1
|
Chen W, Zhang Z, Zhu H, Ma Z, Zhang Y, Lu B, Liu K, Huang B. Centrifuge model test studies on mechanically-biologically treated waste under seismic loading. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 195:284-293. [PMID: 39954399 DOI: 10.1016/j.wasman.2025.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/11/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Early earthquakes often trigger landfill slope failures and damage to cover and liner systems, resulting in gas leakage, environmental contamination, and significant risks to landfill safety. Accurately assessing the static and dynamic characteristics of mechanically biologically treated (MBT) waste is crucial. Centrifuge shaking table tests offer a robust method to address the limitations of conventional shaking table tests by effectively simulating the static and dynamic stress-strain fields of prototype soils, fulfilling the requirements for comprehensive static and dynamic analysis. Accordingly, this study conducted experimental research on MBT waste using a centrifuge shaking table. Key findings are as follows: (1) The Poisson's ratio of MBT waste is 0.483, and its small-strain shear modulus increases with depth, with a derived equation representing the relationship between small-strain shear modulus and depth. (2) MBT waste demonstrated a significant dynamic amplification effect, with an amplification factor ranging from 1.122 to 1.332. (3) The equivalent shear modulus of MBT waste decreases with increasing strain but increases with depth, with a surface equation established between the equivalent shear modulus, strain, and depth. (4) The equivalent damping ratio of MBT waste varies with strain and depth, and a surface equation was established to capture this relationship. (5) A comparison of the normalized equivalent shear modulus and equivalent damping ratio between MBT waste and municipal solid waste (MSW) shows that both parameters are higher in MBT waste than in MSW. These findings provide valuable insights for seismic stability analysis of MBT landfills.
Collapse
Affiliation(s)
- Wenjie Chen
- Zhejiang Sci-Tech University, Hangzhou 310018, China
| | | | - Hui Zhu
- Shandong Xiehe University, Jinan 250109, China
| | - Zheheng Ma
- Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Youwen Zhang
- Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bingke Lu
- Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kaifu Liu
- Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bo Huang
- Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
2
|
Delgado M, López A, Esteban-García AL, Lobo A. The importance of particularising the model to estimate landfill GHG emissions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116600. [PMID: 36326528 DOI: 10.1016/j.jenvman.2022.116600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/16/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Methane generation in landfills can be estimated using mathematical models. One of the most widespread estimation models is that developed by the Intergovernmental Panel on Climate Change (IPCC). Despite its popularity, the simplicity that characterises this model markedly limits the possibility of representing operation alternatives, which can strongly impact surface emissions and hinder the introduction of local data that are sometimes available. In this study, the IPCC model was applied to a case study from which field data on gas emissions were available. To fit the model to the studied landfill conditions, a series of modifications were made, including changes in Degradable Organic Carbon (DOC) and methane generation rate constant (k) values, and degradation times for some waste fractions, and by considering leachate carbon and the inclusion of gas lateral migration phenomena or changes in the methane oxidation factor. The model's Final Version improved the fit of its Initial Version to the experimentally estimated values in the case study by more than 65%. Some modifications, such as considering the carbon dragged by leachate or the contour migration of gas, have a minor impact on the model's fit. However, changes in the degradation time of some fractions according to their particular pretreatment or the modification of parameter k in accordance with the moisture conditions in each landfill phase, strongly influence the model's results. This highlights the importance of particularising estimation models to achieve more accurate results, which allow better estimates of the efficiency of mitigation measures for landfill gas emissions in each facility.
Collapse
Affiliation(s)
- Mónica Delgado
- Grupo de Ingeniería Ambiental, Departamento de Ciencias y Técnicas del Agua y del Medio ambiente, Universidad de Cantabria, Avda. Los Castros n. 44, 39005, Santander, Cantabria, Spain
| | - Ana López
- Grupo de Ingeniería Ambiental, Departamento de Ciencias y Técnicas del Agua y del Medio ambiente, Universidad de Cantabria, Avda. Los Castros n. 44, 39005, Santander, Cantabria, Spain
| | - Ana Lorena Esteban-García
- Grupo de Ingeniería Ambiental, Departamento de Ciencias y Técnicas del Agua y del Medio ambiente, Universidad de Cantabria, Avda. Los Castros n. 44, 39005, Santander, Cantabria, Spain
| | - Amaya Lobo
- Grupo de Ingeniería Ambiental, Departamento de Ciencias y Técnicas del Agua y del Medio ambiente, Universidad de Cantabria, Avda. Los Castros n. 44, 39005, Santander, Cantabria, Spain.
| |
Collapse
|
3
|
Córdoba VE, Santalla EM. Estimation of long-term methane emissions from Mechanical-Biological Treatment waste through biomethane potential test. ENVIRONMENTAL TECHNOLOGY 2021; 43:1-13. [PMID: 34044750 DOI: 10.1080/09593330.2021.1936199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Mechanical-Biological Treatment (MBT) is a technology applied to reduce the environmental impacts of urban waste based on stabilizing the organic matter content. As the process is not entirely efficient, the residue can generate methane when it is landfilled. Long-term methane emissions estimation based on models is usually over or underestimated because the actual waste composition after stabilization is generally unknown. This work proposes a single tool to improve the emission estimations of the landfilled MBT waste based on the determination of the biomethane potential test (BMP). Experimental BMP of the crude and stabilized organic fractions of municipal solid waste obtained from an MBT plant were carried out, and the results were used to predict the methane emission from two models, LandGEM (2005) and IPCC (2006). In the LandGEM model, the experimental value of BMP represents the methane potential L0 while in the IPCC model it allowed to obtain the ultimate organic carbon anaerobically degraded (DOCf), based on a linear correlation (R2 = 0.944, p-value < .05) that can be used to obtain the DOCf in a waste of any composition. The results of the long-term (40 years) methane emissions of the stabilized waste disposed on land showed overestimations of up 56.0% (IPCC model) and 259.5% (Landgem model) when default data, instead the actual DOCf were applied in stabilized waste; similar behaviour was observed for the crude waste (23.3% and 241.3% overestimations). Moreover, the impact of the stabilization process revealed methane emission reductions of 5.1% and 20.9% based on LandGEM and IPCC models, respectively.
Collapse
Affiliation(s)
- Verónica Elizabeth Córdoba
- Laboratorio de Bioenergía, INTELYMEC, Facultad de Ingeniería, UNICEN, Olavarría, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | |
Collapse
|
4
|
Ali M, Yue D. Population dynamics of microbial species under high and low ammonia nitrogen in the alternate layer bioreactor landfill (ALBL) approach. BIORESOURCE TECHNOLOGY 2020; 315:123787. [PMID: 32673982 DOI: 10.1016/j.biortech.2020.123787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic landfill process is still believed to be a complex ecosystem due to the lack of knowledge on the functional activities of microbial species. This research sought to introduce a novel landfill bioreactor, named here as the alternate layer bioreactor landfill (ALBL) of fresh MSW (FW) and stabilized waste (CT) to avoid inhibitory conditions for the microbial species in anaerobic landfill. The stabilized waste layer in the bottom of landfill cell significantly changed microbial ecology of fresh MSW which in turn reduced the concentrations of NH4-N (29-31%) and VFAs (33-38%) in the ALBL approach, compared to fresh MSW disposal in sanitary landfill. The reduction of NH4-N favored early onset of methanogenesis within 6 weeks and methane (CH4) content of landfill gas increased from 11% to 40-50% (v/v), owing to the coexistence of Methanosarcinales (36-50%) and Methanomicrobiales (26-28%) archaea. The acetoclastic methanogenesis was achieved by reducing NH4-N toxicity in the ALBL.
Collapse
Affiliation(s)
- Munawar Ali
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Dongbei Yue
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Njoku PO, Edokpayi JN, Odiyo JO. Modeling landfill gas potential and potential energy recovery from Thohoyandou landfill site, South Africa. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2020; 70:820-833. [PMID: 32497468 DOI: 10.1080/10962247.2020.1778137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/07/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
UNLABELLED The increase in solid waste generation has been a major contributor to the amount of Greenhouse gases (GHGs) present in the atmosphere. To some extent, a great chunk of these GHGs in the atmosphere is from landfill. This study assesses two theoretical models (LandGEM and Afvalzorg models) to estimate the amount of landfill gas (LFG) emitted from Thohoyandou landfill site. Also, the LFGcost Web model was used to estimate the cost and benefits of the implementation of an LFG utilization technology. The Thohoyandou landfill started operations in the year 2005 and it is proposed to reach its peak at approximately in the year 2026. The LandGEM calculates the mass of landfill gas emission using methane generation capacity, mass of deposited waste, methane generation constant and methane generation rate. Meanwhile, the Afvalzorg model determines the LFG emissions using the Methane correction factor, yearly waste mass disposal, waste composition, Degradation Organic Carbon, methane generation rate constant, LFG recovery efficiency. The study findings indicate that the methane (CH4) and carbon dioxide (CO2) emitted from the landfill estimated from LandGEM will peak in the year 2026 with values of 3517 Mg/year and 9649 Mg/year, respectively. Results from the Afvalzorg model show that CH4 emission will peak in the year 2026 (3336 Mg/year). The LandGEM model showed that the total LFG, CH4 and CO2 emitted from the landfill between 2005 and 2040 are 293239.3 Mg/year, 78325.7 Mg/year and 214908.6 Mg/year, respectively. The simulation from the Afvalzorg model found that the CH4 emitted from the years 2005- 2040 is 74302 Mg/year. The implementation of an LFG utilization technology was economically feasible from consideration of the sales of electricity generated and Certified Emission Reductions (CER) (carbon credits). IMPLICATIONS The methane (CH4) and carbon dioxide (CO2) emitted from the Thohoyandou landfill estimated from LandGEM will peak in the year 2026 at 3517 Mg/year and 9649 Mg/year, respectively. The Afvalzorg model shows that CH4 emission will peak in the year 2026 (3336 Mg/year). The LandGEM model showed that total LFG, CH4 and CO2 emitted from the landfill between 2005 and 2040 (Mg/year) are 293,239, 78,325 and 214,908, respectively. The simulation from the Afvalzorg model found that CH4 emitted from years 2005- 2040 is 74,302 Mg/year. Therefore, implementation of LFG utilization is economically feasible from sales of electricity generated and Certified Emission Reductions.
Collapse
Affiliation(s)
- Prince Obinna Njoku
- School of Environmental Sciences, Department of Ecology and Resource Management, University of Venda , Thohoyandou, South Africa
| | - Joshua Nosa Edokpayi
- School of Environmental Sciences, Department of Hydrology and Water Resources, University of Venda , Thohoyandou, South Africa
| | - John Ogony Odiyo
- School of Environmental Sciences, Department of Hydrology and Water Resources, University of Venda , Thohoyandou, South Africa
| |
Collapse
|
6
|
Carchesio M, Di Addario M, Tatàno F, de Rosa S, Gambioli A. Evaluation of the biochemical methane potential of residual organic fraction and mechanically-biologically treated organic outputs intended for landfilling. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 113:20-31. [PMID: 32505108 DOI: 10.1016/j.wasman.2020.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Mechanical biological treatment (MBT) approaches are being adopted to manage residual municipal waste (RMW) to promote the prevention or reduction of potential environmental impacts of landfilling. From this perspective, the present study aimed to increase the knowledge of the biological (anaerobic) stability of different MBT organic outputs and, conversely, initial methane generation from residual organic waste. Biochemical methane potential (BMP) tests, along with initial and final characterisations of substrates and digestates, were conducted on: a mechanically separated organic fraction from RMW (ms-OFRMW); a first MBT organic output represented by a biostabilised organic fraction from RMW (bios-OFRMW); and a different MBT organic output represented by a biodried fine fraction from RMW (biod-FFRMW). The ms-OFRMW had a BMP of 445.6 Nml CH4 g VS-1, which was comparable or even higher than those from separately collected and source-sorted organic fractions. The fibre and liquor fractions of the digestate from ms-OFRMW with inoculum showed potential profiles of P-rich amendment and N-rich fluid phase, respectively, even satisfying environmental limits (with the exclusion only of Cu and Zn contents in fibre fraction that, however, remained within typical ranges for agricultural digestates). The BMPs for bios-OFRMW and biod-FFRMW were 143.4 and 261.0 Nml CH4 g VS-1, respectively, indicating that these streams may still contribute to landfill methane generation. The BMPs for bios-OFRMW, biod-FFRMW, and ms-OFRMW were positively associated with the degrees of conversion of the substrates (17, 32, and 55%, respectively) and the potential dynamic respiration indexes (955, 3126, and 6062 mg O2 kg VS-1 h-1, respectively).
Collapse
Affiliation(s)
- Manuela Carchesio
- DiSPeA - Department of Pure and Applied Sciences, Environmental Section, University of Urbino "Carlo Bo", Campus Scientifico "E. Mattei", 61029 Urbino, Italy
| | - Martina Di Addario
- DiSPeA - Department of Pure and Applied Sciences, Environmental Section, University of Urbino "Carlo Bo", Campus Scientifico "E. Mattei", 61029 Urbino, Italy
| | - Fabio Tatàno
- DiSPeA - Department of Pure and Applied Sciences, Environmental Section, University of Urbino "Carlo Bo", Campus Scientifico "E. Mattei", 61029 Urbino, Italy.
| | - Sandro de Rosa
- ASET S.p.A. public multi-utility group, Via E. Mattei 17, 61032 Fano, Italy
| | - Alma Gambioli
- ASET S.p.A. public multi-utility group, Via E. Mattei 17, 61032 Fano, Italy
| |
Collapse
|
7
|
Vaverková MD, Elbl J, Voběrková S, Koda E, Adamcová D, Mariusz Gusiatin Z, Al Rahman A, Radziemska M, Mazur Z. Composting versus mechanical-biological treatment: Does it really make a difference in the final product parameters and maturity. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 106:173-183. [PMID: 32222681 DOI: 10.1016/j.wasman.2020.03.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/14/2020] [Accepted: 03/23/2020] [Indexed: 06/10/2023]
Abstract
One of crucial waste management problems is the management of organic waste. This activity employs the composting. In case of green waste, its application seems reasonable, whereas the use of selected mixed waste raises problems related to the compost quality. Across countries, the non-sterile organic fraction of municipal solid waste is being separated through the mechanical-biological treatment. The technology is a solution of waste treatment and meets objectives set out in the Landfill Directive. There are many problems associated with the use of output products. The use of compost as a fertilizer requires determination of its impact on the environment. Compost quality can be assessed using analytical methods and phytotoxicity tests. Therefore, the aim of this study was to describe changes in physico-chemical, enzymatic, phytotoxicity and vegetation parameters occurring in composts from two systems - a prismatic installation for green waste, and a mechanical-biological treatment installation. The compost from green waste exhibited greater stability. Values of dehydrogenase activity were lower if compared with the mechanically and biologically treated compost, which indicates lower compost maturity. The biomass production of Brassica napus L. and Fetuca rubra L. was higher in the variant with the application of green compost. The influence on Hordeum vulgare L., Cannabis sativa L., and Sinapis alba L. depended on the plant type and the compost used. Nevertheless, the compost from green waste was less toxic. The evidence from this study suggests that the mechanical-biological treatment had problems associated with the maturation and quality of the final product.
Collapse
Affiliation(s)
- Magdalena Daria Vaverková
- Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; Institute of Civil Engineering, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02 776 Warsaw, Poland.
| | - Jakub Elbl
- Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno, University of Technology, Purkynova 656/123, Brno CZ-616 00, Czech Republic
| | - Stanislava Voběrková
- Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technická 3058/10, CZ-616 00 Brno, Czech Republic; Central European Institute of Technology, Mendel University in Brno, Zemedelská 1, CZ-61300, Brno, Czech Republic
| | - Eugeniusz Koda
- Institute of Civil Engineering, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02 776 Warsaw, Poland
| | - Dana Adamcová
- Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Zygmunt Mariusz Gusiatin
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Sloneczna St. 45G, 10-719 Olsztyn, Poland
| | - Abd Al Rahman
- Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technická 3058/10, CZ-616 00 Brno, Czech Republic; Central European Institute of Technology, Mendel University in Brno, Zemedelská 1, CZ-61300, Brno, Czech Republic
| | - Maja Radziemska
- Institute of Environmental Engineering, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02 776 Warsaw, Poland
| | - Zbigniew Mazur
- Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Sloneczna St. 45G, 10-719 Olsztyn, Poland
| |
Collapse
|
8
|
Zhang Z, Pan X, Fang Y, Wang Y, Zhang Y, Xu H. Laboratory study on the hydraulic characteristics of mechanically and biologically treated waste in China. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 102:686-697. [PMID: 31790927 DOI: 10.1016/j.wasman.2019.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Mechanical biological treatment (MBT) can greatly reduce the amount of municipal solid waste (MSW) and has become a hot topic in environmental geotechnical engineering. To study the effects of factors such as the pressure, dry density, compression time under pressure, strain, and hydraulic gradient, permeability tests with saturated MBT waste were conducted by using a compression and permeability combined apparatus in an environmental geotechnical laboratory. The results showed that Darcy's law was applicable to the saturated MBT waste. The permeability coefficient was found to be inversely related to the pressure, dry density, compression time under pressure and strain. The logarithmic permeability coefficient and the variables (e.g., pressure) could largely be fitted to a linear function. Additionally, a prediction model for the permeability coefficient was established, and the permeability coefficient at different depths of MBT landfills was predicted. The results were then compared to previous studies on MSW and MBT waste to investigate the permeability mechanism.
Collapse
Affiliation(s)
| | - Xiufeng Pan
- Zhejiang Sci-tech University, Hangzhou 310018, China
| | - Yuehua Fang
- Zhejiang Sci-tech University, Hangzhou 310018, China
| | - Yixuan Wang
- Zhejiang Sci-tech University, Hangzhou 310018, China
| | - Yuxiang Zhang
- Zhejiang Sci-tech University, Hangzhou 310018, China
| | - Hui Xu
- Zhejiang Sci-tech University, Hangzhou 310018, China
| |
Collapse
|
9
|
Połomka J, Jędrczak A. Efficiency of waste processing in the MBT system. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 96:9-14. [PMID: 31376974 DOI: 10.1016/j.wasman.2019.06.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/17/2019] [Accepted: 06/23/2019] [Indexed: 06/10/2023]
Abstract
In the professional literature there is no information on the efficiency of waste treatment in MBT (mechanical-biological waste treatment) systems in Poland. This knowledge is currently particularly important as it will decide on the role of the MBT system in the new reality of the circular economy, and consequently on the direction and necessary scope of modernization of these systems. The article presents a series of technical and technological indicators designated for one of the recently commissioned MBT plants against the background of minimum, maximum and average values of these parameters set for 20 systems with various MBTs covered by the research as part of the review of technological solutions used in Poland, made in 2015. For the system in Marszów, respectively in 2017 and 2018, the average value of the ratio of underscreen to overscreen fraction was 1.4; the losses of mass in the biological treatment process amounted to 28.7 and 29.4%; energy demand - 46.6 and 44.3 kWh/Mg; the aeration index - 16.7 m3/(Mg h); the average waste recycling rate - 15.2 and 17.3%; the share of fuel fraction recovery - 11.6 and 16,6% and the share of waste sent to landfill - 33.2 and 32.3%.
Collapse
Affiliation(s)
- Jacek Połomka
- Regional Municipal Waste Treatment Plant in Marszów, Poland
| | | |
Collapse
|
10
|
Abstract
Four inocula collected from different operating facilities were tested in their hydrogenic performances by means of two biochemical hydrogen potential test set-ups using sucrose and food waste as substrates, with the aim of evaluating the influence of inoculum media in batch fermentative assays. The selected inocula were: activated sludge collected from the aerobic unit of a municipal wastewater treatment plant, digested sludge from an anaerobic reactor treating organic waste and cattle manure, digested sludge from an anaerobic reactor treating agroindustrial residues, and digested sludge from an anaerobic reactor of a municipal wastewater treatment plant. Test results, in terms of specific hydrogen production, hydrogen conversion efficiency, and volatile solids removal efficiency, were significantly dependent on the type of inoculum. Statistical analysis showed different results, indicating that findings were due to the different inocula used in the tests. In particular, assays performed with activated sludge showed the highest performances for both substrates and both experimental set-ups.
Collapse
|
11
|
Thermophilic Co-Digestion of the Organic Fraction of Municipal Solid Wastes-The Influence of Food Industry Wastes Addition on Biogas Production in Full-Scale Operation. Molecules 2018; 23:molecules23123146. [PMID: 30513604 PMCID: PMC6321569 DOI: 10.3390/molecules23123146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 01/04/2023] Open
Abstract
Anaerobic digestion (AD) has been used widely as a form of energy recovery by biogas production from the organic fraction of municipal solid wastes (OFMSW). The aim of this study was to evaluate the effect of the introduction of co-substrates (restaurant wastes, corn whole stillage, effluents from the cleaning of chocolate transportation tanks) on the thermophilic anaerobic digestion process of the mechanically separated organic fraction of municipal solid wastes in a full-scale mechanical-biological treatment (MBT) plant. Based on the results, it can be seen that co-digestion might bring benefits and process efficiency improvement, compared to mono-substrate digestion. The 15% addition of effluents from the cleaning of chocolate transportation tanks resulted in an increase in biogas yield by 31.6%, followed by a 68.5 kWh electricity production possibility. The introduction of 10% corn stillage as the feedstock resulted in a biogas yield increase by 27.0%. The 5% addition of restaurant wastes contributed to a biogas yield increase by 21.8%. The introduction of additional raw materials, in fixed proportions in relation to the basic substrate, increases biogas yield compared to substrates with a lower content of organic matter. In regard to substrates with high organic loads, such as restaurant waste, it allows them to be digested. Therefore, determining the proportion of different feedstocks to achieve the highest efficiency with stability is necessary.
Collapse
|
12
|
Di Addario M, Ruggeri B. Experimental simulation and fuzzy modelling of landfill biogas production from low-biodegradable MBT waste under leachate recirculation. ENVIRONMENTAL TECHNOLOGY 2018; 39:2568-2582. [PMID: 28758571 DOI: 10.1080/09593330.2017.1362035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In the perspective of a sustainable waste management, biodegradable waste destined to landfilling should be reduced. This work aims to study a combination of waste pretreatments and leachate recirculation. A lab-scale experiment and fuzzy-modelling were chosen to predict cumulative methane production from low-biodegradable waste (LBW) under leachate recirculation. Thanks to moisture increase, the degradation of LBW was reactivated and the cumulative methane production reached 28 NL CH4 kg-1 after 442 days. The organic fraction was stabilized with a final chemical oxygen demand (COD) of 81 mg L-1. Fuzzy model was proposed as an alternative to the common deterministic models, affected by high uncertainties. Eleven inputs (pH, Redox potential, COD, volatile fatty acids, ammonium content, age, temperature, moisture content, organic fraction concentration, particle size and recirculation flow rate) were identified as antecedent, and two outputs, or consequents, were chosen: methane production rate and methane fraction in biogas. Antecedents and consequents were linked by 84 IF-THEN rules in a linguistic form. The model was also tested on six literature studies chosen to test different operational conditions and waste qualities. The model outputs fitted the experimental data reasonably well, confirming the potential use of fuzzy macro-approach to model sustainable landfilling.
Collapse
Affiliation(s)
- Martina Di Addario
- a Department of Applied Science and Technology (DISAT) , Politecnico di Torino , Torino , Italy
| | - Bernardo Ruggeri
- a Department of Applied Science and Technology (DISAT) , Politecnico di Torino , Torino , Italy
| |
Collapse
|
13
|
Trulli E, Ferronato N, Torretta V, Piscitelli M, Masi S, Mancini I. Sustainable mechanical biological treatment of solid waste in urbanized areas with low recycling rates. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 71:556-564. [PMID: 29066137 DOI: 10.1016/j.wasman.2017.10.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/21/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
Landfill is still the main technological facility used to treat and dispose municipal solid waste (MSW) worldwide. In developing countries, final dumping is applied without environmental monitoring and soil protection since solid waste is mostly sent to open dump sites while, in Europe, landfilling is considered as the last option since reverse logistic approaches or energy recovery are generally encouraged. However, many regions within the European Union continue to dispose of MSW to landfill, since modern facilities have not been introduced owing to unreliable regulations or financial sustainability. In this paper, final disposal activities and pre-treatment operations in an area in southern Italy are discussed, where final disposal is still the main option for treating MSW and the recycling rate is still low. Mechanical biological treatment (MBT) facilities are examined in order to evaluate the organic stabilization practices applied for MSW and the efficiencies in refuse derived fuel production, organic waste stabilization and mass reduction. Implementing MBT before landfilling the environmental impact and waste mass are reduced, up to 30%, since organic fractions are stabilized resulting an oxygen uptake rate less than 1600 mgO2 h-1 kg-1VS, and inorganic materials are exploited. Based on experimental data, this work examines MBT application in contexts where recycling and recovery activities have not been fully developed. The evidence of this study led to state that the introduction of MBT facilities is recommended for developing regions with high putrescible waste production in order to decrease environmental pollution and enhance human healthy.
Collapse
Affiliation(s)
- Ettore Trulli
- School of Engineering, University of Basilicata, Viale dell'Ateneo Lucano, 10, I-85100 Potenza, Italy
| | - Navarro Ferronato
- Department of Theoretical and Applied Sciences, University of Insubria, Via G.B. Vico 46, I-21100 Varese, Italy
| | - Vincenzo Torretta
- Department of Theoretical and Applied Sciences, University of Insubria, Via G.B. Vico 46, I-21100 Varese, Italy.
| | - Massimiliano Piscitelli
- School of Engineering, University of Basilicata, Viale dell'Ateneo Lucano, 10, I-85100 Potenza, Italy
| | - Salvatore Masi
- School of Engineering, University of Basilicata, Viale dell'Ateneo Lucano, 10, I-85100 Potenza, Italy
| | - Ignazio Mancini
- School of Engineering, University of Basilicata, Viale dell'Ateneo Lucano, 10, I-85100 Potenza, Italy
| |
Collapse
|
14
|
|
15
|
Abualqumboz MS, Malakahmad A, Mohammed NI. Greenhouse gas emissions estimation from proposed El Fukhary Landfill in the Gaza Strip. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2016; 66:597-608. [PMID: 27249105 DOI: 10.1080/10962247.2016.1154115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
UNLABELLED Landfills throughout the world are contributing to the global warming problem. This is due to the existence of the most important greenhouse gases (GHG) in landfill gas (LFG); namely, methane (CH4) and carbon dioxide (CO2). The aim of this paper is quantifying the total potential emissions, as well as the variation in production with time of CH4 from a proposed landfill (El Fukhary landfill) in the Gaza Strip, Palestine. Two different methods were adopted in order to quantify the total potential CH4 emissions; the Default methodology based on the intergovernmental panel on climate change (IPCC) 1996 revised guidelines and the Landfill Gas Emissions model (LandGEM V3.02) provided by the United States Environmental Protection Agency (EPA). The second objective of the study has been accomplished using the Triangle gas production model. The results obtained from both Default and LandGEM methods were found to be nearly the same. For 25 years of disposing MSW, El Fukhary landfill expected to have potential CH4 emissions of 1.9542 ± 0.0037 ×109 m3. Triangle model showed that the peak production in term of CH4 would occur in 2043; 28 years beyond the open year. Moreover, the model shows that 50 % of the gas will be produced approximately at the middle of the total duration of gas production. Proper control of Methane emissions from El Fukhary landfill is highly suggested in order to reduce the harmful effects on the environment. IMPLICATIONS Although, GHG emissions are extensively discussed in the developed countries throughout the world, it has gained little concern in the developing countries because they are forced most of the time to put environmental concerns at the end of their priority list. The paper shows that developing countries have to start recognizing their fault and change their way of dealing with environmental issues especially GHG emissions (mainly Methane and carbon dioxide). The authors estimated the potential methane emissions from a proposed central landfill that has been approved to be built in Palestine, a country that is classified as a developing country.
Collapse
Affiliation(s)
- Motasem S Abualqumboz
- a Department of Civil and Environmental Engineering , Universiti Teknologi Petronas , Perak Darul Ridzuan, Malaysia
| | - Amirhossein Malakahmad
- a Department of Civil and Environmental Engineering , Universiti Teknologi Petronas , Perak Darul Ridzuan, Malaysia
| | - Nurul Izma Mohammed
- a Department of Civil and Environmental Engineering , Universiti Teknologi Petronas , Perak Darul Ridzuan, Malaysia
| |
Collapse
|
16
|
Pantini S, Verginelli I, Lombardi F, Scheutz C, Kjeldsen P. Assessment of biogas production from MBT waste under different operating conditions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2015; 43:37-49. [PMID: 26148644 DOI: 10.1016/j.wasman.2015.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/19/2015] [Accepted: 06/12/2015] [Indexed: 06/04/2023]
Abstract
In this work, the influence of different operating conditions on the biogas production from mechanically-biologically treated (MBT) wastes is investigated. Specifically, different lab-scale anaerobic tests varying the water content (26-43% w/w up to 75% w/w), the temperature (from 20 to 25°C up to 55°C) and the amount of inoculum have been performed on waste samples collected from a full-scale Italian MBT plant. For each test, the gas generation yield and, where applicable, the first-order gas generation rates were determined. Nearly all tests were characterised by a quite long lag-phase. This result was mainly ascribed to the inhibition effects resulting from the high concentrations of volatile fatty acids (VFAs) and ammonia detected in the different stages of the experiments. Furthermore, water content was found as one of the key factor limiting the anaerobic biological process. Indeed, the experimental results showed that when the moisture was lower than 32% w/w, the methanogenic microbial activity was completely inhibited. For the higher water content tested (75% w/w), high values of accumulated gas volume (up to 150Nl/kgTS) and a relatively short time period to deplete the MBT waste gas generation capacity were observed. At these test conditions, the effect of temperature became evident, leading to gas generation rates of 0.007d(-1) at room temperature that increased to 0.03-0.05d(-1) at 37°C and to 0.04-0.11d(-1) at 55°C. Overall, the obtained results highlighted that the operative conditions can drastically affect the gas production from MBT wastes. This suggests that particular caution should be paid when using the results of lab-scale tests for the evaluation of long-term behaviour expected in the field where the boundary conditions change continuously and vary significantly depending on the climate, the landfill operative management strategies in place (e.g. leachate recirculation, waste disposal methods), the hydraulic characteristics of disposed waste, the presence and type of temporary and final cover systems.
Collapse
Affiliation(s)
- Sara Pantini
- Department of Civil Engineering and Computer Science Engineering, University of Rome "Tor Vergata", Via del Politecnico, 1, 00133 Rome, Italy.
| | - Iason Verginelli
- Department of Civil Engineering and Computer Science Engineering, University of Rome "Tor Vergata", Via del Politecnico, 1, 00133 Rome, Italy
| | - Francesco Lombardi
- Department of Civil Engineering and Computer Science Engineering, University of Rome "Tor Vergata", Via del Politecnico, 1, 00133 Rome, Italy
| | - Charlotte Scheutz
- Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kgs. Lyngby, Denmark
| | - Peter Kjeldsen
- Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
17
|
Yang L, Chen Z, Zhang X, Liu Y, Xie Y. Comparison study of landfill gas emissions from subtropical landfill with various phases: A case study in Wuhan, China. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2015; 65:980-986. [PMID: 26030713 DOI: 10.1080/10962247.2015.1051605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The compositions and annual variations of landfill gas (LFG) were studied at two large-scale sites of Chen-Jia-Chong Landfill. Seventy-six wells were built and used for the collection and measurement of LFG. The investigation revealed the similarities and differences of LFG components and variations at two sites with different phases. It was found that ambient temperature and rainfall exhibited strong correlations with LFG components at both sites. Methane (CH₄) contents showed excellent correlations with CO₂at both sites. Notable correlations between hydrogen sulfide (H₂S) and major components (CH₄and carbon dioxide [CO₂]) were only observed in unstable methane phase. Especially, the CH₄/CO₂volumetric ratio could act as an excellent indicator for anaerobic reaction stage by judging its phasic variations. The study is beneficial for the efficient operation of LFG collection system and could shed light on gas purification and utilization.
Collapse
Affiliation(s)
- Lie Yang
- a School of Resources and Environmental Engineering , Wuhan University of Technology , Wuhan , People's Republic of China
| | | | | | | | | |
Collapse
|