1
|
Bachoon DS, Redhead ASZ, Mead AJ. Mitochondrial DNA marker: A PCR approach for tracking rat (Rattus rattus and Rattus norvegicus) fecal pollution in surface water systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171164. [PMID: 38402984 DOI: 10.1016/j.scitotenv.2024.171164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Rats act as reservoirs for a wide range of zoonotic pathogens and can negatively impact human health. In this study, we developed a novel dye base mitochondrial DNA (mtDNA) PCR-assay (RatMt) specifically targeting a 180 bp fragment of the NADH dehydrogenase subunit 2 gene for detecting fecal pollution from two species of rats (Rattus rattus and Rattus norvegicus) in environmental samples. Estimation of Escherichia coli concentrations in Rattus norvegicus fecal pellets suggested that there were approximately 2.24 × 10 4 ± 4.86 × 103 MPN/g of fecal pellet. The RatMt PCR assay was robust, had a detection limit of rat feces in water of 0.274 ± 0.14 mg/100 mL and was 100 % specific for detecting Rattus rattus and Rattus norvegicus fecal mtDNA. Fecal Indicator Bacteria (FIB) along an urbanized gradient in Pensacola-Bay was assessed by the IDEXX Colilert™ - 18 and indicated that the majority of the fifteen sampling sites in the Pensacola-Bay area had E. coli concentrations >410 MPN/100 mL. Rattus rattus and Rattus norvegicus mtDNA were detected in all the urban marine sites, three of the urban freshwater sampling areas, and three of the forested sampling sites. The RatMt PCR assay is a useful tool for rapidly detecting Rattus rattus and Rattus norvegicus fecal pollution in environmental samples.
Collapse
Affiliation(s)
- Dave S Bachoon
- Department of Biological and Environmental Sciences, Georgia College & State University, Campus Box 81, Milledgeville, GA 31061-0490, USA.
| | - Aaden S Z Redhead
- Department of Biological and Environmental Sciences, Georgia College & State University, Campus Box 81, Milledgeville, GA 31061-0490, USA
| | - Alfred J Mead
- Department of Biological and Environmental Sciences, Georgia College & State University, Campus Box 81, Milledgeville, GA 31061-0490, USA
| |
Collapse
|
2
|
Bridgemohan RSH, Deitch MJ, Gebremicael T, Whiles MR, Wilson PC, Bachoon D, Tharpe I. Environmental risk assessment for fecal contamination sources in urban and peri-urban estuaries, in Escambia and Santa Rosa counties, FL, USA. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:867. [PMID: 37341799 DOI: 10.1007/s10661-023-11478-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
Fecal pollution of estuaries and adjacent creeks and streams is of significant concern along the Gulf of Mexico. The prospective threat to human life and water quality impairment via fecal pollution is a substantial danger to the strength and resistance of coastline areas. Pensacola, FL, has a prosperous coastal tourism industry that is utilized for numerous other uses, such as recreational watersports and boating, seafood, and shellfish harvesting. However, the frequency and severity of fecal contamination present possible socio-economic issues, specifically financial hardships. Therefore, understanding the source, abundance, and fate of fecal microbial pollutants in aquatic systems signifies an imperative initial stage for detecting the host sources and techniques to lessen their transport from the landscape. This research aimed to quantify the fecal indicator bacteria (FIB), Escherichia coli, and perform microbiological fecal source tracking to verify if the fecal inputs are of either animal or human host origin. Surface water samples were taken from urban and peri-urban creeks for two sampling periods (February 2021 and January 2022), and IDEXX Colilert-18 (USEPA Standard Method 9223) was used for E. coli enumeration. DNA extractions were obtained from each sample, and quantitative PCR was utilized for fecal microbial source tracking (MST) to detect human, dog, ruminant, and bird host-specific Bacteroides DNA. The result indicates elevated quantities of FIB, E. coli, that surpass the threshold considered safe regarding human health. E. coli at six sites over the two sampling periods exceeded the impairment threshold, reaching as high as 866.4 MPN/100 ml. Fecal source tracking identified human host fecal contamination at four of nine sites, dogs at three of nine, and birds at one site. However, those sites with sources identified via MST all had E. coli levels below impairment thresholds. No sites were determined to be positive for ruminant as a source or for the pathogen Helicobacter pylori. No canine host fecal inputs were found in January 2022, and only one site with human sewage. Our results highlight the utility of MST in assessing bacterial inputs to water bodies and the challenges.
Collapse
Affiliation(s)
- Ronell S H Bridgemohan
- Soil and Water Sciences Department, IFAS/West Florida Research and Education Center, University of Florida, 5988 Hwy 90, Building 4900, Milton, FL, 32583, USA.
- , Pensacola, USA.
| | - Matthew J Deitch
- Soil and Water Sciences Department, IFAS/West Florida Research and Education Center, University of Florida, 5988 Hwy 90, Building 4900, Milton, FL, 32583, USA
| | - Tesfay Gebremicael
- Soil and Water Sciences Department, IFAS/West Florida Research and Education Center, University of Florida, 5988 Hwy 90, Building 4900, Milton, FL, 32583, USA
| | - Matthew R Whiles
- Soil and Water Sciences Department, University of Florida, 2181 McCarty Hall, Gainesville, FL, 32611, USA
| | - P Christopher Wilson
- Soil and Water Sciences Department, University of Florida, 2181 McCarty Hall, Gainesville, FL, 32611, USA
| | - Dave Bachoon
- Department of Biological and Environmental Sciences, Georgia College and State University, Campus Box 81, Milledgeville, GA, 31061-0490, USA
| | - Israel Tharpe
- Department of Biological and Environmental Sciences, Georgia College and State University, Campus Box 81, Milledgeville, GA, 31061-0490, USA
| |
Collapse
|
3
|
The significance of microbial community functions and symbiosis in enhancing methane production during anaerobic digestion: a review. Symbiosis 2020. [DOI: 10.1007/s13199-020-00734-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
Wirth R, Pap B, Böjti T, Shetty P, Lakatos G, Bagi Z, Kovács KL, Maróti G. Chlorella vulgaris and Its Phycosphere in Wastewater: Microalgae-Bacteria Interactions During Nutrient Removal. Front Bioeng Biotechnol 2020; 8:557572. [PMID: 33072721 PMCID: PMC7537789 DOI: 10.3389/fbioe.2020.557572] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/28/2020] [Indexed: 11/24/2022] Open
Abstract
Microalgae-based bioenergy production is a promising field with regard to the wide variety of algal species and metabolic potential. The use of liquid wastes as nutrient clearly improves the sustainability of microalgal biofuel production. Microalgae and bacteria have an ecological inter-kingdom relationship. This microenvironment called phycosphere has a major role in the ecosystem productivity and can be utilized both in bioremediation and biomass production. However, knowledge on the effects of indigenous bacteria on microalgal growth and the characteristics of bacterial communities associated with microalgae are limited. In this study municipal, industrial and agricultural liquid waste derivatives were used as cultivation media. Chlorella vulgaris green microalgae and its bacterial partners efficiently metabolized the carbon, nitrogen and phosphorous content available in these wastes. The read-based metagenomics approach revealed a diverse microbial composition at the start point of cultivations in the different types of liquid wastes. The relative abundance of the observed taxa significantly changed over the cultivation period. The genome-centric reconstruction of phycospheric bacteria further explained the observed correlations between the taxonomic composition and biomass yield of the various waste-based biodegradation systems. Functional profile investigation of the reconstructed microbes revealed a variety of relevant biological processes like organic acid oxidation and vitamin B synthesis. Thus, liquid wastes were shown to serve as valuable resources of nutrients as well as of growth promoting bacteria enabling increased microalgal biomass production.
Collapse
Affiliation(s)
- Roland Wirth
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Bernadett Pap
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Tamás Böjti
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Prateek Shetty
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Gergely Lakatos
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Zoltán Bagi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Kornél L. Kovács
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Szeged, Hungary
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Faculty of Water Sciences, National University of Public Service, Baja, Hungary
| |
Collapse
|
5
|
Gray J, Masters N, Wiegand A, Katouli M. Field assessment of horse-associated genetic markers HoF597 and mtCytb for detecting the source of contamination in surface waters. Can J Microbiol 2020; 66:623-630. [PMID: 32692953 DOI: 10.1139/cjm-2019-0499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the specificity and sensitivity of two horse-associated markers, HoF597 and Horse mtCytb, and 12 mitochondrial and bacterial markers of six animal species (human, cow, pig, bird, dog, chicken) in the faecal samples of 50 individual horses. Both horse markers were detected in 48 (96%) faecal samples. Cross-reactivity with dog (BacCan545) and pig (P23-2) occurred in 88% and 72% of horse faecal samples, respectively. Several other bacterial and mitochondrial markers of non-target hosts were also detected; however, their specificities were >80%. Analyses of samples from surface waters (n = 11) on or adjacent to properties from which horse faecal samples had been collected showed only the presence of HoF597 but not horse mitochondrial marker. Our data suggest that while bacterial and (or) mitochondrial markers of other animal species may be present in horse faeces, dog and pig markers may predominantly be present in horse faecal samples, which points to their nonspecificity as markers for microbial source tracking. Although HoF597 and Horse mtCytb are highly sensitive and specific for the detection of horse faecal pollution, because of their low numbers, mitochondrial (mtDNA) markers may not be robust for screening surface waters.
Collapse
Affiliation(s)
- Jessica Gray
- Genecology Research Centre, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia
| | - Nicole Masters
- Genecology Research Centre, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia
| | - Aaron Wiegand
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia
| | - Mohammad Katouli
- Genecology Research Centre, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia
| |
Collapse
|
6
|
Bridgemohan RSH, Bachoon DS, Wang Y, Bridgemohan P, Mutiti C, Ramsubhag A. Identifying the primary sources of fecal contamination along the beaches and rivers of Trinidad. JOURNAL OF WATER AND HEALTH 2020; 18:229-238. [PMID: 32300095 DOI: 10.2166/wh.2020.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The aim of this study was to identify the main sources of fecal pollution at popular beaches and rivers in the island of Trinidad. Escherichia coli enumeration and microbial source tracking (MST) were used to identify the primary sources of fecal bacteria contamination at the sites. Nineteen sites exceeded USEPA water quality standards for safe recreational use. Highest levels of fecal contamination were recorded on the central and west coasts of the island and included Brickfield River (4,839 MPN 100 ml-1), Orange Valley Bay (2,406.6 MPN 100 ml-1) and Chaguaramas Bay (1,921.2 MPN 100 ml-1). MST detected human (HF183) fecal pollution at ∼63%, birds at ∼67%, chicken at ∼36% and cattle (BacCow) at ∼34% of the sites. MST is a useful and rapid method for identifying major sources of fecal pollution in rivers and beaches. In Trinidad water bodies, the main sources of fecal pollution were humans and birds. The large number of sites with elevated levels of fecal pollution detected is particularly alarming and represents a serious public health risk.
Collapse
Affiliation(s)
- Ronell S H Bridgemohan
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA 31061, USA E-mail:
| | - Dave S Bachoon
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA 31061, USA E-mail:
| | - Yingfan Wang
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA 31061, USA E-mail:
| | - Puran Bridgemohan
- Waterloo Research Campus, The University of Trinidad and Tobago, Waterloo Estates, Carapichaima, Trinidad and Tobago
| | - Christine Mutiti
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA 31061, USA E-mail:
| | - Adesh Ramsubhag
- Department of Life Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
7
|
Zhao Y, Li X, Sun S, Chen L, Jin J, Liu S, Song X, Wu C, Lu L. Protective role of dryland rearing on netting floors against mortality through gut microbiota-associated immune performance in Shaoxing ducks. Poult Sci 2019; 98:4530-4538. [PMID: 31111923 DOI: 10.3382/ps/pez268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 04/26/2019] [Indexed: 01/20/2023] Open
Abstract
Dryland rearing on netting floors (DRNF) is a new rearing method for ducks, which could prevent duck excreta from polluting water bodies. However, the influence of DRNF on duck production and immune performance remains poorly understood. In this study, 2,280 Shaoxing ducks, an egg-type breed of Sheldrake in China, were chosen and randomly divided into 2 groups to investigate the effects of DRNF on duck farming. During the experimental laying rates, feed-egg ratios, and mortality rates of the 2 groups were calculated and recorded. Serum immune parameters, including thymus index, spleen index, levels of immunoglobulin G (IgG), interleukin 1β (IL-1β), and tumor necrosis factor α (TNF-α), were determined. Sequencing of the 16S rRNA gene was used to analyze the variability of gut microbiota in the duck ileum and cecum. The results showed that DRNF significantly reduced the mortality rate of the ducks and increased the thymus index (P < 0.05), compared to the control. No other significant differences were detected in productional and immune indices (P > 0.05). The 16S rRNA sequencing results revealed differentially enriched microbial compositions in the ileum and cecum, which might be responsible for the improved immune function of Shaoxing ducks. For example, an increase in Lactobacillaceae (family), Anaerotruncus (genus), Saccharibacteria (phylum), Flavobacteriaceae (family), and a reduction in Anaerobiospirillum (genus), Lachnospiraceae (family), Blautia (genus) was revealed in the DRNF ducks. In conclusion, DRNF could alter gut microflora, enhance duck immune system, and reduce mortality in Shaoxing ducks.
Collapse
Affiliation(s)
- Yan Zhao
- College of Animal Science, Wenzhou Vocational College of Science & Technology, Wenzhou 325006, China
| | - Xiuhong Li
- College of Animal Science, Wenzhou Vocational College of Science & Technology, Wenzhou 325006, China
| | - Siwei Sun
- College of Animal Science, Wenzhou Vocational College of Science & Technology, Wenzhou 325006, China
| | - Li Chen
- Institute of Animal Husbandry & Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Junjie Jin
- College of Animal Science, Wenzhou Vocational College of Science & Technology, Wenzhou 325006, China
| | - Suzhen Liu
- College of Animal Science, Wenzhou Vocational College of Science & Technology, Wenzhou 325006, China
| | - Xianzhang Song
- College of Animal Science, Wenzhou Vocational College of Science & Technology, Wenzhou 325006, China
| | - Chunqin Wu
- College of Animal Science, Wenzhou Vocational College of Science & Technology, Wenzhou 325006, China
| | - Lizhi Lu
- College of Animal Science, Wenzhou Vocational College of Science & Technology, Wenzhou 325006, China.,Institute of Animal Husbandry & Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
8
|
Kumar H, Park W, Lim D, Srikanth K, Kim JM, Jia XZ, Han JL, Hanotte O, Park JE, Oyola SO. Whole metagenome sequencing of cecum microbiomes in Ethiopian indigenous chickens from two different altitudes reveals antibiotic resistance genes. Genomics 2019; 112:1988-1999. [PMID: 31759120 DOI: 10.1016/j.ygeno.2019.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/11/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022]
Abstract
We analyzed the whole genomes of cecum microbiomes of Ethiopian indigenous chickens from two distinct geographical zones: Afar (AF) district (Dulecha, 730 m above sea level) and Amhara (AM) district (Menz Gera Midir, 3300 m). Through metagenomic analysis we found that microbial populations were mainly dominated by Bacteroidetes and Firmicutes. We identified 2210 common genes in the two groups. LEfSe showed that the distribution of Coprobacter, Geobacter, Cronobacter, Alloprevotella, and Dysgonomonas were more abundant in AF than AM. Analyses using KEGG, eggNOG, and CAZy databases indicated that the pathways of metabolism, genetic information processing, environmental information processing, and cellular process were significantly enriched. Functional abundance was found to be associated with the nutrient absorption and microbial localization of indigenous chickens. We also investigated antibiotic resistant genes and found antibiotics like LSM, cephalosporin, and tetracycline were significantly more abundant in AF than AM.
Collapse
Affiliation(s)
- Himansu Kumar
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Republic of Korea
| | - Woncheoul Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Republic of Korea
| | - Dajeong Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Republic of Korea
| | - Krishnamoorthy Srikanth
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Xin-Zheng Jia
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, PR China; International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, PR China; International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), Nairobi, Kenya; Faculty of Medicine & Health Sciences, University of Nottingham, UK; International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Jong-Eun Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Republic of Korea.
| | - Samuel O Oyola
- International Livestock Research Institute (ILRI), Nairobi, Kenya.
| |
Collapse
|
9
|
Kumar H, Park W, Srikanth K, Choi BH, Cho ES, Lee KT, Kim JM, Kim K, Park J, Lim D, Park JE. Comparison of Bacterial Populations in the Ceca of Swine at Two Different Stages and their Functional Annotations. Genes (Basel) 2019; 10:E382. [PMID: 31137556 PMCID: PMC6562920 DOI: 10.3390/genes10050382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022] Open
Abstract
The microbial composition in the cecum of pig influences host health, immunity, nutrient digestion, and feeding requirements significantly. Advancements in metagenome sequencing technologies such as 16S rRNAs have made it possible to explore cecum microbial population. In this study, we performed a comparative analysis of cecum microbiota of crossbred Korean native pigs at two different growth stages (stage L = 10 weeks, and stage LD = 26 weeks) using 16S rRNA sequencing technology. Our results revealed remarkable differences in microbial composition, α and β diversity, and differential abundance between the two stages. Phylum composition analysis with respect to SILVA132 database showed Firmicutes to be present at 51.87% and 48.76% in stages L and LD, respectively. Similarly, Bacteroidetes were present at 37.28% and 45.98% in L and LD, respectively. The genera Prevotella, Anaerovibrio, Succinivibrio, Megasphaera were differentially enriched in stage L, whereas Clostridium, Terrisporobacter, Rikenellaceae were enriched in stage LD. Functional annotation of microbiome by level-three KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis revealed that glycine, serine, threonine, valine, leucine, isoleucine arginine, proline, and tryptophan metabolism were differentially enriched in stage L, whereas alanine, aspartate, glutamate, cysteine, methionine, phenylalanine, tyrosine, and tryptophan biosynthesis metabolism were differentially enriched in stage LD. Through machine-learning approaches such as LEfSe (linear discriminant analysis effect size), random forest, and Pearson's correlation, we found pathways such as amino acid metabolism, transport systems, and genetic regulation of metabolism are commonly enriched in both stages. Our findings suggest that the bacterial compositions in cecum content of pigs are heavily involved in their nutrient digestion process. This study may help to meet the demand of human food and can play significant roles in medicinal application.
Collapse
Affiliation(s)
- Himansu Kumar
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, RDA, Wanju 55365, Korea.
| | - Woncheol Park
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, RDA, Wanju 55365, Korea.
| | - Krishnamoorthy Srikanth
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, RDA, Wanju 55365, Korea.
| | - Bong-Hwan Choi
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, RDA, Wanju 55365, Korea.
| | - Eun-Seok Cho
- Swine Science Division, National Institute of Animal Science, RDA, Cheonan 31000, Korea.
| | - Kyung-Tai Lee
- Animal Genetics and Breeding Division, National Institute of Animal Science, RDA, Cheonan 31000, Korea.
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| | | | | | - Dajeong Lim
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, RDA, Wanju 55365, Korea.
| | - Jong-Eun Park
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, RDA, Wanju 55365, Korea.
| |
Collapse
|
10
|
He J, He Y, Pan D, Cao J, Sun Y, Zeng X. Associations of Gut Microbiota With Heat Stress-Induced Changes of Growth, Fat Deposition, Intestinal Morphology, and Antioxidant Capacity in Ducks. Front Microbiol 2019; 10:903. [PMID: 31105682 PMCID: PMC6498187 DOI: 10.3389/fmicb.2019.00903] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/09/2019] [Indexed: 01/20/2023] Open
Abstract
Accumulating evidence has revealed the dysbiosis of gut/fecal microbiota induced by heat stress (HS) in mammals and poultry. However, the effects of HS on microbiota communities in different intestinal segments of Cherry-Valley ducks (a widely used meat-type breed) and their potential associations with growth performances, fat deposition, intestinal morphology, and antioxidant capacity have not been well evaluated yet. In this study, room temperature (RT) of 25°C was considered as control, and RT at 32°C for 8 h per day was set as the HS treatment. After 3 weeks, the intestinal contents of jejunum, ileum, and cecum were harvested to investigate the microbiota composition variations by 16S ribosomal RNA amplicon sequencing. And the weight gain, adipose indices, intestinal morphology, and a certain number of serum biochemical parameters were also measured and analyzed. The results showed the microbial species at different levels differentially enriched in duck jejunum and cecum under HS, while no significant data were observed in ileum. HS also caused the intestinal morphological changes (villus height and the ratio of villus height to crypt depth) and the reductions of growth speed (daily gain), levels of serum triglyceride (TG) and total cholesterol, and antioxidant activity (higher malondialdehyde (MDA) content and lower total antioxidant). The higher abdominal fat content and serum glucose level were also observed in HS ducks. The Spearman correlation analysis indicated that in jejunum the phyla Firmicutes and Proteobacteria were associated with average daily gain, feed/gain, serum TG and MDA levels, and villus height/crypt depth (P < 0.05). The phylum Firmicutes and genus Acinetobacter were significantly associated with fat deposition and serum glucose level (P < 0.05). The genus Lactobacillus was positively associated with serum total antioxidant (P < 0.05), while some other microbial species were found negatively associated, including order Pseudomonadales, genera Acinetobacter, and unidentified_Mitochondria. However, no significant correlations were observed in cecum. These findings imply the potential roles of duck gut microbiota in the intestinal injuries, fat deposition, and reductions of growth speed and antioxidant capacity caused by HS, although the molecular mechanisms requires further investigation.
Collapse
Affiliation(s)
- Jun He
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yuxin He
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China.,Department of Food Science and Nutrition, Nanjing Normal University, Nanjing, China
| | - Jinxuan Cao
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yangying Sun
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Xiaoqun Zeng
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| |
Collapse
|
11
|
Wang W, Zheng S, Li L, Yang Y, Liu Y, Wang A, Sharshov K, Li Y. Comparative metagenomics of the gut microbiota in wild greylag geese (Anser anser) and ruddy shelducks (Tadorna ferruginea). Microbiologyopen 2018; 8:e00725. [PMID: 30296008 PMCID: PMC6528571 DOI: 10.1002/mbo3.725] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 12/31/2022] Open
Abstract
Gut microbiome contributes to host health by maintaining homeostasis, increasing digestive efficiency, and facilitating the development of immune system. Wild greylag geese (Anser anser) and ruddy shelducks (Tadorna ferruginea), migrating along the central Asian flyway, appear to be one of the most popular species in the rare birds rearing industries of China. However, the structure and function of the gut microbial communities associated with these two bird species remain poorly understood. Here, for the first time, we compared gut metagenomes from greylag geese to ruddy shelducks and investigated the similarities and differences between these two bird species in detail. Taxonomic classifications revealed the top three bacterial phyla, Firmicutes, Proteobacteria, and Fusobacteria, in both greylag geese and ruddy shelducks. Furthermore, between the two species, 12 bacterial genera were found to be more abundant in ruddy shelducks and 41 genera were significantly higher in greylag geese. A total of 613 genera (approximately 70%) were found to be present in both groups. Metabolic categories related to carbohydrate metabolism, metabolism of cofactors and vitamins, lipid metabolism, amino acid metabolism, and glycan biosynthesis and metabolism were significantly more abundant in ruddy shelducks, while greylag geese were enriched in nucleotide metabolism and energy metabolism. The herbivorous greylag geese gut microbiota harbored more carbohydrate‐active enzymes than omnivorous ruddy shelducks. In our study, a range of antibiotic resistance categories were also identified in the gut microbiota of greylag geese and ruddy shelducks. In addition to providing a better understanding of the composition and function of wild birds gut microbiome, this comparative study provides reference values of the artificial domestication of these birds.
Collapse
Affiliation(s)
- Wen Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai, China
| | - Sisi Zheng
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, Qinghai, China
| | - Laixing Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, Qinghai, China
| | - Yongsheng Yang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, Qinghai, China
| | - Yingbao Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Aizhen Wang
- College of Eco-Environmental Engineering, Qinghai University, Xi'ning, Qinghai, China
| | - Kirill Sharshov
- Research Institute of Experimental and Clinical Medicine, Novosibirsk, Russia
| | - Yao Li
- College of Eco-Environmental Engineering, Qinghai University, Xi'ning, Qinghai, China
| |
Collapse
|
12
|
Somnark P, Chyerochana N, Mongkolsuk S, Sirikanchana K. Performance evaluation of Bacteroidales genetic markers for human and animal microbial source tracking in tropical agricultural watersheds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:100-110. [PMID: 29414329 DOI: 10.1016/j.envpol.2018.01.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/21/2017] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Microbial source tracking (MST) DNA-based assays have been used to successfully solve fecal pollution problems in many countries, particularly in developed nations. However, their application in developing countries has been limited but continues to increase. In this study, sixteen endpoint and quantitative PCR (qPCR) assays targeting universal and human-, swine-, and cattle-specific Bacteroidales gene markers were modified for endpoint PCR, evaluated for their performance with sewage and fecal samples from the Tha Chin watershed and subsequently validated with samples from the Chao Phraya watershed, Thailand. Sample sizes of 81 composite samples (from over 1620 individual samples) of farm animals of each type as well as 19 human sewage samples from the Tha Chin watershed were calculated using a stratified random sampling design to achieve a 90% confidence interval and an expected prevalence (i.e., desired assay's sensitivity) of 0.80. The best universal and human-, swine-, and cattle-specific fecal markers were BacUni EP, HF183/BFDrev EP, Pig-2-Bac EP, and Bac3 assays, respectively. The detection limits for these assays ranged from 30 to 3000 plasmid copies per PCR. The positive predictive values were high in universal and swine- and cattle-specific markers (85-100%), while the positive predictive value of the human-specific assay was 52.2%. The negative predictive values in all assays were relatively high (90.8-100%). A suite of PCR assays in Thailand was established for potential MST use in environmental waters, which supports the worldwide applicability of Bacteroidales gene markers. This study also emphasizes the importance of using a proper sample size in assessing the performance of MST markers in a new geographic region.
Collapse
Affiliation(s)
- Pornjira Somnark
- Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Lak Si, Bangkok, Thailand
| | - Natcha Chyerochana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand.
| |
Collapse
|
13
|
Tang J, Fang Q, Lu M, Shao R, Shen J, Lu L, Niu D. The Effect of Hydrated Sodium Calcium Aluminosilicate on Fatty Liver and the Composition of the Intestinal Microbiota in Overfed Landes Geese. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2018. [DOI: 10.1590/1806-9061-2017-0499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- J Tang
- Zhejiang University, China; Zhejiang Academy of Agricultural Sciences, China
| | - Q Fang
- Zhejiang Academy of Agricultural Sciences, China
| | - M Lu
- Kaier Environmental Technology Co., Ltd. of Hangzhou, China
| | - R Shao
- Rongyao goose industry Co., Ltd of Changxing, China
| | - J Shen
- Zhejiang Academy of Agricultural Sciences, China
| | - L Lu
- Zhejiang Academy of Agricultural Sciences, China
| | - D Niu
- Zhejiang University, China
| |
Collapse
|
14
|
Fan L, Shuai J, Zeng R, Mo H, Wang S, Zhang X, He Y. Validation and application of quantitative PCR assays using host-specific Bacteroidales genetic markers for swine fecal pollution tracking. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1569-1577. [PMID: 28967572 DOI: 10.1016/j.envpol.2017.09.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
Genome fragment enrichment (GFE) method was applied to identify host-specific bacterial genetic markers that differ among different fecal metagenomes. To enrich for swine-specific DNA fragments, swine fecal DNA composite (n = 34) was challenged against a DNA composite consisting of cow, human, goat, sheep, chicken, duck and goose fecal DNA extracts (n = 83). Bioinformatic analyses of 384 non-redundant swine enriched metagenomic sequences indicated a preponderance of Bacteroidales-like regions predicted to encode metabolism-associated, cellular processes and information storage and processing. After challenged against fecal DNA extracted from different animal sources, four sequences from the clone libraries targeting two Bacteroidales- (genes 1-38 and 3-53), a Clostridia- (gene 2-109) as well as a Bacilli-like sequence (gene 2-95), respectively, showed high specificity to swine feces based on PCR analysis. Host-specificity and host-sensitivity analysis confirmed that oligonucleotide primers and probes capable of annealing to select Bacteroidales-like sequences (1-38 and 3-53) exhibited high specificity (>90%) in quantitative PCR assays with 71 fecal DNAs from non-target animal sources. The two assays also demonstrated broad distributions of corresponding genetic markers (>94% positive) among 72 swine feces. After evaluation with environmental water samples from different areas, swine-targeted assays based on two Bacteroidales-like GFE sequences appear to be suitable quantitative tracing tools for swine fecal pollution.
Collapse
Affiliation(s)
- Lihua Fan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jiangbing Shuai
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou, China.
| | - Ruoxue Zeng
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou, China
| | - Hongfei Mo
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou, China
| | - Suhua Wang
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou, China
| | - Xiaofeng Zhang
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou, China
| | - Yongqiang He
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou, China
| |
Collapse
|
15
|
Mantha S, Anderson A, Acharya SP, Harwood VJ, Weidhaas J. Transport and attenuation of Salmonella enterica, fecal indicator bacteria and a poultry litter marker gene are correlated in soil columns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 598:204-212. [PMID: 28441599 DOI: 10.1016/j.scitotenv.2017.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 06/07/2023]
Abstract
Millions of tons of fecal-contaminated poultry litter are applied to U.S. agricultural fields annually. Precipitation and irrigation facilitate transport of fecal-derived pathogens and fecal indicator bacteria (FIB) to groundwater. The goal of this study was to compare transport of pathogens, FIB, and a microbial source tracking marker gene for poultry litter (LA35) in a simulated soil-to-groundwater system. Nine laboratory soil columns containing four different soil types were used to evaluate microbial transport to groundwater via infiltration. Quantitative polymerase chain reaction was used to monitor Salmonella enterica Typhimurium, Escherichia coli, Enterococcus spp., Brevibacterium sp. LA35 and Bacteroidales leached from soil columns inoculated with poultry litter. S. enterica was correlated with LA35 poultry litter marker gene and FIB concentrations in column soils containing organic matter, but not in acid washed sands. In contrast, S. enterica was found to correlate with LA35 and FIB in the leachate from columns containing sand, but not with leachate from organic soil columns. The majority of recovered DNA was found in leachate of predominately sandy soil columns, and in the soil of loamy columns. At least 90% of the DNA retained in soils for each microbial target was found in the top 3cm of the column. These studies suggest that poultry litter associated pathogens and FIB are rapidly released from litter, but are influenced by complex attenuation mechanisms during infiltration, including soil type. This study advances our understanding of the potential for subsurface transport of poultry litter associated pathogens and FIB, and support the use of the LA35 marker gene for evaluating poultry litter impacts on groundwater.
Collapse
Affiliation(s)
- Sirisha Mantha
- Civil and Environmental Engineering, West Virginia University, United States
| | - Angela Anderson
- Civil and Environmental Engineering, West Virginia University, United States
| | | | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, United States
| | - Jennifer Weidhaas
- Civil and Environmental Engineering, University of Utah, 110 Central Campus Drive, Salt Lake City, UT 84112, United States.
| |
Collapse
|
16
|
Novakova J, Vlkova E, Salmonova H, Pechar R, Rada V, Kokoska L. Anticlostridial agent 8-hydroxyquinoline improves the isolation of faecal bifidobacteria on modified Wilkins-Chalgren agar with mupirocin. Lett Appl Microbiol 2016; 62:330-5. [PMID: 26849418 DOI: 10.1111/lam.12552] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 01/05/2016] [Accepted: 01/30/2016] [Indexed: 12/30/2022]
Abstract
UNLABELLED The need for suitable selective cultivation media for the isolation of Bifidobacterium spp. continues to be a real concern in the field of intestinal microbiology. Isolation of bifidobacteria from human and animal faecal samples using selective agar plating may be problematic especially in samples with increased clostridial counts than bifidobacterial counts. Due to the absence of anticlostridial agents in existing selective media, clostridia can displace bifidobacteria resulting in incorrect estimation of their counts. Therefore, we supplemented the existing selective medium 'modified Wilkins Chalgren agar with mupirocin' (MWM) with 90 mg l(-1) of 8-hydroxyquinoline (8HQ), which was recently proved to act selectively against clostridia. The newly composed 'modified Wilkins-Chalgren agar with 8HQ' (MWMQ) was tested on pure bifidobacterial and clostridial strains, their mixtures, and using faecal samples of mammalian origin; its selectivity was evaluated by genus-specific identification of isolates. The results demonstrated that the presence of 8HQ in this agar eliminated the growth of nonbifidobacterial strains on MWMQ compared to that on MWM, whereas the recovery of bifidobacterial counts was at satisfactory levels. In conclusion, MWMQ could be recommended for bifidobacterial isolation from human and animal faeces especially when bifidobacteria are not numerically dominant and there are chances of clostridial contamination. SIGNIFICANCE AND IMPACT OF THE STUDY Routine isolation of bifidobacteria from mammalian faeces does not use a reliable selective agar with an anticlostridial agent. Overgrowth of clostridia may result in incorrect estimation of bifidobacterial counts. Thus, in order to improve the selectivity of existing media for bifidobacterial isolation, we chose the modified Wilkins-Chalgren agar with mupirocin and supplemented it with 8-hydroxyquinoline (8HQ), a molecule that shows anticlostridial activity without affecting the growth of bifidobacteria. This newly composed medium showed enhanced selectivity and specificity compared to the original medium and therefore, can be recommended for the isolation of bifidobacteria from mammal faeces.
Collapse
Affiliation(s)
- J Novakova
- Department of Quality of Agricultural Products, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - E Vlkova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - H Salmonova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - R Pechar
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - V Rada
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - L Kokoska
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
17
|
Alsalah D, Al-Jassim N, Timraz K, Hong PY. Assessing the Groundwater Quality at a Saudi Arabian Agricultural Site and the Occurrence of Opportunistic Pathogens on Irrigated Food Produce. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:12391-411. [PMID: 26445052 PMCID: PMC4626975 DOI: 10.3390/ijerph121012391] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/15/2015] [Accepted: 09/22/2015] [Indexed: 11/16/2022]
Abstract
This study examines the groundwater quality in wells situated near agricultural fields in Saudi Arabia. Fruits (e.g., tomato and green pepper) irrigated with groundwater were also assessed for the occurrence of opportunistic pathogens to determine if food safety was compromised by the groundwater. The amount of total nitrogen in most of the groundwater samples exceeded the 15 mg/L permissible limit for agricultural irrigation. Fecal coliforms in densities > 12 MPN/100 mL were detected in three of the groundwater wells that were in close proximity to a chicken farm. These findings, coupled with qPCR-based fecal source tracking, show that groundwater in wells D and E, which were nearest to the chicken farm, had compromised quality. Anthropogenic contamination resulted in a shift in the predominant bacterial phyla within the groundwater microbial communities. For example, there was an elevated presence of Proteobacteria and Cyanobacteria in wells D and E but a lower overall microbial richness in the groundwater perturbed by anthropogenic contamination. In the remaining wells, the genus Acinetobacter was detected at high relative abundance ranging from 1.5% to 48% of the total groundwater microbial community. However, culture-based analysis did not recover any antibiotic-resistant bacteria or opportunistic pathogens from these groundwater samples. In contrast, opportunistic pathogenic Enterococcus faecalis and Pseudomonas aeruginosa were isolated from the fruits irrigated with the groundwater from wells B and F. Although the groundwater was compromised, quantitative microbial risk assessment suggests that the annual risk incurred from accidental consumption of E. faecalis on these fruits was within the acceptable limit of 10−4. However, the annual risk arising from P. aeruginosa was 9.55 × 10−4, slightly above the acceptable limit. Our findings highlight that the groundwater quality at this agricultural site in western Saudi Arabia is not pristine and that better agricultural management practices are needed alongside groundwater treatment strategies to improve food safety.
Collapse
Affiliation(s)
- Dhafer Alsalah
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Nada Al-Jassim
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Kenda Timraz
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Pei-Ying Hong
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
18
|
Ridley CM, Jamieson RC, Truelstrup Hansen L, Yost CK, Bezanson GS. Baseline and storm event monitoring of Bacteroidales marker concentrations and enteric pathogen presence in a rural Canadian watershed. WATER RESEARCH 2014; 60:278-288. [PMID: 24862956 DOI: 10.1016/j.watres.2014.04.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 04/14/2014] [Accepted: 04/19/2014] [Indexed: 06/03/2023]
Abstract
Bacteroidales 16S rRNA gene markers were evaluated for their use as a microbial source tracking tool in a well characterized 750 ha agricultural watershed in Nova Scotia, Canada. Water quality monitoring was conducted following the validation of host-specific and universal Bacteroidales (AllBac) markers for their proficiency in this particular geographic region, which provided further evidence that these markers are geographically stable. Increasing Escherichia coli concentrations were positively correlated (p < 0.01) with concentrations of the AllBac marker in water samples, suggesting that this universal marker is more suited as a positive DNA control rather than as an indicator of recent fecal contamination. Ruminant (BacR) and bovine (CowM2) specific marker detection was associated with increased runoff due to precipitation in sub-watersheds putatively impacted by cattle farming, demonstrating that the BacR and CowM2 markers can be used to detect the recent introduction of fecal matter from cattle farming activities during rainfall events. However, the human associated marker (BacH) was only detected once in spite of numerous on-site residential wastewater treatment systems in the watershed, suggesting that this assay is not sensitive enough to detect this type of human sewage source. E. coli O157:H7 and Salmonella spp. DNA was not detected in any of the 149 watershed samples; however, 114 (76.5%) of those samples tested positive for Campylobacter spp. No significant correlation (p > 0.05) was found between Campylobacter spp. presence and either E. coli or AllBac marker levels. Further studies should be conducted to assess the origins of Campylobacter spp. in these types of watersheds, and to quantify pathogen cell numbers to allow for a human health risk assessment.
Collapse
Affiliation(s)
- C M Ridley
- Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, NS, Canada B3H 4R2
| | - R C Jamieson
- Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, NS, Canada B3H 4R2.
| | - L Truelstrup Hansen
- Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, NS, Canada B3H 4R2
| | - C K Yost
- Department of Biology, University of Regina, LB 244, 3737 Wascana Parkway, Regina, SK, Canada S4S 0A2
| | - G S Bezanson
- Agriculture and Agri-Food Canada, Atlantic Food and Horticulture Research Centre, 32 Main Street, Kentville, NS, Canada B4N 1J5
| |
Collapse
|
19
|
Weidhaas J, Garner E, Basden T, Harwood VJ. Run-off studies demonstrate parallel transport behaviour for a marker of poultry fecal contamination and Staphylococcus aureus. J Appl Microbiol 2014; 117:417-29. [PMID: 24833433 DOI: 10.1111/jam.12543] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/24/2014] [Accepted: 05/09/2014] [Indexed: 11/29/2022]
Abstract
AIMS To determine whether poultry litter marker gene LA35 is correlated with pathogens and fecal indicator bacteria (FIB) in run-off from poultry litter-amended plots. METHODS AND RESULTS A rainfall simulator with various vegetative filter strip lengths was employed to evaluate the correlation of a microbial source tracking (MST) marker for poultry feces/litter (the 16S rRNA gene of Brevibacterium sp. LA35 [LA35] measured by quantitative PCR) with pathogens and FIB in run-off. LA35 was correlated with Staphylococcus aureus, Escherichia coli, Enterococcus spp. and Bacteroidales levels. Salmonella was present at low concentration in litter, but became undetectable by qPCR in run-off. Escherichia coli, LA35 and Staph. aureus exhibited mass-based first flush behaviour in the run-off. CONCLUSIONS Correlation of LA35 with FIB and pathogens in run-off from poultry litter-amended fields suggest comparable transport mechanisms and that LA35 is a useful tracer for harmful bacteria in the environment released from poultry litter. SIGNIFICANCE AND IMPACT OF THE STUDY To protect human health, an effective marker for poultry fecal contamination should exhibit similar fate and transport characteristics compared to pathogens. This study is among the first to demonstrate such a relationship in run-off for a MST marker.
Collapse
Affiliation(s)
- J Weidhaas
- Civil and Environmental Engineering, West Virginia University, Morgantown, WV, USA
| | | | | | | |
Collapse
|
20
|
Ryu H, Elk M, Khan IUH, Harwood VJ, Molina M, Edge TA, Domingo JS. Comparison of two poultry litter qPCR assays targeting the 16S rRNA gene of Brevibacterium sp. WATER RESEARCH 2014; 48:613-621. [PMID: 24169514 DOI: 10.1016/j.watres.2013.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/18/2013] [Accepted: 10/06/2013] [Indexed: 06/02/2023]
Abstract
Chicken feces commonly contain human pathogens and are also important sources of fecal pollution in environmental waters. Consequently, methods that can detect chicken fecal pollution are needed in public health and environmental monitoring studies. In this study, we compared a previously developed SYBR green qPCR assay (LA35) to a novel TaqMan qPCR assay (CL) for the environmental detection of poultry-associated fecal pollution. We tested both assays against chicken litter (n = 40), chicken fecal samples (n = 186), non-chicken fecal sources (n = 484), and environmental water samples (n = 323). Most chicken litter samples (i.e., ≥ 98%) were positive for both assays with relatively high signal intensities, whereas only 23% and 12% of poultry fecal samples (n = 186) were positive with the LA35 and the CL assays, respectively. Data using fecal samples from non-target animal species showed that the assays are highly host-associated (≥ 95%). Bayesian statistical models showed that the two assays are associated with relatively low probability of false-positive and false-negative signals in water samples. The CL marker had a lower prevalence than the LA35 assay when tested against environmental water samples (i.e., 21% vs. 31% positive signals). However, by combining the results from the two assays the detection levels increased to 41%, suggesting that using multiple assays can improve the detection of chicken-fecal pollution in environmental waters.
Collapse
Affiliation(s)
- Hodon Ryu
- National Risk Management Research Laboratory, Cincinnati, OH, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Metaproteomics analysis reveals the adaptation process for the chicken gut microbiota. Appl Environ Microbiol 2013; 80:478-85. [PMID: 24212578 DOI: 10.1128/aem.02472-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The animal gastrointestinal tract houses a large microbial community, the gut microbiota, that confers many benefits to its host, such as protection from pathogens and provision of essential metabolites. Metagenomic approaches have defined the chicken fecal microbiota in other studies, but here, we wished to assess the correlation between the metagenome and the bacterial proteome in order to better understand the healthy chicken gut microbiota. Here, we performed high-throughput sequencing of 16S rRNA gene amplicons and metaproteomics analysis of fecal samples to determine microbial gut composition and protein expression. 16 rRNA gene sequencing analysis identified Clostridiales, Bacteroidaceae, and Lactobacillaceae species as the most abundant species in the gut. For metaproteomics analysis, peptides were generated by using the Fasp method and subsequently fractionated by strong anion exchanges. Metaproteomics analysis identified 3,673 proteins. Among the most frequently identified proteins, 380 proteins belonged to Lactobacillus spp., 155 belonged to Clostridium spp., and 66 belonged to Streptococcus spp. The most frequently identified proteins were heat shock chaperones, including 349 GroEL proteins, from many bacterial species, whereas the most abundant enzymes were pyruvate kinases, as judged by the number of peptides identified per protein (spectral counting). Gene ontology and KEGG pathway analyses revealed the functions and locations of the identified proteins. The findings of both metaproteomics and 16S rRNA sequencing analyses are discussed.
Collapse
|
22
|
Shen Z, Duan C, Zhang C, Carson A, Xu D, Zheng G. Using an intervening sequence of Faecalibacterium 16S rDNA to identify poultry feces. WATER RESEARCH 2013; 47:6415-6422. [PMID: 24011842 DOI: 10.1016/j.watres.2013.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 06/02/2023]
Abstract
This study was designed to identify poultry feces-specific marker(s) within sequences of Faecalibacterium 16S rDNA for detecting poultry fecal pollution in water. Bioinformatics tools were used in the comparative analysis of 7,458 sequences of Faecalibacterium 16S rDNA, reportedly associated with various poultry (chicken and turkey) and animal species. One intervening sequence (IVS) within between the hypervariable region 1 and the conserved region 2, designated as IVS-p, was found to be unique to poultry feces. Based on this sequence, a PCR assay (PCR-p) was developed. The PCR-p produced an amplicon of 132 bp only in the test when fecal or wastewater samples from poultry were used, but not when using fecal or wastewater samples from other sources. The non-poultry sources included feces of beef or dairy cattle, dog, horse, human, domestic or wild geese, seagull, sheep, swine, and wild turkey. These data indicate that IVS-p may prove to be a useful genetic marker for the specific identification of poultry fecal pollution in environmental waterways. Furthermore, results of data mining and PCR assay indicate that the IVS-p may have a broad geographic distribution. This report represents initial evidence of the potential utility of ribosomal intervening sequences as genetic markers for tracking host sources of fecal pollution in waterways.
Collapse
Affiliation(s)
- Zhenyu Shen
- Department of Agriculture and Environmental Sciences, Lincoln University, 904 Chestnut Street, Jefferson City, MO 65101, USA
| | | | | | | | | | | |
Collapse
|
23
|
Weidhaas J, Lipscomb E. A new method for tracking poultry litter in the Potomac Basin headwaters of West Virginia. J Appl Microbiol 2013; 115:445-54. [PMID: 23611303 DOI: 10.1111/jam.12231] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 11/30/2022]
Affiliation(s)
- J. Weidhaas
- Civil and Environmental Engineering; West Virginia University; Morgantown WV USA
| | - E. Lipscomb
- Civil and Environmental Engineering; West Virginia University; Morgantown WV USA
| |
Collapse
|
24
|
Lee CS, Lee J. Application of host-specific source-tracking tools for rapid identification of fecal contamination in fresh produce by humans and livestock. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:1089-96. [PMID: 22936295 DOI: 10.1002/jsfa.5855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Fecal contamination in fresh produce is a public health concern because it may contain human pathogens. We introduced host-specific quantitative real-time polymerase chain reaction (qPCR) assays for the rapid detection and identification of fecal contamination sources from humans and farm animals (cow, pig, chicken) in fresh produce. Each composite fecal sample was spiked on lettuce at two contamination levels (0.2 mg or 2 mg feces g⁻¹), followed by qPCR assays for detecting each host-specific genetic marker: BoBac (cow); PF163 (pig); CP3-49 (chicken); and HF183 and gyrB (human). Two commercial DNA extraction kits were compared to evaluate DNA recovery yields and removal of PCR inhibition. Sketa2 assay was conducted to assess the presence of PCR inhibition in the contaminated lettuce. RESULTS All the qPCR assays yielded reliable detection from contaminated lettuce (2 mg feces g⁻¹), where their target gene numbers were 1.5-5.0 × 10³ (HF183), 0.8-2.2 × 10³ (gyrB), 0.6-1.6 × 10³ (BoBac), 1.6-3.0 × 10³ (CP3-49) and 1.1-2.2 × 10³ (PF163) copies g⁻¹ of lettuce. Among the two extraction kits, QIAamp DNA Stool Kit resulted in 2-3 times higher sensitivity and 20% less PCR inhibition than the PowerFood™ kit. CONCLUSION This study provides information on the optimized host-specific qPCR assay in identifying sources of fecal contamination in fresh produce and is useful for tracking the contamination source and improving agricultural practice.
Collapse
Affiliation(s)
- Chang Soo Lee
- College of Public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
25
|
Krentz CA, Prystajecky N, Isaac-Renton J. Identification of fecal contamination sources in water using host-associated markers. Can J Microbiol 2013; 59:210-20. [DOI: 10.1139/cjm-2012-0618] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In British Columbia, Canada, drinking water is tested for total coliforms and Escherichia coli, but there is currently no routine follow-up testing to investigate fecal contamination sources in samples that test positive for indicator bacteria. Reliable microbial source tracking (MST) tools to rapidly test water samples for multiple fecal contamination markers simultaneously are currently lacking. The objectives of this study were (i) to develop a qualitative MST tool to identify fecal contamination from different host groups, and (ii) to evaluate the MST tool using water samples with evidence of fecal contamination. Singleplex and multiplex polymerase chain reaction (PCR) were used to test (i) water from polluted sites and (ii) raw and drinking water samples for presence of bacterial genetic markers associated with feces from humans, cattle, seagulls, pigs, chickens, and geese. The multiplex MST assay correctly identified suspected contamination sources in contaminated waterways, demonstrating that this test may have utility for heavily contaminated sites. Most raw and drinking water samples analyzed using singleplex PCR contained at least one host-associated marker. Singleplex PCR was capable of detecting host-associated markers in small sample volumes and is therefore a promising tool to further analyze water samples submitted for routine testing and provide information useful for water quality management.
Collapse
Affiliation(s)
- Corinne A. Krentz
- The University of British Columbia, Room G227, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Natalie Prystajecky
- British Columbia Public Health Microbiology and Reference Laboratory, Provincial Health Service Authority, 655 W 12th avenue, Vancouver, BC V5Z 4R4, Canada
| | - Judith Isaac-Renton
- The University of British Columbia, Room G227, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
- British Columbia Public Health Microbiology and Reference Laboratory, Provincial Health Service Authority, 655 W 12th avenue, Vancouver, BC V5Z 4R4, Canada
| |
Collapse
|
26
|
Tracking the primary sources of fecal pollution in a tropical watershed in a one-year study. Appl Environ Microbiol 2013; 79:1689-96. [PMID: 23291547 DOI: 10.1128/aem.03070-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A study was conducted to determine the primary sources of fecal pollution in a subtropical watershed using host-specific assays developed in temperate regions. Water samples (n = 534) from 10 different sites along the Rio Grande de Arecibo (RGA) watershed were collected mostly on a weekly basis (54 sampling events) during 13 months. DNA extracts from water samples were used in PCR assays to determine the occurrence of fecal bacteria (Bacteroidales, Clostridium coccoides, and enterococci) and human-, cattle-, swine-, and chicken-specific fecal sources. Feces from 12 different animals (n = 340) and wastewater treatment samples (n = 16) were analyzed to determine the specificity and distribution of host-specific assays. The human-specific assay (HF183) was found to be highly specific, as it did not cross-react with nontarget samples. The cattle marker (CF128) cross-reacted to some extent with swine, chicken, and turkeys and was present in 64% of the cattle samples tested. The swine assays showed poor host specificity, while the three chicken assays showed poor host distribution. Differences in the detection of host-specific markers were noted per site. While human and cattle assays showed moderate average detection rates throughout the watershed, areas impacted by wastewater treatment plants and cattle exhibited the highest prevalence of these markers. When conditional probability for positive signals was determined for each of the markers, the results indicated higher confidence levels for the human assay and lower levels for all the other assays. Overall, the results from this study suggest that additional assays are needed, particularly to track cattle, chicken, and swine fecal pollution sources in the RGA watershed. The results also suggest that the geographic stability of genetic markers needs to be determined prior to conducting applied source tracking studies in tropical settings.
Collapse
|
27
|
Tambalo DD, Boa T, Liljebjelke K, Yost CK. Evaluation of two quantitative PCR assays using Bacteroidales and mitochondrial DNA markers for tracking dog fecal contamination in waterbodies. J Microbiol Methods 2012; 91:459-67. [DOI: 10.1016/j.mimet.2012.09.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/20/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
|
28
|
Tambalo DD, Fremaux B, Boa T, Yost CK. Persistence of host-associated Bacteroidales gene markers and their quantitative detection in an urban and agricultural mixed prairie watershed. WATER RESEARCH 2012; 46:2891-2904. [PMID: 22463862 DOI: 10.1016/j.watres.2012.02.048] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 02/27/2012] [Accepted: 02/29/2012] [Indexed: 05/31/2023]
Abstract
Microbial source tracking is an emerging tool developed to protect water sources from faecal pollution. In this study, we evaluated the suitability of real time-quantitative PCR (qPCR) Taqman assays developed for detection of host-associated Bacteroidales markers in a prairie watershed. The qPCR primers and probes used in this study exhibited high accuracy (88-96% sensitivity and ≥ 99% host specificity) in detecting Bacteroidales spp. that are associated with faeces from humans, ruminants, bovines, and horses. The ruminant- and human-associated markers were also found in high concentrations within individual faecal samples, ranging from 3.4 to 7.3 log(10) marker copy numberg(-1) of individual host faeces. Following validation of host sensitivity and specificity, the host-associated Bacteroidales markers were detected in the Qu'Appelle Valley watershed of Saskatchewan, Canada which experiences a diversity of anthropogenic inputs. Concentrations of the ruminant marker were well-correlated with proximity to cattle operations and there was a correlation between the marker and Escherichia coli concentrations at these sites. Low concentrations of the human faecal marker were measured throughout the sampling sites, and may indicate a consistent influx of human faecal pollution into the watershed area. Persistence of each of the Bacteroidales host-associated marker was also studied in situ. The results indicated that the markers persist for shorter periods of time (99% decay in <8 days) compared with the conventional E. coli marker (99% decay in >15 days), suggesting they are effective at detecting recent faecal contamination events. The levels of Bacteroidales markers and E. coli counts did not correlate with the presence of the pathogenic bacteria, Salmonella spp. or Campylobacter spp. detected in the Qu'Appelle Valley. Collectively, the results obtained in this study demonstrated that the qPCR approach for detecting host-associated Bacteroidales spp. markers can be a useful tool in helping to determine host-specific impacts of faecal pollution into a prairie watershed.
Collapse
Affiliation(s)
- Dinah D Tambalo
- Biology Department, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, Canada
| | | | | | | |
Collapse
|
29
|
Microbial quality of tropical inland waters and effects of rainfall events. Appl Environ Microbiol 2012; 78:5160-9. [PMID: 22610428 DOI: 10.1128/aem.07773-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Novel markers of fecal pollution in tropical waters are needed since conventional methods recommended for other geographical regions may not apply. To address this, the prevalence of thermotolerant coliforms, enterococci, coliphages, and enterophages was determined by culture methods across a watershed. Additionally, human-, chicken-, and cattle-specific PCR assays were used to identify potential fecal pollution sources in this watershed. An enterococcus quantitative PCR (qPCR) assay was tested and correlated with culture methods at three sites since water quality guidelines could incorporate this technique as a rapid detection method. Various rainfall events reported before sample collection at three sites were considered in the data analyses. Thermotolerant coliforms, enterococci, coliphages, and enterophages were detected across the watershed. Human-specific Bacteroides bacteria, unlike the cattle- and chicken-specific bacteria, were detected mostly at sites with the corresponding fecal impact. Enterococci were detected by qPCR as well, but positive correlations with the culture method were noted at two sites, suggesting that either technique could be used. However, no positive correlations were noted for an inland lake tested, suggesting that qPCR may not be suitable for all water bodies. Concentrations of thermotolerant coliforms and bacteriophages were consistently lower after rainfall events, pointing to a possible dilution effect. Rainfall positively correlated with enterococci detected by culturing and qPCR, but this was not the case for the inland lake. The toolbox of methods and correlations presented here could be potentially applied to assess the microbial quality of various water types.
Collapse
|
30
|
Development and evaluation of a quantitative PCR assay targeting sandhill crane (Grus canadensis) fecal pollution. Appl Environ Microbiol 2012; 78:4338-45. [PMID: 22492437 DOI: 10.1128/aem.07923-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
While the microbial water quality in the Platte River is seasonally impacted by excreta from migrating cranes, there are no methods available to study crane fecal contamination. Here we characterized microbial populations in crane feces using phylogenetic analysis of 16S rRNA gene fecal clone libraries. Using these sequences, a novel crane quantitative PCR (Crane1) assay was developed, and its applicability as a microbial source tracking (MST) assay was evaluated by determining its host specificity and detection ability in environmental waters. Bacteria from crane excreta were dominated by bacilli and proteobacteria, with a notable paucity of sequences homologous to Bacteroidetes and Clostridia. The Crane1 marker targeted a dominant clade of unclassified Lactobacillales sequences closely related to Catellicoccus marimammalium. The host distribution of the Crane1 marker was relatively high, being positive for 69% (66/96) of the crane excreta samples tested. The assay also showed high host specificity, with 95% of the nontarget fecal samples (i.e., n = 553; 20 different free-range hosts) being negative. Of the presumed crane-impacted water samples (n = 16), 88% were positive for the Crane1 assay, whereas none of the water samples not impacted by cranes were positive (n = 165). Bayesian statistical models of the Crane1 MST marker demonstrated high confidence in detecting true-positive signals and a low probability of false-negative signals from environmental water samples. Altogether, these data suggest that the newly developed marker could be used in environmental monitoring studies to study crane fecal pollution dynamics.
Collapse
|
31
|
Genetic markers for rapid PCR-based identification of gull, Canada goose, duck, and chicken fecal contamination in water. Appl Environ Microbiol 2011; 78:503-10. [PMID: 22081573 DOI: 10.1128/aem.05734-11] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avian feces contaminate waterways but contribute fewer human pathogens than human sources. Rapid identification and quantification of avian contamination would therefore be useful to prevent overestimation of human health risk. We used subtractive hybridization of PCR-amplified gull fecal 16S RNA genes to identify avian-specific fecal rRNA gene sequences. The subtracters were rRNA genes amplified from human, dog, cat, cow, and pig feces. Recovered sequences were related to Enterobacteriaceae (47%), Helicobacter (26%), Catellicoccus (11%), Fusobacterium (11%), and Campylobacter (5%). Three PCR assays, designated GFB, GFC, and GFD, were based on recovered sequence fragments. Quantitative PCR assays for GFC and GFD were developed using SYBR green. GFC detected down to 0.1 mg gull feces/100 ml (corresponding to 2 gull enterococci most probable number [MPN]/100 ml). GFD detected down to 0.1 mg chicken feces/100 ml (corresponding to 13 Escherichia coli MPN/100 ml). GFB and GFC were 97% and 94% specific to gulls, respectively. GFC cross-reacted with 35% of sheep samples but occurred at about 100,000 times lower concentrations in sheep. GFD was 100% avian specific and occurred in gulls, geese, chickens, and ducks. In the United States, Canada, and New Zealand, the three markers differed in their geographic distributions but were found across the range tested. These assays detected four important bird groups contributing to fecal contamination of waterways: gulls, geese, ducks, and chickens. Marker distributions across North America and in New Zealand suggest that they will have broad applicability in other parts of the world as well.
Collapse
|
32
|
Influence of antimicrobial feed additives on broiler commensal posthatch gut microbiota development and performance. Appl Environ Microbiol 2011; 77:3380-90. [PMID: 21441326 DOI: 10.1128/aem.02300-10] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The effects of avilamycin, zinc bacitracin, and flavophospholipol on broiler gut microbial community colonization and bird performance in the first 17 days posthatch were investigated. Significant differences in gut microbiota associated with gut section, dietary treatment, and age were identified by terminal restriction fragment length polymorphism (T-RFLP), although no performance-related differences between dietary treatments were detected. Similar age-related shifts in the gut microbiota were identified regardless of diet but varied between the ilea and ceca. Interbird variabilities in ileal bacterial communities were reduced (3 to 7 days posthatch) in chicks fed with feed containing antimicrobial agents. Avilamycin and flavophospholipol had the most consistent effect on gut microbial communities. Operational taxonomic units (OTU) linked to changes in gut microbiota in birds on antimicrobial-supplemented diets were characterized and identified. Some OTUs could be identified to the species level; however, the majority could be only tentatively classified to the genus, family, order, or domain level. OTUs 140 to 146 (Lachnospiraceae), OTU 186/188 (Lactobacillus johnsonii), OTU 220 (Lachnospiraceae), OTUs 284 to 288 (unclassified bacterial spp. or Ruminococcaceae), OTU 296/298 (unclassified bacterium or Clostridiales), and OTU 480/482 (Oxalobacteraceae) were less prevalent in the guts of chicks fed antimicrobial-supplemented diets. OTU 178/180 (Lactobacillus crispatus), OTU 152 (Lactobacillus reuteri or unclassified Clostridiales), OTU 198/200 (Subdoligranulum spp.), and OTU 490/492 (unclassified bacterium or Enterobacteriaceae) were less prevalent in the gut of chicks raised on the antimicrobial-free diet. The identification of key bacterial species influenced by antimicrobial-supplemented feed immediately posthatch may assist in the formulation of diets that facilitate beneficial gut microbial colonization and, hence, the development of alternatives to current antimicrobial agents in feed for sustainable poultry production.
Collapse
|
33
|
Weidhaas JL, Macbeth TW, Olsen RL, Harwood VJ. Correlation of quantitative PCR for a poultry-specific brevibacterium marker gene with bacterial and chemical indicators of water pollution in a watershed impacted by land application of poultry litter. Appl Environ Microbiol 2011; 77:2094-102. [PMID: 21278274 PMCID: PMC3067329 DOI: 10.1128/aem.02555-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 01/11/2011] [Indexed: 11/20/2022] Open
Abstract
The impact of fecal contamination from human and agricultural animal waste on water quality is a major public health concern. Identification of the dominant source(s) of fecal pollution in a watershed is necessary for assessing the safety of recreational water and protecting water resources. A field study was conducted using quantitative PCR (qPCR) for the 16S rRNA gene of Brevibacterium sp. LA35 to track feces-contaminated poultry litter in environmental samples. Based on sensitivity and specificity characteristics of the qPCR method, the Bayesian conditional probability that detection of the LA35 marker gene in a water sample represented a true-positive result was 93%. The marker's covariance with fecal indicator bacteria (FIB) and metals associated with poultry litter was also assessed in litter, runoff, surface water, and groundwater samples. LA35 was detected in water and soil samples collected throughout the watershed, and its concentration covaried with concentrations of Escherichia coli, enterococci, As, Cu, P, and Zn. Significantly greater concentrations of FIB, As, Cu, P, and Zn were observed in edge-of-field runoff samples in which LA35 was detected, compared to samples in which it was not detected. Furthermore, As, Cu, P, and Zn concentrations covaried in environmental samples in which LA35 was detected and typically did not in samples in which the marker gene was not detected. The covariance of the poultry-specific LA35 marker gene with these known contaminants from poultry feces provides further evidence that it is a useful tool for assessing the impact of poultry-derived fecal pollution in environmental waters.
Collapse
Affiliation(s)
- Jennifer L. Weidhaas
- North Wind, Inc., Idaho Falls, Idaho, CDM, Denver, Colorado, Department of Integrative Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida 33620
| | - Tamzen W. Macbeth
- North Wind, Inc., Idaho Falls, Idaho, CDM, Denver, Colorado, Department of Integrative Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida 33620
| | - Roger L. Olsen
- North Wind, Inc., Idaho Falls, Idaho, CDM, Denver, Colorado, Department of Integrative Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida 33620
| | - Valerie J. Harwood
- North Wind, Inc., Idaho Falls, Idaho, CDM, Denver, Colorado, Department of Integrative Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida 33620
| |
Collapse
|
34
|
Roslev P, Bukh AS. State of the art molecular markers for fecal pollution source tracking in water. Appl Microbiol Biotechnol 2011; 89:1341-55. [DOI: 10.1007/s00253-010-3080-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 12/15/2010] [Accepted: 12/15/2010] [Indexed: 01/16/2023]
|
35
|
Wu CH, Sercu B, Van De Werfhorst LC, Wong J, DeSantis TZ, Brodie EL, Hazen TC, Holden PA, Andersen GL. Characterization of coastal urban watershed bacterial communities leads to alternative community-based indicators. PLoS One 2010; 5:e11285. [PMID: 20585654 PMCID: PMC2890573 DOI: 10.1371/journal.pone.0011285] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 05/01/2010] [Indexed: 02/01/2023] Open
Abstract
Background Microbial communities in aquatic environments are spatially and temporally dynamic due to environmental fluctuations and varied external input sources. A large percentage of the urban watersheds in the United States are affected by fecal pollution, including human pathogens, thus warranting comprehensive monitoring. Methodology/Principal Findings Using a high-density microarray (PhyloChip), we examined water column bacterial community DNA extracted from two connecting urban watersheds, elucidating variable and stable bacterial subpopulations over a 3-day period and community composition profiles that were distinct to fecal and non-fecal sources. Two approaches were used for indication of fecal influence. The first approach utilized similarity of 503 operational taxonomic units (OTUs) common to all fecal samples analyzed in this study with the watershed samples as an index of fecal pollution. A majority of the 503 OTUs were found in the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. The second approach incorporated relative richness of 4 bacterial classes (Bacilli, Bacteroidetes, Clostridia and α-proteobacteria) found to have the highest variance in fecal and non-fecal samples. The ratio of these 4 classes (BBC∶A) from the watershed samples demonstrated a trend where bacterial communities from gut and sewage sources had higher ratios than from sources not impacted by fecal material. This trend was also observed in the 124 bacterial communities from previously published and unpublished sequencing or PhyloChip- analyzed studies. Conclusions/Significance This study provided a detailed characterization of bacterial community variability during dry weather across a 3-day period in two urban watersheds. The comparative analysis of watershed community composition resulted in alternative community-based indicators that could be useful for assessing ecosystem health.
Collapse
Affiliation(s)
- Cindy H. Wu
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Bram Sercu
- Donald Bren of School of Environmental Science and Management, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Laurie C. Van De Werfhorst
- Donald Bren of School of Environmental Science and Management, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Jakk Wong
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Todd Z. DeSantis
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Eoin L. Brodie
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Terry C. Hazen
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Patricia A. Holden
- Donald Bren of School of Environmental Science and Management, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Gary L. Andersen
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
36
|
Weidhaas J, Macbeth T, Olsen R, Sadowsky M, Norat D, Harwood V. Identification of a
Brevibacterium
marker gene specific to poultry litter and development of a quantitative PCR assay. J Appl Microbiol 2010; 109:334-47. [DOI: 10.1111/j.1365-2672.2010.04666.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | | | | | - M.J. Sadowsky
- Department of Soil, Water, and Climate and BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - D. Norat
- Department of Soil, Water, and Climate and BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - V.J. Harwood
- Department of Biology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
37
|
Evaluation of Lactobacillus sobrius/L. amylovorus as a new microbial marker of pig manure. Appl Environ Microbiol 2009; 76:1456-61. [PMID: 20038684 DOI: 10.1128/aem.01895-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Based on a comparison of the dominant microbial populations in 17 pig manure samples and using a molecular typing method, we identified a species, Lactobacillus sobrius and Lactobacillus amylovorus (which now are considered a single species and are designated L. sobrius/amylovorus here), that was consistently found in manure. The aim of the present study was to confirm by real-time PCR the relevance of this species as a marker of pig fecal contamination. The specificity of L. sobrius/amylovorus was evaluated in human and animal DNA extracted from feces. The real-time PCR assay then was applied to water samples, including effluents from urban wastewater treatment plants, runoff water, and rivers. L. sobrius/amylovorus was consistently present in all samples of swine origin: 48 fecal samples, 18 from raw manure and 10 from biologically treated manure at mean concentrations of 7.2, 5.9, and 5.0 log(10) cells/g, respectively. The species was not detected in any of the other livestock feces (38 samples from cattle and 16 from sheep), in the 27 human fecal samples, or in the 13 effluent samples from urban wastewater treatment plants. Finally, L. sobrius/amylovorus was not detected in runoff water contaminated by cattle slurry, but it was quantified at concentrations ranging from 3.7 to 6.5 log(10) cells/100 ml in runoff water collected after pig manure was spread on soil. Among the stream water samples in which cultured Escherichia coli was detected, 23% tested positive for L. sobrius/amylovorus. The results of this study indicate that the quantification of L. sobrius/amylovorus using real-time PCR will be useful for identifying pig fecal contamination in surface waters.
Collapse
|
38
|
Microbial diversity and host-specific sequences of Canada goose feces. Appl Environ Microbiol 2009; 75:5919-26. [PMID: 19633110 DOI: 10.1128/aem.00462-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methods to assess the impact of goose fecal contamination are needed as the result of the increasing number of Canada geese (Branta canadensis) near North American inland waters. However, there is little information on goose fecal microbial communities, and such data are important for the development of host-specific source-tracking methods. To address this issue, 16S rRNA gene clone libraries for Canada goose fecal samples from Ontario, Canada, and Ohio were analyzed. Analyses of fecal clones from Ontario (447) and Ohio (302) showed that goose fecal communities are dominated by the classes "Clostridia" (represented by 33.7% of clones) and "Bacilli" (38.1% of clones) and the phylum "Bacteroidetes" (10.1% of clones). Sequences not previously found in other avian fecal communities were used to develop host-specific assays. Fecal DNA extracts from sewage plants (10 samples) and different species of birds (11 samples) and mammals (18 samples) were used to test for host specificity. Of all the assays tested, one assay showed specificity for Canada goose fecal DNA. The PCR assay was positive for Canada goose fecal DNA extracts collected from three locations in North America (Ohio, Oregon, and Ontario, Canada). Additionally, of 48 DNA extracts from Lake Ontario waters presumed to be impacted by waterfowl feces, 19 tested positive by the assay, although 10 were positive only after a nested PCR approach was used. Due to the level of host specificity and the presence of signals in environmental waters, the assay is proposed as a part of the toolbox to detect Canada goose contamination in waterfowl-contaminated waters.
Collapse
|
39
|
Pig manure contamination marker selection based on the influence of biological treatment on the dominant fecal microbial groups. Appl Environ Microbiol 2009; 75:4967-74. [PMID: 19525269 DOI: 10.1128/aem.02791-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to identify a microbial marker for pig manure contamination. We quantified the persistence of four dominant bacterial groups from the pig intestinal tract throughout manure handling at 10 livestock operations (including aerobic digestion) by using molecular typing. The partial 16S rRNA genes of Bacteroides-Prevotella, Eubacterium-Clostridiaceae, Bacillus-Streptococcus-Lactobacillus (BSL), and Bifidobacterium group isolates were amplified and analyzed by capillary electrophoresis single-strand conformation polymorphism. The most dominant bacterial populations were identified by cloning and sequencing their 16S rRNA genes. The results showed that Bifidobacterium spp. and, to a lesser extent, members of the BSL group, were less affected by the aerobic treatment than either Eubacterium-Clostridiaceae or Bacteroides-Prevotella. Two Bifidobacterium species found in raw manure were still present in manure during land application, suggesting that they can survive outside the pig intestinal tract and also survive aerobic treatment. The 16S-23S rRNA internal transcribed spacer of one species, Bifidobacterium thermacidophilum subsp. porcinum, was sequenced, and a specific pair of primers was designed for its detection in the environment. With this nested PCR assay, this potential marker was not detected in samples from 30 bovine, 30 poultry, and 28 human fecal samples or in 15 urban wastewater effluents. As it was detected in runoff waters after spreading of pig manure, we propose this marker as a suitable microbial indicator of pig manure contamination.
Collapse
|
40
|
Lu J, Domingo JS. Turkey fecal microbial community structure and functional gene diversity revealed by 16S rRNA gene and metagenomic sequences. J Microbiol 2008; 46:469-77. [DOI: 10.1007/s12275-008-0117-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Accepted: 07/16/2008] [Indexed: 11/30/2022]
|
41
|
Singh B, Bhat TK, Kurade NP, Sharma OP. Metagenomics in animal gastrointestinal ecosystem: a microbiological and biotechnological perspective. Indian J Microbiol 2008; 48:216-27. [PMID: 23100715 DOI: 10.1007/s12088-008-0027-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 12/15/2007] [Indexed: 01/04/2023] Open
Abstract
Metagenomics- the application of the genomics technologies to nonculturable microbial communities, is coming of age. These approaches can be used for the screening and selection of nonculturable rumen microbiota for assessing their role in gastrointestinal (GI) nutrition, plant material fermentation and the health of the host. The technologies designed to access this wealth of genetic information through environmental nucleic acid extraction have provided a means of overcoming the limitations of culture-dependent microbial genetic exploitation. The molecular procedures and techniques will result in reliable insights into the GI microbial structure and activity of the livestock gut microbes in relation to functional interactions, temporal and spatial relationships among different microbial consortia and dietary ingredients. Future developments and applications of these methods promise to provide the first opportunity to link distribution and identity of rumen microbes in their natural habitats with their genetic potential and in situ activities.
Collapse
Affiliation(s)
- B Singh
- Animal Biotechnology Lab. Regional Station, Indian Veterinary Research Institute, Palampur, 176 061 India
| | | | | | | |
Collapse
|
42
|
Phylogenetic diversity and molecular detection of bacteria in gull feces. Appl Environ Microbiol 2008; 74:3969-76. [PMID: 18469128 DOI: 10.1128/aem.00019-08] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In spite of increasing public health concerns about the potential risks associated with swimming in waters contaminated with waterfowl feces, little is known about the composition of the gut microbial community of aquatic birds. To address this, a gull 16S rRNA gene clone library was developed and analyzed to determine the identities of fecal bacteria. Analysis of 282 16S rRNA gene clones demonstrated that the gull gut bacterial community is mostly composed of populations closely related to Bacilli (37%), Clostridia (17%), Gammaproteobacteria (11%), and Bacteriodetes (1%). Interestingly, a considerable number of sequences (i.e., 26%) were closely related to Catellicoccus marimammalium, a gram-positive, catalase-negative bacterium. To determine the occurrence of C. marimammalium in waterfowl, species-specific 16S rRNA gene PCR and real-time assays were developed and used to test fecal DNA extracts from different bird (n = 13) and mammal (n = 26) species. The results showed that both assays were specific to gull fecal DNA and that C. marimammalium was present in gull fecal samples collected from the five locations in North America (California, Georgia, Ohio, Wisconsin, and Toronto, Canada) tested. Additionally, 48 DNA extracts from waters collected from six sites in southern California, Great Lakes in Michigan, Lake Erie in Ohio, and Lake Ontario in Canada presumed to be impacted with gull feces were positive by the C. marimammalium assay. Due to the widespread presence of this species in gulls and environmental waters contaminated with gull feces, targeting this bacterial species might be useful for detecting gull fecal contamination in waterfowl-impacted waters.
Collapse
|
43
|
Singh B, Gautam SK, Verma V, Kumar M, Singh B. Metagenomics in animal gastrointestinal ecosystem: Potential biotechnological prospects. Anaerobe 2008; 14:138-44. [PMID: 18457965 DOI: 10.1016/j.anaerobe.2008.03.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Accepted: 03/17/2008] [Indexed: 01/07/2023]
Abstract
Microbial metagenomics---the applications of the genomics suit of technologies to nonculturable microorganisms, is coming of age. These approaches can be used for the screening and identification of nonculturable gastrointestinal (GI) microflora for assessing and exploiting them in nutrition and the health of the host. Advances in technologies designed to access this wealth of genetic information through environmental nucleic acids extraction and analysis have provided the means of overcoming the limitations of conventional culture-dependent microbial genetic exploitation. The molecular techniques and bioinformatics tools will result in reliable insights into the animals' GI microbial structure and activity of the livestock gut microbes in relation to functional interactions, temporal and spatial relationships among different microbial consortia and dietary ingredients. Further developments and applications of these methods promise to provide the opportunity to link distribution and identity of various GI microbes in their natural habitats, and explore their use for promoting livestock health and industrial development.
Collapse
Affiliation(s)
- Birbal Singh
- Indian Veterinary Research Institute, Regional Station, Palampur 176 061, India.
| | | | | | | | | |
Collapse
|
44
|
Santo Domingo JW, Bambic DG, Edge TA, Wuertz S. Quo vadis source tracking? Towards a strategic framework for environmental monitoring of fecal pollution. WATER RESEARCH 2007; 41:3539-52. [PMID: 17632210 DOI: 10.1016/j.watres.2007.06.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 05/26/2007] [Accepted: 06/01/2007] [Indexed: 05/07/2023]
Abstract
Advances in microbial source tracking (MST) have largely been driven by the need to comply with water quality standards based on traditional indicator bacteria. Recently, a number of culture-independent, and library-independent methods based on polymerase chain reaction (PCR) have been gaining popularity among source trackers. However, only a limited number of these methods have been successfully used in field applications, primarily due to the fact that many of them are still being developed. In this critical outlook, we examine different viewpoints associated with the practical use of MST to identify critical research gaps, propose a priority-based timeline to address them, and outline emerging technologies that will likely impact the future of source tracking. We propose that it is necessary to consider each of these aspects in order to advance towards a unifying framework in source identification, so that fecal pollution monitoring can be reliably used for comprehensive environmental microbial monitoring, to develop risk assessment models, and to implement and validate adequate management practices.
Collapse
Affiliation(s)
- Jorge W Santo Domingo
- US Environmental Protection Agency, NRMRL/WSWRD/MCCB, 26 W. Martin Luther King Dr., MS 387, Cincinnati, OH 45268, USA.
| | | | | | | |
Collapse
|