1
|
Kündgen M, Jogler C, Kallscheuer N. Substrate utilization and secondary metabolite biosynthesis in the phylum Planctomycetota. Appl Microbiol Biotechnol 2025; 109:123. [PMID: 40369259 PMCID: PMC12078418 DOI: 10.1007/s00253-025-13514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025]
Abstract
The phylum Planctomycetota is changing our understanding of bacterial metabolism, driving critical biogeochemical processes through the transformation of complex polymeric substrates into valuable bioactive compounds. Sophisticated methods for cultivation, genome sequencing and genetic strain engineering developed in the last two decades have stimulated detailed studies on cell propagation, metabolic capabilities and potential applications of phylum members beyond the mere isolation and characterization of novel taxa. This review synthesizes recent advances in understanding the Planctomycetota physiology with a focus on the degradation of phototroph-derived polysaccharides, anaerobic ammonium oxidation (anammox) and biosynthesis of secondary metabolites. New data especially collected over the last 5 years justifies more intensive research of the yet uncharacterized pathways of substrate uptake and utilization, as well as genome mining-assisted bioprospection to exploit the phylum's chemical repertoire. KEY POINTS: • Planctomycetes can degrade high-molecular-weight sugars produced by algae • Anaerobic ammonium oxidation (anammox) is used in technical applications • The first secondary metabolites were discovered in the last 5 years.
Collapse
Affiliation(s)
- Madeleine Kündgen
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, 07745, Jena, Germany.
| | - Nicolai Kallscheuer
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany.
| |
Collapse
|
2
|
Zhang Y, Gao J, Zhao J, Zhao Y, Liu Y, Guo Y, Xie T. Phenacetin enhanced the inorganic nitrogen removal performance of anammox bacteria naturally in-situ enriched system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177586. [PMID: 39566627 DOI: 10.1016/j.scitotenv.2024.177586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Among the earliest synthetic antipyretic drugs, phenacetin (PNCT) could be used as the novel partial nitrification (PN) inhibitor to effectively inhibit nitrite-oxidizing bacteria (NOB). In practical application, the rapidly starting of PN could provide stable source of nitrite for anaerobic ammonium oxidation (anammox) process. However, impact of PNCT on anaerobic ammonia oxidizing bacteria (AnAOB) and its underlying mechanisms were not clear. In this research, totally 14 times of PNCT aerobic soaking treatment were performed in the AnAOB naturally enrichment system to improve total inorganic nitrogen removal efficiency (TINRE). After once of PNCT treatment, TINRE rose from 61.89 % to 79.93 %. After 14 times of PNCT treatment, NOB Nitrospira relative abundance decreased from 9.82 % to 0.71 %, though Candidatus Brocadia relative abundance also declined, it might gradually adjust to PNCT by converting the leading oligotype species. The activity and relative abundances of NOB were reduced by PNCT via decreasing the abundances of genes amoA and nxrB, enzymes NxrA and NxrB. Moreover, Candidatus Jettenia and Ca. Brocadia might be the potential host of qacH-01 and they played the crucial role in the shaping profile of antibiotic resistance genes (ARGs). The explosive propagation or transmission of ARGs might not take place after PNCT treatment.
Collapse
Affiliation(s)
- Yi Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Jingqiang Zhao
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Ying Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Yi Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Tian Xie
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
3
|
Ji B, Kuok SC, Hao T. Machine learning revealing overlooked conjunction of working volume and mixing intensity in anammox optimization. WATER RESEARCH 2024; 266:122344. [PMID: 39213687 DOI: 10.1016/j.watres.2024.122344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 08/06/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Extensive studies on improving anammox performance have taken place for decades with particular focuses on its operational and environmental factors, but such parameter-based optimization is difficult, because of the sheer number of possible combinations and multidimensional arrays of these factors. Utilizing machine-learning algorithm and published anammox data, Bayesian nonparametric general regression (BNGR) was applied to identify the possible governing variable(s) from among 11 operating and environmental parameters: reactor type, mixing type, working volume, hydraulic retention time, temperature, influent pH, nitrite, ammonium, nitrate concentration, nitrogen loading rate, and organic concentration. The results showed that working volume is a key but oft-overlooked governing parameter. By integrating the BNGR findings with computational fluid dynamics simulation, which assessed mixing properties, it became feasible to conclude that working volume and mixing intensity co-regulated flow fields in reactors and had a significant influence on anammox performance. Furthermore, this study experimentally validated how mixing intensity affected performance, and specific input power (x), a parameter that conjugates both working volume and mixing intensity, was used to establish the relationship with ammonium removal rate (NH4+-N RR, y) y = 49.90x+1.97 (R2 = 0.94). With specific input power increased from 3.4 × 10-4 to 2.6 × 10-2 kW m-3, the ammonium removal rate exhibited a rise from 1.8 to 3.2 mg L-1h-1. Following, a relationship among input power-working volume-nitrogen removal rate was also established with a view to determining the design variables for anammox reactor. Consequently, the study highlighted the necessity to consider the working volume-mixing intensity correlation when optimizing the anammox process.
Collapse
Affiliation(s)
- Bohua Ji
- Department of Civil and Environmental Engineering, University of Macau, Macau SAR, China
| | - Sin-Chi Kuok
- Department of Civil and Environmental Engineering, University of Macau, Macau SAR, China; State Key Laboratory of Internet of Things for Smart City, and Guangdong-Hong Kong-Macau Joint Laboratory for Smart City, University of Macau, Macau SAR, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, University of Macau, Macau SAR, China.
| |
Collapse
|
4
|
Arliyani I, Noori MT, Ammarullah MI, Tangahu BV, Mangkoedihardjo S, Min B. Constructed wetlands combined with microbial fuel cells (CW-MFCs) as a sustainable technology for leachate treatment and power generation. RSC Adv 2024; 14:32073-32100. [PMID: 39399250 PMCID: PMC11467719 DOI: 10.1039/d4ra04658g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/12/2024] [Indexed: 10/15/2024] Open
Abstract
The physical and chemical treatment processes of leachate are not only costly but can also possibly produce harmful by products. Constructed wetlands (CW) has been considered a promising alternative technology for leachate treatment due to less demand for energy, economic, ecological benefits, and simplicity of operations. Various trends and approaches for the application of CW for leachate treatment have been discussed in this review along with offering an informatics peek of the recent innovative developments in CW technology and its perspectives. In addition, coupling CW with microbial fuel cells (MFCs) has proven to produce renewable energy (electricity) while treating contaminants in leachate wastewaters (CW-MFC). The combination of CW-MFC is a promising bio electrochemical that plays symbiotic among plant microorganisms in the rhizosphere of an aquatic plant that convert sun electricity is transformed into bioelectricity with the aid of using the formation of radical secretions, as endogenous substrates, and microbial activity. Several researchers study and try to find out the application of CW-MFC for leachate treatment, along with this system and performance. Several key elements for the advancement of CW-MFC technology such as bioelectricity, reactor configurations, plant species, and electrode materials, has been comprehensively discussed and future research directions were suggested for further improving the performance. Overall, CW-MFC may offer an eco-friendly approach to protecting the aquatic environment and come with built-in advantages for visual appeal and animal habitats using natural materials such as gravel, soil, electroactive bacteria, and plants under controlled condition.
Collapse
Affiliation(s)
- Isni Arliyani
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember Surabaya 60111 East Java Indonesia
- Bioinformatics Research Center, INBIO Indonesia Malang 65162 East Java Indonesia
| | - Md Tabish Noori
- Department of Environmental Science and Engineering, Kyung Hee University Yongin 17104 Gyeonggi Republic of Korea
| | - Muhammad Imam Ammarullah
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Diponegoro Semarang 50275 Central Java Indonesia
- Undip Biomechanics Engineering & Research Centre (UBM-ERC), Universitas Diponegoro Semarang 50275 Central Java Indonesia
- Bioengineering and Environmental Sustainability Research Centre, University of Liberia Monrovia 1000 Montserrado Liberia
| | - Bieby Voijant Tangahu
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember Surabaya 60111 East Java Indonesia
| | - Sarwoko Mangkoedihardjo
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember Surabaya 60111 East Java Indonesia
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University Yongin 17104 Gyeonggi Republic of Korea
| |
Collapse
|
5
|
Patel HV, Zhao R, Eramo A, Blanc S, Fahrenfeld NL, Brazil B, Luster-Teasley S. Ammonium oxidation from concentrated synthetic wastewater and landfill leachate using partial nitritation in sequencing batch reactor. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11075. [PMID: 38982895 DOI: 10.1002/wer.11075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024]
Abstract
Partial nitritation (PN) is a novel treatment for nitrogen removal using aerobic ammonium oxidation with reduced oxygen requirements compared to conventional nitrification. This study evaluated the performance of the PN process and the factors influencing nitrogen removal from landfill leachate. During the reactivation of biomass, the results showed 70% ammonium removal, but only 20% total nitrogen removal. Further analysis showed that low nitrite accumulation and high nitrate production promoted the growth of nitrite-oxidizing bacteria (NOB). The ammonium removal activity after soaking the cultivated biomass in synthetic water and leachate was measured to be 0.57, 0.1, 0.17, and 0.25 g N•g VSS-1•d-1 for synthetic wastewater and leachate soaking for synthetic wastewater, 12 h, 3 days, and 7 days, respectively. The study found abundant ammonium-oxidizing bacteria (AOB) and NOBs in biomass soaked in synthetic wastewater. However, soaking in leachate promoted AOB growth and inhibited NOB growth making leachate suitable for PN. PRACTITIONER POINTS: The study found that with a longer leachate-soaking period for biomass, ammonium removal activity increases, which in turn increases ammonium conversions during the PN process. Ammonium-oxidizing bacteria (AOB) can acclimate to landfill leachate substrate and grow with a longer soaking period. Nitrite-oxidizing bacteria (NOB) were inhibited by landfill leachate substrate, which is beneficial for nitrite accumulation. Anabolized DO can convert nitrite to nitrate rapidly, which results in higher nitrate accumulation compared to nitrite accumulation. Hence, the DO level has to be sufficiently low to prevent nitrite oxidation and nitrate accumulation.
Collapse
Affiliation(s)
- Harsh V Patel
- Department of Civil, Architectural, and Environmental Engineering, North Carolina Agricultural & State University, Greensboro, North Carolina, USA
| | - Renzun Zhao
- Department of Civil, Architectural, and Environmental Engineering, North Carolina Agricultural & State University, Greensboro, North Carolina, USA
| | - Alessia Eramo
- Department of Civil & Environmental Engineering, Rutgers University, Piscataway, New Jersey, USA
| | | | - Nicole L Fahrenfeld
- Department of Civil & Environmental Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Brian Brazil
- Waste Management, Inc., Gaithersburg, Maryland, USA
| | - Stephanie Luster-Teasley
- Department of Civil, Architectural, and Environmental Engineering, North Carolina Agricultural & State University, Greensboro, North Carolina, USA
| |
Collapse
|
6
|
Zhong X, Sun J, Yuan Y, Zhang Y, Bai X, Lin Q, Dai K, Xu Z. Photochemical behaviors of sludge extracellular polymeric substances from bio-treated effluents towards antibiotic degradation: Distinguish the main photosensitive active component and its environmental implication. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133667. [PMID: 38325102 DOI: 10.1016/j.jhazmat.2024.133667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/26/2023] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Activated sludge extracellular polymeric substances (ASEPSs) comprise most dissolved organic matters (DOMs) in the tail water. However, the understanding of the link between the photolysis of antibiotic and the photo-reactivity/photo-persistence of ASEPS components is limited. This study first investigated the photochemical behaviors of ASEPS's components (humic acids (HA), hydrophobic substances (HOS) and hydrophilic substances (HIS)) separated from municipal sludge's EPS (M-EPS) and nitrification sludge's EPS (N-EPS) in the photolysis of sulfadiazine (SDZ). The results showed that 60% of SDZ was removed by the M-EPS, but the effect in the separated components was weakened, and only 24% - 39% was degraded. However, 58% of SDZ was cleaned by HOS in N-EPS, which was 23% higher than full N-EPS. M-EPS components had lower steady-state concentrations of triplet intermediates (3EPS*), hydroxyl radicals (·OH) and singlet oxygen (1O2) than M-EPS, but N-EPS components had the highest concentrations (5.96 ×10-15, 8.44 ×10-18, 4.56 ×10-13 M, respectively). The changes of CO, C-O and O-CO groups in HA and HOS potentially correspond to reactive specie's generation. These groups change little in HIS, which may make it have radiation resistance. HCO-3 and NO-3 decreased the indirect photolysis of SDZ, and its by-product N-(2-Pyrimidinyl)1,4-benzenediamine presents high environmental risk.
Collapse
Affiliation(s)
- Xuexian Zhong
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jian Sun
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yong Yuan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaping Zhang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyan Bai
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Qintie Lin
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Kang Dai
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenbo Xu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| |
Collapse
|
7
|
Manasa RL, Mehta A. Study of bacterial population dynamics in seed culture developed for ammonia reduction from synthetic wastewater. World J Microbiol Biotechnol 2024; 40:75. [PMID: 38246888 DOI: 10.1007/s11274-023-03858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/26/2023] [Indexed: 01/23/2024]
Abstract
The waterbodies have been polluted by various natural and anthropogenic activities. The aquatic waste includes ammonia as one of the most toxic pollutants. Several biological treatment systems involving anoxic and semi anoxic bacteria have been proposed for reducing nitrogen loads from wastewater and increasing the efficiency and cost effectiveness. These bacteria play a vital role in the processes involved in the nitrogen cycle in nature. However, the enrichment, sustainability and identification of bacterial communities for wastewater treatment is an important aspect. Most of the chemolithotrophs are unculturable hence their identification and measurement of abundance remains a challenging task. In this study the different bacteria involved in total nitrogen removal from the wastewater are enriched for 700 days under anoxic condition. The synthetic wastewater containing 0.382 g/L of ammonium chloride was used. Molecular identification of the bacteria involved in various steps of the nitrogen cycle was carried out based on amplification of functional genes and 16S rRNA gene Polymerase chain reaction followed by DNA sequencing. Change in the abundance of chemolithotrophs was studied using qPCR. The mutual growth of various nitrifiers along with anaerobic bacteria were identified by molecular characterisation of DNA at various time intervals with the different genes involved in the nitrogen cycle. Nitrosomonas species like Nitrosomonas europaea were identified throughout the batch scale studies possessing the genes associated with ammonia oxidizing bacteria and nitrite oxidizing bacteria which act as a complete ammonia oxidizer. The uncultured species of Nitrospira and anammox bacteria were also observed which predicts the coexistence of the anammox and comammox bacteria in a batch scale study. The coexistence of the semi anoxic and anoxic bacteria helped in the growth of these bacteria for a longer duration of time. The nitrite produced by the comammox during nitrification can be utilized by anammox as an electron carrier. The other species of denitrifiers like Pseudomonas denitrificans and Aminobacter aminovorans were also observed. It is concluded that the enrichment of semi anoxic and anoxic bacteria was faster with the increase in growth of the bacteria involved in nitrification, comammox, anammox and partial denitrification process. The bacterial growth is enhanced and the efficiency is increased which can be further used in the development of small pilot scale bioreactor for total nitrogen removal.
Collapse
Affiliation(s)
- Raghupatruni Lakshmi Manasa
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Alka Mehta
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
8
|
Siddiqi SA, Rahman S, Al-Mamun A, Nayak JK, Sana A, Baawain MS. A new treatment step of bioelectrochemically treated leachate using natural clay adsorption towards sustainable leachate treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111903-111915. [PMID: 37540418 DOI: 10.1007/s11356-023-28997-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023]
Abstract
Standalone and combined leachate treatment mechanisms suffer from low treatment efficiencies due to leachate's complex, toxic, and recalcitrant nature. Bioelectrochemical system (BES) was used for the first time to investigate the treatment of leachate mixed wastewater (WW) (i.e., diluted leachate, DL) (DL ≈ L:WW = 1:4) to minimize these complexities. A natural clay (palygorskite) was used as adsorbent material for further treatment on the BES effluent (EBES) while using two different masses and sizes (i.e., 3 g and 6 g of raw crushed clay (RCC) and 75 μ of sieved clay (75 μSC)). According to bioelectrochemical performance, BES, when operated with low external resistance (Rext = 1 Ω) (BES 1), showed a high removal of COD and NH3-N with 28% and 36%, respectively. On the other hand, a high Rext (100 Ω, BES 100) resulted in low removal of NH3-N with 10% but revealed high COD removal by 78.26%. Moreover, the 6 g doses of 75 μSC and RCC showed the maximum COD removals of 62% and 38% and showed the maximum removal of NH3-N with an average range of 40% for both sizes. After efficient desorption, both clay sizes resulted in regeneration performance which was observed with high COD (75%) and NH3-N (34%) on EBES. Therefore, when BES and clay adsorption technique sequentially treated and achieved with combined removal of ~ 98% for COD and ~ 80% of NH3-N, it demonstrated an efficient treatment method for DL treatment.
Collapse
Affiliation(s)
- Sajjad Ahmad Siddiqi
- Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, P.C. 123, Al-Khoud, Muscat, Sultanate of Oman
- Global Enviroquest LLC, P.O. Box 1530, P.C. 121, Azaiba, Muscat, Sultanate of Oman
| | - Sadik Rahman
- Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, P.C. 123, Al-Khoud, Muscat, Sultanate of Oman
- Department of Civil Engineering, East West University, Dhaka, Bangladesh
| | - Abdullah Al-Mamun
- Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, P.C. 123, Al-Khoud, Muscat, Sultanate of Oman.
| | - Jagdeep Kumar Nayak
- Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, P.C. 123, Al-Khoud, Muscat, Sultanate of Oman
- Bernal Institute, University of Limerick, Limerick, Ireland
| | - Ahmad Sana
- Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, P.C. 123, Al-Khoud, Muscat, Sultanate of Oman
| | | |
Collapse
|
9
|
Lu D, Gong H, Diao S, Shi W, Yin R, Dai X. Enhanced sludge settlement of two stage PN/Anammox for reject water treatment with respective diatomite addition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162784. [PMID: 36906019 DOI: 10.1016/j.scitotenv.2023.162784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 05/06/2023]
Abstract
The present study investigated the potential of diatomite addition in enhancing sludge settlement of two-stage PN/Anammox for real reject water treatment, with a focus on sludge settling velocity, nitrogen removal capacity, sludge morphological features, and microbial community changes. The study found that diatomite addition significantly improved the sludge settleability of the two-stage PN/A process, resulting in a decrease in sludge volume index (SVI) from 70 to 80 mL/g to about 20-30 mL/g for both PN and Anammox sludge, although the sludge-diatomite interaction differed between the two types of sludge. In the PN sludge, diatomite acted as a carrier, while in the Anammox sludge, it acted as micro-nuclei. The addition of diatomite also increased the biomass amounts in the PN reactor, with a 5-29 % improvement attributed to its role as a biofilm carrier. The effects of diatomite addition on sludge settleability were more prominent at high mixed liquor suspended solids (MLSS), where sludge characteristics were deteriorated. Furthermore, the settling rate of the experimental group consistently exceeded that of the blank group after diatomite addition, with a significant decrease in SV. The relative abundance of Anammox bacteria was improved, and sludge particle size decreased in the diatomite-added Anammox reactor. Diatomite was effectively retained in both reactors, with less loss observed for Anammox than PN due to its more tightly wrapped structure, resulting in a stronger sludge-diatomite interaction. Overall, the results of this study suggest that diatomite addition has potential in enhancing the settling properties and performance of two-stage PN/Anammox for real reject water treatment.
Collapse
Affiliation(s)
- Dandan Lu
- School of Environmental and Chemical Engineering, Shanghai Electric Power University, Shanghai 201306, China; College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Hui Gong
- College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China.
| | - Siyuan Diao
- School of Environmental and Chemical Engineering, Shanghai Electric Power University, Shanghai 201306, China; College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Wenjing Shi
- School of Environmental and Chemical Engineering, Shanghai Electric Power University, Shanghai 201306, China; College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Ruihong Yin
- School of Environmental and Chemical Engineering, Shanghai Electric Power University, Shanghai 201306, China; College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
10
|
Feng K, Lou Y, Li Y, Lu B, Fang A, Xie G, Chen C, Xing D. Conductive carrier promotes synchronous biofilm formation and granulation of anammox bacteria. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130754. [PMID: 36638675 DOI: 10.1016/j.jhazmat.2023.130754] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/24/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The extracellular electron transfer capability of some anaerobic ammonium oxidation (anammox) bacteria was confirmed in recent years. However, the effect of conductive carriers on the synchronous formation of anammox biofilm and granules is rarely reported. Anammox biofilm and granules with compact and stable structures accelerate the initiation and enhance the stability of the anammox process. In this study, we found that the conductive carbon fiber brush (CB) carrier promoted synchronous biofilm formation and granulation of anammox bacteria in the internal circulation immobilized blanket (ICIB) reactor. Compared with polyurethane sponge and zeolite carrier, the ICIB reactor packed with CB carrier can be operated under the highest total nitrogen loading rate of 6.53 kg-N/(m3·d) and maintain the effluents NH4+-N and NO2--N at less than 1 mM. The volatile suspended solids concentration in the ICIB reactor packed with conductive carrier increased from 5.17 ± 0.40 g/L of inoculum sludge to 24.24 ± 1.20 g/L of biofilm, and the average particle size of granules increased from 222.09 µm to 879.80 µm in 150 days. Fluorescence in situ hybridization analysis showed that anammox bacteria prevailed in the biofilm and granules. The analysis of extracellular polymeric substances indicated that protein and humic acid-like substances played an important role in the formation of anammox biofilm and granules. Microbiome analysis showed that the relative abundance of Candidatus Jettenia was increased from 0.18% to 38.15% in the biofilm from CB carrier during start-up stage. This study provides a strategy for rapid anammox biofilm and granules enrichment and carrier selection of anammox process.
Collapse
Affiliation(s)
- Kun Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Lou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yitian Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Baiyun Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Anran Fang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guojun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
11
|
Almenglo F, González-Cortés JJ, Ramírez M, Cantero D. Recent advances in biological technologies for anoxic biogas desulfurization. CHEMOSPHERE 2023; 321:138084. [PMID: 36775028 DOI: 10.1016/j.chemosphere.2023.138084] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/11/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Recovery of the energy contained in biogas will be essential in coming years to reduce greenhouse gas emissions and our current dependence on fossil fuels. The elimination of H2S is a priority to avoid equipment corrosion, poisoning of catalytic systems and SO2 emissions in combustion engines. This review describes the advances made in this technology using fixed biomass bioreactors (FBB) and suspended growth bioreactors (SGB) since the first studies in this field in 2008. Anoxic desulfurization has been studied mainly in biotrickling filters (BTF). Elimination capacities (EC) up to 287 gS m-3 h-1 have been achieved, with a removal efficiency (RE) of 99%. Both nitrate and nitrite have been successfully used as electron acceptor. SGBs can solve some operational problems present in FBBs, such as clogging or nutrient distribution issues. However, they present greater difficulties in gas-liquid mass transfer, although ECs of up to 194 gS m-3 h-1 have been reported in both gas-lift and stirred tank reactors. One of the major disadvantages of using anoxic biodesulfurization compared to aerobic biodesulfurization is the need to provide reagents (nitrates and/or nitrites), with the consequent increase in operating costs. A solution proposed in this respect is the use of nitrified effluents, some ammonium-rich effluents nitrified include landfill leachate and digested effluent from the anaerobic digester have been tested successfully. Among the microbial diversity found in the bioreactors, the genera Thiobacillus, Sulfurimonas and Sedimenticola play a key role in anoxic removal of H2S. Finally, a summary of future trends in technology is provided.
Collapse
Affiliation(s)
- F Almenglo
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO), Faculty of Sciences, University of Cadiz, 11510, Puerto Real, Cádiz, Spain
| | - J J González-Cortés
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO), Faculty of Sciences, University of Cadiz, 11510, Puerto Real, Cádiz, Spain
| | - M Ramírez
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO), Faculty of Sciences, University of Cadiz, 11510, Puerto Real, Cádiz, Spain.
| | - D Cantero
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO), Faculty of Sciences, University of Cadiz, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
12
|
Li X, Liu C, Xie H, Sun Y, Xu S, Liu G. Nitrogen removal of thermal hydrolysis-anaerobic digestion liquid: A review. CHEMOSPHERE 2023; 320:138097. [PMID: 36764619 DOI: 10.1016/j.chemosphere.2023.138097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/07/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Thermal hydrolysis (TH) pretreatment, as an anaerobic digestion (AD) pretreatment, has not only been verified in the laboratory but also frequently employed in actual engineering. However, the properties of anaerobic digestion liquid (ADL), such as high organic matter concentration, high ammonia nitrogen (NH4+-N) concentration, and low carbon-nitrogen ratio (C/N), have posed some difficulties in the follow-up treatment. To address the above issues, the autotrophic nitrogen removal (ANR) process is developed to treat ADL. Due to the NH4+-N, organic materials, toxic and harmful substances in the ADL that might directly impact the activity of functional bacteria, the ADL should be treated before being fed into the ANR process. This paper provided a focused review of the thermal hydrolysis-anaerobic digestion process (TH-ADP) mechanism and the ANR mechanism, summarized the existing difficulties in the treatment of thermal hydrolysis-anaerobic digestion liquid (TH-ADL), assessed the research status thoroughly, and offered the potential solutions to the problems.
Collapse
Affiliation(s)
- Xiangkun Li
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Changkuo Liu
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Hongwei Xie
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yujie Sun
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Shiwei Xu
- Beijing Capital Eco-environment Protection Group Co., Itd, China
| | - Gaige Liu
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
13
|
Fan Y, Tan X, Huang Y, Hao T, Chen H, Yi X, Li D, Pan Y, Li Y, Kong Z. Chemical oxygen demand and nitrogen removal from real membrane-manufacturing wastewater by a pilot-scale internal circulation reactor integrated with partial nitritation-anammox. BIORESOURCE TECHNOLOGY 2022; 364:128116. [PMID: 36244606 DOI: 10.1016/j.biortech.2022.128116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
A pilot-scale system integrating internal circulation and partial nitritation-anammox successfully treated real high-strength membrane-manufacturing wastewater in this study. With this pilot-scale system, a high chemical oxygen demand (COD) removal efficiency of 85 % and a nitrogen removal of 90 % are achieved at an organic loading rate of 6.0 kg COD/m3/d. The nitrogenous organic matters in the internal circulation zone are degraded into ammonia nitrogen. In the partial nitrification zone, nitrite accumulation is achieved, providing a suitable NH4+-N/NO2--N ratio for anammox reaction. Partial nitritation is achieved by maintaining an operational temperature at 30-35 °C, free ammonia concentration at 5-7 mg/L and dissolved oxygen at 0.4-0.7 mg/L with a reflux ratio of 150 %. The COD to nitrogen ratio in the internal circulation effluent is maintained below 3.0 to inhibit nitrite oxidizing bacteria. This study demonstrates that a pilot-scale system can efficiently remove organic matters and nitrogen from wastewater of membrane-manufacturing industry.
Collapse
Affiliation(s)
- Yuqin Fan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xinwei Tan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China; Research Center for Environmental Bio-technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau
| | - Hong Chen
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410004, China
| | - Xue Yi
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China; Research Center for Environmental Bio-technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China; Research Center for Environmental Bio-technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yong Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China; Research Center for Environmental Bio-technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China; Research Center for Environmental Bio-technology, Suzhou University of Science and Technology, Suzhou 215009, China; Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
14
|
Wang J, Cai HY, Chen YP. A new pattern of the partial nitrification and Anammox immobilized gel beads: core-shell embedded carrier. ENVIRONMENTAL RESEARCH 2022; 214:113816. [PMID: 35803341 DOI: 10.1016/j.envres.2022.113816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Single-stage partial nitrification and Anammox (PN/A) is an efficient and energy-saving denitrification process for wastewater. However, its application is limited by the growth conditions of microorganisms. Therefore, we improved the PN/A by developing a novel core-shell embedded carrier. With Anammox gel as the core and Ammonia-oxidizing bacteria gel as the shell, these beads can achieve dissolved oxygen partitioning and provide a suitable environment for the growth of different bacteria. On this basis, the influence of the shape of core-shell embedded gel on nitrogen removal performance was systematically studied, and the internal morphology and pore size of gel beads were characterized. The results showed that the nitrogen removal efficiency of spherical and square gels was increased by 33.70% and 13.47%, respectively, in the batch test. Fluorescence in situ hybridization confirmed the stratified growth of ammonia-oxidizing bacteria and Anammox in carriers, and the relative abundance value of the two bacteria were 1.25:1 and 1.43:1, respectively. Although the mechanical strength of square gel beads is slightly higher than that of spherical, spherical gel is considered the most suitable gel shape due to its small pore size and poor pore connectivity, which ensures the matching of internal Anammox and external PN reaction. In the long-term experiment, the core-shell embedded beads still had the design characteristics, and the TN removal efficiency was increased by 36.25% despite occasional oxygen excess.
Collapse
Affiliation(s)
- Jin Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China.
| | - Hua-Yi Cai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China.
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
15
|
Yin X, Wen J, Zhang Y, Zhang X, Zhao J. Long-Term Performance of Nitrogen Removal and Microbial Analysis in an Anammox MBBR Reactor with Internal Circulation to Provide Low Concentration DO. TOXICS 2022; 10:640. [PMID: 36355932 PMCID: PMC9698524 DOI: 10.3390/toxics10110640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The anammox process is considered as a revolutionary new denitrification technology. In this study, the anammox process was started in a single-stage moving bed biofilm reactor (MBBR) and the mechanism of excess removal of ammonia nitrogen was studied. At stage I (day 0-51), anammox bacteria (AnAOB) was enriched by feeding synthetic sewage without adding organic carbon. The removal rate of ammonia nitrogen was maintained at about 54% and the removal rate of total inorganic nitrogen was maintained at about 62%. At stage II (day 52-91), internal circulation was added into the MBBR. After adding internal circulation, the ammonium removal efficiency reached about 96% (at day 56) and the total nitrogen removal efficiency reached about 86%. At day 90, the biofilm sample was drowned out for high-throughput sequencing. The results showed that the relative abundance of AnAOB was 23.23%. The dominant anammox genus was Candidatus Brocadia. The relative abundance of Nitrosomonas (ammonia oxidizing bacteria, AOB) was 0.63%. The excess ammonia nitrogen was removed by AOB and AnAOB through the partial nitrification and anammox (PNA) process.
Collapse
Affiliation(s)
- Xuejiao Yin
- School of Architecture and Engineering, Chongqing Industry Polytechnic College, Chongqing 401120, China
| | - Jiaxin Wen
- School of Architecture and Engineering, Chongqing Industry Polytechnic College, Chongqing 401120, China
| | - Yihang Zhang
- School of Architecture and Engineering, Chongqing Industry Polytechnic College, Chongqing 401120, China
| | - Xin Zhang
- School of Architecture and Engineering, Chongqing Industry Polytechnic College, Chongqing 401120, China
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Chongqing University, Chongqing 400045, China
| | - Jujiao Zhao
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| |
Collapse
|
16
|
Cho K, Bae S, Jung J, Choi D. Effect of aerobic microbes' competition for oxygen on nitrogen removal in mainstream nitritation-anammox systems. CHEMOSPHERE 2022; 305:135493. [PMID: 35764117 DOI: 10.1016/j.chemosphere.2022.135493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/24/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
The effects of C/N ratio in mainstream partial nitritation (PN)-anaerobic ammonia oxidation (ANAMMOX) considering competitive relationship of aerobic microbes competing for oxygen were investigated. Thy system was operated for 501 d with various C/N ratio. Competitive growth of aerobic heterotrophic bacteria (AHB) at ≥ 1 of C/N ratio acted effectively on the selective inhibition of nitrite-oxidizing bacteria (NOB) while contributing to stable PN-A. In-depth kinetic analysis indicated oxygen affinity of aerobic microbes was in the order of AHB > ammonia-oxidizing bacteria (AOB) > NOB. In addition, potential of denitritation by AHB could contributed to improving nitrogen removal up to 87.5 ± 4.3%. AHB was comparatively clustered into two groups with a C/N ratio of 1. Nitrosomonas sp. PY1 became predominant while Nitrospira spp. were the major NOB. The potential of AHB in establishing selective inhibition of NOB was identified, which could be a novel approach to stabilze the mainstream PN-A.
Collapse
Affiliation(s)
- Kyungjin Cho
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul, 02792, South Korea; Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, South Korea
| | - Seongeun Bae
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk, 38541, South Korea
| | - Jinyoung Jung
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk, 38541, South Korea
| | - Daehee Choi
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
17
|
Aharoni I, Dahan O, Siebner H. Continuous monitoring of dissolved inorganic nitrogen (DIN) transformations along the waste-vadose zone - groundwater path of an uncontrolled landfill, using multiple N-species isotopic analysis. WATER RESEARCH 2022; 219:118508. [PMID: 35533620 DOI: 10.1016/j.watres.2022.118508] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 03/22/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Landfill leachates contain a heavy load of dissolved inorganic nitrogen (DIN), posing a threat to water resources. Therefore, it is highly important to understand the processes that control its evolution (speciation, accumulation, or attenuation) during the percolation of leachates through the unsaturated zone, finally affecting the groundwater. However, tracking DIN transformations in this complex and inaccessible environment is challenging, and knowledge concerning this important topic under field conditions is scarce. The presented study used a unique monitoring system that allows sampling of repetitive samples from within the waste and the unsaturated zone. An array of 8 wells penetrating the underlying aquifer completed the spatial observation. Multiple N-species isotopic approach was applied to discern the dominating N-involving processes over the continuum - from the waste mound through the unsaturated zone and the underlying aquifer. Despite the considerable heterogeneity observed throughout the profile, the results provided a cohesive and valuable reflection of the evolution of the inorganic nitrogen pool in this highly contaminated environment. Leachates inside the waste had reducing characteristics with high accumulation of ammonium (up to 360 mg/l NH4+-N), and a distinct δ15N-NH4+ range (-3‰ to +10‰). The upper layers of the unsaturated zone underneath the landfill margins found to be aerated, promoting N oxidation which resulted in the accumulation of nitrate in the leachates (up to 490 mg/l NO3-N). Exceptionally high concentrations of nitrite (up to 126 mg/l NO2-N) were found as oxygen levels decreased in deeper sections of the vadose zone. Enrichment of δ15N-NO2- compared to δ15N-NO3- indicated the significance of autotropic nitrite reduction, controlling the DIN composition, correlated with NO2- accumulation and net DIN attenuation. The δ15N: δ18O ratio implied co-occurrence of denitrification in the leachates, even in the more oxidized sections, further contributing to N-attenuation in the unsaturated zone. In the aquifer, δ15N-NH4+ values and δ15N: δ18O ratio linked N contamination to the leachates source. The encounter with the oxidized groundwater promoted intensive nitrification. δ15N-NO2- values in the groundwater were lighter than both δ15N-NH4+ and δ15N-NO3- by 22‰ to 62‰, implying the co-occurrence of nitrification-denitrification processes. The effect of denitrification grew with decreasing dissolved oxygen (DO) levels below 0.5 mg/l towards the center of the plume, contributing to net DIN attenuation in the plume. The findings are significant for any consideration of the risk posed by DIN, as well as remediation measures, in a landfill environment and other sites with a heavy load of degrading organic matter.
Collapse
Affiliation(s)
- Imri Aharoni
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel.
| | - Ofer Dahan
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Hagar Siebner
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel.
| |
Collapse
|
18
|
Wang W, Zhu J, Xiong D, Su Y, Li Y, Fu J. Comparison between two anammox fiber fillers under load impact and the effect of HCO 3 - concentration. RSC Adv 2021; 12:24-31. [PMID: 35424468 PMCID: PMC8978840 DOI: 10.1039/d1ra07982d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/24/2021] [Indexed: 11/23/2022] Open
Abstract
Based on the establishment of a stable anaerobic ammonia oxidation treatment system in 100 days, the impact resistances of two different anammox fiber fillers (the curtain filler: R1 and the bundle filler: BR) were compared. Furthermore, the effect of HCO3− concentration on the bundle filler system was also investigated, the results have shown that the activity of the two anammox fiber fillers was not inhibited when the NO2−–N concentration was lower than 750 mg L−1 (FNA = 0.085 mg L−1), while it was significantly suppressed at 900 mg L−1 (FNA = 0.118 mg L−1). However, the two fiber fillers could be recovered and exhibit a good impact resistance reduction of the substrate concentration. On day 95, the structure of the bundle filler was more conducive to the stable attachment, proliferation, and aggregation of anammox bacteria. Dominant anammox bacteria in both the curtain and bundle fillers were Candidatus Kuenenia, which accounted for 25.9% and 35.9% of the total population, respectively. When the influent HCO3− concentration was 900 mg L−1, the bundled fiber filler had the highest total nitrogen (TN) removal efficiency, which reached 89.0%. Even though it was inhibited under 2000 mg L−1 of HCO3− concentration, the reactor was able to recover within one week by reducing the substrate concentration. In addition, the HCO3− inhibition mechanism was independent of pH, which resulted in high FA content. Based on the establishment of a stable anaerobic ammonia oxidation treatment system in 100 days, the impact resistances of two different anammox fiber fillers (the curtain filler: R1 and the bundle filler: BR) were compared.![]()
Collapse
Affiliation(s)
- Weiqiang Wang
- College of Environmental Science and Engineering, Dalian Maritime University 116026 Dalian China
| | - Jinghai Zhu
- College of Environmental Science and Engineering, Dalian Maritime University 116026 Dalian China
| | - Deqi Xiong
- College of Environmental Science and Engineering, Dalian Maritime University 116026 Dalian China
| | - Yang Su
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University 110168 Shenyang China
| | - Yehui Li
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University 110168 Shenyang China
| | - Jinxiang Fu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University 110168 Shenyang China
| |
Collapse
|
19
|
Lu J, Hong Y, Wei Y, Gu JD, Wu J, Wang Y, Ye F, Lin JG. Nitrification mainly driven by ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in an anammox-inoculated wastewater treatment system. AMB Express 2021; 11:158. [PMID: 34837527 PMCID: PMC8627542 DOI: 10.1186/s13568-021-01321-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/16/2021] [Indexed: 11/26/2022] Open
Abstract
Anaerobic ammonium oxidation (anammox) process has been acknowledged as an environmentally friendly and time-saving technique capable of achieving efficient nitrogen removal. However, the community of nitrification process in anammox-inoculated wastewater treatment plants (WWTPs) has not been elucidated. In this study, ammonia oxidation (AO) and nitrite oxidation (NO) rates were analyzed with the incubation of activated sludge from Xinfeng WWTPs (Taiwan, China), and the community composition of nitrification communities were investigated by high-throughput sequencing. Results showed that both AO and NO had strong activity in the activated sludge. The average rates of AO and NO in sample A were 6.51 µmol L−1 h−1 and 6.52 µmol L−1 h−1, respectively, while the rates in sample B were 14.48 µmol L−1 h−1 and 14.59 µmol L−1 h−1, respectively. The abundance of the nitrite-oxidizing bacteria (NOB) Nitrospira was 0.89–4.95 × 1011 copies/g in both samples A and B, the abundance of ammonia-oxidizing bacteria (AOB) was 1.01–9.74 × 109 copies/g. In contrast, the abundance of ammonia-oxidizing archaea (AOA) was much lower than AOB, only with 1.28–1.53 × 105 copies/g in samples A and B. The AOA community was dominated by Nitrosotenuis, Nitrosocosmicus, and Nitrososphaera, while the AOB community mainly consisted of Nitrosomonas and Nitrosococcus. The dominant species of Nitrospira were Candidatus Nitrospira defluvii, Candidatus Nitrospira Ecomare2 and Nitrospira inopinata. In summary, the strong nitrification activity was mainly catalyzed by AOB and Nitrospira, maintaining high efficiency in nitrogen removal in the anammox-inoculated WWTPs by providing the substrates required for denitrification and anammox processes.
Collapse
|
20
|
Combined impact of TiO2 nanoparticles and antibiotics on the activity and bacterial community of partial nitrification system. PLoS One 2021; 16:e0259671. [PMID: 34780518 PMCID: PMC8592496 DOI: 10.1371/journal.pone.0259671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/24/2021] [Indexed: 12/16/2022] Open
Abstract
The effects of TiO2 nanoparticles (nano-TiO2) together with antibiotics leaking into wastewater treatment plants (WWTPs), especially the partial nitrification (PN) process remain unclear. To evaluate the combined impact and mechanisms of nano-TiO2 and antibiotics on PN systems, batch experiments were carried out with six bench-scale sequencing batch reactors. Nano-TiO2 at a low level had minimal effects on the PN system. In combination with tetracycline and erythromycin, the acute impact of antibiotics was enhanced. Both steps of nitrification were retarded due to the decrease of bacterial activity and abundance, while nitrite-oxidizing bacteria were more sensitive to the inhibition than ammonia-oxidizing bacteria. Proteobacteria at the phylum level and Nitrosospira at the genus level remained predominant under single and combined impacts. The flow cytometry analysis showed that nano-TiO2 enhanced the toxicity of antibiotics through increasing cell permeability. Our results can help clarify the risks of nano-TiO2 combined with antibiotics to PN systems and explaining the behavior of nanoparticles in WWTPs.
Collapse
|
21
|
Jiang H, Wang Z, Ren S, Qiu J, Li X, Peng Y. Culturing sludge fermentation liquid-driven partial denitrification in two-stage Anammox process to realize advanced nitrogen removal from mature landfill leachate. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125568. [PMID: 33773256 DOI: 10.1016/j.jhazmat.2021.125568] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/16/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
The two-stage partial nitrification (PN)-Anammox process, during long term treatment of high-ammonia nitrogen leachate, faces challenges such as the adaptation of nitrite oxidation bacteria (NOB) and failure of real-time control of pH. Resultant instabilities including NH4+-N and NO3--N accumulation were overcome by culturing sludge fermentation liquid (SFL)-driven partial denitrification (PD) in situ in the Anammox process. Biodegradation of slowly biodegradable organics (SBO) in SFL created organics restriction condition, which limited the activity of denitrification bacteria and achieved its balance with Anammox bacteria. Produced NO3--N is reduced to NO2--N through PD, which further improved the removal of NH4+-N through Anammox. NO2--N was utilized timely by Anammox bacteria, which avoid further reduction of NO2--N to N2, and result in a high nitrate to nitrite transformation ratio (NTR) of 93.3%. Satisfactory nitrogen removal efficiency (NRE) and nitrogen removal rate (NRR) of 99.6% and 822.0 ± 9.0 g N/(m3∙d) were obtained, respectively. Key genera related to degradation of SBO, PD and Anammox were enriched. The value of narG/(nirK+nirS) increased from 0.05 on day 1-0.15 on day 250. Combining SFL-driven PD with two-stage Anammox process provided a novel insight for applying this process to realize advanced nitrogen removal in practical engineering.
Collapse
Affiliation(s)
- Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Zhong Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shang Ren
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jingang Qiu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
22
|
Development of Strategies for AOB and NOB Competition Supported by Mathematical Modeling in Terms of Successful Deammonification Implementation for Energy-Efficient WWTPs. Processes (Basel) 2021. [DOI: 10.3390/pr9030562] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Novel technologies such as partial nitritation (PN) and partial denitritation (PDN) could be combined with the anammox-based process in order to alleviate energy input. The former combination, also noted as deammonification, has been intensively studied in a frame of lab and full-scale wastewater treatment in order to optimize operational costs and process efficiency. For the deammonification process, key functional microbes include ammonia-oxidizing bacteria (AOB) and anaerobic ammonia oxidation bacteria (AnAOB), which coexisting and interact with heterotrophs and nitrite oxidizing bacteria (NOB). The aim of the presented review was to summarize current knowledge about deammonification process principles, related to microbial interactions responsible for the process maintenance under varying operational conditions. Particular attention was paid to the factors influencing the targeted selection of AOB/AnAOB over the NOB and application of the mathematical modeling as a powerful tool enabling accelerated process optimization and characterization. Another reviewed aspect was the potential energetic and resources savings connected with deammonification application in relation to the technologies based on the conventional nitrification/denitrification processes.
Collapse
|
23
|
Ochs P, Martin BD, Germain E, Stephenson T, van Loosdrecht M, Soares A. Ammonia removal from thermal hydrolysis dewatering liquors via three different deammonification technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142684. [PMID: 33348489 DOI: 10.1016/j.scitotenv.2020.142684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 06/12/2023]
Abstract
The benefits of deammonification to remove nitrogen from sidestreams, i.e., sludge dewatering liquors, in municipal wastewater treatment plants are well accepted. The ammonia removal from dewatering liquors originated from thermal hydrolysis/anaerobic digestion (THP/AD) are deemed challenging. Many different commercial technologies have been applied to remove ammonia from sidestreams, varying in reactor design, biomass growth form and instrumentation and control strategy. Four technologies were tested (a deammonification suspended sludge sequencing batch reactor (S-SBR), a deammonification moving bed biofilm reactor (MEDIA), a deammonification granular sludge sequencing batch reactor (G-SBR), and a nitrification suspended sludge sequencing batch reactor (N-SBR)). All technologies relied on distinct control strategies that actuated on the feed flow leading to a range of different ammonia loading rates. Periods of poor performance were displayed by all technologies and related to imbalances in the chain of deammonification reactions subsequently effecting both load and removal. The S-SBR was most robust, not presenting these imbalances. The S-SBR and G-SBR presented the highest nitrogen removal rates (NRR) of 0.58 and 0.56 kg N m-3 d-1, respectively. The MEDIA and the N-SBR presented an NRR of 0.17 and 0.07 kg N m-3 d-1, respectively. This study demonstrated stable ammonia removal from THP/AD dewatering liquors and did not observe toxicity in the nitrogen removal technologies tested. It was identified that instrumentation and control strategy was the main contributor that enabled higher stability and NRR. Overall, this study provides support in selecting a suitable biological nitrogen removal technology for the treatment of sludge dewatering liquors from THP/AD.
Collapse
Affiliation(s)
- Pascal Ochs
- Cranfield University, College Road, Cranfield, Bedford MK43 0AL, United Kingdom; Thames Water, Reading STW, Island Road, RG2 0RP Reading, United Kingdom
| | - Benjamin D Martin
- Thames Water, Reading STW, Island Road, RG2 0RP Reading, United Kingdom
| | - Eve Germain
- Thames Water, Reading STW, Island Road, RG2 0RP Reading, United Kingdom
| | - Tom Stephenson
- Cranfield University, College Road, Cranfield, Bedford MK43 0AL, United Kingdom
| | - Mark van Loosdrecht
- Delft University of Technology, Building 58, Van der Maasweg 9, 2629 Delft, Netherlands
| | - Ana Soares
- Cranfield University, College Road, Cranfield, Bedford MK43 0AL, United Kingdom.
| |
Collapse
|
24
|
Flores-Cortés M, Pérez-Trevilla J, de María Cuervo-López F, Buitrón G, Quijano G. H 2S oxidation coupled to nitrate reduction in a two-stage bioreactor: Targeting H 2S-rich biogas desulfurization. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 120:76-84. [PMID: 33285376 DOI: 10.1016/j.wasman.2020.11.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/27/2020] [Accepted: 11/07/2020] [Indexed: 05/13/2023]
Abstract
A two-stage bioreactor operated under anoxic denitrifying conditions was evaluated for desulfurization of synthetic biogas laden with H2S concentrations between 2500 and 10,000 ppmv. H2S removal efficiencies higher than 95% were achieved for H2S loads ranging from 16.2 to 51.9 gS mliquid-3h-1. Average H2S oxidation performance (fraction of S-SO42- produced per gram of S-H2S absorbed) ranged between 8.2 ± 1.2 and 18.7 ± 5.3% under continuous liquid operation. Nitrogen mass balance showed that only 2-6% of the N-NO3- consumed was directed to biomass growth and the rest was directed to denitrification. Significant changes in the bacterial community composition did not hinder the H2S removal efficiency. The bioreactor configuration proposed avoided clogging issues due to elemental sulfur accumulation as commonly occurs in packed bed bioreactors devoted to H2S-rich biogas desulfurization.
Collapse
Affiliation(s)
- Mauricio Flores-Cortés
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico
| | - Jaime Pérez-Trevilla
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico
| | - Flor de María Cuervo-López
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, C.P. 09340 Mexico City, Mexico
| | - Germán Buitrón
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico
| | - Guillermo Quijano
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico.
| |
Collapse
|
25
|
Huang X, Mi W, Ito H, Kawagoshi Y. Unclassified Anammox bacterium responds to robust nitrogen removal in a sequencing batch reactor fed with landfill leachate. BIORESOURCE TECHNOLOGY 2020; 316:123959. [PMID: 32795870 DOI: 10.1016/j.biortech.2020.123959] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Treatment of landfill leachate was conducted in a lab-scale sequencing batch reactor (SBR). The SBR was started through inoculating activated sludge with controlling dissolved oxygen of 0.5-1.0 mg/L. Anammox reaction took place within around three months. The SBR established robust nitrogen removal with incremental NLRs of 0.25-2.17 kg N/m3/d. At the final phase, it achieved elevated nitrogen removals of 1.68-1.91 kg N/m3/d. 16S rRNA gene amplicon sequencing analysis revealed Nitrosomonas, unclassified Anammox bacterium, and diverse denitrifying populations coexisted and accounted for 4.02%, 20.05% and 34.69%, respectively. Phylogenic analysis and average nucleotide identity comparison jointly suggested the unclassified Anammox bacterium potentially pertained to a novel Anammox lineage. The functional profiles' prediction suggested sulfate reduction, arsenate reduction and eliminations of antibiotics and drugs likely occurred in the SBR. The finding from this study suggests contribution of unclassified Anammox bacteria in influencing nitrogen budget in natural and engineering systems is currently being underestimated.
Collapse
Affiliation(s)
- Xiaowu Huang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region, PR China; Center for Water Cycle, Marine Environment, and Disaster Management, Kumamoto University, Kumamoto 860-8555, Japan.
| | - Wenkui Mi
- Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region, PR China
| | - Hiroaki Ito
- Center for Water Cycle, Marine Environment, and Disaster Management, Kumamoto University, Kumamoto 860-8555, Japan
| | - Yasunori Kawagoshi
- Center for Water Cycle, Marine Environment, and Disaster Management, Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
26
|
Bicelli LG, Augusto MR, Giordani A, Contrera RC, Souza TSO. Intermittent rotation as an innovative strategy for achieving nitritation in rotating biological contactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139675. [PMID: 32474269 DOI: 10.1016/j.scitotenv.2020.139675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/17/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
The nitritation step is essential when the anammox process is focused, and alternative technologies to achieve partial nitritation-anammox are required. Rotating Biological Contactors (RBCs) are a promising and cost-effective technology, allowing the development of aerobic and anoxic zones in the biofilm, coupled to low energy consumption. This study evaluated nitritation in a RBC with two discs rotation strategies: continuous and intermittent. Continuous rotation resulted in high dissolved oxygen (DO) concentrations and was not favorable for achieving stable nitritation. However, intermittent rotation, coupled with a nitrogen load of 1000 g N·m-3·d-1 and a HRT of 12 h, decreased DO by 77.8% and resulted in nitritation efficiencies of 45.3%. FISH analyses suggested that simultaneous partial nitritation/anammox (PN/A) could also be favored. These results indicated that intermittent rotation may be a core strategy for producing an anammox-suitable effluent or even to promote PN/A in RBCs, upgrading their applicability for wastewater treatment.
Collapse
Affiliation(s)
- Larissa Garcez Bicelli
- Department of Hydraulic and Environmental Engineering, Polytechnic School, University of São Paulo (USP), Av. Prof. Almeida Prado, 83, Travessa 2, Butantã, 05.508-900 São Paulo, SP, Brazil.
| | - Matheus Ribeiro Augusto
- Department of Hydraulic and Environmental Engineering, Polytechnic School, University of São Paulo (USP), Av. Prof. Almeida Prado, 83, Travessa 2, Butantã, 05.508-900 São Paulo, SP, Brazil
| | - Alessandra Giordani
- Department of Hydraulic and Environmental Engineering, Polytechnic School, University of São Paulo (USP), Av. Prof. Almeida Prado, 83, Travessa 2, Butantã, 05.508-900 São Paulo, SP, Brazil
| | - Ronan Cleber Contrera
- Department of Hydraulic and Environmental Engineering, Polytechnic School, University of São Paulo (USP), Av. Prof. Almeida Prado, 83, Travessa 2, Butantã, 05.508-900 São Paulo, SP, Brazil
| | - Theo S O Souza
- Department of Hydraulic and Environmental Engineering, Polytechnic School, University of São Paulo (USP), Av. Prof. Almeida Prado, 83, Travessa 2, Butantã, 05.508-900 São Paulo, SP, Brazil
| |
Collapse
|
27
|
Brito J, Valle A, Almenglo F, Ramírez M, Cantero D. Characterization of eubacterial communities by Denaturing Gradient Gel Electrophoresis (DGGE) and Next Generation Sequencing (NGS) in a desulfurization biotrickling filter using progressive changes of nitrate and nitrite as final electron acceptors. N Biotechnol 2020; 57:67-75. [PMID: 32360635 DOI: 10.1016/j.nbt.2020.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 11/26/2022]
Abstract
Anoxic biotrickling filters (BTFs) represent a technology with high H2S elimination capacity and removal efficiencies widely studied for biogas desulfurization. Three changes in the final electron acceptors were made using nitrate and nitrite during an operating period of 520 days. The stability and performance of the anoxic BTF were maintained when a significant perturbation was applied to the system that involved the progressive change of nitrate to nitrite and vice versa. Here the impact of electron acceptor changes on the microbial community was characterized by denaturing gel gradient electrophoresis (DGGE) and next generation sequencing (NGS). Both platforms revealed that the community underwent changes during the perturbations but was resilient because the removal capacity did not significantly change. Proteobacteria and Bacteroidetes were the main Phyla and Sulfurimonas and Thiobacillus the main nitrate-reducing sulfide-oxidizing bacteria (NR-SOB) genera involved in the biodesulfurization process.
Collapse
Affiliation(s)
- Javier Brito
- Department of Chemical Engineering and Food Technologies, Faculty of Sciences, University of Cadiz, Institute of Viticulture and Agri-food research (IVAGRO), 11510 Puerto Real, Cádiz, Spain
| | - Antonio Valle
- Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular Biology, Faculty of Sciences, University of Cadiz, Institute of Viticulture and Agri-food research (IVAGRO), 11510 Puerto Real, Cádiz, Spain.
| | - Fernando Almenglo
- Department of Chemical Engineering and Food Technologies, Faculty of Sciences, University of Cadiz, Institute of Viticulture and Agri-food research (IVAGRO), 11510 Puerto Real, Cádiz, Spain
| | - Martín Ramírez
- Department of Chemical Engineering and Food Technologies, Faculty of Sciences, University of Cadiz, Institute of Viticulture and Agri-food research (IVAGRO), 11510 Puerto Real, Cádiz, Spain
| | - Domingo Cantero
- Department of Chemical Engineering and Food Technologies, Faculty of Sciences, University of Cadiz, Institute of Viticulture and Agri-food research (IVAGRO), 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
28
|
Effect of Electrostatic Field Strength on Bioelectrochemical Nitrogen Removal from Nitrogen-Rich Wastewater. ENERGIES 2020. [DOI: 10.3390/en13123218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effect of electrostatic fields on the bioelectrochemical removal of ammonium and nitrite from nitrogen-rich wastewater was investigated at strengths ranging from 0.2 to 0.67 V/cm in bioelectrochemical anaerobic batch reactors. The electrostatic field enriched the bulk solution with electroactive bacteria, including ammonium oxidizing exoelectrogens (AOE) and denitritating electrotrophs (DNE). The electroactive bacteria removed ammonium and nitrite simultaneously with alkalinity consumption through biological direct interspecies electron transfer (DIET) in the bulk solution. However, the total nitrogen (ammonium and nitrite) removal rate increased from 106.1 to 166.3 mg N/g volatile suspended solids (VSS).d as the electrostatic field strength increased from 0.2 to 0.67 V/cm. In the cyclic voltammogram, the redox peaks corresponding to the activities of AOE and DNE increased as the strength of the electrostatic field increased. Based on the microbial taxonomic profiling, the dominant genera involved in the bioelectrochemical nitrogen removal were identified as Pseudomonas, Petrimonas, DQ677001_g, Thiopseudomonas, Lentimicrobium, and Porphyromonadaceae_uc. This suggests that the electrostatic field of 0.67 V/cm significantly improves the bioelectrochemical nitrogen removal by enriching the bulk solution with AOE and DNE and promoting the biological DIET between them.
Collapse
|
29
|
Abstract
Sanitary landfilling is the most common method of removing urban solid waste in developing countries. Landfills contain high levels of organic materials, ammonia, and heavy metals, thereby producing leachate which causes a possible future pollution of ground and surface water. Recently, agricultural waste was considered a co-substratum to promote the biodegradation of organics in industrial wastewater. The use of low-cost and natural materials for wastewater treatment is now being considered by many researchers. In this study, palm oil mill effluent (POME) was used for treating stabilized leachate from old landfill. A set of preliminary experiments using different POME/leachate ratios and aeration times was performed to identify the setting of experimental design and optimize the effect of employing POME on four responses: chemical oxygen demand (COD), total suspended solids (TSS), color, and ammoniacal nitrogen (NH3-N). The treatment efficiency was evaluated based on the removal of four selected (responses) parameters. The optimum removal efficiency for COD, TSS, color, and NH3-N was 87.15%, 65.54%, 52.78%, and 91.75%, respectively, using a POME/leachate mixing ratio of 188.32 mL/811.68 mL and 21 days of aeration time. The results demonstrate that POME-based agricultural waste can be effectively employed for organic removal from leachate.
Collapse
|
30
|
Pauzan MAB, Puteh MH, Yuzir A, Othman MHD, Abdul Wahab R, Zainal Abideen M. Optimizing Ammonia Removal from Landfill Leachate Using Natural and Synthetic Zeolite Through Statically Designed Experiment. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-019-04204-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
31
|
Wu P, Zhang X, Wang X, Wang C, Faustin F, Liu W. Characterization of the start-up of single and two-stage Anammox processes with real low-strength wastewater treatment. CHEMOSPHERE 2020; 245:125572. [PMID: 31846786 DOI: 10.1016/j.chemosphere.2019.125572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/19/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
In order to promote the application of anaerobic ammonium oxidation (Anammox) for municipal wastewater treatment, single and two-stage Anammox processes were started up for real low-strength wastewater treatment under similar conditions for the comparison. Results showed that the anaerobic baffled reactor (ABR)-Nitritation-Anammox and the ABR-Completely Autotrophic Nitrogen removal Over Nitrite (CANON) process took 75 days and 101 days to start up with a total nitrogen removal rate of 86-92% and 81-87% under steady state, respectively. The 16 S rRNA sequencing analysis revealed that the phylum of Proteobacteria dominated in CANON system and Anammox system with the relative abundance of 35.39% and 15.27%, respectively. Phylogenetic analysis showed that Anammox species, related to Ca. Brocadia Sinica JPN1 and Ca. Kuenenia stuttgartiensis, dominated in these two systems, respectively. The nitrogen removal performance of two-stage process was 5% higher than that of single stage process, while the start-up period and dominated Anammox species were different.
Collapse
Affiliation(s)
- Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009, Suzhou, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, 215009, Suzhou, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, 215009, Suzhou, PR China.
| | - Xingxing Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009, Suzhou, PR China
| | - Xinzhu Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009, Suzhou, PR China
| | - Chaochao Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009, Suzhou, PR China
| | - Fangnigbe Faustin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009, Suzhou, PR China
| | - Wenru Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009, Suzhou, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, 215009, Suzhou, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, 215009, Suzhou, PR China
| |
Collapse
|
32
|
Mycoremediation of Old and Intermediate Landfill Leachates with an Ascomycete Fungal Isolate, Lambertella sp. WATER 2020. [DOI: 10.3390/w12030800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, an Ascomycete fungal strain, Lambertella sp., isolated from environmental polluted matrices, was tested for the capacity to reduce the contamination and the toxicity of intermediate and old landfill leachates. Batch tests in flasks, under co-metabolic conditions, were performed with two different old leachates, with suspended and immobilized Lambertella sp. biomass, resulting in a soluble chemical oxygen demand depletion of 70% and 45%, after 13 and 30 days, respectively. An intermediate landfill leachate was treated in lab-scale reactors operating in continuous conditions for three months, inoculated with immobilized Lambertella sp. biomass, in absence of co-substrates. The Lambertella sp. depleted the corresponding total organic carbon by 90.2%. The exploitability of the Lambertella sp. strain was evaluated also in terms of reduction of phyto-, cyto-, and mutagenicity of the different Landfill Leachates at the end of the myco-based treatment, resulting in an efficient depletion of leachate clastogenicity.
Collapse
|
33
|
Cano V, Vich DV, Andrade HHB, Salinas DTP, Nolasco MA. Nitrification in multistage horizontal flow treatment wetlands for landfill leachate treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135376. [PMID: 31812428 DOI: 10.1016/j.scitotenv.2019.135376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/17/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
One of the key challenges in landfill leachate treatment is removing organic matter (OM) and ammonium nitrogen (NH4+-N) at a low cost. To evaluate the feasibility of treatment wetlands for diluted (3:10) landfill leachate treatment with OM and NH4+-N oxidation, a lab-scale shallow subsurface horizontal flow system (HF wetland) comprised of two units operated in series was assessed as post-treatment of partial ammonia stripping system. A HF wetland planted with Heliconia psittacorum (HP) and an unplanted HF wetland (control) were supplemented with micronutrients and monitored under the influence of hydraulic retention time (HRT), pH, and the plant presence on performance. With an HRT above 4 days, mean chemical oxygen demand removal for both HP and the control was less than 20%, without complete mineralization, probably due to the recalcitrance of OM. For NH4+-N, the mean global removal efficiencies with and without influent pH adjustment were, respectively, 74% and 54% for HP and 56% and 43% for the control, resulting in mean concentrations between 36 and 93 mg L-1. The NH4+-N removal was correlated with inorganic carbon consumption followed by NO3- production, which suggests that nitrification was the major route of removal. For both systems, nitrification was significantly higher in one of the units, when biodegradable OM was already consumed and competition between heterotrophic and autotrophic bacteria for dissolved oxygen was likely minimized. By balancing the organic load and availability of dissolved oxygen within each unit in series, a reduced HRT necessary for NH4+-N oxidation was achieved, an essential aspect for the design of high performance constructed wetlands for full scale landfill leachate treatment.
Collapse
Affiliation(s)
- Vitor Cano
- University of São Paulo - School of Arts, Sciences and Humanities, Av. Arlindo Béttio, 1000, Sao Paulo, SP 013828-000, Brazil
| | - Daniele V Vich
- University of São Paulo - School of Arts, Sciences and Humanities, Av. Arlindo Béttio, 1000, Sao Paulo, SP 013828-000, Brazil
| | - Helisson H B Andrade
- University of São Paulo - School of Arts, Sciences and Humanities, Av. Arlindo Béttio, 1000, Sao Paulo, SP 013828-000, Brazil
| | - Delhi T P Salinas
- University of São Paulo - School of Arts, Sciences and Humanities, Av. Arlindo Béttio, 1000, Sao Paulo, SP 013828-000, Brazil
| | - Marcelo A Nolasco
- University of São Paulo - School of Arts, Sciences and Humanities, Av. Arlindo Béttio, 1000, Sao Paulo, SP 013828-000, Brazil.
| |
Collapse
|
34
|
Luo H, Zeng Y, Cheng Y, He D, Pan X. Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135468. [PMID: 31753496 DOI: 10.1016/j.scitotenv.2019.135468] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Nowadays, sanitary landfilling is the most common approach to eliminate municipal solid waste, but a major drawback is the generation of heavily polluted leachates. These leachates must be appropriately treated before being discharged into the environment. Generally, the leachate characteristics such as COD, BOD/COD ratio, and landfill age are necessary determinants for selection of suitable treatment technologies. Rapid, sensitive and cost-effective bioassays are required to evaluate the toxicity of leachate before and after the treatment. This review summarizes extensive studies on leachate treatment methods and leachate toxicity assessment. It is found that individual biological or physical-chemical treatment is unable to meet strict effluent guidelines, whereas a combination of biological and physical-chemical treatments can achieve satisfactory removal efficiencies of both COD and ammonia nitrogen. In order to assess the toxic effects of leachate on different trophic organisms, we need to develop an appropriate matrix of bioassays based on their sensitivity to various toxicants and a multispecies approach using organisms representing different trophic levels. In this regard, a reduction in toxicity of the treated leachate will contribute to assessing the effectiveness of a specific remediation strategy.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yifeng Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ying Cheng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongqin He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
35
|
Gede Wenten I, Friatnasary DL, Khoiruddin K, Setiadi T, Boopathy R. Extractive membrane bioreactor (EMBR): Recent advances and applications. BIORESOURCE TECHNOLOGY 2020; 297:122424. [PMID: 31784251 DOI: 10.1016/j.biortech.2019.122424] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Combining bioreactor and membrane, known as a membrane bioreactor (MBR), has been considered as an attractive strategy to solve the limitations of conventional activated sludge process, such as biological instability, poor sludge quality, and low concentration of mixed liquor suspended solid. Unlike the other MBRs, extractive membrane bioreactor (EMBR) focuses on enhancing the efficiency of wastewater treatment through toxic compounds extraction by using a selective membrane. Even though EMBR has been successfully demonstrated in wastewater and waste gas treatment by several studies, it still faces some obstacles such as biofilm formation and low selectivity of the membrane towards a specific component. Appropriate biofilm formation control strategies and membrane with high selectivity are needed to solve those problems. This paper reviews EMBR including its potential applications in wastewater treatment, denitrification process, and waste gas treatment. In addition, challenges and outlook of EMBR are discussed.
Collapse
Affiliation(s)
- I Gede Wenten
- Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia; Research Center for Biosciences and Biotechnology, Insitut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
| | - Dwi L Friatnasary
- Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
| | - K Khoiruddin
- Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
| | - T Setiadi
- Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia; Center for Environmental Studies (PSLH), Institut Teknologi Bandung, Jl. Sangkuriang 42A, Bandung 40135, Indonesia
| | - R Boopathy
- Department of Biological Sciences, Nicholls State University, Thibodaux, USA.
| |
Collapse
|
36
|
Nsenga Kumwimba M, Lotti T, Şenel E, Li X, Suanon F. Anammox-based processes: How far have we come and what work remains? A review by bibliometric analysis. CHEMOSPHERE 2020; 238:124627. [PMID: 31548173 DOI: 10.1016/j.chemosphere.2019.124627] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/05/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Nitrogen contamination remains a severe environmental problem and a major threat to sustainable development worldwide. A systematic analysis of the literature indicates that the partial nitritation-anammox (PN/AMX) process is still actively studied as a viable option for energy-efficient and feasible technology for the sustainable treatment of N- rich wastewaters, since its initial discovery in 1990. Notably, the mainstream PN/AMX process application remains the most challenging bottleneck in AMX technology and fascinates the world's attention in AMX studies. This paper discusses the recent trends and developments of PN/AMX research and analyzes the results of recent years of research on the PN/AMX from lab-to full-scale applications. The findings would deeply improve our understanding of the major challenges under mainstream conditions and next-stage research on the PN/AMX process. A great deal of efforts has been made in the process engineering, PN/AMX bacteria populations, predictive modeling, and the full-scale implementations during the past 22 years. A series of new and excellent experimental findings at lab, pilot and full-scale levels including good nitrogen removal performance even under low temperature (15-10 °C) around the world were achieved. To date, pilot- and full-scale PN/AMX have been successfully used to treat different types of industrial sewage, including black wastewater, sludge digester liquids, landfill leachate, monosodium glutamate wastewater, etc. Supplementing the qualitative analysis, this review also provides a quantitative bibliometrics study and evaluates global perspectives on PN/AMX research published during the past 22 years. Finally, general trends in the development of PN/AMX research are summarized with the aim of conveying potential future trajectories. The current review offers a valuable orientation and global overview for scientists, engineers, readers and decision makers presently focusing on PN/AMX processes.
Collapse
Affiliation(s)
- Mathieu Nsenga Kumwimba
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Faculty of Agronomy, Department of Natural Resources and Environmental Management, University of Lubumbashi, Congo
| | - Tommaso Lotti
- Civil and Environmental Engineering Department, University of Florence, Via di Santa Marta 3, 50139, Florence, Italy
| | - Engin Şenel
- Hitit University Faculty of Medicine, Department of Dermatology, Çorum, Turkey
| | - Xuyong Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Fidèle Suanon
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
37
|
Yang Y, Pan J, Zhou Z, Wu J, Liu Y, Lin JG, Hong Y, Li X, Li M, Gu JD. Complex microbial nitrogen-cycling networks in three distinct anammox-inoculated wastewater treatment systems. WATER RESEARCH 2020; 168:115142. [PMID: 31605831 DOI: 10.1016/j.watres.2019.115142] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/02/2019] [Accepted: 09/29/2019] [Indexed: 05/05/2023]
Abstract
Microbial nitrogen removal mediated by anaerobic ammonium oxidation (anammox) are cost-effective, yet it is time-consuming to accumulate the slow-growing anammox bacteria in conventional wastewater treatment plants (WWTPs). Inoculation of anammox enriched pellets is an effective way to establish anammox and achieve shortcut nitrogen removal in full-scale WWTPs. However, little is known about the complex microbial nitrogen-cycling networks in these anammox-inoculated WWTPs. Here, we applied metagenomic and metatranscriptomic tools to study the microbial nitrogen removal in three conventional WWTPs, which have been inoculated exogenous anammox pellets, representing partial-nitrification anammox (PNA) and nitrification-denitrification nitrogen removal processes. In the PNA system of Bali (BL), ammonia was partially oxidized by ammonia-oxidizing bacteria (AOB) Nitrosomonas and the oxidized nitrite and the remaining ammonium were directly converted to N2 by anammox bacteria Ca. Brocadia and Ca. Kuenenia. In the nitrification-denitrification system of Wenshan (WS), ammonia-oxidizing archaea (AOA) Thaumarchaeota unexpectedly dominated the nitrifying community in the presence of AOB Nitrosomonas. Meanwhile, the biomass yield of Ca. Brocadia was likely inhibited by the high biodegradable organic compound input and limited by substrate competitions from AOA, AOB, complete ammonia oxidizers (comammox) Nitrospira, nitrite-oxidizing bacteria (NOB) Nitrospira, and heterotrophic denitrifiers. Unexpectedly, comammox Nitrospira was the predominant nitrifier in the presence of AOB Nitrosomonas in the organic carbon-rich nitrification-denitrification system of Linkou (LK). These results clearly showed that distinct active groups were working in concert for an effective nitrogen removal in different WWTPs. This study confirmed the feasibility of anammox application in ammonium-rich systems by direct inoculation of the exogenous anammox pellets and improved our understanding of microbial nitrogen cycling in anammox-driven conventional WWTPs from both physiochemical and omics perspectives.
Collapse
Affiliation(s)
- Yuchun Yang
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jie Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Zhichao Zhou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jiapeng Wu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, People's Republic of China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Yang Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Jih-Gaw Lin
- Institute of Environmental Engineering, National Chiao Tung University, 1001 University Road, Hsinchu City, 30010, Taiwan
| | - Yiguo Hong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, People's Republic of China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Xiaoyan Li
- Department of Civil and Environmental Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Meng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
38
|
Chen Z, Wang X, Chen X, Yang Y, Gu X. Pilot study of nitrogen removal from landfill leachate by stable nitritation-denitrification based on zeolite biological aerated filter. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 100:161-170. [PMID: 31539756 DOI: 10.1016/j.wasman.2019.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/23/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
A pilot (about 1 m3/d) process consisting of pre-denitrification and zeolite biological aerated filter (ZBAF) was established and run for nitrogen removal of landfill leachate. The results showed that stable nitritation and denitrification was achieved for landfill leachate with removal efficiency of Chemical Oxygen Demand (CODCr), ammonium and total nitrogen (TN) of 53.2 ± 3.0%, 93.5 ± 2.4% and 74.7 ± 9.4%, respectively. Based on the ammonium adsorption equilibrium by zeolite, stable free ammonia could be maintained for inhibition of nitrite oxidizing bacteria (NOB) and dominance of ammonia oxidizing bacteria (AOB) in ZBAF, resulting in efficient nitritation with a nitrite accumulation ratio higher than 90.0% and an average nitrite production rate of 1.387 kg NO2--N m-3 day-1. High-throughput sequencing analysis further revealed enrichment of AOB and elimination of NOB in ZBAF. Compared to two-stage anoxic-oxic process, the pilot-scale process could save approximate 5000 mg/L glucose (about 3.10 US dollar/m3) with almost similar TN removal performance. All results obtained demonstrated the feasibility of the pilot process, which might be highly promising for the nitritation and denitrification of low C/N landfill leachate in the future.
Collapse
Affiliation(s)
- Zhenguo Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Xiaojun Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China.
| | - Xiaokun Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Yongyuan Yang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Xiaoyang Gu
- Hualu Environmental Technology Co., Ltd., Guangzhou, China
| |
Collapse
|
39
|
Joicy A, Song YC, Yu H, Chae KJ. Nitrite and nitrate as electron acceptors for bioelectrochemical ammonium oxidation under electrostatic field. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109517. [PMID: 31545180 DOI: 10.1016/j.jenvman.2019.109517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/14/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Bioelectrochemical ammonium oxidation with nitrite and nitrate as electron acceptors was investigated in bulk solution exposed to electrostatic field. In a bioelectrochemical reactor, electroactive nitrogen removal bacteria including ammonium oxidizing exoelectrogens (AOE) and denitrifying electrotrophs (DNE) were enriched by electrostatic field of 0.2 V/cm in a bulk solution containing nitrite, nitrate, and ammonium. Ammonium was oxidized simultaneously with decreases in nitrite and nitrate as electron acceptors due to direct interspecies electron transfer between AOE and DNE. The specific ammonium oxidation rate was 48 mg NH4-N/g VSS.d when nitrate fraction was 1/3 in the electron acceptor composed of nitrite and nitrate. The specific ammonium oxidation rate gradually decreased with increasing nitrate fraction. However, it was still 24 mg NH4-N/g VSS.d when nitrate was the only electron acceptor. This indicates that nitrate can be used as an electron acceptor for bioelectrochemical ammonium oxidation, although it is a less effective than nitrite. This finding provides an advantage that strict nitritation which selectively produces nitrite from ammonium can be avoided when treating ammonia-rich wastewater in a bioelectrochemical reactor.
Collapse
Affiliation(s)
- Anna Joicy
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea
| | - Young-Chae Song
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea.
| | - Hanchao Yu
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea
| | - Kyu-Jung Chae
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea
| |
Collapse
|
40
|
Ma Y, Wei D, Zhang X, Fu H, Chen T, Jia J. An innovative strategy for inducing Anammox from partial nitrification process in a membrane bioreactor. JOURNAL OF HAZARDOUS MATERIALS 2019; 379:120809. [PMID: 31254790 DOI: 10.1016/j.jhazmat.2019.120809] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
Anaerobic ammonium oxidation (Anammox) was an innovative process for nitrogen removal. In this study, CuO nanoparticles (NPs) was step-wise increasingly added to an MBR-based partial nitrification system, to investigate its feasibility for inducing Anammox and establishing autotrophic nitrogen removal system. Results showed that when CuO NPs was elevated to 5 mg L-1, Anammox was successfully induced. The relative abundance of Nitrosomonas reached 13.73% while Candidatus Kuenenia increased to 4.79% from 0.46%, these two bacteria cooperatively contributed to the autotrophic nitrogen removal and improved the nitrogen removal rate (NRR) to 0.56 kg m-3 d-1 in 20 mg L-1 NPs. However, 50 mg L-1 NPs deeply suppressed the functional bacteria and decreased NRR to 0.14 kg m-3 d-1. Finally, the NPs removal, transformation and adsorption in the system were evaluated. It was concluded that CuO NPs in low concentration (5 mg L-1) was effective for inducing Anammox and contributed to the survival of Anammox bacteria. The mechanism for inducing Anammox was attributed to the aggregation of CuO NPs which enabled the attached growth of AAOB as well as the suitable survival condition supplied by MBR.
Collapse
Affiliation(s)
- Yongpeng Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, China
| | - Denghui Wei
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, China
| | - Xiaojing Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, China.
| | - Haoqiang Fu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, China
| | - Tao Chen
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
41
|
Rodriguez-Sanchez A, Muñoz-Palazon B, Hurtado-Martinez M, Maza-Marquez P, Gonzalez-Lopez J, Vahala R, Gonzalez-Martinez A. Microbial ecology dynamics of a partial nitritation bioreactor with Polar Arctic Circle activated sludge operating at low temperature. CHEMOSPHERE 2019; 225:73-82. [PMID: 30861385 DOI: 10.1016/j.chemosphere.2019.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/06/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
A lab-scale partial nitritation SBR was operated at 11 °C for 300 days used for the treatment of high-ammonium wastewater, which was inoculated with activated sludge from Rovaniemi WWTP (located in Polar Arctic Circle) in order to evaluate the influence the temperature on the performance, stability and dynamics of its microbial community. The partial nitritation achieved steady-state long-term operation and granulation process was not affected despite the low temperature and high ammonia concentration. The steady conditions were reached after 60 days of operation where the granular biomass was fully-formed and the 50%-50% of ammonium-nitrite effluent was successful achieved. Inoculation with cold adapted inoculum showed to yield bigger, denser granules with faster start-up without necessity of low temperature adaptation period. Next-generation sequences techniques showed that Trichosporonaceae and Xanthomonadaceae were the dominant OTUs in the mature granules. Our study could be useful in the implementation of full-scale partial nitritation reactors in cold regions such as Nordic countries for treating wastewater with high concentration of ammonium.
Collapse
Affiliation(s)
| | - Barbara Muñoz-Palazon
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | - Miguel Hurtado-Martinez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | - Paula Maza-Marquez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | - Jesus Gonzalez-Lopez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | - Riku Vahala
- Department of Built Environment, School of Engineering, Aalto University, P.O. Box 15200, Aalto, FI-00076, Espoo, Finland
| | | |
Collapse
|
42
|
Chen R, Yao J, Ailijiang N, Liu R, Fang L, Chen Y. Abundance and diversity of nitrogen-removing microorganisms in the UASB-anammox reactor. PLoS One 2019; 14:e0215615. [PMID: 31009503 PMCID: PMC6476503 DOI: 10.1371/journal.pone.0215615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/04/2019] [Indexed: 11/18/2022] Open
Abstract
Anaerobic ammonium oxidation is considered to be the most economical and low-energy biological nitrogen removal process. So far, anammox bacteria have not yet been purified from cultures. Some nitrogen-removing microorganisms cooperate to perform the anammox process. The objective of this research was to analyze the abundance and diversity of nitrogen-removing microorganisms in an anammox reactor started up with bulking sludge at room temperature. In this study, the ammonia-oxidizing archaea phylum Crenarchaeota was enriched from 9.2 to 53.0%. Nitrosomonas, Nitrosococcus, and Nitrosospira, which are ammonia-oxidizing bacteria, increased from 3.2, 1.7, and 0.1% to 12.8, 20.4, and 3.3%, respectively. Ca. Brocadia, Ca. Kuenenia, and Ca. Scalindua, which are anammox bacteria, were detected in the seeding sludge, accounting for 77.1, 11.5, and 10.6%. After cultivation, the dominant genus changed to Ca. Kuenenia, accounting for 82.0%. Nitrospirae, nitrite oxidation bacteria, decreased from 2.2 to 0.1%, while denitrifying genera decreased from 12.9 to 2.1%. The results of this study contribute to the understanding of nitrogen-removing microorganisms in an anammox reactor, thereby facilitating the improvement of such reactors. However, the physiological and metabolic functions of the ammonia-oxidizing archaea community in the anammox reactor need to be investigated in further studies.
Collapse
Affiliation(s)
- Rui Chen
- College of Resources and Environmental Science, Xinjiang University, Urumqi, China
| | - Junqin Yao
- College of Resources and Environmental Science, Xinjiang University, Urumqi, China
- * E-mail:
| | - Nuerla Ailijiang
- College of Resources and Environmental Science, Xinjiang University, Urumqi, China
| | - Ruisang Liu
- College of Resources and Environmental Science, Xinjiang University, Urumqi, China
| | - Lei Fang
- College of Resources and Environmental Science, Xinjiang University, Urumqi, China
| | - Yinguang Chen
- College of Resources and Environmental Science, Xinjiang University, Urumqi, China
- College of Environmental Science and Engineering, Tongji University, Shanghai, China
| |
Collapse
|
43
|
Joicy A, Song YC, Lee CY. Electroactive microorganisms enriched from activated sludge remove nitrogen in bioelectrochemical reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:249-257. [PMID: 30580120 DOI: 10.1016/j.jenvman.2018.12.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/23/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
The bioelectrochemical anaerobic nitrogen removal was demonstrated in an anaerobic batch reactor equipped with a pair of polarized bioelectrodes. The bioelectrochemical reactor was operated in sequential batch mode after inoculating activated sludge and polarizing the electrode to 0.6 V. The medium contains ammonium, nitrite, alkalinity and trace minerals, but no organic carbon source. By the repetitive sequential operation, simultaneous removals of ammonium, nitrite and alkalinity were improved, and the electrochemical activity of the bulk sludge was confirmed from the redox peaks of the cyclic voltammogram. This indicates that ammonia oxidizing exoelectrogens (AOE) and denitritating electrotrophs (DNE) were enriched more in the bulk solution. Biogas production that mainly consisted of nitrogen was observed from the bioelectrochemical reactor, and the minor components in the biogas were methane and carbon dioxide. This demonstrates that AOE use nitrite as an electron acceptor to oxidize ammonia. The requirements of nitrite and alkalinity for the removal of ammonia nitrogen are around 0.72 mg NO2-N/mg NH4-N and 1.73 mg as CaCO3/mg NH4-N, respectively, and nitrate was not produced as a by-product. The bacterial groups involved in the bioelectrochemical nitrogen removal are electroactive autotrophs and can be enriched from activated sludge by polarized electrode. This bioelectrochemical ammonia oxidation is a novel approach recommended for treatment of nitrogen-rich wastewater.
Collapse
Affiliation(s)
- Anna Joicy
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan 49112, South Korea
| | - Young-Chae Song
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan 49112, South Korea.
| | - Chae-Young Lee
- Division of Civil, Environmental and Energy Engineering, The University of Suwon, Gyeonggi 18323, South Korea
| |
Collapse
|
44
|
Brito J, Valle A, Almenglo F, Ramírez M, Cantero D. Progressive change from nitrate to nitrite as the electron acceptor for the oxidation of H2S under feedback control in an anoxic biotrickling filter. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
45
|
Li X, Yuan Y, Wang F, Huang Y, Qiu QT, Yi Y, Bi Z. Highly efficient of nitrogen removal from mature landfill leachate using a combined DN-PN-Anammox process with a dual recycling system. BIORESOURCE TECHNOLOGY 2018; 265:357-364. [PMID: 29920445 DOI: 10.1016/j.biortech.2018.06.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
An efficient and stable combined denitrification-partial nitrification-Anammox process with a dual recycling system was used to remove nitrogen from mature landfill leachate. After 155 d of operation, the NO3- as the PN-Anammox byproduct was almost treated with biodegradable organic carbon in raw wastewater in a pre-denitrification reactor by external recycling system. When raw landfill leachate with NH4+-N concentration of 1900 mg/L was treated, an integrated reactor with airlift recycling was combined with the PN and Anammox reactions to efficiently remove NH4+ from the inflow. The total nitrogen concentration of effluent stabilized at 20 mg/L and total nitrogen removal efficiency was 99%. The maximum NO2- production rate in the aerobic zone was 2.2 kg/(m3·d) and the maximum nitrogen removal rate in the anaerobic zone was 21.4 kg/(m3·d). The most common phyla among the nitrification and the Anammox functional bacteria were Nitrosomonas, Candidatus Kuenenia, and Candidatus Brocadia after landfill leachate treatment.
Collapse
Affiliation(s)
- Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Yan Yuan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Fan Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China.
| | - Qing-Tan Qiu
- Qizi Mountain Sanitary Landfill Plant of Suzhou, Suzhou Environmental Sanitation Administration Agency, Suzhou 215009, China
| | - Yuan Yi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Zhen Bi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| |
Collapse
|
46
|
Wang K, Li L, Tan F, Wu D. Treatment of Landfill Leachate Using Activated Sludge Technology: A Review. ARCHAEA (VANCOUVER, B.C.) 2018; 2018:1039453. [PMID: 30254508 PMCID: PMC6142762 DOI: 10.1155/2018/1039453] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/21/2018] [Accepted: 08/13/2018] [Indexed: 11/21/2022]
Abstract
Landfill leachate contains a large amount of organic matter and ammoniacal nitrogen. As such, it has become a complex and difficult issue within the water treatment industry. The activated sludge process has been found to be a good solution with low processing costs and is now therefore the core process for leachate treatment, especially for nitrogen removal. This paper describes the characteristics and treatment of leachate. Treatment of leachate using the activated sludge process includes the removal of organic matter, ammoniacal nitrogen, and total nitrogen (TN). The core method for the removal of organic matter involves anaerobic treatment supplemented with an aerobic process. Ammoniacal nitrogen is commonly removed using a conventional aerobic treatment, and advanced TN removal is achieved using endogenous denitrification or an anaerobic ammonium oxidation (ANAMMOX) process. Since biological processes are the most economical method for TN removal, a key issue is how to tap the full potential of the activated sludge process and improve TN removal from leachate. This complex issue has been identified as the focus of current scholars, as well as an important future direction for leachate research and development.
Collapse
Affiliation(s)
- Kai Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Lusheng Li
- Qingdao Xin Bei De Environmental Technology Co. Ltd., Qingdao 266000, China
| | - Fengxun Tan
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| |
Collapse
|
47
|
Johnson DB, Schideman LC, Canam T, Hudson RJ. Pilot-scale demonstration of efficient ammonia removal from a high-strength municipal wastewater treatment sidestream by algal-bacterial biofilms affixed to rotating contactors. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Gil-Pulido B, Tarpey E, Almeida EL, Finnegan W, Zhan X, Dobson ADW, O'Leary N. Evaluation of dairy processing wastewater biotreatment in an IASBR system: Aeration rate impacts on performance and microbial ecology. ACTA ACUST UNITED AC 2018; 19:e00263. [PMID: 29992097 PMCID: PMC6036646 DOI: 10.1016/j.btre.2018.e00263] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/24/2018] [Accepted: 06/02/2018] [Indexed: 02/07/2023]
Abstract
Dairy processing generates large volumes of wastewater that require extensive nutrient remediation prior to discharge. Significant commercial opportunities exist therefore for cost-effective biotechnologies capable of achieving this requirement. In this study the authors evaluated the use of intermittently aerated sequencing batch reactors, (IASBRs), as a single-tank biotreatment system for co-removal of COD, nitrogen and phosphorus from synthetic dairy processing wastewater. Variation of the IASBR aeration rates, (0.8, 0.6 and 0.4 L/min), had significant impacts on the respective nutrient removal efficiencies and underlying microbial diversity profiles. Aeration at 0.6 L/min was most effective and resulted in >90% co-removal of orthophosphate and ammonium. 16S rRNA based pyrosequencing of biomass DNA samples revealed the family Comamonadaceae was notably enriched (>80% relative abundance) under these conditions. In silico predictive metabolic modelling also identified Comamonadaceae as the major contributor of several known genes for nitrogen and phosphorus assimilation (nirK, nosZ, norB, ppK, ppX and phbC).
Collapse
Affiliation(s)
- Beatriz Gil-Pulido
- School of Microbiology, University College Cork, College Road, Cork T12 YN60, Ireland.,Environmental Research Institute, University College Cork, Lee Road, Cork T23 XE10, Ireland
| | - Emma Tarpey
- College of Engineering and Informatics, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Eduardo L Almeida
- School of Microbiology, University College Cork, College Road, Cork T12 YN60, Ireland.,Environmental Research Institute, University College Cork, Lee Road, Cork T23 XE10, Ireland
| | - William Finnegan
- College of Engineering and Informatics, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Xinmin Zhan
- College of Engineering and Informatics, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Alan D W Dobson
- School of Microbiology, University College Cork, College Road, Cork T12 YN60, Ireland.,Environmental Research Institute, University College Cork, Lee Road, Cork T23 XE10, Ireland
| | - Niall O'Leary
- School of Microbiology, University College Cork, College Road, Cork T12 YN60, Ireland.,Environmental Research Institute, University College Cork, Lee Road, Cork T23 XE10, Ireland
| |
Collapse
|
49
|
Gonzalez-Martinez A, Muñoz-Palazon B, Rodriguez-Sanchez A, Gonzalez-Lopez J. New concepts in anammox processes for wastewater nitrogen removal: recent advances and future prospects. FEMS Microbiol Lett 2018; 365:4847881. [DOI: 10.1093/femsle/fny031] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/07/2018] [Indexed: 01/26/2023] Open
Affiliation(s)
| | - Barbara Muñoz-Palazon
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071 Granada, Spain
| | | | - Jesus Gonzalez-Lopez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071 Granada, Spain
| |
Collapse
|
50
|
Miao L, Zhang Q, Wang S, Li B, Wang Z, Zhang S, Zhang M, Peng Y. Characterization of EPS compositions and microbial community in an Anammox SBBR system treating landfill leachate. BIORESOURCE TECHNOLOGY 2018; 249:108-116. [PMID: 29040843 DOI: 10.1016/j.biortech.2017.09.151] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 06/07/2023]
Abstract
The biofilm system is beneficial for Anammox process designed to treat landfill leachate. In this study, the composition of extracellular polymeric substances (EPS) and the microbial community in an Anammox biofilm system were analyzed to determine the functions driving the biofilm's ability to treat landfill leachate. The results demonstrated that increasing influent carbon oxygen demand (COD) could stimulate EPS production. EPS helped enrich Anammox bacteria and supplied them with nutrients and enzymes, facilitating effective nitrogen removal (approximately 95%). The variation in Anammox bacteria was similar to the variation in EPS composition. In the tested Anammox Sequencing Biofilm Batch Reactor (SBBR) system, Candidatus Kuenenia was dominant among known Anammox genus, because of its high substrate affinity and because it adapts better to landfill leachate. The relative abundance of Candidatus Kuenenia in the biofilm rose from 3.26% to 12.38%, illustrating the protection and enrichment offered by the biofilm in carrying out Anammox.
Collapse
Affiliation(s)
- Lei Miao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, PR China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, PR China
| | - Baikun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, PR China; Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT, USA
| | - Zhong Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, PR China
| | - Sujian Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, PR China
| | - Man Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, PR China.
| |
Collapse
|