgy.2021.692049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022] Open
Abstract
Background:Dermatophagoides pteronyssinus 1/2 (Der p 1/Der p 2) are regarded as important allergens of house dust mite (HDM). However, the effect of both products on the epithelial barrier and immune response of patients with and without HDM allergic rhinitis (AR) remains unclear. Methods: Air–liquid interface (ALI) cultured human nasal epithelial cells (HNECs) derived from control subjects (non-AR) (n = 9) and HDM-AR patients (n = 9) were treated with Der P 1 and Der P 2, followed by testing the transepithelial electrical resistance (TEER), paracellular permeability of fluorescein isothiocyanate (FITC)-dextrans and immunofluorescence of claudin-1 and ZO-1. Interleukin-6 (IL-6) production was evaluated by ELISA. Results: Der p 1 reduced TEER significantly in a transient and dose-dependent manner in HNEC-ALI cultures from HDM-AR and non-AR patients, whilst the paracellular permeability was not affected. TEER was significantly reduced by Der p 1 at the 10-min time point in HDM-AR patients compared to non-AR patients (p = 0.0259). Compared to no-treatment control, in HNECs derived from HDM-AR patients, Der p 1 significantly cleaved claudin-1 after 30 min exposure (72.7 ± 9.5 % in non-AR group, 39.9 ± 7.1 % in HDM-AR group, p = 0.0286) and induced IL-6 secretion (p = 0.0271). Conclusions: Our results suggest that patients with HDM-AR are more sensitive to Der p 1 than non-AR patients with increased effects of Der p1 on the mucosal barrier and induction of inflammation, indicating an important role for Der p1 in sensitization and HDM-AR development.
Collapse
Affiliation(s)
- Kazuhiro Ogi
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Mahnaz Ramezanpour
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Sha Liu
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Jannatul Ferdoush Tuli
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Catherine Bennett
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Masanobu Suzuki
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Shigeharu Fujieda
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Alkis James Psaltis
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Peter-John Wormald
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Sarah Vreugde
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
- *Correspondence: Sarah Vreugde
| |
Collapse
|
22
|
Rauer D, Gilles S, Wimmer M, Frank U, Mueller C, Musiol S, Vafadari B, Aglas L, Ferreira F, Schmitt‐Kopplin P, Durner J, Winkler JB, Ernst D, Behrendt H, Schmidt‐Weber CB, Traidl‐Hoffmann C, Alessandrini F. Ragweed plants grown under elevated CO 2 levels produce pollen which elicit stronger allergic lung inflammation. Allergy 2021; 76:1718-1730. [PMID: 33037672 DOI: 10.1111/all.14618] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Common ragweed has been spreading as a neophyte in Europe. Elevated CO2 levels, a hallmark of global climate change, have been shown to increase ragweed pollen production, but their effects on pollen allergenicity remain to be elucidated. METHODS Ragweed was grown in climate-controlled chambers under normal (380 ppm, control) or elevated (700 ppm, based on RCP4.5 scenario) CO2 levels. Aqueous pollen extracts (RWE) from control- or CO2 -pollen were administered in vivo in a mouse model for allergic disease (daily for 3-11 days, n = 5) and employed in human in vitro systems of nasal epithelial cells (HNECs), monocyte-derived dendritic cells (DCs), and HNEC-DC co-cultures. Additionally, adjuvant factors and metabolites in control- and CO2 -RWE were investigated using ELISA and untargeted metabolomics. RESULTS In vivo, CO2 -RWE induced stronger allergic lung inflammation compared to control-RWE, as indicated by lung inflammatory cell infiltrate and mediators, mucus hypersecretion, and serum total IgE. In vitro, HNECs stimulated with RWE increased indistinctively the production of pro-inflammatory cytokines (IL-8, IL-1β, and IL-6). In contrast, supernatants from CO2 -RWE-stimulated HNECs, compared to control-RWE-stimulated HNECS, significantly increased TNF and decreased IL-10 production in DCs. Comparable results were obtained by stimulating DCs directly with RWEs. The metabolome analysis revealed differential expression of secondary plant metabolites in control- vs CO2 -RWE. Mixes of these metabolites elicited similar responses in DCs as compared to respective RWEs. CONCLUSION Our results indicate that elevated ambient CO2 levels elicit a stronger RWE-induced allergic response in vivo and in vitro and that RWE increased allergenicity depends on the interplay of multiple metabolites.
Collapse
Affiliation(s)
- Denise Rauer
- Chair and Institute of Environmental Medicine UNIKA‐T, Technical University of Munich and Helmholtz Zentrum München Augsburg Germany
| | - Stefanie Gilles
- Chair and Institute of Environmental Medicine UNIKA‐T, Technical University of Munich and Helmholtz Zentrum München Augsburg Germany
| | - Maria Wimmer
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Zentrum München Munich Germany
- Members of the German Center of Lung Research (DZL) Munich Germany
| | - Ulrike Frank
- Institute of Biochemical Plant Pathology (BIOP) Helmholtz Zentrum München Neuherberg Germany
| | - Constanze Mueller
- BGC Research Unit Analytical BioGeoChemistry Helmholtz Zentrum München Neuherberg Germany
| | - Stephanie Musiol
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Zentrum München Munich Germany
- Members of the German Center of Lung Research (DZL) Munich Germany
| | - Behnam Vafadari
- Chair and Institute of Environmental Medicine UNIKA‐T, Technical University of Munich and Helmholtz Zentrum München Augsburg Germany
| | - Lorenz Aglas
- Department of Biosciences University of Salzburg Salzburg Austria
| | - Fatima Ferreira
- Department of Biosciences University of Salzburg Salzburg Austria
| | | | - Jörg Durner
- Institute of Biochemical Plant Pathology (BIOP) Helmholtz Zentrum München Neuherberg Germany
| | - Jana Barbro Winkler
- Research Unit Environmental Simulation Institute of Biochemical Plant Pathology Helmholtz Zentrum München Neuherberg Germany
| | - Dieter Ernst
- Institute of Biochemical Plant Pathology (BIOP) Helmholtz Zentrum München Neuherberg Germany
| | - Heidrun Behrendt
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Zentrum München Munich Germany
| | - Carsten B. Schmidt‐Weber
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Zentrum München Munich Germany
- Members of the German Center of Lung Research (DZL) Munich Germany
| | - Claudia Traidl‐Hoffmann
- Chair and Institute of Environmental Medicine UNIKA‐T, Technical University of Munich and Helmholtz Zentrum München Augsburg Germany
- Outpatient Clinic for Environmental Medicine University Clinic Augsburg Augsburg Germany
- Christine‐Kühne Center for Allergy Research and Education (CK‐Care) Davos Switzerland
| | - Francesca Alessandrini
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Zentrum München Munich Germany
- Members of the German Center of Lung Research (DZL) Munich Germany
| |
Collapse
|
23
|
Damialis A, Gilles S, Sofiev M, Sofieva V, Kolek F, Bayr D, Plaza MP, Leier-Wirtz V, Kaschuba S, Ziska LH, Bielory L, Makra L, Del Mar Trigo M, Traidl-Hoffmann C. Higher airborne pollen concentrations correlated with increased SARS-CoV-2 infection rates, as evidenced from 31 countries across the globe. Proc Natl Acad Sci U S A 2021; 118:e2019034118. [PMID: 33798095 PMCID: PMC7999946 DOI: 10.1073/pnas.2019034118] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pollen exposure weakens the immunity against certain seasonal respiratory viruses by diminishing the antiviral interferon response. Here we investigate whether the same applies to the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is sensitive to antiviral interferons, if infection waves coincide with high airborne pollen concentrations. Our original hypothesis was that more airborne pollen would lead to increases in infection rates. To examine this, we performed a cross-sectional and longitudinal data analysis on SARS-CoV-2 infection, airborne pollen, and meteorological factors. Our dataset is the most comprehensive, largest possible worldwide from 130 stations, across 31 countries and five continents. To explicitly investigate the effects of social contact, we additionally considered population density of each study area, as well as lockdown effects, in all possible combinations: without any lockdown, with mixed lockdown-no lockdown regime, and under complete lockdown. We found that airborne pollen, sometimes in synergy with humidity and temperature, explained, on average, 44% of the infection rate variability. Infection rates increased after higher pollen concentrations most frequently during the four previous days. Without lockdown, an increase of pollen abundance by 100 pollen/m3 resulted in a 4% average increase of infection rates. Lockdown halved infection rates under similar pollen concentrations. As there can be no preventive measures against airborne pollen exposure, we suggest wide dissemination of pollen-virus coexposure dire effect information to encourage high-risk individuals to wear particle filter masks during high springtime pollen concentrations.
Collapse
Affiliation(s)
- Athanasios Damialis
- Chair of Environmental Medicine, Technical University of Munich, Augsburg 86156, Germany;
- Institute of Environmental Medicine, Helmholtz Centre Munich, Augsburg 86156, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg 86156, Germany
| | - Stefanie Gilles
- Chair of Environmental Medicine, Technical University of Munich, Augsburg 86156, Germany
- Institute of Environmental Medicine, Helmholtz Centre Munich, Augsburg 86156, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg 86156, Germany
| | - Mikhail Sofiev
- Finnish Meteorological Institute, Helsinki FI-00101, Finland
| | | | - Franziska Kolek
- Chair of Environmental Medicine, Technical University of Munich, Augsburg 86156, Germany
- Institute of Environmental Medicine, Helmholtz Centre Munich, Augsburg 86156, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg 86156, Germany
| | - Daniela Bayr
- Chair of Environmental Medicine, Technical University of Munich, Augsburg 86156, Germany
- Institute of Environmental Medicine, Helmholtz Centre Munich, Augsburg 86156, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg 86156, Germany
| | - Maria P Plaza
- Chair of Environmental Medicine, Technical University of Munich, Augsburg 86156, Germany
- Institute of Environmental Medicine, Helmholtz Centre Munich, Augsburg 86156, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg 86156, Germany
| | - Vivien Leier-Wirtz
- Chair of Environmental Medicine, Technical University of Munich, Augsburg 86156, Germany
- Institute of Environmental Medicine, Helmholtz Centre Munich, Augsburg 86156, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg 86156, Germany
| | - Sigrid Kaschuba
- Chair of Environmental Medicine, Technical University of Munich, Augsburg 86156, Germany
- Institute of Environmental Medicine, Helmholtz Centre Munich, Augsburg 86156, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg 86156, Germany
| | - Lewis H Ziska
- Mailman School of Public Health, Columbia University, New York, NY 10032
| | - Leonard Bielory
- Center for Environmental Prediction, Rutgers University, New Brunswick, NJ 08901
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854
- Medicine, Allergy, Immunology and Ophthalmology Department, Hackensack Meridian School of Medicine, Nutley, NJ 07110
- New Jersey Center of Science, Technology and Mathematics, Kean University, Union, NJ 07083
| | - László Makra
- Institute of Economics and Rural Development, Faculty of Agriculture, University of Szeged, Szeged 6720, Hungary
| | - Maria Del Mar Trigo
- Department of Botany and Plant Physiology, University of Malaga, Malaga 29016, Spain
| | - Claudia Traidl-Hoffmann
- Chair of Environmental Medicine, Technical University of Munich, Augsburg 86156, Germany
- Institute of Environmental Medicine, Helmholtz Centre Munich, Augsburg 86156, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg 86156, Germany
| |
Collapse
|
24
|
Damialis A, Gilles S, Sofiev M, Sofieva V, Kolek F, Bayr D, Plaza MP, Leier-Wirtz V, Kaschuba S, Ziska LH, Bielory L, Makra L, Del Mar Trigo M, Traidl-Hoffmann C. Higher airborne pollen concentrations correlated with increased SARS-CoV-2 infection rates, as evidenced from 31 countries across the globe. Proc Natl Acad Sci U S A 2021; 118. [PMID: 33798095 DOI: 10.1073/pnas.2019034118/-/dcsupplemental] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Pollen exposure weakens the immunity against certain seasonal respiratory viruses by diminishing the antiviral interferon response. Here we investigate whether the same applies to the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is sensitive to antiviral interferons, if infection waves coincide with high airborne pollen concentrations. Our original hypothesis was that more airborne pollen would lead to increases in infection rates. To examine this, we performed a cross-sectional and longitudinal data analysis on SARS-CoV-2 infection, airborne pollen, and meteorological factors. Our dataset is the most comprehensive, largest possible worldwide from 130 stations, across 31 countries and five continents. To explicitly investigate the effects of social contact, we additionally considered population density of each study area, as well as lockdown effects, in all possible combinations: without any lockdown, with mixed lockdown-no lockdown regime, and under complete lockdown. We found that airborne pollen, sometimes in synergy with humidity and temperature, explained, on average, 44% of the infection rate variability. Infection rates increased after higher pollen concentrations most frequently during the four previous days. Without lockdown, an increase of pollen abundance by 100 pollen/m3 resulted in a 4% average increase of infection rates. Lockdown halved infection rates under similar pollen concentrations. As there can be no preventive measures against airborne pollen exposure, we suggest wide dissemination of pollen-virus coexposure dire effect information to encourage high-risk individuals to wear particle filter masks during high springtime pollen concentrations.
Collapse
Affiliation(s)
- Athanasios Damialis
- Chair of Environmental Medicine, Technical University of Munich, Augsburg 86156, Germany;
- Institute of Environmental Medicine, Helmholtz Centre Munich, Augsburg 86156, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg 86156, Germany
| | - Stefanie Gilles
- Chair of Environmental Medicine, Technical University of Munich, Augsburg 86156, Germany
- Institute of Environmental Medicine, Helmholtz Centre Munich, Augsburg 86156, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg 86156, Germany
| | - Mikhail Sofiev
- Finnish Meteorological Institute, Helsinki FI-00101, Finland
| | | | - Franziska Kolek
- Chair of Environmental Medicine, Technical University of Munich, Augsburg 86156, Germany
- Institute of Environmental Medicine, Helmholtz Centre Munich, Augsburg 86156, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg 86156, Germany
| | - Daniela Bayr
- Chair of Environmental Medicine, Technical University of Munich, Augsburg 86156, Germany
- Institute of Environmental Medicine, Helmholtz Centre Munich, Augsburg 86156, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg 86156, Germany
| | - Maria P Plaza
- Chair of Environmental Medicine, Technical University of Munich, Augsburg 86156, Germany
- Institute of Environmental Medicine, Helmholtz Centre Munich, Augsburg 86156, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg 86156, Germany
| | - Vivien Leier-Wirtz
- Chair of Environmental Medicine, Technical University of Munich, Augsburg 86156, Germany
- Institute of Environmental Medicine, Helmholtz Centre Munich, Augsburg 86156, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg 86156, Germany
| | - Sigrid Kaschuba
- Chair of Environmental Medicine, Technical University of Munich, Augsburg 86156, Germany
- Institute of Environmental Medicine, Helmholtz Centre Munich, Augsburg 86156, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg 86156, Germany
| | - Lewis H Ziska
- Mailman School of Public Health, Columbia University, New York, NY 10032
| | - Leonard Bielory
- Center for Environmental Prediction, Rutgers University, New Brunswick, NJ 08901
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854
- Medicine, Allergy, Immunology and Ophthalmology Department, Hackensack Meridian School of Medicine, Nutley, NJ 07110
- New Jersey Center of Science, Technology and Mathematics, Kean University, Union, NJ 07083
| | - László Makra
- Institute of Economics and Rural Development, Faculty of Agriculture, University of Szeged, Szeged 6720, Hungary
| | - Maria Del Mar Trigo
- Department of Botany and Plant Physiology, University of Malaga, Malaga 29016, Spain
| | - Claudia Traidl-Hoffmann
- Chair of Environmental Medicine, Technical University of Munich, Augsburg 86156, Germany
- Institute of Environmental Medicine, Helmholtz Centre Munich, Augsburg 86156, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg 86156, Germany
| |
Collapse
|
25
|
Jacquet A. Characterization of Innate Immune Responses to House Dust Mite Allergens: Pitfalls and Limitations. FRONTIERS IN ALLERGY 2021; 2:662378. [PMID: 35386970 PMCID: PMC8974781 DOI: 10.3389/falgy.2021.662378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 01/02/2023] Open
Abstract
Whereas house dust mite (HDM) allergy results from a dysregulated Th2-biased adaptive immune response, activation of innate immune signaling pathways is a critical prerequisite for the initiation of HDM sensitizations. Such innate sensing is mainly controlled by the airway epithelium and the skin. The resulting release of epithelial-derived proinflammatory cytokines and innate alarmins such as GM-CSF, IL-25, IL-33 and TSLP mediates the activation of ILC2 cells and cDCs to promote Th2-biased inflammation. Significant progress in the elucidation of HDM innate immune activation has been made in the past decade and highlighted key roles of the LPS/TLR4 axis, chitin-dependent pathways together with HDM protease allergens. However, the precise mechanisms by which HDM allergens are sensed by the innate immune system remain largely unknown. Such investigations are made difficult for several reasons. Among these are (1) the natural association of HDM allergens with immunostimulators from the mite exoskeleton as well as from environmental microorganisms/pollutants or endosymbiotic bacteria; (2) the purification of individual HDM allergens from extracts in sufficient amounts and devoid of any microbial and protein impurities; (3) the production of correctly folded recombinant HDM allergens which could display the same biological activity than their natural counterparts; (4) the accessibility to human epithelial samples with cellular heterogeneities and inter-donor variations; (5) the translation of experimental data from mouse models to humans is almost missing. The goal of the present mini-review is to emphasize some important limitations and pitfalls in the elucidation of innate immunostimulatory properties of HDM allergens.
Collapse
Affiliation(s)
- Alain Jacquet
- *Correspondence: Alain Jacquet ; orcid.org/0000-0002-0980-9741
| |
Collapse
|
26
|
Wang Y, Zhang Z, Luo J, Han X, Wei Y, Wei X. mRNA vaccine: a potential therapeutic strategy. Mol Cancer 2021; 20:33. [PMID: 33593376 PMCID: PMC7884263 DOI: 10.1186/s12943-021-01311-z] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/08/2021] [Indexed: 02/08/2023] Open
Abstract
mRNA vaccines have tremendous potential to fight against cancer and viral diseases due to superiorities in safety, efficacy and industrial production. In recent decades, we have witnessed the development of different kinds of mRNAs by sequence optimization to overcome the disadvantage of excessive mRNA immunogenicity, instability and inefficiency. Based on the immunological study, mRNA vaccines are coupled with immunologic adjuvant and various delivery strategies. Except for sequence optimization, the assistance of mRNA-delivering strategies is another method to stabilize mRNAs and improve their efficacy. The understanding of increasing the antigen reactiveness gains insight into mRNA-induced innate immunity and adaptive immunity without antibody-dependent enhancement activity. Therefore, to address the problem, scientists further exploited carrier-based mRNA vaccines (lipid-based delivery, polymer-based delivery, peptide-based delivery, virus-like replicon particle and cationic nanoemulsion), naked mRNA vaccines and dendritic cells-based mRNA vaccines. The article will discuss the molecular biology of mRNA vaccines and underlying anti-virus and anti-tumor mechanisms, with an introduction of their immunological phenomena, delivery strategies, their importance on Corona Virus Disease 2019 (COVID-19) and related clinical trials against cancer and viral diseases. Finally, we will discuss the challenge of mRNA vaccines against bacterial and parasitic diseases.
Collapse
Affiliation(s)
- Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Ziqi Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Jingwen Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Xuejiao Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| |
Collapse
|
27
|
Lee K, Byun J, Kim B, Yeon J, Tai J, Lee SH, Kim TH. TRPV4-Mediated Epithelial Junction Disruption in Allergic Rhinitis Triggered by House Dust Mites. Am J Rhinol Allergy 2020; 35:432-440. [PMID: 33012175 DOI: 10.1177/1945892420964169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Epithelial barrier disruption is a crucial feature of allergic rhinitis (AR). Previous reports have indicated the role of transient receptor potential vanilloid (TRPV) 4 in regulating the intercellular junctions in various cells. However, the role of TRPV4 and its regulation by T helper 2 cell cytokines in the epithelial cells of patients with AR remains unclear. OBJECTIVE We aimed to elucidate the expression of TRPV4 in nasal epithelial cells and its cytokine-induced regulation, and to reveal its role in house dust mite-induced junction disruption in AR. METHODS The expression of TRPV4 in nasal epithelial cells was measured using real-time polymerase chain reaction, western blot, and immunohistochemical assays, and the expression levels were compared between the patients with AR and healthy controls. Altered expression of TRPV4 was induced in cultured nasal epithelial cells by stimulation of interleukin (IL) 4, IL-13, and tumor necrosis factor alpha. In addition, expression of E-cadherin and zonula occludens 1 was induced in Der p 1-stimulated epithelial cells by treatment with either a TRPV4 agonist (GSK1016790A) or a TRPV4 antagonist (RN1734). RESULTS TRPV4 expression was increased in epithelial cells harvested from the affected turbinates compared to those from the normal turbinates. The stimulation of cultured epithelial cells with IL-4 and IL-13 resulted in TRPV4 upregulation. Additionally, E-cadherin and zonula occludens 1 expression levels decreased in the cultured epithelial cells treated with GSK1016790A after stimulation with Der p 1, whereas Der p 1 stimulation alone showed no effect on junctional protein expression. CONCLUSIONS Increased TRPV4 expression occurred in epithelial cells harvested from patients with AR and epithelial cells stimulated by Th2 cytokines. Decreased junctional protein expression in epithelial cells after the stimulation by house dust mite allergen with TRPV4 agonist indicates a possible role of TRPV4 in the pathogenesis of allergen-induced epithelial barrier disruption in AR.
Collapse
Affiliation(s)
- Kijeong Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, Korea
| | - Junhyoung Byun
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, Korea
| | - Byoungjae Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, Korea.,Neuroscience Research Institute, College of Medicine, Korea University, Seoul, Korea
| | - Jiwoo Yeon
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, Korea
| | - Junhu Tai
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, Korea
| | - Sang Hag Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, Korea
| |
Collapse
|