1
|
Kim JY, Park J, Lee DJ, Choi YB, Choi Y, Park WK, Koo B, Park K, Lee D, Kwon EE. Enhancing sustainability in meat production through insect biorefinery. NPJ Sci Food 2025; 9:65. [PMID: 40335507 PMCID: PMC12058985 DOI: 10.1038/s41538-025-00434-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 04/26/2025] [Indexed: 05/09/2025] Open
Abstract
Valuable feed crops and fossil fuel energy are used to produce animal meat. To become sustainable, meat production methods must adapt to include non-food substrates and renewable fossil-fuel alternatives. We evaluated the potential of protein livestock feed and biodiesel production through insect biorefining. The bioconversion efficiency of organic waste into black soldier fly larvae (BSFL) biomass was 32.0-35.8% after 24 d. The protein and lipid composition of BSFL changed with the cultivation time. The substrate influenced lipid content, and low lipid content led to lower lipid accumulation in the BSFL. Nevertheless, the potential productivity of proteins (42,471-48,345 kg ha-1 y-1) and lipids (41,642-64,708 kg ha-1 y-1) from BSFL cultivation with organic waste was higher than that of conventional livestock feed/biodiesel feedstocks, such as maize or soybean. In conclusion, insect biorefineries using BSFL can contribute significantly to the establishment of sustainable meat production.
Collapse
Affiliation(s)
- Jee Young Kim
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Jonghyun Park
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Dong-Jun Lee
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul, Republic of Korea
- Department of Animal Environment, National Institute of Animal Science (NIAS), Wanju, Republic of Korea
| | - Ye-Bin Choi
- Department of Animal Environment, National Institute of Animal Science (NIAS), Wanju, Republic of Korea
| | - Youngjun Choi
- Department of Biological Engineering, Konkuk University, Seoul, Republic of Korea
| | - Won-Kun Park
- Department of Biological Engineering, Konkuk University, Seoul, Republic of Korea
| | - Bonwoo Koo
- Industrial Insect and Sericulture Division, Department of Agricultural Biology, National Institute of Agricultural Science, RDA, Wanju, Republic of Korea
| | - Kwanho Park
- Industrial Insect and Sericulture Division, Department of Agricultural Biology, National Institute of Agricultural Science, RDA, Wanju, Republic of Korea
| | - Doyeon Lee
- Department of Civil and Environmental Engineering, Hanbat National University, Daejeon, Republic of Korea.
| | - Eilhann E Kwon
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Ahmad T, Mehmood Z, Ali M, Ul Mawa J, Irshad MA. Navigating the nexus: unraveling the impact of sustainability and the circular economy on food safety. Ital J Food Saf 2025. [PMID: 40152926 DOI: 10.4081/ijfs.2025.12580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 01/15/2025] [Indexed: 03/30/2025] Open
Abstract
Sustainable food production systems can be achieved through a circular economy, yet the whole system remains susceptible to various known, emerging, or even unknown/novel food safety hazards and contaminants. These upcycled foods can introduce related risks for human or animal health and ecological balance. These potential risks can be effectively mitigated by adopting integrated smart "safe-by-design" approaches. These multi-effective strategies can cascade far beyond consequences by addressing all potential food safety risks at each stage of the food supply chain, even at the post-consumption stage. Sustainability through circularity without harming food production systems can be achieved by integrating and harmonizing evidence-based risk control strategies, fostered with extensive and objective-oriented research and development and preemptive ideological relationships with relevant stakeholders. The current review aimed at addressing the possible occurrence and risks associated with potential emerging or unknown hazards/contaminants linked to various production systems, along with relevant mitigation strategies. It also highlights the importance of implementing quality control measures and safety precautions throughout the food supply chain to prevent the occurrence and propagation of hazardous substances. Agricultural production systems can be transformed into sustainable entities by vigilant monitoring of end-products quality through the use of upcycled technologies.
Collapse
Affiliation(s)
- Tauqeer Ahmad
- Food and Nutrition Division, Nuclear Institute for Food and Agriculture, Peshawar.
| | - Zahid Mehmood
- Food and Nutrition Division, Nuclear Institute for Food and Agriculture, Peshawar.
| | - Murad Ali
- Department of Food Science and Technology, University of Agriculture, Peshawar.
| | - Janat Ul Mawa
- Department of Food Science and Technology, University of Agriculture, Peshawar.
| | - Muhammad Asim Irshad
- Food and Nutrition Division, Nuclear Institute for Food and Agriculture, Peshawar.
| |
Collapse
|
3
|
Chen X, Li L, Hu F, Wang Y, Zhang Y, Zhou Z, Zhou Q. Development of the Endo-Reproductive System and the Effect of Mating Status on Egg Development in Adult Hermetia illucens L. INSECTS 2025; 16:330. [PMID: 40332801 PMCID: PMC12028021 DOI: 10.3390/insects16040330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 05/08/2025]
Abstract
Hermetia illucens L. (Diptera: Stratiomyidae), a well-known decomposer of organic wastes, is widely applied to treat food, livestock, and poultry wastes to reduce environmental pollution. It is also used to produce high-protein feed, organic fertilizers, and biomedicine as well as biodiesel. The development of the endo-reproductive system in insects plays a crucial role in their reproduction, which is key in economic insect culture. In this study, we investigate the developmental process of the endo-reproductive system and the effect of mating status on the development of the female reproductive system in adult H. illucens. The results show that the morphological characteristics of the internal reproductive system of adult H. illucens differed with age and mating status. Males exhibited a higher testicular dimension at 2-5 days old, with testicular length and width reaching their maximum at 3 days old, displaying significant differences across ages (p < 0.05). The developmental period of the ovaries varied with time and was classified into five distinct stages. The morphological characteristics of the endo-reproductive system of adult females at different mating status showed differences. The spermatheca of the unmated female was translucent, while that of the mated female exhibited cloudiness and became lighter in color with age. The length and width of the spermatheca of the mated female were larger than that of unmated females (p < 0.05). However, the length and width of the spermathecae of the mated and unmated females reached their maximum at 5 days old. Mating status affected the development of eggs; mated females oviposited matured eggs at 5 days old, while unmated females oviposited matured eggs at 9 days old. The results suggest that mating status can promote the development of eggs in H. illucens. Additionally, the maturity level or mating status can be determined based on the morphology of the endo-reproductive system and its contents.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiong Zhou
- College of Life Sciences, Hunan Normal University, Changsha 410081, China; (X.C.); (L.L.); (F.H.); (Y.W.); (Y.Z.); (Z.Z.)
| |
Collapse
|
4
|
Fuhrmann A, Gold M, Lau Heckmann LH, Pedersen P, Shakhnovich K, Chu CX, Haberkorn I, Puniamoorthy N, Mathys A. Comprehensive industry-relevant black soldier fly bioconversion characterisation by a novel chamber system. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 193:409-418. [PMID: 39721332 DOI: 10.1016/j.wasman.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/30/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Black soldier fly larvae (BSFL) efficiently convert biowaste into valuable animal feed. Sustainable and reliable bioconversion is desirable to achieve optimal economic and environmental outcomes. Thus, science and industry require an accessible research platform to study complex bioconversion processes under conditions mirroring industrial-scale settings. In this study, industry-relevant respiration chambers were designed, tested, and replicated for BSFL feeding trials. Each open-circuit chamber housed three industrial rearing crates. The substrate/frass and air temperature, mass change, NH3 and CO2 emissions, and relative humidity were measured. The design was validated for CO2 recovery, airtightness, airflow homogeneity, and BSFL performance using firstly, a uniform control substrate and secondly, uniform food waste across four parallel chambers. In a third trial, the composition of food waste was varied across parallel chambers to detect differences in metabolic processes. For trials using uniform substrates, low variability across chambers in performance parameters confirmed the reproducibility and comparability of the design (e.g. bioconversion rate: <1%, final larval mass: ≤2 mg, standard deviations, dry matter based). In contrast, the trial with varying food waste compositions showed a strong effect on average substrate/frass temperature (e.g. 31.5 °C vs 41.8 °C) and final dry larval mass (e.g. 67 mg vs 40 mg). This is the first study to systematically assess heat generation directly from heterogeneous food waste, a crucial parameter for efficient BSFL bioconversion. These chambers provide an opportunity for science and industry to thoroughly assess and understand the metabolic bioconversion characteristics. The findings are key for the optimisation of sustainable bioconversion processes.
Collapse
Affiliation(s)
- A Fuhrmann
- ETH Zurich, Laboratory of Sustainable Food Processing, Schmelzbergstrasse 9, 8092, Zurich, Switzerland; Singapore-ETH Centre,1 Create Way, 138602, Singapore
| | - M Gold
- ETH Zurich, Laboratory of Sustainable Food Processing, Schmelzbergstrasse 9, 8092, Zurich, Switzerland; Singapore-ETH Centre,1 Create Way, 138602, Singapore.
| | - L H Lau Heckmann
- Better Insect Solutions A/S, Agro Food Park 15, 8200, Aarhus, Denmark
| | - P Pedersen
- SKOV A/S, Hedenlund 4, 7870, Roslev, Glyngøre, Denmark
| | - K Shakhnovich
- ETH Zurich, Laboratory of Sustainable Food Processing, Schmelzbergstrasse 9, 8092, Zurich, Switzerland; Singapore-ETH Centre,1 Create Way, 138602, Singapore
| | - C X Chu
- National University of Singapore, Department of Biological Science, 14 Science Drive 4, 117543, Singapore
| | - I Haberkorn
- Singapore-ETH Centre,1 Create Way, 138602, Singapore
| | - N Puniamoorthy
- National University of Singapore, Department of Biological Science, 14 Science Drive 4, 117543, Singapore.
| | - A Mathys
- ETH Zurich, Laboratory of Sustainable Food Processing, Schmelzbergstrasse 9, 8092, Zurich, Switzerland; Singapore-ETH Centre,1 Create Way, 138602, Singapore
| |
Collapse
|
5
|
Zhang Y, Huang G, Chen S, Yu T, Ren X, Xiao J, Huang D. Enhanced waste-to-biomass conversion and reduced nitrogen emissions for black soldier fly larvae (Hermetia illucens) through modifying protein to energy ratio. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123718. [PMID: 39675331 DOI: 10.1016/j.jenvman.2024.123718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/05/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
The appropriate protein to energy ratio (P/E ratio) has played a crucial role in maximizing waste-to-biomass conversion and minimizing nitrogen emissions. Black soldier fly larvae (Hermetia illucens, BSFL), capable of converting organic wastes into nutrient-rich biomass, it has the potential to become an innovative solution to reduce environmental impacts and optimize waste resource utilization. However, the appropriate P/E ratio for BSFL in the waste treatment process has remained unknown so far. This study utilized several common production chain residues to prepare diets with varying P/E ratios, to observe growth performance, nutritional components, fatty acid composition, fatty acid conversion, amino acid composition, waste-to-biomass conversion, and nitrogen emission levels of the BSFL. The results indicated that by adjusting the P/E ratio within the range of 9.79-17.8 mg/kJ, biomass conversion increased from 8.79% to 11.60% (an increase of 31.97%), nitrogen conversion enhanced from 27.31% to 40.99% (an increase of 50.10%), while nitrogen emissions reduced from 2.69 g to 0.48 g (a reduction of 82.16%). Compared to other reported methods, adjusting the P/E ratio proved more effective and cost-efficient. The P/E ratio 11.67 mg/kJ is relatively more suitable for using BSFL in organic waste treatment. Due to the significant variation in nitrogen levels within typical organic waste, our research findings advocate for the mixed treatment of multiple waste types to ensure the P/E ratio close to 11.67 mg/kJ. The findings will provide new insights into the application of BSFL biotransformation technology in organic waste management.
Collapse
Affiliation(s)
- Yaru Zhang
- College of Life Science, Nankai University, Tianjin, 300071, China
| | - Guoxin Huang
- College of Life Science, Nankai University, Tianjin, 300071, China
| | - Sicong Chen
- College of Life Science, Nankai University, Tianjin, 300071, China
| | - Tinghao Yu
- College of Life Science, Nankai University, Tianjin, 300071, China
| | - Xinrui Ren
- College of Life Science, Nankai University, Tianjin, 300071, China
| | - Jinhua Xiao
- College of Life Science, Nankai University, Tianjin, 300071, China.
| | - Dawei Huang
- College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
6
|
Cai T, Ming Y, Zhang Y, Zhang Q. Unraveling the role of black soldier fly larvae in chicken manure conversion: Facilitating maturation and enhancing humification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175952. [PMID: 39222815 DOI: 10.1016/j.scitotenv.2024.175952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/09/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Black soldier fly larvae (BSFL) have garnered considerable attention for their efficacy in mitigating waste management challenges. However, their potential in treating antibiotics contaminated chicken manure remains uncertain. This study investigates the physicochemical properties changes and nutrient dynamics during the composting of contaminated-chicken manure using BSFL. The results indicate that BSFL treatment reduces electrical conductivity (by 6.01-58.09 %), organic matter, and dissolved organic carbon content in chicken manure throughout the composting process, while maintaining a more stable pH value (pH ∼ 6.0-8.0). This is attributed to the consumption of organic matter by BSFL and the subsequent promotion of organic acid formation. Additionally, BSFL treatment improves the degree of aromatization of dissolved organic matter (DOM) in chicken manure and increases the proportions of fulvic acid (up to 48.77 %) and humic acid (maximally 14.27 %) within the DOM. The germination index and pot experiments indicated improved compost maturity and plant growth in BSFL-treated composts. Furthermore, BSFL meal demonstrated high protein and essential fatty acid content, highlighting its potential as a protein supplement in animal feed. This study underscores the efficacy of BSFL in enhancing compost quality and nutrient availability, offering a sustainable solution for waste management and animal feed production.
Collapse
Affiliation(s)
- Tong Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Yuanbo Ming
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Yangboxuan Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Road, 200062 Shanghai, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, 200062 Shanghai, China.
| |
Collapse
|
7
|
Kim JY, Park G, Choi Y, Park WK, Koo B, Park K, Tsang YF, Kwon EE. Strategic approach for converting fat-rich food waste into high-quality biodiesel using black soldier fly larvae for sustainable bioenergy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175651. [PMID: 39168331 DOI: 10.1016/j.scitotenv.2024.175651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/28/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Food waste (FW) comprises carbohydrates, proteins, lipids, and water, posing technical challenges for effective treatment and valorisation. This study addresses these challenges by using black soldier fly larvae (BSFL) as a bioconversion medium to transform FW into biodiesel (BD). BSFL predominantly consumed the carbohydrates and proteins in FW (81 wt%), while showing a lower preference for lipids (<50 wt% consumed). Notwithstanding the lower consumption of lipids in the FW than that of carbohydrates and proteins, BSFL had a high lipid content (48.3 wt%). The subsequent conversion of the lipids extracted from BSFL into BD was tested via catalytic (acid/alkali) and non-catalytic transesterification processes. The BD yield from catalytic transesterification was lower than that from non-catalytic transesterification because of the low tolerance against free fatty acids (FFAs). BD was also produced from the lipid-concentrated residual FW through non-catalytic transesterification. Although the FW residue extracts contained high amounts of FFAs (49.9 wt%), non-catalytic transesterification displayed a high BD yield (92.4 wt%; yields from catalytic transesterification: < 80.0 wt%). Moreover, blending the BD derived from the BSFL and FW residue extracts enhanced the fuel properties. The BSFL-assisted FW management efficiently reduced FW by 90 wt% while producing a high-quality BD.
Collapse
Affiliation(s)
- Jee Young Kim
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Gyeongnam Park
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Youngjun Choi
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Won-Kun Park
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Bonwoo Koo
- Industrial Insect and Sericulture Division, Department of Agricultural Biology, National Institute of Agricultural Science, RDA, Wanju 55365, Republic of Korea
| | - Kwanho Park
- Industrial Insect and Sericulture Division, Department of Agricultural Biology, National Institute of Agricultural Science, RDA, Wanju 55365, Republic of Korea
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies and State Key Laboratory in Marine Pollution, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong
| | - Eilhann E Kwon
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
8
|
Zhang B, Yang R, He S, Dai S, Hu Q, Li X, Su H, Shi J, Zhao Z, Wu D. Swill and Pig Manure Substrates Differentially Affected Transcriptome and Metabolome of the Black Soldier Fly Larvae. Int J Mol Sci 2024; 25:12147. [PMID: 39596214 PMCID: PMC11594880 DOI: 10.3390/ijms252212147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Black soldier fly larvae (Hermetia illucens) (BSFL) are insect larvae with significant ecological and economic value. This study aims to investigate whether swill and manure had any effects on the transcriptome and metabolome of BSFL. Through high-throughput transcriptome sequencing, we found that larvae fed with swill exhibited higher levels of gene expression, especially with the upregulation of genes related to energy metabolism, amino acid metabolism, and redox reactions. Metabolomics analysis showed a significant increase in energy metabolism-related metabolites, such as organic acids and amino acids, in the swill-fed larvae. In contrast, gene expression and metabolic characteristics in the pig manure-fed group indicated a higher stress response, with relevant genes and metabolites (such as short-chain fatty acids and antioxidants) showing significant upregulation. GO and KEGG enrichment analyses further supported these results, suggesting that swill promotes larval growth and metabolism, whereas pig manure induces the activation of stress response mechanisms. These findings offer clear molecular and physiological insights into the optimization of substrate selection for enhancing the performance of BSFL in waste management.
Collapse
Affiliation(s)
- Bin Zhang
- Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming 650224, China; (B.Z.); (R.Y.); (Q.H.); (X.L.)
| | - Rencan Yang
- Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming 650224, China; (B.Z.); (R.Y.); (Q.H.); (X.L.)
| | - Shichun He
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.H.); (S.D.); (H.S.); (J.S.)
| | - Sifan Dai
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.H.); (S.D.); (H.S.); (J.S.)
| | - Qingquan Hu
- Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming 650224, China; (B.Z.); (R.Y.); (Q.H.); (X.L.)
| | - Xinrong Li
- Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming 650224, China; (B.Z.); (R.Y.); (Q.H.); (X.L.)
| | - Hongren Su
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.H.); (S.D.); (H.S.); (J.S.)
| | - Jingyi Shi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.H.); (S.D.); (H.S.); (J.S.)
| | - Zhiyong Zhao
- Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming 650224, China; (B.Z.); (R.Y.); (Q.H.); (X.L.)
| | - Dongwang Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.H.); (S.D.); (H.S.); (J.S.)
| |
Collapse
|
9
|
Wei M, Li T, Khan S, Li H, Wen T, Yi T, Guo J. Effects of black soldier fly larvae on biotransformation and residues of spent mushroom substrate and wet distiller's grains. Sci Rep 2024; 14:22392. [PMID: 39333716 PMCID: PMC11436721 DOI: 10.1038/s41598-024-72959-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Black soldier fly larvae (BSFL) could convert a variety of organic wastes, including spent mushroom substrate (SMS) and wet distiller's grains (WDG). Nevertheless, little is known about the conversion of these wastes by BSFL. Thus, this study investigates the conversion of SMS and WDG in five different proportions by BSFL. This study demonstrates that BSFL can convert SMS, WDG, and their mixtures. It can also encourage the humification of the substrate, increasing the amount of element in the residues. It is evident that there were differences in the carbon and nitrogen element fractionation mode as well as the microbial community present in the residue. The microbial community of the substrate and the physiochemical parameters are intimately related to this. Although the mixture treated with BSFL helps to generate a residue with more humus, it might not be stable.
Collapse
Affiliation(s)
- Mao Wei
- Institute of Entomology, Guizhou University, Guiyang, 550025, People's Republic of China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs, Guiyang, 550025, People's Republic of China
| | - Tao Li
- Institute of Entomology, Guizhou University, Guiyang, 550025, People's Republic of China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs, Guiyang, 550025, People's Republic of China
| | - Samiullah Khan
- Institute of Entomology, Guizhou University, Guiyang, 550025, People's Republic of China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs, Guiyang, 550025, People's Republic of China
| | - Haiyin Li
- Institute of Entomology, Guizhou University, Guiyang, 550025, People's Republic of China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs, Guiyang, 550025, People's Republic of China
| | - Tingchi Wen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Tianci Yi
- Institute of Entomology, Guizhou University, Guiyang, 550025, People's Republic of China.
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs, Guiyang, 550025, People's Republic of China.
| | - Jianjun Guo
- Institute of Entomology, Guizhou University, Guiyang, 550025, People's Republic of China.
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
10
|
Caltzontzin-Rabell V, Feregrino-Pérez AA, Gutiérrez-Antonio C. Bio-upcycling of cheese whey: Transforming waste into raw materials for biofuels and animal feed. Heliyon 2024; 10:e32700. [PMID: 38988510 PMCID: PMC11233942 DOI: 10.1016/j.heliyon.2024.e32700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 06/06/2024] [Indexed: 07/12/2024] Open
Abstract
Cheese whey (CW), by-product of cheese production, has potential as a valuable resource due to its nutritional composition. Although options for CW degradation have been explored, a biological treatment with black soldier fly larvae (BSFL) has not been reported. This study evaluated the growth and composition of BSFL in four experimental diets with CW under different conditions. Results show that the use of CW allows larval development and weight gain, also, the conversion into larval biomass was up to 0.215. Diets ED3 (fresh CW, 38 °C) and ED4 (fresh CW, room temperature) allowed higher weight accumulation (final weight up to 0.285 g); the highest fat accumulation (12 % higher than control) was observed in ED3 (up to 45.57 %), which had less protein. Moreover, higher amounts of saturated fatty acids are generated. This study highlights the importance of an appropriate pretreatment designed for a specific waste to control desired by-products.
Collapse
Affiliation(s)
- Valeria Caltzontzin-Rabell
- Facultad de Ingeniería, Campus Amazcala, Universidad Autónoma de Querétaro, Carretera a Chichimequillas km 1 s/n, El Marqués, Querétaro, C.P. 76265, Mexico
| | - Ana Angélica Feregrino-Pérez
- Facultad de Ingeniería, Campus Amazcala, Universidad Autónoma de Querétaro, Carretera a Chichimequillas km 1 s/n, El Marqués, Querétaro, C.P. 76265, Mexico
| | - Claudia Gutiérrez-Antonio
- Facultad de Ingeniería, Campus Amazcala, Universidad Autónoma de Querétaro, Carretera a Chichimequillas km 1 s/n, El Marqués, Querétaro, C.P. 76265, Mexico
| |
Collapse
|
11
|
Hu X, Zhang H, Pang Y, Cang S, Wu G, Fan B, Liu W, Tan H, Luo G. Performance of feeding black soldier fly (Hermetia illucens) larvae on shrimp carcasses: A green technology for aquaculture waste management and circular economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172491. [PMID: 38621532 DOI: 10.1016/j.scitotenv.2024.172491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Over 944 thousand tonnes of shrimp carcasses are produced worldwide during the shrimp production cycle, and black soldier fly larvae (BSFL) are a potential solution for this shrimp carcass accumulation. In this study, we evaluated the performance of BSFL feeding on shrimp carcasses. Six combinations of wheat bran and shrimp carcass powder (with replacement increments of 20 %) and one whole shrimp carcasses treatment were tested. The bioconversion rate (27.15 ± 3.66 %; p = 0.001), crude protein (55.34 ± 1.27 %; p < 0.001), and crude lipid (14.37 ± 1.86 %; p = 0.007) values of BSFL reared on whole shrimp carcasses were significantly higher than those of BSFL reared on wheat bran. Increasing the shrimp carcass amount in the feeding media resulted in significant increases in BSFL docosahexaenoic acid (with the highest value occurring for BSFL reared on whole shrimp carcasses; 1.46 ± 0.09 %; p < 0.001). Conversely, BSFL docosahexaenoic acid was not detected for BSFL reared on wheat bran. The detected heavy metal concentrations in BSFL were below the limits of the published international guidelines for animal feed. In the obtained BSFL, Salmonella was not detected, and the mould count was <10 CFU/g. The total bacterial count (Lg transformation) of obtained BSFL ranged from 7.88 to 8.07 CFU/g, and no significant differences among all treatments (p = 0.424). Overall, this study demonstrates that BSFL-based bioconversion presents a resource recovery technology for converting shrimp carcasses into high-value nutritional biomass.
Collapse
Affiliation(s)
- Xin Hu
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Haixin Zhang
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yun Pang
- Innovative Recirculating Aquaculture Systems (Nanjing) Co., Ltd, Nanjing 210019, Jiangsu, China
| | - Shengnan Cang
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Gaopeng Wu
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Baojie Fan
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Wenchang Liu
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Hongxin Tan
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Guozhi Luo
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
12
|
Xiang F, Han L, Jiang S, Xu X, Zhang Z. Black soldier fly larvae mitigate greenhouse gas emissions from domestic biodegradable waste by recycling carbon and nitrogen and reconstructing microbial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33347-33359. [PMID: 38676863 DOI: 10.1007/s11356-024-33308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Black soldier fly larvae have been proven to reduce greenhouse gas emissions in the treatment of organic waste. However, the microbial mechanisms involved have not been fully understood. The current study mainly examined the dynamic changes of carbon and nitrogen, greenhouse gas emissions, the succession of microbial community structure, and changes in functional gene abundance in organic waste under larvae treatment and non-aeration composting. Thirty percent carbon and 55% nitrogen in the organic waste supplied were stored in larvae biomass. Compared to the non-aeration composting, the larvae bioreactor reduced the proportion of carbon and nitrogen converted into greenhouse gases (CO2, CH4, and N2O decreased by 62%, 87%, and 95%, respectively). 16S rRNA sequencing analysis indicated that the larvae bioreactor increased the relative abundance of Methanophaga, Marinobacter, and Campylobacter during the bioprocess, enhancing the consumption of CH4 and N2O. The metagenomic data showed that the intervention of larvae reduced the ratio of (nirK + nirS + nor)/nosZ in the residues, thereby reducing the emission of N2O. Larvae also increased the functional gene abundance of nirA, nirB, nirD, and nrfA in the residues, making nitrite more inclined to be reduced to ammonia instead of N2O. The larvae bioreactor mitigated greenhouse gas emissions by redistributing carbon and nitrogen and remodeling microbiomes during waste bioconversion, giving related enterprises a relative advantage in carbon trading.
Collapse
Affiliation(s)
- FangMing Xiang
- College of Environmental and Resource Sciences, Zhejiang University, YuHangTang Ave 866, Hangzhou, 310058, People's Republic of China
- JiaXing FuKang Biotechnology Company Limited, TongXiang Economic HiTech Zone, Building 1-19#, Development Ave 133, Tongxiang, 314515, People's Republic of China
| | - LuYing Han
- College of Environmental and Resource Sciences, Zhejiang University, YuHangTang Ave 866, Hangzhou, 310058, People's Republic of China
| | - ShuoYun Jiang
- College of Environmental and Resource Sciences, Zhejiang University, YuHangTang Ave 866, Hangzhou, 310058, People's Republic of China
- HangZhou GuSheng Technology Company Limited, XiangWang Ave 311118, Hangzhou, 311121, People's Republic of China
| | - XinHua Xu
- College of Environmental and Resource Sciences, Zhejiang University, YuHangTang Ave 866, Hangzhou, 310058, People's Republic of China
| | - ZhiJian Zhang
- College of Environmental and Resource Sciences, Zhejiang University, YuHangTang Ave 866, Hangzhou, 310058, People's Republic of China.
- China Academy of West Region Development, Zhejiang University, YuHangTang Ave 866, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
13
|
Wang L, Wang S, Yang R, Zhang B, Xu L, Hu Q, Zhao Z, Cao Z. Effect of moisture content on larval gut microbiome and the conversion of pig manure by black soldier fly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169579. [PMID: 38145667 DOI: 10.1016/j.scitotenv.2023.169579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The study investigated the influence of varied moisture levels in pig manure on the gut microbiome of black soldier fly larvae (BSFL) and their waste conversion efficiency. This encompassed alterations in nutrient components of both BSFL and pig manure, diversity and characterization of the BSFL gut microbiota, and the reciprocal effects between the BSFL gut microbiota and their growth performance and nutrient composition. Additionally, the investigation delved into the changes in the bacterial community and the presence of potential pathogenic bacteria in pig manure. An initial mixture of fresh pig manure and wheat bran was prepared with a 60 % moisture content (Group A). Distilled water was subsequently added to adjust the moisture levels, resulting in mixtures with 65 % (Group B), 70 % (Group C), and 75 % (Group D) moisture content. Each group underwent BSFL digestion over ten days. Groups C (3.87 ± 0.05 mg/worm) and D (3.97 ± 0.08 mg/worm) showed significantly higher bioconversion efficiencies and enhanced BSFL growth compared to Groups A (2.66 ± 0.21 mg/worm) and B (3.09 ± 0.09 mg/worm) (P < 0.05). A 75 % moisture level was identified as ideal, positively influencing fecal conversion efficiency (FCE) (9.57 ± 0.14 %), crude fat intake (8.92 ± 0.56 %), protein (46.60 ± 0.54 %), and total phosphorus (1.37 ± 0.08 %) from pig manure, and subsequent nutrient accumulation in BSFLs. A decline in larval crude ash content indicated higher organic matter and an increased pig manure conversion rate with elevated moisture. High-throughput sequencing and diversity analyses confirmed different moisture contents influenced the BSFL gut microbiota. Bacteroidetes (32.7-62.0 %), Proteobacteria (6.8-29.3 %), Firmicutes (5.8-23.4 %), and Actinobacteria (1.9-29.0 %) were predominant phyla. A 75 % moisture content significantly impacted the BSFL biomass conversion and growth performance. Additionally, Larval feces met non-hazardous fertilizer standards, according to NY-525 (2012).
Collapse
Affiliation(s)
- Lili Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Shengwen Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Rencan Yang
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Bin Zhang
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Le Xu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Qingquan Hu
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Zhiyong Zhao
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China.
| | - Zhenhui Cao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
14
|
Lau CHF, Capitani S, Tien YC, Verellen LA, Kithama M, Kang H, Kiarie EG, Topp E, Diarra MS, Fruci M. Dynamic effects of black soldier fly larvae meal on the cecal bacterial microbiota and prevalence of selected antimicrobial resistant determinants in broiler chickens. Anim Microbiome 2024; 6:6. [PMID: 38360706 PMCID: PMC10868003 DOI: 10.1186/s42523-024-00293-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND We had earlier described the growth-promoting and -depressive effects of replacing soybean meal (SBM) with low (12.5% and 25%) and high (50% and 100%) inclusion levels of black soldier fly larvae meal (BSFLM), respectively, in Ross x Ross 708 broiler chicken diets. Herein, using 16S rRNA gene amplicon sequencing, we investigated the effects of replacing SBM with increasing inclusion levels (0-100%) of BSFLM in broiler diets on the cecal bacterial community composition at each growth phase compared to broilers fed a basal corn-SBM diet with or without the in-feed antibiotic, bacitracin methylene disalicylate (BMD). We also evaluated the impact of low (12.5% and 25%) inclusion levels of BSFLM (LIL-BSFLM) on the prevalence of selected antimicrobial resistance genes (ARGs) in litter and cecal samples from 35-day-old birds. RESULTS Compared to a conventional SBM-based broiler chicken diet, high (50 to100%) inclusion levels of BSFLM (HIL-BSFLM) significantly altered the cecal bacterial composition and structure, whereas LIL-BSFLM had a minimal effect. Differential abundance analysis further revealed that the ceca of birds fed 100% BSFLM consistently harbored a ~ 3 log-fold higher abundance of Romboutsia and a ~ 2 log-fold lower abundance of Shuttleworthia relative to those fed a BMD-supplemented control diet at all growth phases. Transient changes in the abundance of several potentially significant bacterial genera, primarily belonging to the class Clostridia, were also observed for birds fed HIL-BSFLM. At the finisher phase, Enterococci bacteria were enriched in the ceca of chickens raised without antibiotic, regardless of the level of dietary BSFLM. Additionally, bacitracin (bcrR) and macrolide (ermB) resistance genes were found to be less abundant in the ceca of chickens fed antibiotic-free diets, including either a corn-SBM or LIL-BSFLM diet. CONCLUSIONS Chickens fed a HIL-BSFLM presented with an imbalanced gut bacterial microbiota profile, which may be linked to the previously reported growth-depressing effects of a BSFLM diet. In contrast, LIL-BSFLM had a minimal effect on the composition of the cecal bacterial microbiota and did not enrich for selected ARGs. Thus, substitution of SBM with low levels of BSFLM in broiler diets could be a promising alternative to the antibiotic growth promoter, BMD, with the added-value of not enriching for bacitracin- and macrolide-associated ARGs.
Collapse
Affiliation(s)
- Calvin Ho-Fung Lau
- Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON, Canada.
| | - Sabrina Capitani
- Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Yuan-Ching Tien
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Lou Ann Verellen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Munene Kithama
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Hellen Kang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- School of Medicine, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Edward Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Agroécologie research unit, INRAE, Université de Bourgogne, Dijon, France
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Michael Fruci
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
15
|
Jenkins SN, Middleton JA, Huang Z, Mickan BS, Andersen MO, Wheat L, Waite IS, Abbott LK. Combining frass and fatty acid co-products derived from Black soldier fly larvae farming shows potential as a slow release fertiliser. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165371. [PMID: 37422234 DOI: 10.1016/j.scitotenv.2023.165371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Use of black soldier fly larvae (BSFL) to process large volumes of organic waste is an emerging industry to produce protein. A co-product of this industry, the larval faeces (frass), has potential to be used as an organic fertiliser in a circular economy. However, BSFL frass has a high ammonium (N-NH4+) content which could result in nitrogen (N) loss following its application to land. One solution is to process the frass by combining it with solid fatty acids (FA) that have previously been used to manufacture slow-release inorganic fertilisers. We investigated the slow-releasing effect of N after combining BSFL frass with three FAs - lauric, myristic and stearic acid. Soil was amended with the three forms of FA processed (FA-P) frass, unprocessed frass or a control and incubated for 28 days. The impact of treatments on soil properties and soil bacterial communities were characterised during the incubation. Lower N-NH4+ concentrations occurred in soil treated with FA-P frass compared to unprocessed frass, and N-NH4+ release was slowest for lauric acid processed frass. Initially, all frass treatments caused a large shift in the soil bacterial community towards a dominance of fast-growing r-strategists that were correlated with increased organic carbon levels. FA-P frass appeared to enhance the immobilisation of N-NH4+ (from frass) by diverting it into microbial biomass. Unprocessed and stearic acid processed frass became enriched by slow-growing K-strategist bacteria at the latter stages of the incubation. Consequently, when frass was combined with FAs, FA chain length played an important role in regulating the composition of r-/K- strategists in soil and N and carbon cycling. Modifying frass with FAs could be developed into a slow release fertiliser leading to reduced soil N loss, improved fertiliser use efficiency, increased profitability and lower production costs.
Collapse
Affiliation(s)
- Sasha N Jenkins
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6000, Australia.
| | - Jen A Middleton
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6000, Australia
| | - ZhouDa Huang
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6000, Australia
| | - Bede S Mickan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6000, Australia
| | - Morten O Andersen
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6000, Australia; The Department of Green Technology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Luke Wheat
- Future Green Solutions, Moresby, WA 6530, Australia
| | - Ian S Waite
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6000, Australia
| | - Lynette K Abbott
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6000, Australia
| |
Collapse
|
16
|
Candian V, Savio C, Meneguz M, Gasco L, Tedeschi R. Effect of the rearing diet on gene expression of antimicrobial peptides in Hermetia illucens (Diptera: Stratiomyidae). INSECT SCIENCE 2023; 30:933-946. [PMID: 36542450 DOI: 10.1111/1744-7917.13165] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Insect proteins have been proposed for human and animal food production. Safeguarding the health status of insects in mass rearing allows to obtain high-quality products and to avoid severe economic losses due to entomopathogens. Therefore, new strategies for preserving insect health must be implemented. Modulation of the insect immune system through the diet is one such strategy. We evaluated gene expression of two antimicrobial peptides (one defensin and one cecropin) in Hermetia illucens (L.) (Diptera: Stratiomyidae) reared on different diets. Analyses were performed on prepupae and 10-day-old larvae reared on cereal- and municipal organic waste-based diets and on only prepupae reared on a cereal-based diet supplemented with sunflower, corn, or soybean oil. The inclusion of sunflower oil at different points in the cereal-based diet was also evaluated. Moreover, diet-driven differences in the inhibitory activity of the hemolymph were tested against Escherichia coli DH5α and Micrococcus yunnanensis HI55 using diffusion assays in solid media. Results showed that a municipal organic waste-based diet produced a significant overexpression of antimicrobial peptides only in prepupae. Inclusion of vegetable oils caused an upregulation of at least one peptide, except for the corn oil. Higher expression of both genes was observed when sunflower oil was added 5 days before pupation. All hemolymph samples showed an inhibitory activity against bacteria colonies. Our results suggest that municipal organic waste-based diet and vegetable oil-added diet may successfully impact the immune system of H. illucens. Such alternatives may also exist for other species of economic interest.
Collapse
Affiliation(s)
- Valentina Candian
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), University of Torino, Grugliasco, Italy
| | - Carlotta Savio
- INRAE, Micalis, GME, University of Paris Saclay, Jouy-en-Josas, France
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | | | - Laura Gasco
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), University of Torino, Grugliasco, Italy
| | - Rosemarie Tedeschi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), University of Torino, Grugliasco, Italy
| |
Collapse
|
17
|
Li T, Khan S, Wei M, Li H, Wen T, Guo J, Jin D. Utilizing Black Soldier Fly Larvae to Improve Bioconversion and Reduce Pollution: A Sustainable Method for Efficient Treatment of Mixed Wastes of Wet Distiller Grains and Livestock Manure. Molecules 2023; 28:5735. [PMID: 37570704 PMCID: PMC10421123 DOI: 10.3390/molecules28155735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Widespread environmental contamination caused by huge amounts of wastes generated by human activities has become a critical global concern that requires urgent action. The black soldier fly (BSFL) has gradually been used to treat different wastes due to high efficiency and low cost. However, little information is available regarding the treatment of mixed wastes by BSFLs. The impact of BSFLs on conversion of cow manure (COM) and pig manure (PM) via the incorporation of wet distiller grains (WDG) was assessed. Results demonstrate that the waste reduction rate was increased by 20% by incorporating 45% WDG to COM and PM. The bioconversion rate of BSFLs in COM and PM also increased from 1.20 ± 0.02% and 0.92 ± 0.02% to 10.54 ± 0.06% and 10.05 ± 0.11%, respectively. Total nitrogen content and δ15N/14N ratios of WDG + COM and WDG + PM were found to be significantly lower than those of COM and PM alone (p < 0.01). The organic matter changes during manure degradation were further analyzed by combing ultraviolet-visible spectrum (UV-vis) with excitation-emission matrix (EEM) spectroscopy techniques and fluorescence area integration (FRI) method. The UV-vis spectra results indicate that the addition of WDG to manures resulted in the decreased aromaticity and molecular weight of the waste. EEM spectra demonstrated that the accumulative Pi,n values of regions III and V in COM, COM + WDG, PM, and PM + WDG were 58%, 49%, 52% and 63%, respectively. These results not only provide new insights into the potential of mixed wastes for BSFL treatment but also contribute to the basis for the formulation of effective management measurements that reduce and/or reuse these wastes.
Collapse
Affiliation(s)
- Tao Li
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (T.L.); (S.K.); (M.W.); (H.L.)
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs, Guiyang 550025, China
| | - Samiullah Khan
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (T.L.); (S.K.); (M.W.); (H.L.)
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs, Guiyang 550025, China
| | - Mao Wei
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (T.L.); (S.K.); (M.W.); (H.L.)
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs, Guiyang 550025, China
| | - Haiyin Li
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (T.L.); (S.K.); (M.W.); (H.L.)
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs, Guiyang 550025, China
| | - Tingchi Wen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China;
| | - Jianjun Guo
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (T.L.); (S.K.); (M.W.); (H.L.)
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs, Guiyang 550025, China
| | - Daochao Jin
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (T.L.); (S.K.); (M.W.); (H.L.)
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs, Guiyang 550025, China
| |
Collapse
|
18
|
Seng Liew C, Ren Mong G, Wei Lim J, Raksasat R, Rawindran H, Hong Leong W, Devendran Manogaran M, Ho Chai Y, Chia Ho Y, Ur Rahmah A, Lin C, Shiong Khoo K, Kiatkittipong W. Life cycle assessment: Sustainability of biodiesel production from black soldier fly larvae feeding on thermally pre-treated sewage sludge under a tropical country setting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 164:238-249. [PMID: 37086606 DOI: 10.1016/j.wasman.2023.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
More energy is needed nowadays due to global population growth. Concurrently, sewage sludge generation has also increased steadily stemming from the inevitable urbanization. As such, black soldier fly larvae (BSFL) can be potentially deployed to solve both issues. This paper investigates the environmental sustainability of biodiesel production derived from sludge-fed BSFL feedstock. A cradle-to-gate life cycle assessment (LCA) was performed through SimaPro software utilizing the ReCiPe 2016 Midpoint (H) and Endpoint (H) methods. The entire LCA covered 3 main stages, including the thermal pre-treatment of sludge, BSFL rearing and processing, and lastly lipid extraction and biodiesel production. LCA showed that the sludge pre-treatment stage had the highest environmental impact, while BSFL rearing and processing had the least due to the suitable geographical climate. Electricity usage during the pre-treatment stage was the main contributing component, followed by chemical usage during biodiesel production. After normalizing, it was observed that land occupation, marine ecotoxicity, freshwater ecotoxicity and freshwater eutrophication were more impactful than the commonly studied global warming potential (GWP). Lipid content and biodiesel conversion efficiency were determined as the sensitive factors which could influence the LCA outcome. In comparison with other types of biodiesel, BSFL biodiesel had a milder impact in terms of climate change, land occupation, terrestrial acidification, marine and freshwater eutrophication. Furthermore, this biological reduction of sludge through BSFL valorization avoided sludge landfilling, which reduced up to 100 times GWP. Therefore, sludge-fed BSFL biodiesel production is an environmentally-sound and highly potential solution that should be investigated comprehensively.
Collapse
Affiliation(s)
- Chin Seng Liew
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Guo Ren Mong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor, Malaysia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India.
| | - Ratchaprapa Raksasat
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Hemamalini Rawindran
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Wai Hong Leong
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - M Devendran Manogaran
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Yee Ho Chai
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Yeek Chia Ho
- Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Anisa Ur Rahmah
- Department of Chemical Engineering, Universitas Muhammadiyah Surakarta, Surakarta 57162, Indonesia
| | - Chuxia Lin
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, VIC 3125, Australia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| | - Worapon Kiatkittipong
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
19
|
Zhang H, Zhang X, Chen M, Deng X, Pei Y, Zhang J, Chen H, Yang S. Biochar Can Improve Absorption of Nitrogen in Chicken Manure by Black Soldier Fly. Life (Basel) 2023; 13:life13040938. [PMID: 37109467 PMCID: PMC10144396 DOI: 10.3390/life13040938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/26/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
(1) Background: There is growing interest in using insects to treat nutrient-rich organic wastes, such as the black soldier fly (BSF), one of the most efficient organic waste recyclers for upcycling nutrients into the food system. Although biochar (BC) was shown to enhance nutrient retention and the final product quality during the composting of livestock and poultry manure in many previous studies, little information is available on the effect of BC on livestock manure bioconversion by black soldier fly larvae (BSFL). (2) Methods: This study investigated the effect of adding a small amount of BC to chicken manure (CM) on the bioconversion system of the black soldier fly (including N2O and NH3 emissions and the final distribution of nitrogen during the treatment process). (3) Results: The lowest N2O and NH3 emission and highest residual nitrogen in the substrate were observed in the 15% BC treatment. The highest bioconversion rate of CM (8.31%) and the peak of larval biomass was obtained in the 5% BC treatment. (4) Conclusions: The results demonstrate the feasibility of adding 5% BC to reduce pollution and achieve a satisfactory BSFL-based CM bioconversion efficiency.
Collapse
Affiliation(s)
- Haixu Zhang
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), Zhengzhou 450002, China
| | - Xilu Zhang
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), Zhengzhou 450002, China
| | - Mengxiao Chen
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), Zhengzhou 450002, China
| | - Xin Deng
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), Zhengzhou 450002, China
| | - Yaxin Pei
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), Zhengzhou 450002, China
| | - Jiran Zhang
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), Zhengzhou 450002, China
| | - Hongge Chen
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), Zhengzhou 450002, China
| | - Sen Yang
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), Zhengzhou 450002, China
| |
Collapse
|
20
|
Xie J, Gu J, Wang X, Hu T, Sun W, Song Z, Zhang K, Lei L, Wang J, Sun Y. Response characteristics of denitrifying bacteria and denitrifying functional genes to woody peat during pig manure composting. BIORESOURCE TECHNOLOGY 2023; 374:128801. [PMID: 36842510 DOI: 10.1016/j.biortech.2023.128801] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to explore the impacts of adding different proportions of woody peat (WP) (0%(CK), 5%(T1), and 15%(T2)) on denitrification during composting. The results demonstrated that compared with CK, T1 and T2 increased the total Kjeldahl nitrogen content (8% and 14%, respectively) and reduced the nitrate nitrogen (7% and 23%) content after composting. After composting, the abundances of nirK and nirS decreased by 4-9% and 33-35% under T1 and T2, respectively. Adding 15% WP reduced the abundances of key denitrifying bacteria such as Pseudomonas, Pusillimonas, Achromobacter, and Rhizobiales by 5-90%. The main factors that affected denitrification genes were the carbon content, nitrogen form (nitrite nitrogen and ammonium nitrogen), and denitrifying bacteria community. In summary, adding 15% WP has the best ability to reduce nitrogen loss by decreasing the abundances of denitrifying bacteria and denitrifying functional genes, thereby improving the agricultural value of composting products.
Collapse
Affiliation(s)
- Jun Xie
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaiyu Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Life Sciences, Yulin University, Yulin, Shaanxi 719000, China
| | - Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifan Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
21
|
Peguero DA, Gold M, Endara A, Niu M, Zurbrügg C, Mathys A. Evaluation of ammonia pretreatment of four fibrous biowastes and its effect on black soldier fly larvae rearing performance. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 160:123-134. [PMID: 36821971 DOI: 10.1016/j.wasman.2023.01.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Biowaste treatment with black soldier fly larvae (BSFL, Hermetia illucens L.) can promote a more sustainable food system by reusing nutrients that would otherwise be wasted. However, many agri-food wastes and byproducts are typically high in lignocellulosic fibers (i.e., cellulose, hemicellulose, and lignin), making it resistant to efficient larval and/or microbial degradation. Ammonia pretreatment could be used to partially degrade lignocellulose, making the biowaste more easily degradable by the larvae and/or microorganisms. This study evaluated ammonia pretreatment for lignocellulose degradation and its effect on BSFL performance on four fibrous biowastes: brewers spent grain, cow manure, oat pulp, and grass clippings. First, the optimal ammonia dose (1 % or 5 % dry mass) and pretreatment time (three or seven days) were assessed by measuring fibers after treatment and further examined using Fourier transform infrared spectroscopy (FTIR) spectra and scanning electron microscopy (SEM) images. Second, BSFL rearing performance on ammonia-pretreated substrates was assessed with a 9-day feeding experiment. Three-day pretreatment with 5 % ammonia was chosen as it decreased the total fiber content by 8-23 % for all substrates except cow manure. Contrary to expectations, ammonia pretreatment with all substates decreased BSFL rearing performance metrics by more than half compared to the untreated control. Follow-up experiments suggested that ammonia pretreatment had a dose-dependent toxicity to BSFL. Interestingly, three-day fermentation of cow manure and oat pulp increased bioconversion rate by 25-31 %. This study shows that ammonia pretreatment is not suitable before BSFL rearing. Ammonia toxicity to BSFL and other pretreatments, such as fermentation, should be further studied.
Collapse
Affiliation(s)
- Daniela A Peguero
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland; Department Sanitation, Water and Solid Waste for Development (Sandec), Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Moritz Gold
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| | - Andrea Endara
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Mutian Niu
- Animal Nutrition, Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Christian Zurbrügg
- Department Sanitation, Water and Solid Waste for Development (Sandec), Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Alexander Mathys
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
22
|
Hao J, Liu S, Guo Z, Zhang Y, Zhang W, Li C. Effects of Disinfectants on Larval Growth and Gut Microbial Communities of Black Soldier Fly Larvae. INSECTS 2023; 14:250. [PMID: 36975935 PMCID: PMC10056710 DOI: 10.3390/insects14030250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The use of the black soldier fly has been demonstrated to be effective in the treatment of swine manure. Since the outbreaks of ASFV, prevention procedures, including manure disinfection, have changed dramatically. Glutaraldehyde (GA) and potassium peroxymonosulfate (PPMS) have been shown to be effective in the prevention of this pathogen and are thus widely used in the disinfection of swine manures, etc. However, research on the effects of disinfectants in manures on the growth of BSFL and gut microbiota is scarce. The goal of this study was to determine the effects of GA and PPMS on BSFL growth, manure reduction, and gut microbiota. In triplicate, 100 larvae were inoculated in 100 g of each type of manure compound (manure containing 1% GA treatment (GT1), manure containing 0.5% GA treatment (GT2), manure containing 1% PPMS treatment (PT1), manure containing 0.5% PPMS treatment (PT2), and manure without disinfectant (control)). After calculating the larval weight and waste reduction, the larval gut was extracted and used to determine the microbial composition. According to the results, the dry weights of the larvae fed PT1-2 (PT1: 86.7 ± 4.2 mg and PT2: 85.3 ± 1.3 mg) were significantly higher than those of the larvae fed GT1-2 (GT1: 72.5 ± 2.1 mg and GT2: 70 ± 2.8 mg) and the control (64.2 ± 5.8 mg). There was a 2.8-4.03% higher waste reduction in PT1-2 than in the control, and the waste reduction in GT1-2 was 7.17-7.87% lower than that in the control. In a gut microbiota analysis, two new genera (Fluviicola and Fusobacterium) were discovered in PT1-2 when compared to GT1-2 and the control. Furthermore, the disinfectants did not reduce the diversity of the microbial community; rather, Shannon indices revealed that the diversities of GT1-2 (GT1: 1.924 ± 0.015; GT2: 1.944 ± 0.016) and PT1 (1.861 ± 0.016) were higher than those of the control (1.738 ± 0.015). Finally, it was found that both disinfectants in swine manures at concentrations of 1% and 0.5% may be beneficial to the complexity and cooperation of BSFL gut microbiota, according to an analysis of microbial interactions.
Collapse
Affiliation(s)
- Jianwei Hao
- Department of Biological Science and Technology, Jinzhong University, Jinzhong 030600, China
| | - Shuang Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Zhixue Guo
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Yan Zhang
- Department of Biological Science and Technology, Jinzhong University, Jinzhong 030600, China
| | - Wuping Zhang
- Xinzhou Livestock Development Center, Xinzhou 034000, China
| | - Chujun Li
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
23
|
Mohan K, Sathishkumar P, Rajan DK, Rajarajeswaran J, Ganesan AR. Black soldier fly (Hermetia illucens) larvae as potential feedstock for the biodiesel production: Recent advances and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160235. [PMID: 36402342 DOI: 10.1016/j.scitotenv.2022.160235] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/06/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Black soldier fly larvae (BSFL) Hermetia illucens is fastest growing and most promising insect species especially recommended to bring high-fat content as 5th generation bioenergy. The fat content can be fully optimized during the life-cycle of the BSFL through various organic dietary supplements and environmental conditions. Enriched fat can be obtained during the larval stages of the BSF. The presence of high saturated and unsaturated fatty acids in their body helps to produce 70 % of extractable oil which can be converted into biodiesel through transesterification. The first-generation biodiesel process mainly depends on catalytic transesterification, however, BSFL had 94 % of biodiesel production through non-catalytic transesterification. This increases the sustainability of producing biodiesel with less energy input in the process line. Other carbon emitting factors involved in the rearing of BSFL are less than the other biodiesel feedstocks including microalgae, cooking oil, and non-edible oil. Therefore, this review is focused on evaluating the optimum dietary source to produce fatty acid rich larvae and larval growth to accumulate C16-18 fatty acids in larger amounts from agro food waste. The process of optimization and biorefining of lipids using novel techniques have been discussed herein. The sustainability impact was evaluated from the cultivation to biodiesel conversion with greenhouse gas emissions scores in the entire life-cycle of process flow. The state-of-the-art in connecting circular bioeconomy loop in the search for bioenergy was meticulously covered.
Collapse
Affiliation(s)
- Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu 638 316, India
| | - Palanivel Sathishkumar
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, India.
| | - Durairaj Karthick Rajan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu 608 502, India
| | - Jayakumar Rajarajeswaran
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602 105, India
| | - Abirami Ramu Ganesan
- Division of Food Production and Society, Biomarine Resource Valorisation, Norwegian Institute of Bioeconomy Research, Kudalsveien 6, NO-8027 Bodø, Norway.
| |
Collapse
|
24
|
Hao J, Liu S, Luo A, Zhao J, Shi S, Zhang Y, Li C. Assessing Nursery-Finishing Pig Manures on Growth of Black Soldier Fly Larvae. Animals (Basel) 2023; 13:ani13030452. [PMID: 36766341 PMCID: PMC9913757 DOI: 10.3390/ani13030452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Livestock manure is an important component of agricultural organic waste, and in recent years, with the development of research on the bioconversion of manure, BSFs have been proven to be useful in the treatment of a variety of livestock wastes. In-depth research on the composition of manure and its effect on the development of BSFL is, however, very scarce. The purpose of this study was to identify the parameters that influenced the growth of BSFL that was fed fattening pig manure. The pH, moisture, and nutrients of the fattening manures (namely, nursery, growing, and finishing pig manures) were measured. To examine the influence of manure types on larval growth, 100 larvae were inoculated in 100 g of each type of manure in triplicate. According to the findings, larvae fed finishing pig manure had the lowest dry weight (30.2 ± 6.1 mg) compared to those fed growing (58.2 ± 7.3 mg) or nursery (65.5 ± 6.2 mg) pig manure. The correlation coefficients (r) between the nutrients in the manure and the weight of the larvae were calculated. Hemicellulose had the greatest |r| value (0.9569). Further research revealed that larvae raised on hemicellulase-pretreated finishing pig manure frequently weighed 21-30% (days 2-8) more than larvae raised on control manure. In conclusion, hemicellulose was a significant component that might hinder larval growth. The results of this study could be used to improve the system before it is put into use.
Collapse
Affiliation(s)
- Jianwei Hao
- Department of Biological Science and Technology, Jinzhong University, Jinzhong 030619, China
| | - Shuang Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
- Correspondence:
| | - Aiguo Luo
- Department of Biological Science and Technology, Jinzhong University, Jinzhong 030619, China
| | - Jia Zhao
- Department of Biological Science and Technology, Jinzhong University, Jinzhong 030619, China
| | - Shengli Shi
- Department of Biological Science and Technology, Jinzhong University, Jinzhong 030619, China
| | - Yun Zhang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chujun Li
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77843-2475, USA
| |
Collapse
|
25
|
Chen J, Cai Y, Deng W, Xing S, Liao X. Transmission of tetracycline resistance genes and microbiomes from manure-borne black soldier fly larvae frass to rhizosphere soil and pakchoi endophytes. Front Microbiol 2022; 13:1014910. [DOI: 10.3389/fmicb.2022.1014910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Manure treatment with black soldier fly larvae (BSFL) and BSFL frass application in crop land is a sustainable strategy; however, whether residual antibiotic resistance genes (ARGs) and their transmission risk are related to the manure BSFL treatment process is still unknown. In this paper, the effect of BSFL addition density on residual tetracycline resistance genes (TRGs) and transmission from frass to pakchoi was determined. The results showed that BSFL frass can provide sufficient nutrients for growth, improve the economic value of pakchoi, and reduce the risk of transmission of TRGs in chicken manure regardless of BSFL density. The potential hosts of the TRGs we detected were found in BSFL frass (Oblitimonas and Tissierella), rhizosphere soil (Mortierella and Fermentimonas), and pakchoi endophytes (Roseomonas). The present study concluded that BSFL frass produced by adding 100 BSFL per 100 g of chicken manure has the advantages of high value and low risk. These findings will provide important strategic guidance for animal manure disposal and theoretical support for preventing the transmission of TRGs in BSFL applications.
Collapse
|
26
|
Liu T, Klammsteiner T, Dregulo AM, Kumar V, Zhou Y, Zhang Z, Awasthi MK. Black soldier fly larvae for organic manure recycling and its potential for a circular bioeconomy: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155122. [PMID: 35405225 DOI: 10.1016/j.scitotenv.2022.155122] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Livestock farming and its products provide a diverse range of benefits for our day-to-day life. However, the ever-increasing demand for farmed animals has raised concerns about waste management and its impact on the environment. Worldwide, cattle produce enormous amounts of manure, which is detrimental to soil properties if poorly managed. Waste management with insect larvae is considered one of the most efficient techniques for resource recovery from manure. In recent years, the use of black soldier fly larvae (BSFL) for resource recovery has emerged as an effective method. Using BSFL has several advantages over traditional methods, as the larvae produce a safe compost and extract trace elements like Cu and Zn. This paper is a comprehensive review of the potential of BSFL for recycling organic wastes from livestock farming, manure bioconversion, parameters affecting the BSFL application on organic farming, and process performance of biomolecule degradation. The last part discusses the economic feasibility, lifecycle assessment, and circular bioeconomy of the BSFL in manure recycling. Moreover, it discusses the future perspectives associated with the application of BSFL. Specifically, this review discusses BSFL cultivation and its impact on the larvae's physiology, gut biochemical physiology, gut microbes and metabolic pathways, nutrient conservation and global warming potential, microbial decomposition of organic nutrients, total and pathogenic microbial dynamics, and recycling of rearing residues as fertilizer.
Collapse
Affiliation(s)
- Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Thomas Klammsteiner
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25d, 6020 Innsbruck, Austria
| | - Andrei Mikhailovich Dregulo
- Federal State Budgetary Educational Institution of Higher Education "Saint-Petersburg State University" 7-9 Universitetskaya emb., 199034, Saint- Petersburg, Russia.
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee 247667, Uttarakhand, India
| | - Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
27
|
Effects of Black Soldier Fly Larvae Oil on Growth Performance, Immunity and Antioxidant Capacity, and Intestinal Function and Microbiota of Broilers. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
28
|
Qin W, Zhang J, Hou D, Li X, Jiang H, Chen H, Yu Z, Tomberlin JK, Zhang Z, Li Q. Effects of biochar amendment on bioconversion of soybean dregs by black soldier fly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154605. [PMID: 35307415 DOI: 10.1016/j.scitotenv.2022.154605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/04/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Biochar is known to accelerate composting process and improve the quality of end-products. However, its effects on bioconversion of organic waste by black soldier fly larvae (BSFL) remains largely unexamined. To investigate the effects of corn straw biochar (CS-BC) on bioconversion of soybean dregs (SD) by BSFL, SD was amended with four different dosages of CS-BC [0%, 2%, 5%, and 8% (w/w)] and digested by BSFL for ten days. The results indicated that the peak values of single larva wet weight in the treatments amended with CS-BC were advanced by 2-3 days and the reduction rate of SD increased from 72.09% to 85.37% with the increasing dosage of CS-BC. Meanwhile, SD mixed with 2%, 5% and 8% of CS-BC decreased ammonia (NH3) emission by 2.7%, 3.6% and 18.0%, respectively. The nitrous oxide (N2O) emissions reduced (-23.6%, -29.1% and -49.2%) with 2%, 5% and 8% CS-BC additions, respectively. In addition, the residual nitrogen of SD‑nitrogen proportionally increased with CS-BC application (28.3%, 28.6%, 30.1% and 35.0% for application at the dosage of 0%, 2%, 5% and 8%, respectively). Based on the comprehensive evaluation of bioconversion performance, alleviation of pollutant gas emission, and nitrogen conservation, we recommend the introduction of 8% (w/w) CS-BC during bioconversion of SD by BSFL. This study confirmed the feasibility of CS-BC as an amendment for the BSFL-based bioconversion system.
Collapse
Affiliation(s)
- Wenjie Qin
- College of Science, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Junfang Zhang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Dejia Hou
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuan Li
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Jiang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziniu Yu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Zhenyu Zhang
- Hubei Key Laboratory of Insect Resource Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qing Li
- College of Science, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
29
|
Cruz-Tirado J, Amigo JM, Barbin DF. Determination of protein content in single black fly soldier (Hermetia illucens L.) larvae by near infrared hyperspectral imaging (NIR-HSI) and chemometrics. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
30
|
Seyedalmoosavi MM, Mielenz M, Veldkamp T, Daş G, Metges CC. Growth efficiency, intestinal biology, and nutrient utilization and requirements of black soldier fly (Hermetia illucens) larvae compared to monogastric livestock species: a review. J Anim Sci Biotechnol 2022; 13:31. [PMID: 35509031 PMCID: PMC9069764 DOI: 10.1186/s40104-022-00682-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, interest in the larvae of black soldier fly (BSF) (Hermetia illucens) as a sustainable protein resource for livestock feed has increased considerably. However, knowledge on the nutritional and physiological aspects of this insect, especially compared to other conventional farmed animals is scarce. This review presents a critical comparison of data on the growth potential and efficiency of the BSF larvae (BSFL) compared to conventional monogastric livestock species. Advantages of BSFL over other monogastric livestock species includes their high growth rate and their ability to convert low-grade organic waste into high-quality protein and fat-rich biomass suitable for use in animal feed. Calculations using literature data suggest that BSFL are more efficient than broilers, pigs and fish in terms of conversion of substrate protein into body mass, but less efficient than broilers and fish in utilization of substrate gross energy to gain body mass. BSFL growth efficiency varies greatly depending on the nutrient quality of their dietary substrates. This might be associated with the function of their gastrointestinal tract, including the activity of digestive enzymes, the substrate particle characteristics, and their intestinal microbial community. The conceived advantage of BSFL having an environmental footprint better than conventional livestock is only true if BSFL is produced on low-grade organic waste and its protein would directly be used for human consumption. Therefore, their potential role as a new species to better close nutrient cycles in agro-ecological systems needs to be reconsidered, and we conclude that BSFL is a complementary livestock species efficiently utilizing organic waste that cannot be utilized by other livestock. In addition, we provide comparative insight into morpho-functional aspects of the gut, characterization of digestive enzymes, gut microbiota and fiber digestion. Finally, current knowledge on the nutritional utilization and requirements of BSFL in terms of macro- and micro-nutrients is reviewed and found to be rather limited. In addition, the research methods to determine nutritional requirements of conventional livestock are not applicable for BSFL. Thus, there is a great need for research on the nutrient requirements of BSFL.
Collapse
Affiliation(s)
- Mohammad M Seyedalmoosavi
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, 18196, Dummerstorf, Germany
| | - Manfred Mielenz
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, 18196, Dummerstorf, Germany
| | - Teun Veldkamp
- Wageningen UR, Livestock Research, P.O. Box 338, 6700AH, Wageningen, Netherlands
| | - Gürbüz Daş
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, 18196, Dummerstorf, Germany
| | - Cornelia C Metges
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, 18196, Dummerstorf, Germany.
| |
Collapse
|
31
|
Borges MM, da Costa DV, Trombete FM, Câmara AKFI. Edible insects as a sustainable alternative to food products: an insight into quality aspects of reformulated bakery and meat products. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Sandrock C, Leupi S, Wohlfahrt J, Kaya C, Heuel M, Terranova M, Blanckenhorn WU, Windisch W, Kreuzer M, Leiber F. Genotype-by-Diet Interactions for Larval Performance and Body Composition Traits in the Black Soldier Fly, Hermetia illucens. INSECTS 2022; 13:424. [PMID: 35621760 PMCID: PMC9147266 DOI: 10.3390/insects13050424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/03/2022]
Abstract
Further advancing black soldier fly (BSF) farming for waste valorisation and more sustainable global protein supplies critically depends on targeted exploitation of genotype-phenotype associations in this insect, comparable to conventional livestock. This study used a fully crossed factorial design of rearing larvae of four genetically distinct BSF strains (FST: 0.11-0.35) on three nutritionally different diets (poultry feed, food waste, poultry manure) to investigate genotype-by-environment interactions. Phenotypic responses included larval growth dynamics over time, weight at harvest, mortality, biomass production with respective contents of ash, fat, and protein, including amino acid profiles, as well as bioconversion and nitrogen efficiency, reduction of dry matter and relevant fibre fractions, and dry matter loss (emissions). Virtually all larval performance and body composition traits were substantially influenced by diet but also characterised by ample BSF genetic variation and, most importantly, by pronounced interaction effects between the two. Across evaluated phenotypes, variable diet-dependent rankings and the lack of generally superior BSF strains indicate the involvement of trade-offs between traits, as their relationships may even change signs. Conflicting resource allocation in light of overall BSF fitness suggests anticipated breeding programs will require complex and differential selection strategies to account for pinpointed trait maximisation versus multi-purpose resilience.
Collapse
Affiliation(s)
- Christoph Sandrock
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland; (S.L.); (J.W.); (C.K.); (F.L.)
| | - Simon Leupi
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland; (S.L.); (J.W.); (C.K.); (F.L.)
- Institute of Agricultural Sciences, ETH Zurich, Eschikon 27, 8315 Lindau, Switzerland; (M.H.); (M.K.)
| | - Jens Wohlfahrt
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland; (S.L.); (J.W.); (C.K.); (F.L.)
| | - Cengiz Kaya
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland; (S.L.); (J.W.); (C.K.); (F.L.)
- Department of Evolutionary Biology and Environmental Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
| | - Maike Heuel
- Institute of Agricultural Sciences, ETH Zurich, Eschikon 27, 8315 Lindau, Switzerland; (M.H.); (M.K.)
| | - Melissa Terranova
- AgroVet-Strickhof, ETH Zurich, Eschikon 27, 8315 Lindau, Switzerland;
| | - Wolf U. Blanckenhorn
- Department of Evolutionary Biology and Environmental Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
| | - Wilhelm Windisch
- Animal Nutrition, TUM School of Life Sciences, Technical University Munich, Liesel-Beckmann-Strasse 2, 85354 Freising-Weihenstephan, Germany;
| | - Michael Kreuzer
- Institute of Agricultural Sciences, ETH Zurich, Eschikon 27, 8315 Lindau, Switzerland; (M.H.); (M.K.)
| | - Florian Leiber
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland; (S.L.); (J.W.); (C.K.); (F.L.)
| |
Collapse
|
33
|
Ma JJ, Jiang CL, Tao XH, Sheng JL, Sun XZ, Zhang TZ, Zhang ZJ. Insights on dissolved organic matter and bacterial community succession during secondary composting in residue after black soldier fly larvae (Hermetia illucens L.) bioconversion for food waste treatment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 142:55-64. [PMID: 35176599 DOI: 10.1016/j.wasman.2022.01.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Black soldier fly larvae (Hermetia illucens L. BSFL) bioconversion is a promising biotechnology for food waste treatment. However, the separated residues still do not meet criteria for use as land application biofertilizers. In this work, we investigated a full-scale BSFL bioconversion project to explore features of dissolved organic matter (DOM) and its associated responses of bacterial community succession in residue during secondary composting. Data showed that the concentrations of total nitrogen and ammonium nitrogen decreased by 11.8% and 22.6% during the secondary composting, respectively, while the nitrate nitrogen concentration increased 18.7 times. The DOM concentration decreased by 69.1%, in which protein-like, alcohol-phenol, and biodegradable aliphatic substances were metabolized by bacteria during the thermophilic phase together with the accumulation of humus-like substances, resulting in an increase in the relative concentration of aromatic compounds. The structure of the bacterial community varied at different stages of the bioprocess, in which Bacteroidetes, Actinobacteria, Proteobacteria, and Firmicutes were the dominant bacterial phyla. Lysinibacillus, Pusillimonas, and Caldicoprobacter were found to be key contributors in the degradation and formation of DOM. The DOM concentration (33.4%) and temperature (17.7%) were the prime environmental factors that promoted succession of the bacterial community. Through bacterial metabolism, the structural stability of DOM components was improved during the composting process, and the degrees of humification and aromaticity were also increased. This study depicted the dynamic features of DOM and the associated bacterial community succession in residue during secondary composting, which is conducive with the reuse of BSFL residue as biofertilizer for agriculture.
Collapse
Affiliation(s)
- Jing-Jin Ma
- College of Natural Research and Environmental Sciences, ZheJiang University, YuHangTang Ave 688, HangZhou, ZheJiang Province 310058, PR China
| | - Cheng-Liang Jiang
- HangZhou GuSheng Technology Company Limited, XiangWang Ave 1118, HangZhou 311121, PR China; ZheJiang FuMei Biotechnology Company Limited, PingYao Future Complex Park, PingYao Ave, HangZhou 311115, PR China
| | - Xing-Hua Tao
- College of Natural Research and Environmental Sciences, ZheJiang University, YuHangTang Ave 688, HangZhou, ZheJiang Province 310058, PR China
| | - Jian-Lin Sheng
- HangZhou GuSheng Technology Company Limited, XiangWang Ave 1118, HangZhou 311121, PR China; ZheJiang FuMei Biotechnology Company Limited, PingYao Future Complex Park, PingYao Ave, HangZhou 311115, PR China
| | - Xin-Zhao Sun
- College of Natural Research and Environmental Sciences, ZheJiang University, YuHangTang Ave 688, HangZhou, ZheJiang Province 310058, PR China
| | - Ting-Zhou Zhang
- ZheJiang Cofine Biotechnology Company Limited, HaiNing 314400, PR China
| | - Zhi-Jian Zhang
- College of Natural Research and Environmental Sciences, ZheJiang University, YuHangTang Ave 688, HangZhou, ZheJiang Province 310058, PR China; China Academy of West Region Development, ZheJiang University, YuHangTang Ave 866, HangZhou 310058, PR China.
| |
Collapse
|
34
|
Niu SH, Liu S, Deng WK, Wu RT, Cai YF, Liao XD, Xing SC. A sustainable and economic strategy to reduce risk antibiotic resistance genes during poultry manure bioconversion by black soldier fly Hermetia illucens larvae: Larval density adjustment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113294. [PMID: 35152113 DOI: 10.1016/j.ecoenv.2022.113294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Black soldier fly (Hermetia illucens) larvae (BSFL) are common insects that are known for bioconversion of organic waste into a sustainable utilization resource. However, a strategy to increase antibiotic resistance gene (ARG) elimination in sustainable and economic ways through BSFL is lacking. In the present study, different larval densities were employed to assess the mcr-1 and tetX elimination abilities, and potential mechanisms were investigated. The application and economic value of each larval density were also analyzed. The results showed that the 100 larvae cultured in 100 g of manure group had the best density because the comprehensive disadvantage evaluation ratio was the lowest (14.97%, good bioconversion manure quality, low ARG deposition risk and reasonable larvae input cost). Further investigation showed that mcr-1 could be significantly decreased by BSFL bioconversion (4.42 ×107 copies/g reduced to 4.79 ×106-2.14 ×105 copies/g)(P<0.05); however, mcr-1 was increasingly deposited in the larval gut with increasing larval density. The tetX abundance was stabilized by BSFL bioconversion, except that the abundance at the lowest larval density increased (1.22 ×1010 copies/g increase, 34-fold). Escherichia was the host of mcr-1 and tetX in all samples, especially in fresh manure; Alcaligenes was the host of tetX in bioconversion manure; and the abundance of Alcaligenes was highly correlated with the pH of bioconversion manure. The pH of bioconversion manure was extremely correlated with the density of larvae. Klebsiella and Providencia were both hosts of tetX in the BSF larval gut, and Providencia was also the host of mcr-1 in the BSF larval gut. The density of larvae influenced the bioconversion manure quality and caused the ARG host abundance to change to control the abundance of ARGs, suggesting that larval density adjustment was a useful strategy to manage the ARG risk during BSFL manure bioconversion.
Collapse
Affiliation(s)
- Shi-Hua Niu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shuo Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wei-Kang Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Rui-Ting Wu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ying-Feng Cai
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China
| | - Si-Cheng Xing
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
35
|
Matos JS, de Aráujo LP, Allaman IB, Lôbo IP, de Oliva ST, Tavares TM, de Almeida Neto JA. Evaluation of the reduction of methane emission in swine and bovine manure treated with black soldier fly larvae (Hermetia illucens L.). ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:480. [PMID: 34240260 DOI: 10.1007/s10661-021-09252-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The study evaluates Hermetia illucens larvae's ability to decrease direct methane emissions and nutrients from cattle and swine manure. Hermetia illucens larvae were put into fresh cattle and swine manure, and the same conditions, without larvae, for the control treatment were established. The methane emissions were measured until the first prepupae appeared. The methane emissions from the bioconversion of animal manure by Hermetia illucens larvae were up to 86% lower than in the control treatments (conventional storage). The cumulative methane emissions from cattle and swine manure bioconversion were 41.4 ± 10.5 mg CH4 kg-1 and 134.2 ± 17.3 mg CH4 kg-1, respectively. Moreover, Hermetia illucens larvae could reduce 32% of dry matter, 53% nitrogen, 14% phosphorus, and 42% carbon in swine manure. Meanwhile, in cattle manure, reductions of 17% of dry matter, 5% of nitrogen, 11% of phosphorus, and 15% of carbon and pH reductions in both swine and cattle manure were found. Thus, the production of larvae was higher in swine manure than cattle manure. Furthermore, the larvae frass from swine manure was appropriate for agricultural use, unlike the larvae frass from cattle manure requiring further processing. These results reveal the ability of Hermetia illucens larvae to mitigate methane emissions from animal manure and show it to be a promising technology for manure treatment, with great potential to promote a circular economy in the livestock sector.
Collapse
Affiliation(s)
- Joan Sanchez Matos
- Bioenergy and Environment Group, Universidade Estadual de Santa Cruz, Jorge Amado Highway, Km 16, Ilheus, BA, 45662-900, Brazil.
| | - Lara Pinto de Aráujo
- Bioenergy and Environment Group, Universidade Estadual de Santa Cruz, Jorge Amado Highway, Km 16, Ilheus, BA, 45662-900, Brazil
| | - Ivan Bezerra Allaman
- Department of Exact and Technology Sciences, Universidade Estadual de Santa Cruz, Jorge Amado Highway, Km 16, Ilheus, BA, 45662-900, Brazil
| | - Ivon Pinheiro Lôbo
- Bioenergy and Environment Group, Universidade Estadual de Santa Cruz, Jorge Amado Highway, Km 16, Ilheus, BA, 45662-900, Brazil
| | - Sergio Telles de Oliva
- Laboratory of Environmental Analytical Chemistry, Chemistry Institute (LAQUAM), Universidade Federal da Bahia (UFBA), Campus Universitário de Ondina, R. Barão de Jeremoabo 147, Salvador, BA, 40170-115, Brazil
| | - Tania Mascarenhas Tavares
- Laboratory of Environmental Analytical Chemistry, Chemistry Institute (LAQUAM), Universidade Federal da Bahia (UFBA), Campus Universitário de Ondina, R. Barão de Jeremoabo 147, Salvador, BA, 40170-115, Brazil
| | - Jose Adolfo de Almeida Neto
- Bioenergy and Environment Group, Universidade Estadual de Santa Cruz, Jorge Amado Highway, Km 16, Ilheus, BA, 45662-900, Brazil
| |
Collapse
|