1
|
Zhang B, Li Z, Liu F, Zhang X, Hou Y, Tong M. Green and efficient disinfection of antibiotic-resistant bacteria via PI/H 2O 2 homogeneous system. WATER RESEARCH 2025; 280:123468. [PMID: 40086148 DOI: 10.1016/j.watres.2025.123468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/04/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Abstract
The proliferation and spread of antibiotic-resistant bacteria (ARB) significantly threaten human health and ecosystem. Periodate (PI) based advanced oxidation process has potentials for water purification but is limited by complex activators or activation process. Herein, we demonstrated that H2O2 could be used to activate PI, achieving efficient ARB disinfection performance. Particularly, we found that the PI/H2O2 system (0.1 mM for both oxidants) could inactivate ARB (Escherichia coli) within 35 min. The intracellular defense system could be attacked by HO· radicals generated in the disinfection system, resulting in the inactivation of ARB. Antibiotic resistance genes (ARGs) released with the lysis of cell membrane could be further degraded by HO· radicals. Moreover, we found that the PI/H2O2 system was effective to inactivate ARB in a broad range of ionic strengths, with coexisting common ions and humic acid, as well as in four typical actual water bodies. The PI/H2O2 system could also efficiently disinfect other types of bacteria and degrade typical organic contaminants. In addition, under sunlight irradiation, the ARB inactivation performance of the PI/H2O2 system could be greatly improved. This study provided a practical and efficient way for decontaminating ARB/ARGs-polluted water.
Collapse
Affiliation(s)
- Boaiqi Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Zhengmao Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Xiangwei Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Yanghui Hou
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
2
|
Bhattacharjee L, Xia C, Krouse E, Yang H, Liu J. Degradation of 1,4-dioxane by heterogeneous photocatalysis and a photo-Fenton-like process under fluorescent light. ENVIRONMENTAL TECHNOLOGY 2024; 45:2879-2890. [PMID: 36924262 DOI: 10.1080/09593330.2023.2192367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The overall objective of this study was to develop cost-effective treatment processes for 1,4-dioxane removal that were safe and easy to scale up. Degradation of 1,4-dioxane was conducted and compared for the first time by heterogeneous photocatalysis and a photo-Fenton-like process under cool white fluorescent light in mild conditions, using two types of commercial nanoparticles-titanium dioxide (TiO2) and nanoscale zero-valent iron (nZVI), respectively. Both types of nanoparticles removed >99.9% of 1,4-dioxane in a short period of time. Hydroxyl radicals (·OH), superoxide radicals (·O2-), and hydrogen peroxide (H2O2) were detected in both degradation processes; photogenerated holes (h+) were critical in the degradation of 1,4-dioxane by the photocatalytic process using TiO2. 1,4-Dioxane can be degraded at pH 7 in TiO2/light system and at pH 3 in nZVI/light system, and faster degradation of 1,4-dioxane at even higher concentration was achieved in the former system. Increase in light intensity accelerated 1,4-dioxane degradation, which followed first order kinetics in both systems. In wastewater effluent, the removal of 1,4-dioxane was slower than that in deionised water, which likely reflected the complex compositions of the wastewater effluent. Under combined UVA and visible light illumination, a two-stage degradation process was proposed for 1,4-dioxane for the first time by TiO2 nanoparticles; this study also demonstrated for the first time 1,4-dioxane degradation by the photo-Fenton-like process using nZVI. The cost-effective solutions using commercial nanoparticles under fluorescent light developed in this study can be potentially applied to treat water contaminated by high concentrations of 1,4-dioxane in large-scale.
Collapse
Affiliation(s)
- Linkon Bhattacharjee
- School of Civil, Environmental and Infrastructure Engineering, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Chunjie Xia
- School of Civil, Environmental and Infrastructure Engineering, Southern Illinois University Carbondale, Carbondale, IL, USA
- Paul H. O'Neill School of Public and Environmental Affairs, Indiana University Bloomington, Bloomington, IN, USA
| | - Ethan Krouse
- Department of Mechanical Engineering, University of Evansville, Evansville, IN, USA
| | - Haoran Yang
- School of Civil, Environmental and Infrastructure Engineering, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Jia Liu
- School of Civil, Environmental and Infrastructure Engineering, Southern Illinois University Carbondale, Carbondale, IL, USA
| |
Collapse
|
3
|
Gudkov SV, Serov DA, Astashev ME, Semenova AA, Lisitsyn AB. Ag 2O Nanoparticles as a Candidate for Antimicrobial Compounds of the New Generation. Pharmaceuticals (Basel) 2022; 15:ph15080968. [PMID: 36015116 PMCID: PMC9415021 DOI: 10.3390/ph15080968] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 12/16/2022] Open
Abstract
Antibiotic resistance in microorganisms is an important problem of modern medicine which can be solved by searching for antimicrobial preparations of the new generation. Nanoparticles (NPs) of metals and their oxides are the most promising candidates for the role of such preparations. In the last few years, the number of studies devoted to the antimicrobial properties of silver oxide NPs have been actively growing. Although the total number of such studies is still not very high, it is quickly increasing. Advantages of silver oxide NPs are the relative easiness of production, low cost, high antibacterial and antifungal activities and low cytotoxicity to eukaryotic cells. This review intends to provide readers with the latest information about the antimicrobial properties of silver oxide NPs: sensitive organisms, mechanisms of action on microorganisms and further prospects for improving the antimicrobial properties.
Collapse
Affiliation(s)
- Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence:
| | - Dmitriy A. Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maxim E. Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia A. Semenova
- V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia
| | - Andrey B. Lisitsyn
- V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia
| |
Collapse
|
4
|
Effect of Temperature on the Adhesion and Bactericidal Activities of Ag+-Doped BiVO4 Ceramic Tiles. INORGANICS 2022. [DOI: 10.3390/inorganics10050061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The aim of this research was to study the effect of temperature on the adhesion and disinfection activities of an Ag+-doped BiVO4 (Ag+/BiVO4) coating. Ag+/BiVO4 was prepared by a sol–gel method, and spraying was used as the deposition method of coating. X-ray diffraction patterns showed that the monoclinic scheelite phase of the samples was unchanged by annealing at 450–650 °C. Scanning electron microscopy results showed that, at high temperatures, the particles melted and formed a dense coating, and the roughness of the coating decreased after initially increasing. The adhesion and disinfection activities were evaluated by ASTM D3359-08 and disinfection experiments. The results showed that the samples modified by silver had a good disinfection activity when annealed in the range of 450–650 °C. The adhesion increased upon increasing the annealing temperature. The sample annealed at 650 °C showed the best coating adhesion and completely killed Escherichia coli, Staphylococcus aureus, Shigella, and Salmonella after 2 h of visible-light irradiation.
Collapse
|
5
|
Qu Y, Li X, Zhang H, Huang R, Qi W, Su R, He Z. Controllable synthesis of a sponge-like Z-scheme N,S-CQDs/Bi 2MoO 6@TiO 2 film with enhanced photocatalytic and antimicrobial activity under visible/NIR light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128310. [PMID: 35077972 DOI: 10.1016/j.jhazmat.2022.128310] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Multifunctional photocatalytic surfaces for pollutant degradation and antimicrobial application are often in high demand, however they confront many challenges in charge transfer and light capture ability. In this work, a sponge-like N,S-CQDs/Bi2MoO6@TiO2 film was constructed via hydrothermal technique aiming to solve above problems. As a result, the ternary film showed enhanced photocatalytic efficiency under visible and near-infrared (NIR) light, in which 85.8% and 44.6% of ciprofloxacin (CIP) were degraded after 240 min irradiation with visible and NIR light, respectively. Moreover, the composite film effectively realized photocatalytic sterilization of gram-positive B. subtilis and gram-negative E. coli under visible light irradiation. The bacterial colony decreased significantly from 7.56-log to 1-log cfu/mL after adding the ternary film within 1.5 h. The enhanced photocatalytic efficiency was closely related to both introduction of surface-functional N,S-CQDs and the construction of N,S-CQDs/Bi2MoO6@TiO2 Z-scheme system, in which the transfer efficiency of photoinduced carriers and the light absorption property were significantly improved. We consider that the N,S-CQDs/Bi2MoO6@TiO2 film is promising for the degradation of refractory pollutants and antimicrobial application under visible/NIR light irradiation. The relatively convenient recycling property and excellent photocatalytic performance of the N,S-CQDs/Bi2MoO6@TiO2 film are beneficial for industrial applications.
Collapse
Affiliation(s)
- Yanning Qu
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Techology, Tianjin University, Tianjin 300072, PR China; The School of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xinyang Li
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Techology, Tianjin University, Tianjin 300072, PR China
| | - Hengli Zhang
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Renliang Huang
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Techology, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Techology, Tianjin University, Tianjin 300072, PR China; School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Techology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
6
|
Xu J, Lan X, Cheng J, Zhou X. Facile synthesis of g-C 3N 4/Ag 2C 2O 4 heterojunction composite membrane with efficient visible light photocatalytic activity for water disinfection. CHEMOSPHERE 2022; 295:133841. [PMID: 35131277 DOI: 10.1016/j.chemosphere.2022.133841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Water pollution, deriving from the contamination of pathogenic bacteria, has posed a threat to human's survival and development. Photocatalytic disinfection is being widely studied in decentralized drink water safety, as traditional disinfection technologies are limited by harmful disinfection by-product and excessive energy consumption. Herein, a novel composite membrane (PN/Ag) with plasmonic heterojunction was synthesized for the efficient photocatalytic disinfection through the combination of polyacrylonitrile (PAN), N-doped carbon dots (NCDs)/g-C3N4 and Ag2C2O4 by electrospinning technique and successive ionic layer adsorption and reaction (SILAR) process. The surface plasmon resonance (SPR) effect of Ag nanoparticles and Schottky barrier formation between metal and semiconductor contributed to the efficient separation of electron-hole pairs and the generation of reactive species, resulting in outstanding photocatalytic disinfection of PN/Ag composite membranes (7.48 and 7.70 log inactivation of E. coli and S. aureus respectively in 80 min) and good reusability under visible light illumination. Moreover, the potential Z-scheme photocatalytic mechanisms were proposed for PN/Ag system according to the band structure and reactive species analysis. The as-proposed PN/Ag composite membranes may shed light on the design and application of materials in water purification.
Collapse
Affiliation(s)
- Jiaxin Xu
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Xiuquan Lan
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Jianhua Cheng
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China; South China Institute of Collaborative Innovation, Dongguan, 523808, China.
| | - Xinhui Zhou
- South China Institute of Collaborative Innovation, Dongguan, 523808, China.
| |
Collapse
|
7
|
Solar-Light-Driven Ag9(SiO4)2NO3 for Efficient Photocatalytic Bactericidal Performance. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6040108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Photocatalytic materials are being investigated as effective bactericides due to their superior ability to inactivate a broad range of dangerous microbes. In this study, the following two types of bacteria were employed for bactericidal purposes: Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). The shape, crystal structure, element percentage, and optical properties of Ag9(SiO4)2NO3 were examined after it was successfully synthesized by a standard mixing and grinding processing route. Bactericidal efficiency was recorded at 100% by the following two types of light sources: solar and simulated light, with initial photocatalyst concentration of 2 µg/mL, and 97% and 95% of bactericidal activity in ultra-low photocatalyst concentration of 0.2 µg/mL by solar and simulated light, respectively, after 10 min. The survival rate was studied for 6 min, resulting in 99.8% inhibition at the photocatalyst dose of 2 µg/mL. The mechanism of bactericidal efficiency was found to be that the photocatalyst has high oxidation potential in the valence band. Consequently, holes play a significant part in bactericidal efficiency.
Collapse
|
8
|
Li S, Wu Y, Zheng H, Zheng Y, Jing T, Tian J, Ma J, Na J. High microwave responsivity Co-Bi 25FeO 40 in synergistic activation of peroxydisulfate for high efficiency pollutants degradation and disinfection: Mechanism of enhanced electron transfer. CHEMOSPHERE 2022; 288:132558. [PMID: 34662639 DOI: 10.1016/j.chemosphere.2021.132558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/29/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Cobalt doped Bi25FeO40 was used as a heterogeneous catalyst in microwave (MW) co-activation of peroxydisulfate (PDS) system for organic contaminant purification and disinfection simultaneously. Due to low charge-transfer resistance and fast electron migration, Co-Bi25FeO40 showed superior catalytic efficiencies for activation PDS to degrade over 92.0% of bisphenol A (BPA) with the initial concentrations ranging from 40 mg/L to 120 mg/L in 5.0 min. The non-radical oxidation pathway via electron transfer regime on the surface of Co-Bi25FeO40 was the dominant reactive species in the reaction system. Benefit from the energy transfer and cross-coupling reactions of microwave, the Co-Bi25FeO40/MW/PDS system can generate abundant reactive sites to facilitate the formation of more surface-bonding complexes. Microwave energy can be absorbed by Co-Bi25FeO40 catalysts to promote activation of PDS and production of nanobubbles. The generated nanobubbles increase the temperature of the local solution to promote the reaction. The Co-Bi25FeO40/MW/PDS system also exhibited excellent bactericidal capability for Escherichia coli (E.coli). The catalysts, oxidants and microwaves acted on E. coli to form physical, and oxidative pressure simultaneously, causing cell damaged and made bacterial death. This work provides prospects toward high-efficiency integration of contaminant purification and pathogenic microorganisms inactivation.
Collapse
Affiliation(s)
- Shuo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China; Urban Water Resources Development and Northern National Engineering Research Center, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yanan Wu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Heshan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China.
| | - Yongjie Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Tao Jing
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Jingzhi Tian
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Jun Ma
- Urban Water Resources Development and Northern National Engineering Research Center, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Na
- Urban Water Resources Development and Northern National Engineering Research Center, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
9
|
Zeng J, Li Z, Jiang H, Wang X. Progress on photocatalytic semiconductor hybrids for bacterial inactivation. MATERIALS HORIZONS 2021; 8:2964-3008. [PMID: 34609391 DOI: 10.1039/d1mh00773d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Due to its use of green and renewable energy and negligible bacterial resistance, photocatalytic bacterial inactivation is to be considered a promising sterilization process. Herein, we explore the relevant mechanisms of the photoinduced process on the active sites of semiconductors with an emphasis on the active sites of semiconductors, the photoexcited electron transfer, ROS-induced toxicity and interactions between semiconductors and bacteria. Pristine semiconductors such as metal oxides (TiO2 and ZnO) have been widely reported; however, they suffer some drawbacks such as narrow optical response and high photogenerated carrier recombination. Herein, some typical modification strategies will be discussed including noble metal doping, ion doping, hybrid heterojunctions and dye sensitization. Besides, the biosafety and biocompatibility issues of semiconductor materials are also considered for the evaluation of their potential for further biomedical applications. Furthermore, 2D materials have become promising candidates in recent years due to their wide optical response to NIR light, superior antibacterial activity and favorable biocompatibility. Besides, the current research limitations and challenges are illustrated to introduce the appealing directions and design considerations for the future development of photocatalytic semiconductors for antibacterial applications.
Collapse
Affiliation(s)
- Jiayu Zeng
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Ziming Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
10
|
Sinulingga K, Sirait M, Siregar N, Abdullah H. Synthesis and characterizations of natural limestone-derived nano-hydroxyapatite (HAp): a comparison study of different metals doped HAps on antibacterial activity. RSC Adv 2021; 11:15896-15904. [PMID: 35481166 PMCID: PMC9030672 DOI: 10.1039/d1ra00308a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/21/2021] [Indexed: 11/22/2022] Open
Abstract
Earth-abundant mineral limestone obtained from North Sumatera, Indonesia, has been utilized to synthesize nano-hydroxyapatite (HAp). Although HAp is biocompatible to the human bone, its antibacterial activity is still very low. Herein, different metal ions (i.e., Ag, Cu, Zn, and Mg) were doped into HAp to improve the antibacterial activity. The as-synthesized HAp was characterized by X-ray ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), energy disperse spectroscopy (EDS), Fourier transmission infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Brunauer–Emmett–Teller (BET). The antibacterial test showed that the performance of HAp to inactivate bacterial growth was significantly improved after incorporating the metal ion dopants into HAp. Ag-HAp exhibited the highest activity toward E. coli and S. aureus with an antibacterial rate of 99.9 ± 0.1%, followed by Zn-HAp, Cu-HAp, and Mg-HAp. Antibacterial activities of different metal ion doped HAp towards (a) E. coli and (b) S. aureus bacteria.![]()
Collapse
Affiliation(s)
- Karya Sinulingga
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan 20221 Indonesia
| | - Makmur Sirait
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan 20221 Indonesia
| | - Nurdin Siregar
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan 20221 Indonesia
| | - Hairus Abdullah
- Department of Industrial Engineering, Universitas Prima Indonesia Medan Indonesia
| |
Collapse
|
11
|
Abu‐Dief AM, Abdel‐Rahman LH, Abd‐El Sayed MA, Zikry MM, Nafady A. Green Synthesis of AgNPs
()
Ultilizing
Delonix Regia
Extract as Anticancer and Antimicrobial Agents**. ChemistrySelect 2020. [DOI: 10.1002/slct.202003218] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ahmed M. Abu‐Dief
- Chemistry Department, Faculty of Science Sohag University 82534 Sohag Egypt
| | | | - M. A. Abd‐El Sayed
- Medicinal and Aromatic Plants Researches Department Horti. Res. Institute (H.R.I.), Agri. Res. Center (A.R.C.) Giza Egypt
| | - Mallak Megalea Zikry
- Medicinal and Aromatic Plants Researches Department Horti. Res. Institute (H.R.I.), Agri. Res. Center (A.R.C.) Giza Egypt
| | - Ayman Nafady
- Department of Chemistry, College of Science King Saud University Riyadh 11451 Saudi Arabia
| |
Collapse
|
12
|
Liu F, Nie C, Dong Q, Ma Z, Liu W, Tong M. AgI modified covalent organic frameworks for effective bacterial disinfection and organic pollutant degradation under visible light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122865. [PMID: 32470769 DOI: 10.1016/j.jhazmat.2020.122865] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Covalent organic frameworks (COFs) have recently been demonstrated to have great application potentials in water treatment. Their photocatalytic performance towards bacterial disinfection and organic pollutant degradation yet has seldom been investigated. In this study, AgI modified COFs (using 2,5-diaminopyridine and 1,3,5-triformylphloroglucinol as precursors) (COF-PD/AgI) were fabricated and their applications to photocatalytically disinfect bacteria and degrade organic pollutants were investigated. COF-PD/AgI exhibited effective photocatalytic performance towards Escherichia coli disinfection and organic pollutant (Rhodamine B and acetaminophen) degradation. SEM images were employed to investigate cell disinfection process, while theoretical density functional theory (DFT) calculation and intermediates determination were used to elucidate organic pollutant degradation processes. Scavenger experiments, ESR spectra and chemical probes experiments confirmed O2-, h+ and OH played important roles in the photocatalytic process. The formation of dual-band Z-scheme heterojunction improved photocatalytic performance. COF-PD/AgI remained high photocatalytic activity in the four consecutive cycles and could serve as a promising photocatalyst for water purification.
Collapse
Affiliation(s)
- Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Chenyi Nie
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Qiqi Dong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Zhiyao Ma
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
13
|
Ivanov KV, Alekseeva OV, Agafonov AV. Synthesis of CaCu3Ti4O12, Study of Physicochemical and Photocatalytic Properties. RUSS J INORG CHEM+ 2020. [DOI: 10.1134/s0036023620100095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Balapure A, Nikhariya Y, Sriteja Boppudi NS, Ganesan R, Ray Dutta J. Highly Dispersed Nanocomposite of AgBr in g-C 3N 4 Matrix Exhibiting Efficient Antibacterial Effect on Drought-Resistant Pseudomonas putida under Dark and Light Conditions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21481-21493. [PMID: 32324381 DOI: 10.1021/acsami.0c05158] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Synthesis of nanocomposites possessing intimately mixed components is highly challenging to bring out the best possible properties of the materials. The challenge is mainly due to the difficulties associated with controlling the phase segregation of individual components as a result of high interfacial tension between them and cohesive forces within each component during the synthesis. Here, we show a single-step synthesis of representative nanocomposites of g-C3N4/AgBr through a rationally designed approach, wherein melamine, the precursor of g-C3N4, has been intimately mixed with the AgBr precursor, silver-tetraoctylammonium bromide. Subsequent calcination of the obtained solid at 500 °C has resulted in the formation of highly dispersed g-C3N4/AgBr. The key to such a high dispersion lies in the surfactant-based AgBr precursor that minimized the interfacial tension during the process. The AgBr content has been varied between 2 and 20 wt % with respect to the g-C3N4 content. The obtained nanocomposites have been thoroughly characterized using XRD, XPS, ED-XRF, FE-SEM, HR-TEM, DRS, TCSPC, and BET surface area techniques. The studies revealed a high dispersion of AgBr in the g-C3N4 matrix. The nanocomposites have been found to exhibit remarkable antimicrobial properties over a drought-resistant bacterial strain of Pseudomonas putida under both dark and light conditions compared with similar compositions obtained through other methods reported so far. The present study offers a new approach for synthesizing highly dispersed and efficient nanocomposites.
Collapse
Affiliation(s)
- Aniket Balapure
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana - 500078, India
| | - Yamini Nikhariya
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana - 500078, India
| | - Naga Sai Sriteja Boppudi
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana - 500078, India
| | - Ramakrishnan Ganesan
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana - 500078, India
| | - Jayati Ray Dutta
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana - 500078, India
| |
Collapse
|
15
|
Li J, Su M, Wang A, Wu Z, Chen Y, Qin D, Jiang Z. In Situ Formation of Ag Nanoparticles in Mesoporous TiO 2 Films Decorated on Bamboo via Self-Sacrificing Reduction to Synthesize Nanocomposites with Efficient Antifungal Activity. Int J Mol Sci 2019; 20:E5497. [PMID: 31694142 PMCID: PMC6862692 DOI: 10.3390/ijms20215497] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/03/2019] [Accepted: 11/03/2019] [Indexed: 12/02/2022] Open
Abstract
We developed a novel green approach for the in situ fabrication of Ag NPs in mesoporous TiO2 films via the bamboo self-sacrificing reduction of Ag(NH3)2+ ions, which can inhibit fungal growth on the bamboo surface. Mesoporous anatase TiO2 (MT) films were first synthesized on bamboo via a hydrothermal method. Then, Ag NPs with a 5.3 nm mean diameter were incorporated into the pore channels of optimal MT/bamboo (MTB) samples at room temperature without the addition of reducing agents, such that the Ag NPs were almost entirely embedded into the MT films. Our analysis indicated that the solubilized lignin from bamboo, which is rich in oxygen-containing functional groups, serves as a green reductant for reducing the Ag(NH3)2+ ions to Ag NPs. Antifungal experiments with Trichoderma viride under dark conditions highlighted that the antifungal activity of the Ag/MT/bamboo samples were greater than those of naked bamboo, MTB, and Ag/bamboo, suggesting that these hybrid nanomaterials produce a synergistic antifungal effect that is unrelated to photoactivity. The inhibition of Penicillium citrinum effectively followed a similar trend. This newly developed bamboo protection method may provide a sustainable, eco-friendly, and efficient method for enhancing the antifungal characteristics of traditional bamboo, having the potential to prolong the service life of bamboo materials, particularly under dark conditions.
Collapse
Affiliation(s)
- Jingpeng Li
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, Engineering Technology Research Center for Building and Decorating Materials of Bamboo State Forestry Administration, China National Bamboo Research Center, Hangzhou 310012, China; (J.L.); (A.W.); (Z.W.)
- International Center for Bamboo and Rattan, Beijing 100102, China; (M.S.); (Z.J.)
| | - Minglei Su
- International Center for Bamboo and Rattan, Beijing 100102, China; (M.S.); (Z.J.)
| | - Anke Wang
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, Engineering Technology Research Center for Building and Decorating Materials of Bamboo State Forestry Administration, China National Bamboo Research Center, Hangzhou 310012, China; (J.L.); (A.W.); (Z.W.)
| | - Zaixing Wu
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, Engineering Technology Research Center for Building and Decorating Materials of Bamboo State Forestry Administration, China National Bamboo Research Center, Hangzhou 310012, China; (J.L.); (A.W.); (Z.W.)
| | - Yuhe Chen
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, Engineering Technology Research Center for Building and Decorating Materials of Bamboo State Forestry Administration, China National Bamboo Research Center, Hangzhou 310012, China; (J.L.); (A.W.); (Z.W.)
| | - Daochun Qin
- International Center for Bamboo and Rattan, Beijing 100102, China; (M.S.); (Z.J.)
| | - Zehui Jiang
- International Center for Bamboo and Rattan, Beijing 100102, China; (M.S.); (Z.J.)
| |
Collapse
|
16
|
Li Y, Zhao J, Zhang G, Zhang L, Ding S, Shang E, Xia X. Visible-light-driven photocatalytic disinfection mechanism of Pb-BiFeO 3/rGO photocatalyst. WATER RESEARCH 2019; 161:251-261. [PMID: 31202112 DOI: 10.1016/j.watres.2019.06.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/09/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
While the visible-light-driven photocatalytic disinfection techniques for drinking water have recently attracted tremendous attentions, it is necessary to further improve the solar energy utilization efficiency. In this study, we synthesized Pb-BiFeO3 photocatalysts doped with different amounts of reduced graphene oxide (Pb-BiFeO3/rGO). The photocatalytic disinfection efficiencies toward gram-negative Escherichia coli (E. coli) and gram-positive Staphylococcus aureus (S. aureus) were evaluated under visible-light irradiation (λ ≥ 400 nm). The results indicated that Pb-BiFeO3 with 0.5 wt% rGO (Pb-BiFeO3/0.5% rGO) exhibited the highest disinfection efficiency. Complete inactivation was reached within 30 min and 90 min for E. coli and S. aureus, respectively. The transcriptomic analysis results indicated that Pb-BiFeO3/0.5% rGO deregulates the genes in E. coli cells that are involved in the cell membrane damage and oxidative stress responses. This was validated by the cell leakage of nucleic acids or proteins, transmission electron microscopy images of the bacteria, and the disinfection efficiency decrease caused by the introduction of scavenger of hydroxyl radical (HO•). Metal ions (Pb2+, Bi2+, and Fe3+) released from the photocatalysts did not contribute to the disinfection process. For the first time, our results elucidated that the photocatalytic disinfection mechanism of Pb-BiFeO3/rGO toward E. coli was mainly associated with oxidative stress due to HO• generation and the loss of membrane integrity from direct contact with the photocatalyst. After four consecutive cycles, the Pb-BiFeO3/0.5% rGO photocatalyst exhibited a strong antibacterial efficiency. The excellent disinfection efficiency and stability of Pb-BiFeO3/0.5% rGO suggests that this photocatalyst shows great potential for drinking water disinfection.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Jian Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Guangshan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Lilan Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, PR China
| | - Shiyuan Ding
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, PR China
| | - Enxiang Shang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
17
|
Yang YY, Niu CG, Wen XJ, Zhang L, Liang C, Guo H, Guan DL, Liu HY, Zeng GM. Fabrication of visible-light-driven silver iodide modified iodine-deficient bismuth oxyiodides Z-scheme heterojunctions with enhanced photocatalytic activity for Escherichia coli inactivation and tetracycline degradation. J Colloid Interface Sci 2019; 533:636-648. [DOI: 10.1016/j.jcis.2018.09.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/01/2018] [Accepted: 09/03/2018] [Indexed: 12/30/2022]
|
18
|
Feng T, Liang J, Ma Z, Li M, Tong M. Bactericidal activity and mechanisms of BiOBr-AgBr under both dark and visible light irradiation conditions. Colloids Surf B Biointerfaces 2018; 167:275-283. [DOI: 10.1016/j.colsurfb.2018.04.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 10/17/2022]
|
19
|
Liang J, Liu F, Li M, Liu W, Tong M. Facile synthesis of magnetic Fe 3O 4@BiOI@AgI for water decontamination with visible light irradiation: Different mechanisms for different organic pollutants degradation and bacterial disinfection. WATER RESEARCH 2018; 137:120-129. [PMID: 29547775 DOI: 10.1016/j.watres.2018.03.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 05/17/2023]
Abstract
Magnetic Fe3O4@BiOI@AgI (FBA) spheres were synthesized through a multi-step process. The fabricated photocatalysts were characterized by different techniques. To testify the visible light driven photocatalytic activity of FBA, Rhodamine B and Bisphenol A were chosen as model common and emerging organic contaminants, respectively. While, gram-negative strain Escherichia coli was selected as model waterborne bacteria. The results showed that under visible light irradiation, FBA contained strong photocatalytic degradation capacity towards both RhB and BPA. Moreover, FBA was also found to exhibit excellent disinfection activity towards E. coli. The photocatalytic mechanisms for different pollutants by FBA were determined and found to vary for different pollutants. Specifically, scavenger experiments, degradation intermediates determination, as well as theoretical density functional theory (DFT) analysis showed that RhB and BPA were degraded via photosensitization (dominated by e- and ·O2-) and direct photocatalytic oxidation (contributed by h+, e- and ·O2-), respectively. Whereas, E. coli cells yet were found to be inactivated by the generation of e- and ·O2- rather than by the released Ag+. Since it contained superparamagnetic property, FBA could be easily separated from the reaction suspension after use. Due to the excellent photo stability, FBA exhibited strong photocatalytic activity in the fourth reused recycle. Therefore, FBA could serve as a promising alternative for water purification.
Collapse
Affiliation(s)
- Jialiang Liang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Mian Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
20
|
Guan DL, Niu CG, Wen XJ, Guo H, Deng CH, Zeng GM. Enhanced Escherichia coli inactivation and oxytetracycline hydrochloride degradation by a Z-scheme silver iodide decorated bismuth vanadate nanocomposite under visible light irradiation. J Colloid Interface Sci 2018; 512:272-281. [DOI: 10.1016/j.jcis.2017.10.068] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 11/26/2022]
|
21
|
Liang J, Liu F, Deng J, Li M, Tong M. Efficient bacterial inactivation with Z-scheme AgI/Bi 2MoO 6 under visible light irradiation. WATER RESEARCH 2017; 123:632-641. [PMID: 28709107 DOI: 10.1016/j.watres.2017.06.060] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/16/2017] [Accepted: 06/21/2017] [Indexed: 05/28/2023]
Abstract
A novel Z-scheme AgI/Bi2MoO6 hybrid photocatalyst was fabricated via a solvothermal-precipitation approach to disinfect bacteria in water. Powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopic (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX), high resolution transmission electron microscope (HRTEM), UV-vis diffuse reflectance spectra (DRS), as well as photoluminescence spectra (PL) were employed to characterize the fabricated photocatalyst. Due to the stronger redox potential and better separation of charge carriers induced by the Z-scheme structure, the optimal synthesized AgI/Bi2MoO6 exhibited excellent disinfection activity towards both Gram-negative strain Escherichia coli (E. coli) and Gram-positive strain Staphylococcus aureus (S. aureus) under visible light irradiation. 5.0 × 107 CFU mL-1 of E. coli and S. aureus cells were completely disinfected within 30 min and 90 min, respectively. Ag+ ions did not contribute to the disinfection activity, while active species including h+, O2-, e-, and H2O2 contributed to the cell inactivation. By changing the interaction force and being involved in the photocatalytic reactions, the common anions (Cl-, NO3-, SO42-, and H2PO4-) would affect the disinfection activity. Moreover, AgI/Bi2MoO6 exhibited effective disinfection activity in four consecutive reused cycles. Thus, AgI/Bi2MoO6 could be used as a promising photocatalyst for water disinfection.
Collapse
Affiliation(s)
- Jialiang Liang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Jun Deng
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Mian Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
22
|
El-Hussein A, Hamblin MR. ROS generation and DNA damage with photo-inactivation mediated by silver nanoparticles in lung cancer cell line. IET Nanobiotechnol 2017; 11:173-178. [PMID: 28477000 DOI: 10.1049/iet-nbt.2015.0083] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Lung cancer is considered one of the major health problems worldwide and the burden is even heavier in Africa. Nanomedicine is considered one of the most promising medical research applications nowadays. This is due to the unique physical and chemical properties of materials at the nanoscale. Silver nanoparticles have been extensively studied recently in many biomedical applications especially in cancer treatment, since they possess multifunctional effects that make these nanostructures ideal candidates for biomedical applications. AgNPs have been proved to have anti-tumour activity and the mode of cell death was shown to be apoptotic. The goal of the current work was to investigate the degree of DNA damage that may result from the usage of AgNPs as a photosensitiser in photo-inactivation and to evaluate the generation of reactive oxygen species (ROS) produced in the treatment. The results showed the occurrence of DNA damage in lung cancer cells (A549) through the generation of ROS shown by mitochondrial membrane potential changes.
Collapse
Affiliation(s)
- Ahmed El-Hussein
- Department of Laser Applications in Meteorology, Photochemistry, Photobiology and Agriculture, The National Institute of Laser Enhanced Science, Cairo University, Cairo, Egypt.
| | - Michael R Hamblin
- Harvard-MIT Division of Health Sciences and Technology, Harvard and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
23
|
Jiang X, Lv B, Wang Y, Shen Q, Wang X. Bactericidal mechanisms and effector targets of TiO2 and Ag-TiO2 against Staphylococcus aureus. J Med Microbiol 2017; 66:440-446. [PMID: 28463658 PMCID: PMC5817198 DOI: 10.1099/jmm.0.000457] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose In our previous study, Ag+-loaded TiO2 and Ag+-loaded SiO2 coatings for tracheal intubation were prepared to prevent ventilator-associated pneumonia (VAP), but the antimicrobial targets and the underlying mechanisms of TiO2 and Ag-TiO2 (Ag+) are still unclear. We attempted to elucidate the antimicrobial activity and potential mechanisms against Staphylococcus aureus. Methodology The study tested the TiO2 and Ag+ bacteriostatic activity against S. aureus strains by MIC assays and S. aureus growth curves, lesion in the membranes by surface hydrophobicity tests, conductivity tests and measurements of DNA and RNA contents in S. aureus cultures, and investigated the inhibition of soluble protein and nucleic acid synthesis by measurements of soluble protein content, fluorescent intensity and nucleic acid content of living S. aureus. Results The MIC values of TiO2 and Ag+ were 1.6 mg ml−1 and 5.781 µg ml−1. TiO2 and Ag+ could inhibit the growth of S. aureus. After treatment with TiO2 and Ag+, the surface hydrophobicity was significantly reduced, the conductivity of cultures increased, and DNA and RNA content in cultures showed no obvious changes. The expressions of soluble proteins and nucleic acid contents of living S. aureus were reduced after treatment with TiO2 and Ag+. Conclusion TiO2 and Ag+ could cause slight lesion in the membrane to affect S. aureus membrane permeability, but not decomposition of membrane. Moreover, TiO2 and Ag+ could lead to reduced expression of soluble protein by inhibiting the synthesis of nucleic acids, thereby further inhibiting the growth of S. aureus.
Collapse
Affiliation(s)
- Xuhong Jiang
- Department of Emergency, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Bin Lv
- Department of Gastroenterology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Yuan Wang
- Department of Emergency, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Qianhong Shen
- Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou, PR China
| | - Xinmin Wang
- Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
24
|
Deng J, Liang J, Li M, Tong M. Enhanced visible-light-driven photocatalytic bacteria disinfection by g-C 3 N 4 -AgBr. Colloids Surf B Biointerfaces 2017; 152:49-57. [DOI: 10.1016/j.colsurfb.2017.01.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/27/2016] [Accepted: 01/03/2017] [Indexed: 11/27/2022]
|
25
|
Motshekga SC, Ray SS. Highly efficient inactivation of bacteria found in drinking water using chitosan-bentonite composites: Modelling and breakthrough curve analysis. WATER RESEARCH 2017; 111:213-223. [PMID: 28088718 DOI: 10.1016/j.watres.2017.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/06/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
Disinfection of bacterially-contaminated drinking water requires a robust and effective technique and can be achieved by using an appropriate disinfectant material. The advanced use of nanomaterials is observed as an alternative and effective way for the disinfection process and water treatment as a whole. Hence, the inactivation of Escherichia coli (E. coli) using chitosan-Bentonite (Cts-Bent) composites was studied in a fixed bed column. Cts-Bent composites were synthesized using in situ cross-linking method using Bent-supported silver and zinc oxide nanoparticles. These composites were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The effect of the composite bed mass, initial concentration of bacteria, and flow rate on the bacterial inactivation was investigated. The characterization results revealed that the composites were successfully prepared and confirmed the presence of both silver and zinc oxide nanoparticles in the chitosan matrix. The growth curves of E. coli were expressed as breakthrough curves, based on the logistic, Gompertz, and Boltzmann models. The breakthrough time and processed volume of treated water at breakthrough were used as performance indicators, which revealed that the composites performed best at low bacterial concentration and flow rate and with substantial bed mass. The chitosan composites were found to be highly effective, which was demonstrated when no bacteria were observed in the effluent sample within the first 27 h of analysing river water. All the models were suitable for adequately describing and reproducing the experimental data with a sigmoidal pattern. Therefore, the prepared composite is showing potential to work as a disinfectant and provide an alternative solution for water disinfection; hence this study should propel further research of the same or similar materials.
Collapse
Affiliation(s)
- Sarah C Motshekga
- DST-CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Suprakas Sinha Ray
- DST-CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa; Department of Applied Chemistry, University of Johannesburg, Doornfontein, 2028, Johannesburg, South Africa.
| |
Collapse
|
26
|
Metal oxide composite thin films made by magnetron sputtering for bactericidal application. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Li Y, Zhang C, Shuai D, Naraginti S, Wang D, Zhang W. Visible-light-driven photocatalytic inactivation of MS2 by metal-free g-C 3N 4: Virucidal performance and mechanism. WATER RESEARCH 2016; 106:249-258. [PMID: 27728819 DOI: 10.1016/j.watres.2016.10.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/01/2016] [Accepted: 10/03/2016] [Indexed: 05/21/2023]
Abstract
The challenge to achieve effective water disinfection of pathogens, especially viruses, with minimized harmful disinfection byproducts calls for a cost-effective and environmentally benign technology. Here, polymeric graphitic carbon nitride (g-C3N4), as a metal-free robust photocatalyst, was explored for the first time for its ability to inactivate viruses under visible light irradiation. MS2 with an initial concentration of 1 × 108 PFU/mL was completely inactivated by g-C3N4 with a loading of 150 mg/L under visible light irradiation of 360 min. g-C3N4 was a robust photocatalyst, and no decrease in its virucidal performance was observed over five cycles of sequential MS2 photocatalytic inactivation. The reactive oxygen species (ROSs) were measured by a range of scavengers, and photo-generated electrons and its derived ROSs (O- 2) were found to be the leading contributor for viral inactivation. TEM images indicated that the viral particle shape was distorted and the capsid shell was ruptured after photocatalysis. Viral surface proteins, particularly replicase proteins and maturation proteins, were damaged by photocatalytic oxidation. The loss of proteins would result in the leakage and rapid destruction of interior components (four main types of RNA genes), finally leading to viral death without regrowth. Our work opens a new avenue for the exploration and applications of a low-cost, high-efficient, and robust metal-free photocatalyst for green/sustainable viral disinfection.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China.
| | - Chi Zhang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Danmeng Shuai
- Department of Civil and Environmental Engineering, The George Washington University, 800 22nd St NW Suite 3530, Science and Engineering Hall, Washington, DC 20052, USA
| | - Saraschandra Naraginti
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Dawei Wang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| |
Collapse
|
28
|
Efficient electrochemical oxidation of thallium (I) in groundwater using boron-doped diamond anode. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.11.085] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Bactericidal activity and mechanism of Ti-doped BiOI microspheres under visible light irradiation. Colloids Surf B Biointerfaces 2016; 147:307-314. [DOI: 10.1016/j.colsurfb.2016.08.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 01/16/2023]
|
30
|
Li Y, Niu J, Shang E, Crittenden JC. Influence of dissolved organic matter on photogenerated reactive oxygen species and metal-oxide nanoparticle toxicity. WATER RESEARCH 2016; 98:9-18. [PMID: 27064207 DOI: 10.1016/j.watres.2016.03.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
The effect of humic acid (HA) or fulvic acid (FA) on reactive oxygen species (ROS) generation by six metal-oxide nanoparticles (NPs) and their toxicities toward Escherichia coli was investigated under UV irradiation. Dissolved organic matter (DOM) decreased OH generation by TiO2, ZnO, and Fe2O3, with FA inhibiting OH generation more than HA. The generated OH in NPs/DOM mixtures was higher than the measured concentrations because DOM consumes OH faster than its molecular probe. None of NPs/FA mixtures produced O2(-). The generated O2(-) concentrations in NPs/HA mixtures (except Fe2O3/HA) were higher than the sum of O2(-) concentrations that produced as NPs and HA were presented by themselves. Synergistic O2(-) generation in NPs/HA mixtures resulted from O2 reduction by electron transferred from photoionized HA to NPs. DOM increased (1)O2 generation by TiO2, CuO, CeO2, and SiO2, and FA promoted (1)O2 generation more than HA. Enhanced (1)O2 generation resulted from DOM sensitization of NPs. HA did not increase (1)O2 generation by ZnO and Fe2O3 primarily because released ions quenched (1)O2 precursor ((3)HA*). Linear correlation was developed between total ROS concentrations generated by NPs/DOM mixtures and bacterial survival rates (R(2) ≥ 0.80). The results implied the necessity of considering DOM when investigating the photoreactivity of NPs.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Junfeng Niu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Enxiang Shang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - John Charles Crittenden
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China; School of Civil and Environmental Engineering and the Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, GA 30332, United States
| |
Collapse
|
31
|
Ng TW, Zhang L, Liu J, Huang G, Wang W, Wong PK. Visible-light-driven photocatalytic inactivation of Escherichia coli by magnetic Fe2O3-AgBr. WATER RESEARCH 2016; 90:111-118. [PMID: 26724445 DOI: 10.1016/j.watres.2015.12.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/08/2015] [Accepted: 12/12/2015] [Indexed: 05/08/2023]
Abstract
Bacterial inactivation by magnetic photocatalyst receives increasing interests for the ease recovery and reuse of photocatalysts. This study investigated bacterial inactivation by a magnetic photocatalysts, Fe2O3-AgBr, under the irradiation of a commercially available light emitting diode lamp. The effects of different factors on the inactivation of Escherichia coli were also evaluated, in term of the efficiency in inactivation. The results showed that Fe2O3-AgBr was able to inactivate both Gram negative (E. coli) and Gram positive (Staphylococcus aureus) bacteria. Bacterial inactivation by Fe2O3-AgBr was more favorable under high temperature and alkaline pH. Presence of Ca(2+) promoted the bacterial inactivation while the presence of [Formula: see text] was inhibitory. The mechanisms of photocatalytic bacterial inactivation were systemically studied and the effects of the presence of various specific reactive species scavengers and argon suggest that Fe2O3-AgBr inactivate bacterial cells by the oxidation of H2O2 generated from the photo-generated electron and direct oxidation of photo-generated hole. The detection of different reactive species further supported the proposed mechanisms. The results provide information for the evaluation of bacterial inactivation performance of Fe2O3-AgBr under different conditions. More importantly, bacterial inactivation for five consecutive cycles demonstrated Fe2O3-AgBr exhibited highly stable bactericidal activity and suggest that the magnetic Fe2O3-AgBr has great potential for water disinfection.
Collapse
Affiliation(s)
- Tsz Wai Ng
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Lisha Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Jianshe Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Guocheng Huang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Wei Wang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Po Keung Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
32
|
Dielectric Barrier Discharge (DBD) Plasma Assisted Synthesis of Ag₂O Nanomaterials and Ag₂O/RuO₂ Nanocomposites. NANOMATERIALS 2016; 6:nano6030042. [PMID: 28344299 PMCID: PMC5302525 DOI: 10.3390/nano6030042] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 12/04/2022]
Abstract
Silver oxide, ruthenium oxide nanomaterials and its composites are widely used in a variety of applications. Plasma-mediated synthesis is one of the emerging technologies to prepare nanomaterials with desired physicochemical properties. In this study, dielectric barrier discharge (DBD) plasma was used to synthesize Ag2O and Ag2O/RuO2 nanocomposite materials. The prepared materials showed good crystallinity. The surface morphology of the Ag2O exhibited “garland-like” features, and it changed to “flower-like” and “leaf-like” at different NaOH concentrations. The Ag2O/RuO2 composite showed mixed structures of aggregated Ag2O and sheet-like RuO2. Mechanisms governing the material’s growth under atmospheric pressure plasma were proposed. Chemical analysis was performed using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Thermogravimetric analysis (TGA) showed the thermal decomposition behavior and the oxygen release pattern.
Collapse
|
33
|
Liang J, Deng J, Li M, Tong M. Bactericidal activity and mechanism of AgI/AgBr/BiOBr0.75I0.25 under visible light irradiation. Colloids Surf B Biointerfaces 2016; 138:102-9. [DOI: 10.1016/j.colsurfb.2015.11.060] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/05/2015] [Accepted: 11/27/2015] [Indexed: 11/30/2022]
|
34
|
Pham TD, Lee BK, Pham-Cong D. Advanced removal of toluene in aerosol by adsorption and photocatalytic degradation of silver-doped TiO2/PU under visible light irradiation. RSC Adv 2016. [DOI: 10.1039/c5ra23786f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We synthesized a novel Ag–TiO2/PU material for the effective removal of gaseous toluene by both adsorption and photocatalytic degradation.
Collapse
Affiliation(s)
- Thanh-Dong Pham
- Department of Civil and Environmental Engineering
- University of Ulsan
- Ulsan 680-749
- Republic of Korea
| | - Byeong-Kyu Lee
- Department of Civil and Environmental Engineering
- University of Ulsan
- Ulsan 680-749
- Republic of Korea
| | - De Pham-Cong
- Department of Nano Fusion Technology
- Pusan National University
- Busan 609-735
- Republic of Korea
| |
Collapse
|
35
|
Pham TD, Lee BK. Novel integrated approach of adsorption and photo-oxidation using Ag-TiO 2/PU for bioaerosol removal under visible light. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2015; 275:357-365. [PMID: 32372878 PMCID: PMC7185811 DOI: 10.1016/j.cej.2015.04.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/10/2015] [Accepted: 04/10/2015] [Indexed: 05/10/2023]
Abstract
We investigated a novel approach by synthesizing an integrated material, which could act as both adsorbent and photocatalytic material, for bioaerosol purification under visible light conditions. Ag was used as a dopant agent to enhance photocatalytic activity of TiO2, leading to high photocatalytic activity of the doped TiO2 even under visible light. Under visible light, the doped TiO2 photocatalyst could produce oxy radicals, oxidative agents, that participate in oxidation reactions to decompose important organic components of bacteria, leading to death or removal of bacteria from an aerosol. Adsorption property was integrated into the enhanced TiO2 photocatalyst by using polyurethane (PU), a honeycomb structure material, as a substrate for coating process of the doped TiO2. Three materials including pristine PU, TiO2 coating on PU (TiO2/PU), and Ag-doped TiO2 coating on PU (Ag-TiO2/PU) were used to remove Escherichia coli in an aerosol under visible light. Under dark conditions, the removal capacities of E. coli in the aerosol by PU, TiO2/PU, and Ag-TiO2/PU were 1.2 × 105, 2.7 × 105, and 6.2 × 105 (CFU/cm3), respectively. Under visible light irradiation, the removal capacities of E. coli in an aerosol by PU, TiO2/PU, and Ag-TiO2/PU were 1.2 × 105, 2.7 × 105, and 1.8 × 106 (CFU/cm3), respectively. The improvement of the removal capacity by TiO2/PU and Ag-TiO2/PU, versus PU, is due to adsorption alone and the combination of adsorption plus photocatalytic activity, respectively.
Collapse
Affiliation(s)
- Thanh-Dong Pham
- Department of Civil and Environmental Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan 680-749, Republic of Korea
| | - Byeong-Kyu Lee
- Department of Civil and Environmental Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan 680-749, Republic of Korea
| |
Collapse
|
36
|
Guo L, Shan C, Liang J, Ni J, Tong M. Bactericidal mechanisms of Au@TNBs under visible light irradiation. Colloids Surf B Biointerfaces 2015; 128:211-218. [DOI: 10.1016/j.colsurfb.2015.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 10/24/2022]
|
37
|
Li Y, Niu J, Shang E, Crittenden JC. Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:965-973. [PMID: 25536151 DOI: 10.1021/es505089e] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We investigated the photogeneration of reactive oxygen species (ROS) by C60 under UV irradiation, when humic acid (HA) or fulvic acid (FA) is present. When C60 and dissolved organic matter (DOM) were present as a mixture, singlet oxygen ((1)O2) generation concentrations were 1.2–1.5 times higher than the sum of (1)O2 concentrations that were produced when C60 and DOM were present in water by themselves. When C60 and HA were present as a mixture, superoxide radicals (O2(•–)) were 2.2–2.6 times more than when C60 and HA were present in water by themselves. A synergistic ROS photogeneration mechanism involved in energy and electron transfer between DOM and C60 was proposed. Enhanced (1)O2 generation in the mixtures was partly due to (3)DOM* energy transfer to O2. However, it was mostly due to (3)DOM* energy transfer to C60 producing (3)C60*. (3)C60* has a prolonged lifetime (>4 μs) in the mixture and provides sufficient time for energy transfer to O2, which produces (1)O2. The enhanced O2(•–) generation for HA/C60 mixture was because (3)C60* mediated electron transfer from photoionized HA to O2. This study demonstrates the importance of considering DOM when investigating ROS production by C60.
Collapse
|
38
|
Jin Y, Deng J, Yu J, Yang C, Tong M, Hou Y. Fe5C2 nanoparticles: a reusable bactericidal material with photothermal effects under near-infrared irradiation. J Mater Chem B 2015; 3:3993-4000. [DOI: 10.1039/c5tb00201j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hägg iron carbide (Fe5C2) was synthesized through a facile one-pot wet-chemical route and employed as a photothermal agent to inactivate bacterial cells.
Collapse
Affiliation(s)
- Yinjia Jin
- The Key Laboratory of Water and Sediment Sciences
- Ministry of Education
- College of Environmental Sciences and Engineering
- Peking University
- Beijing
| | - Jun Deng
- The Key Laboratory of Water and Sediment Sciences
- Ministry of Education
- College of Environmental Sciences and Engineering
- Peking University
- Beijing
| | - Jing Yu
- Department of Advanced Materials and Nanotechnology
- College of Engineering
- Peking University
- Beijing
- P. R. China
| | - Ce Yang
- Department of Advanced Materials and Nanotechnology
- College of Engineering
- Peking University
- Beijing
- P. R. China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences
- Ministry of Education
- College of Environmental Sciences and Engineering
- Peking University
- Beijing
| | - Yanglong Hou
- Department of Advanced Materials and Nanotechnology
- College of Engineering
- Peking University
- Beijing
- P. R. China
| |
Collapse
|
39
|
Xu H, Song Y, Song Y, Zhu J, Zhu T, Liu C, Zhao D, Zhang Q, Li H. Synthesis and characterization of g-C3N4/Ag2CO3with enhanced visible-light photocatalytic activity for the degradation of organic pollutants. RSC Adv 2014. [DOI: 10.1039/c4ra03443k] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
40
|
Liu W, Ni J, Yin X. Synergy of photocatalysis and adsorption for simultaneous removal of Cr(VI) and Cr(III) with TiO₂ and titanate nanotubes. WATER RESEARCH 2014; 53:12-25. [PMID: 24486715 DOI: 10.1016/j.watres.2013.12.043] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/29/2013] [Accepted: 12/30/2013] [Indexed: 06/03/2023]
Abstract
An one-step efficient simultaneous removal of Cr(VI) and Cr(III) was achieved with mixture of TiO₂ and titanate nanotubes (TNTs). Unlike the conventional two-step Cr removal with a first photocatalytic reduction of Cr(VI) and a subsequent adsorption of Cr(III), the proposed single process significantly reduced reaction time (over 50%). The synergy of photocatalysis and adsorption played an important role in enhancing Cr removal process. The synergetic mechanism was interpreted and indirectly confirmed with H₂O₂ variation during photocatalysis. The instant transfer of the reduced Cr from TiO₂ surface to TNTs interlayer greatly promoted the release of photocatalytic sites of TiO₂, which in turn considerably enhanced photocatalytic activity of TNTs by inhibiting electron-hole pairs recombination. The optimum condition for the whole process was at pH 5. Adsorption of Cr(III) was primarily in the interlayer of TNTs at pH ≤ 5. However, higher pH would lead to precipitation of Cr(OH)₃ onto TNTs as observed by X-ray photoelectron spectroscopy (XPS). Addition of Ca(2+) could promoted photocatalysis owing to its ionic bridging function and form of ≡TiOH(+)-Cr(VI)-Ca(2+)-Cr(VI) linkages, while SO₄(2-) only slightly inhibited photo-reduction of Cr(VI), indicating good synergy of photocatalysis and adsorption even at high ionic strength of electrolyte. Besides, the desorbed TNTs could be easily regenerated by remedying the damaged tubular structure and reused for Cr removal with excellent performance. The outstanding synergetic effects with essential explanation of the mechanism make this study not only fundamentally important but also potentially practical applicable.
Collapse
Affiliation(s)
- Wen Liu
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Jinren Ni
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.
| | - Xiaochen Yin
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
41
|
Jin Y, Liu F, Shan C, Tong M, Hou Y. Efficient bacterial capture with amino acid modified magnetic nanoparticles. WATER RESEARCH 2014; 50:124-34. [PMID: 24370656 DOI: 10.1016/j.watres.2013.11.045] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/27/2013] [Accepted: 11/28/2013] [Indexed: 05/22/2023]
Abstract
Traditional chemical disinfectants are becoming increasingly defective due to the generation of carcinogenic disinfection byproducts and the emergence of antibiotic-resistant bacterial strains. Functionalized magnetic nanoparticles yet have shown great application potentials in water treatment processes especially for bacterial removal. In this study, three types of amino acids (arginine, lysine, and poly-l-lysine) functionalized Fe3O4 nanoparticles (Fe3O4@Arg, Fe3O4@Lys, and Fe3O4@PLL) were prepared through a facile and inexpensive two-step process. The amino acid modified Fe3O4 nanoparticles (Fe3O4@AA) showed rapid and efficient capture and removal properties for both Gram-positive Bacillus subtilis (B. subtilis) and Gram-negative Escherichia coli 15597 (E. coli). For both strains, more than 97% of bacteria (initial concentration of 1.5 × 10(7) CFU mL(-1)) could be captured by all three types of magnetic nanoparticles within 20 min. With E. coli as a model strain, Fe3O4@AA could remove more than 94% of cells from solutions over a broad pH range (from 4 to 10). Solution ionic strength did not affect cell capture efficiency. The co-presence of sulfate and nitrate in solutions did not affect the capture efficiency, whereas, the presence of phosphate and silicate slightly decreased the removal rate. However, around 90% and 80% of cells could be captured by Fe3O4@AA even at 10 mM of silicate and phosphate, respectively. Bacterial capture efficiencies were over 90% and 82% even in the present of 10 mg L(-1) of humic acid and alginate, respectively. Moreover, Fe3O4@AA nanoparticles exhibited good reusability, and greater than 90% of E. coli cells could be captured even in the fifth regeneration cycle. The results showed Fe3O4@AA fabricated in this study have great application potential for bacteria removal from water.
Collapse
Affiliation(s)
- Yinjia Jin
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Fei Liu
- Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871, PR China
| | - Chao Shan
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| | - Yanglong Hou
- Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
42
|
Talebian N, Sadeghi Haddad Zavvare H. Enhanced bactericidal action of SnO2 nanostructures having different morphologies under visible light: influence of surfactant. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 130:132-9. [PMID: 24316658 DOI: 10.1016/j.jphotobiol.2013.10.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 12/23/2022]
Abstract
The practical use of visible-light for bactericide treatment has been established by tin oxide nanostructures synthesized using a surfactant-assisted solvothermal method. Anionic (sodium n-dodecyl sulfate, SDS), cationic (cetyltrimethyl ammonium bromide, CTAB) and non-ionic (Tritron X-100) surfactants were used as morphology controlling agents. The as-synthesized nanoparticles are characterized by X-ray powder diffraction (XRD), UV-vis spectroscopy and scanning electron microscopy (SEM). The XRD patterns of the as-synthesized tin oxide nanoparticles were well indexed to the tetragonal rutile structure. Nanostructure tin oxide powders of about 70-92nm in size have been obtained with different morphologies. The spherical, cauliflower, flower petals morphologies of surfactant-mediated SnO2 were obtained using X-100, CTAB, and SDS, respectively and the spherical-like for surfactant-free SnO2 was observed in the SEM micrographs. The surfactant-mediated SnO2 samples showed absorption edges red shift to longer wavelength and increased absorption intensities compared to surfactant-free SnO2. Antibacterial effectiveness of SnO2 samples was tested against general Escherichia coli (E. coli ATCC 25922) under UV-, visible-light and dark conditions. The surfactant promoted antimicrobial effect under visible light by SnO2 band gap modification. In contrast, the surfactant-free SnO2 possessed higher photokilling activity under UV-light. The antibacterial performance of SnO2 samples as a function of their structural and morphological features such as particle size, surface area and visible/UV light absorbing capacity was discussed.
Collapse
Affiliation(s)
- Nasrin Talebian
- Department of Chemistry, Shahreza Branch, Islamic Azad University, Razi Chemistry Research Centre, 86145-311 Shahreza, Isfahan, Iran.
| | - Hoda Sadeghi Haddad Zavvare
- Department of Chemistry, Shahreza Branch, Islamic Azad University, Razi Chemistry Research Centre, 86145-311 Shahreza, Isfahan, Iran
| |
Collapse
|