1
|
Xu B, Su Q, Yang Y, Huang S, Yang Y, Shi X, Choo KH, Ng HY, Lee CH. Quorum Quenching in Membrane Bioreactors for Fouling Retardation: Complexity Provides Opportunities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39012227 DOI: 10.1021/acs.est.4c04535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The occurrence of biofouling restricts the widespread application of membrane bioreactors (MBRs) in wastewater treatment. Regulation of quorum sensing (QS) is a promising approach to control biofouling in MBRs, yet the underlying mechanisms are complex and remain to be illustrated. A fundamental understanding of the relationship between QS and membrane biofouling in MBRs is lacking, which hampers the development and application of quorum quenching (QQ) techniques in MBRs (QQMBRs). While many QQ microorganisms have been isolated thus far, critical criteria for selecting desirable QQ microorganisms are still missing. Furthermore, there are inconsistent results regarding the QQ lifecycle and the effects of QQ on the physicochemical characteristics and microbial communities of the mixed liquor and biofouling assemblages in QQMBRs, which might result in unreliable and inefficient QQ applications. This review aims to comprehensively summarize timely QQ research and highlight the important yet often ignored perspectives of QQ for biofouling control in MBRs. We consider what this "information" can and cannot tell us and explore its values in addressing specific and important questions in QQMBRs. Herein, we first examine current analytical methods of QS signals and discuss the critical roles of QS in fouling-forming microorganisms in MBRs, which are the cornerstones for the development of QQ technologies. To achieve targeting QQ strategies in MBRs, we propose the substrate specificity and degradation capability of isolated QQ microorganisms and the surface area and pore structures of QQ media as the critical criteria to select desirable functional microbes and media, respectively. To validate the biofouling retardation efficiency, we further specify the QQ effects on the physicochemical properties, microbial community composition, and succession of mixed liquor and biofouling assemblages in MBRs. Finally, we provide scale-up considerations of QQMBRs in terms of the debated QQ lifecycle, practical synergistic strategies, and the potential cost savings of MBRs. This review presents the limitations of classic QS/QQ hypotheses in MBRs, advances the understanding of the role of QS/QQ in biofouling development/retardation in MBRs, and builds a bridge between the fundamental understandings and practical applications of QQ technology.
Collapse
Affiliation(s)
- Boyan Xu
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Qingxian Su
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
- Department of Environmental Engineering, Technical University of Denmark, Lyngby 2800, Denmark
| | - Yuxin Yang
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Shujuan Huang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, PR China
| | - Yue Yang
- Corporate Sustainability Office, TÜV SÜD, Westendstr. 199, 80686 München, Germany
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, PR China
| | - Kwang-Ho Choo
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Republic of Korea
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Chung-Hak Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
2
|
Evaluation of antifouling/biofouling ability of a novel MIL101(Cr)/PES composite membrane for acetate wastewater treatment in MBR application. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04716-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
3
|
Oliveira Filho M, Mailler R, Rocher V, Fayolle Y, Causserand C. Comprehensive study of supported PVDF membrane ageing in MBR: A direct comparison between changes at bench scale and full scale. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Shao Y, Zhou Z, Jiang J, Jiang LM, Huang J, Zuo Y, Ren Y, Zhao X. Membrane fouling in anoxic/oxic membrane reactors coupled with carrier-enhanced anaerobic side-stream reactor: Effects of anaerobic hydraulic retention time and mechanism insights. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Matar GK, Ali M, Bagchi S, Nunes S, Liu WT, Saikaly PE. Relative Importance of Stochastic Assembly Process of Membrane Biofilm Increased as Biofilm Aged. Front Microbiol 2021; 12:708531. [PMID: 34566913 PMCID: PMC8461090 DOI: 10.3389/fmicb.2021.708531] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
The relative importance of different ecological processes controlling biofilm community assembly over time on membranes with different surface characteristics has never been investigated in membrane bioreactors (MBRs). In this study, five ultrafiltration hollow-fiber membranes - having identical nominal pore size (0.1μm) but different hydrophobic or hydrophilic surface characteristics - were operated simultaneously in the same MBR tank with a constant flux of 10 liters per square meter per hour (LMH). In parallel, membrane modules operated without permeate flux (0 LMH) were submerged in the same MBR tank, to investigate the passive microbial adsorption onto different hydrophobic or hydrophilic membranes. Samples from the membrane biofilm were collected after 1, 10, 20, and 30days of continuous filtration. The membrane biofilm microbiome were investigated using 16S rRNA gene amplicon sequencing from DNA and cDNA samples. Similar beta diversity trends were observed for both DNA- and cDNA-based analyses. Beta diversity analyses revealed that the nature of the membrane surface (i.e., hydrophobic vs. hydrophilic) did not seem to have an effect in shaping the bacterial community, and a similar biofilm microbiome evolved for all types of membranes. Similarly, membrane modules operated with and without permeate flux did not significantly influence alpha and beta diversity of the membrane biofilm. Nevertheless, different-aged membrane biofilm samples exhibited significant differences. Proteobacteria was the most dominant phylum in early-stage membrane biofilm after 1 and 10days of filtration. Subsequently, the relative reads abundance of the phyla Bacteroidetes and Firmicutes increased within the membrane biofilm communities after 20 and 30days of filtration, possibly due to successional steps that lead to the formation of a relatively aged biofilm. Our findings indicate distinct membrane biofilm assembly patterns with different-aged biofilm. Ecological null model analyses revealed that the assembly of early-stage biofilm community developed after 1 and 10days of filtration was mainly governed by homogenous selection. As the biofilm aged (days 20 and 30), stochastic processes (e.g., ecological drift) started to become important in shaping the assembly of biofilm community.
Collapse
Affiliation(s)
- Gerald K Matar
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Muhammad Ali
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Samik Bagchi
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Suzana Nunes
- Biological and Environmental Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Wen-Tso Liu
- 3207 Newmark Civil Engineering Laboratory, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Pascal E Saikaly
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
6
|
Chaipetch W, Jaiyu A, Jutaporn P, Heran M, Khongnakorn W. Fouling Behavior in a High-Rate Anaerobic Submerged Membrane Bioreactor (AnMBR) for Palm Oil Mill Effluent (POME) Treatment. MEMBRANES 2021; 11:649. [PMID: 34564466 PMCID: PMC8467421 DOI: 10.3390/membranes11090649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 12/02/2022]
Abstract
The characteristics of foulant in the cake layer and bulk suspended solids of a 10 L submerged anaerobic membrane bioreactor (AnMBR) used for treatment of palm oil mill effluent (POME) were investigated in this study. Three different organic loading rates (OLRs) were applied with prolonged sludge retention time throughout a long operation time (270 days). The organic foulant was characterized by biomass concentration and concentration of extracellular polymeric substances (EPS). The thicknesses of the cake layer and foulant were analyzed by confocal laser scanning microscopy and Fourier transform infrared spectroscopy. The membrane morphology and inorganic elements were analyzed by field emission scanning electron microscope coupled with energy dispersive X-ray spectrometer. Roughness of membrane was analyzed by atomic force microscopy. The results showed that the formation and accumulation of protein EPS in the cake layer was the key contributor to most of the fouling. The transmembrane pressure evolution showed that attachment, adsorption, and entrapment of protein EPS occurred in the membrane pores. In addition, the hydrophilic charge of proteins and polysaccharides influenced the adsorption mechanism. The composition of the feed (including hydroxyl group and fatty acid compounds) and microbial metabolic products (protein) significantly affected membrane fouling in the high-rate operation.
Collapse
Affiliation(s)
- Wiparat Chaipetch
- Center of Excellence in Membrane Science and Technology, Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Arisa Jaiyu
- Expert Center of Innovative Materials, Thailand Institute of Scientific and Technological Research, Khlong Luang 12120, Thailand;
| | - Panitan Jutaporn
- Research Center for Environmental and Hazardous Substance Management (EHSM), Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Marc Heran
- Institut Européen des Membranes, IEM, UMR 5635, CNRS, ENSCM, University of Montpellier, CEDEX 5, 34095 Montpellier, France;
| | - Watsa Khongnakorn
- Center of Excellence in Membrane Science and Technology, Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Songkhla 90110, Thailand;
| |
Collapse
|
7
|
Rehman ZU, Vrouwenvelder JS, Saikaly PE. Physicochemical Properties of Extracellular Polymeric Substances Produced by Three Bacterial Isolates From Biofouled Reverse Osmosis Membranes. Front Microbiol 2021; 12:668761. [PMID: 34349735 PMCID: PMC8328090 DOI: 10.3389/fmicb.2021.668761] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
This work describes the chemical composition of extracellular polymeric substances (EPS) produced by three bacteria (RO1, RO2, and RO3) isolated from a biofouled reverse osmosis (RO) membrane. We isolated pure cultures of three bacterial strains from a 7-year-old biofouled RO module that was used in a full-scale seawater treatment plant. All the bacterial strains showed similar growth rates, biofilm formation, and produced similar quantities of proteins and polysaccharides. The gel permeation chromatography showed that the EPS produced by all the strains has a high molecular weight; however, the EPS produced by strains RO1 and RO3 showed the highest molecular weight. Fourier Transform Infrared Spectroscopy (FTIR), Proton Nuclear Magnetic Resonance (1H NMR), and Carbon NMR (13C NMR) were used for a detailed characterization of the EPS. These physicochemical analyses allowed us to identify features of EPS that are important for biofilm formation. FTIR analysis indicated the presence of α-1,4 glycosidic linkages (920 cm-1) and amide II (1,550 cm-1) in the EPS, the presence of which has been correlated with the fouling potential of bacteria. The presence of α-glycoside linkages was further confirmed by 13C NMR analysis. The 13C NMR analysis also showed that the EPS produced by these bacteria is chemically similar to foulants obtained from biofouled RO membranes in previous studies. Therefore, our results support the hypothesis that the majority of substances that cause fouling on RO membranes originate from bacteria. Investigation using 1H NMR showed that the EPS contained a high abundance of hydrophobic compounds, and these compounds can lead to flux decline in the membrane processes. Genome sequencing of the isolates showed that they represent novel species of bacteria belonging to the genus Bacillus. Examination of genomes showed that these bacteria carry carbohydrates-active enzymes that play a role in the production of polysaccharides. Further genomic studies allowed us to identify proteins involved in the biosynthesis of EPS and flagella involved in biofilm formation. These analyses provide a glimpse into the physicochemical properties of EPS found on the RO membrane. This knowledge can be useful in the rational design of biofilm control treatments for the RO membrane.
Collapse
Affiliation(s)
- Zahid Ur Rehman
- Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Johannes S Vrouwenvelder
- Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pascal E Saikaly
- Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
8
|
Ni L, Shi Q, Wu M, Ma J, Wang Y. Fouling behavior and mechanism of hydrophilic modified membrane in anammox membrane bioreactor: Role of gel layer. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Improved anti-biofouling performance of CdS/g-C3N4/rGO modified membranes based on in situ visible light photocatalysis in anammox membrane bioreactor. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118861] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Reducing the Impacts of Biofouling in RO Membrane Systems through In Situ Low Fluence Irradiation Employing UVC-LEDs. MEMBRANES 2020; 10:membranes10120415. [PMID: 33322250 PMCID: PMC7764532 DOI: 10.3390/membranes10120415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 01/04/2023]
Abstract
Biofouling is a major concern for numerous reverse osmosis membrane systems. UV pretreatment of the feed stream showed promising results but is still not an established technology as it does not maintain a residual effect. By conducting accelerated biofouling experiments in this study, it was investigated whether low fluence UV in situ treatment of the feed using UVC light-emitting diodes (UVC-LEDs) has a lasting effect on the biofilm. The application of UVC-LEDs for biofouling control is a novel hybrid technology that has not been investigated, yet. It could be shown that a low fluence of 2 mJ∙cm-2 delays biofilm formation by more than 15% in lab-scale experiments. In addition, biofilms at the same feed channel pressure drop exhibited a more than 40% reduced hydraulic resistance. The delay is probably linked to the inactivation of cells in the feed stream, modified adsorption properties or an induced cell cycle arrest. The altered hydraulic resistance might be caused by a change in the microbial community, as well as reduced adenosine triphosphate levels per cells, possibly impacting quorum sensing and extracellular polymeric substances production. Due to the observed biofilm attributes, low fluence UV-LED in situ treatment of the feed stream seems to be a promising technology for biofouling control.
Collapse
|
11
|
Chen L, Zhang Y, Li R, Zhang H, Zhang M, Zhang H. Light sheet fluorescence microscopy applied for in situ membrane fouling characterization: The microscopic events of hydrophilic membrane in resisting DEX fouling. WATER RESEARCH 2020; 185:116240. [PMID: 32798888 DOI: 10.1016/j.watres.2020.116240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Membrane fouling restricts the wide applications of membrane technology and therefore, it is essential to develop novel analytical techniques to characterize membrane fouling and to further understand the mechanism behind it. In this work, we demonstrate a capability of high-resolution large-scale 3D visualization and quantification of the foulants on/in membranes during fouling process based on light sheet fluorescence microscopy as a noninvasive reproducible optical approach. The adsorption processes of dextran (DEX) on/in two polyvinylidene fluoride membranes with similar pore structure but distinct surface hydrophilicity were clearly observed. For a hydrophilic polyvinylidene fluoride (PVDF) membrane, the diffusion and adsorption of the DEX in membrane matrix were much slower compared to that for a hydrophobic membrane. A concentrated foulant layer was observed in the superficial potion of the hydrophilic membrane matrix while the foulants were observed quickly penetrating across the overall hydrophobic PVDF membrane during a short adsorption process. Both the inner concentrated fouling layer (in membrane superficial portion) and the foulant penetration (in membrane asymmetric structure) presented correlations with membrane fouling irreversibility, which could elucidate the microscopic events of hydrophilic membrane in resisting fouling. In addition, the imaging results could be correlated with the XDLVO analysis, suggesting how the membrane-foulant and foulant-foulant interfacial interactions resulted in a time-dependent membrane fouling process. This work provides a fast, highly-sensitive and noninvasive imaging platform for in situ characterization of membrane fouling evolution and should be useful for a wide range of membrane-based process explorations.
Collapse
Affiliation(s)
- Lingling Chen
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Yang Zhang
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Renjian Li
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Haoquan Zhang
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Meng Zhang
- School of Electronic and Information Engineering, Beihang University, Beijing 100191, China.
| | - Hongwei Zhang
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
12
|
Maqbool T, Ly QV, Asif MB, Ng HY, Zhang Z. Fate and role of fluorescence moieties in extracellular polymeric substances during biological wastewater treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137291. [PMID: 32087584 DOI: 10.1016/j.scitotenv.2020.137291] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
In biological wastewater treatment systems, extracellular polymeric substances (EPS) are continuously excreted as a response to environmental changes and substrate conditions. It could severely affect the treatment efficacy such as membrane fouling, dewaterability and the formation of carcinogenic disinfection by-products (DBPs). The heterogeneous dissolved organic matter (DOM) with varying size and chemical nature constitute a primary proportion of EPS. In the last few decades, fluorescence spectroscopy has received increasing attention for characterizing these organic substances due to the attractive features of this low-cost spectroscopic approach, including easy sample handling, rapid, non-destructive and highly sensitive nature. In this review, we summarize the application of fluorescence spectroscopy for characterizing EPS and provide the potential implications for online monitoring of water quality along with its limitations. We also link the dynamics of fluorescent dissolved organic matter (FDOM) in EPS with operational and environmental changes in wastewater treatment systems as well as their associations with metal binding, membrane fouling, adsorption, toxicity, and dewaterability. The multiple modes of exploration of fluorescence spectra, such as synchronous spectra with or without coupling with two-dimensional correlation spectroscopy (2D-COS), excitation-emission matrix (EEM) deconvoluted fluorescence regional integration (FRI), and parallel factor analysis (PARAFAC) are also discussed. The potential fluorescence indicators to depict the composition and bulk characteristics of EPS are also of interest. Further studies are highly recommended to expand the application of fluorescence spectroscopy paired with appropriate supplementary techniques to fully unravel the underlying mechanisms associated with EPS.
Collapse
Affiliation(s)
- Tahir Maqbool
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Quang Viet Ly
- Institute of Research and Development, Duy Tan University, Danang 550000, Viet Nam
| | - Muhammad Bilal Asif
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - How Yong Ng
- National University of Singapore Research Institute, National University of Singapore, Singapore
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
13
|
Li L, Jeon Y, Ryu H, Santo Domingo JW, Seo Y. Assessing the chemical compositions and disinfection byproduct formation of biofilms: Application of fluorescence excitation-emission spectroscopy coupled with parallel factor analysis. CHEMOSPHERE 2020; 246:125745. [PMID: 31927366 PMCID: PMC7485375 DOI: 10.1016/j.chemosphere.2019.125745] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
There are increased concerns over the contributions of biofilms to disinfection byproduct (DBP) formation in engineered water systems (EWS). However, monitoring the biomolecular characteristics of biofilms to understand their impacts on DBP formation has been a great challenge as it requires complex analytical techniques. This study aimed to examine the applicability of fluorescence excitation-emission matrices (EEMs) coupled with parallel factor analysis (PARAFAC) to assess the chemical compositions and DBP formation of biofilms. Biofilms were collected from reactors grown on R2A media, as well as two drinking water-related organic substrates such as humic substances and algal organic matter. The chemical composition and formation of carbonaceous and nitrogenous DBPs of biofilms were continuously monitored every 21 days for 168 days and correlated with the derived EEM-PARAFAC components. Results indicated that all biofilm samples comprised mostly of protein-like components (∼90%), and to a lesser extent, humic-like components (∼10%). Strong correlations were generally found between tryptophan-like substances and the studied DBP formation (R2min ≥ 0.76, P < 0.05), indicating that they play a major role in producing biofilm-derived DBPs upon chlorination. Moreover, significant discrepancies between the chemical compositions and DBP formation of biofilms and their corresponding feed solutions were observed, likely due to biotransformation and biosorption processes. Overall, this work highlights that EEM-PARAFAC analysis is a promising tool to monitor the biomolecular characteristics of biofilm components and to predict the subsequent DBP formation in optimizing disinfection protocols for EWS.
Collapse
Affiliation(s)
- Lei Li
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3048, Nitschke Hall, Toledo, OH, USA
| | - Youchul Jeon
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3048, Nitschke Hall, Toledo, OH, USA
| | - Hodon Ryu
- Water Systems Division, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH, 45268, USA
| | - Jorge W Santo Domingo
- Water Systems Division, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH, 45268, USA
| | - Youngwoo Seo
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3048, Nitschke Hall, Toledo, OH, USA; Department of Chemical Engineering, University of Toledo, Mail Stop 307, 3048 Nitschke Hall, Toledo, OH, USA.
| |
Collapse
|
14
|
Antifouling mechanism of the additive-free β-PVDF membrane in water purification process: Relating the surface electron donor monopolarity to membrane-foulant interactions. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117873] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Liu XY, Guo S, Ramoji A, Bocklitz T, Rösch P, Popp J, Yu HQ. Spatiotemporal Organization of Biofilm Matrix Revealed by Confocal Raman Mapping Integrated with Non-negative Matrix Factorization Analysis. Anal Chem 2019; 92:707-715. [DOI: 10.1021/acs.analchem.9b02593] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiao-Yang Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, D-07743 Jena, Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, D-07743 Jena, Germany
| | - Shuxia Guo
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, D-07743 Jena, Germany
- Leibniz Institute of Photonic Technology Jena - Member of the Research Alliance “Leibniz Health Technologies”, Albert-Einstein-Strasse 9, D-07745 Jena, Germany
| | - Anuradha Ramoji
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, D-07743 Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, D-07743 Jena, Germany
- Leibniz Institute of Photonic Technology Jena - Member of the Research Alliance “Leibniz Health Technologies”, Albert-Einstein-Strasse 9, D-07745 Jena, Germany
| | - Thomas Bocklitz
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, D-07743 Jena, Germany
- Leibniz Institute of Photonic Technology Jena - Member of the Research Alliance “Leibniz Health Technologies”, Albert-Einstein-Strasse 9, D-07745 Jena, Germany
| | - Petra Rösch
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, D-07743 Jena, Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, D-07743 Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, D-07743 Jena, Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, D-07743 Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, D-07743 Jena, Germany
- Leibniz Institute of Photonic Technology Jena - Member of the Research Alliance “Leibniz Health Technologies”, Albert-Einstein-Strasse 9, D-07745 Jena, Germany
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
16
|
Sang Y, Wang S, Song L, Guo J, Zhang L, Zhang H. Characterization of activated sludge flocs in membrane bioreactor: stable and unstable flocs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:31786-31792. [PMID: 31485946 DOI: 10.1007/s11356-019-06364-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
In this study, the properties of unstable and stable flocs were investigated under the steady operation of a membrane bioreactor (MBR). The extracellular polymeric substances (EPS) composition, surface charge, and hydrophobicity of unstable and stable flocs were examined and compared. Interfacial interactions of the membrane with unstable flocs, unstable flocs themselves, and unstable and stable flocs were assessed using the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) models. Cake layer resistance was found to contribute more than 80% of total resistance under steady operating conditions. Compared with stable flocs, unstable flocs possessed a higher level of EPS, more diverse protein, more negative charge, weaker hydrophobicity, and higher fouling potential. Thermodynamic analyses showed that unstable flocs had a higher adhesive strength (- 63.4 mJ/m2) with the membrane, lower self-cohesive strength (- 18.3 mJ/m2), and higher cohesive strength (- 54.3 mJ/m2) with stable flocs. Therefore, some unstable flocs remained on the membrane surface to form the cake layer due to their poor cohesion strength.
Collapse
Affiliation(s)
- Yifei Sang
- School of Chemistry Engineering, Northeast Electric Power University, Jilin City, 132012, Jilin, People's Republic of China
| | - Shengli Wang
- School of Chemistry Engineering, Northeast Electric Power University, Jilin City, 132012, Jilin, People's Republic of China
| | - Lianfa Song
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX, 79409-1023, USA
| | - Jingbo Guo
- School of Civil and Architecture Engineering, Northeast Electric Power University, Jilin City, 132012, Jilin, People's Republic of China
| | - Lanhe Zhang
- School of Chemistry Engineering, Northeast Electric Power University, Jilin City, 132012, Jilin, People's Republic of China
| | - Haifeng Zhang
- School of Chemistry Engineering, Northeast Electric Power University, Jilin City, 132012, Jilin, People's Republic of China.
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX, 79409-1023, USA.
| |
Collapse
|
17
|
Characterization of the Initial Fouling Layer on the Membrane Surface in a Membrane Bioreactor: Effects of Permeation Drag. MEMBRANES 2019; 9:membranes9090121. [PMID: 31533298 PMCID: PMC6780848 DOI: 10.3390/membranes9090121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/11/2019] [Accepted: 09/15/2019] [Indexed: 11/17/2022]
Abstract
In this study, the properties of the initial fouling layer on the membrane surface of a bioreactor were investigated under different operating modes (with or without permeate flux) to improve the understanding of the effect of permeation drag on the formation of the initial fouling layer. It was found that protein was the major component in the two types of initial fouling layers, and that the permeation drag enhanced the tryptophan protein-like substances. The attraction of the initial foulants to the polyvinylidene fluoride (PVDF) membrane was ascribed to the high zeta potential and electron donor component (γ-) of the membrane. Thermodynamic analyses showed that the permeation drag-induced fouling layer possessed high hydrophobicity and low γ-. Due to permeation drag, a portion of the foulants overcame an energy barrier before they contacted the membrane surface, which itself possessed a higher fouling propensity. A declining trend of the cohesive strength among the foulants was found with the increasing development of both fouling layers.
Collapse
|
18
|
Ma S, Lin L, Wang Q, Zhang Y, Zhang H, Gao Y, Xu L, Pan F, Zhang Y. Bioinspired EVAL membrane modified with cilia-like structures showing simultaneously enhanced permeability and antifouling properties. Colloids Surf B Biointerfaces 2019; 181:134-142. [PMID: 31128513 DOI: 10.1016/j.colsurfb.2019.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 01/05/2023]
Abstract
A simple and effective strategy to simultaneously enhance the permeability and antifouling properties of ethylene vinyl alcohol (EVAL) membrane was developed based on the bioinspired natural cleaner, cilia. Taking clue from the self-cleaning effect of cilia, supramolecular polyrotaxanes (PRs) with sliding and rotating cyclic molecules along linear chains were synthesized using azide-alkyne click chemistry. Cilia-like PRs were incorporated into EVAL matrix in the fabrication of modified EVAL membranes. Cilia-like structures protruding from the membrane surface have been observed by SEM, TEM and AFM. By imitating natural ciliary movements, these structures provided a proactive self-cleaning system to remove the foulants. The introduction of cilia-like PRs enhanced the surface roughness and hydrophilicity, and significantly enhanced permeability by 55.3% compared to raw EVAL membrane. Moreover, the membrane modified with cilia-like PRs showed an excellent antifouling property with a lower water flux decline (12.6%) and higher water flux recovery (94%) in dynamic fouling tests. Furthermore, this modified membrane develops the scope of bioinspired membranes, inspiring more attractive potential applications in self-cleaning materials, dynamic membranes and supramolecular machines.
Collapse
Affiliation(s)
- Sisi Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, PR China
| | - Ligang Lin
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, PR China.
| | - Qi Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, PR China
| | - Yuhui Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, PR China
| | - Honglei Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, PR China
| | - Yixin Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, PR China
| | - Lin Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, PR China
| | - Fusheng Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Yuzhong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, PR China
| |
Collapse
|
19
|
Characterization of the Fouling Layer on the Membrane Surface in a Membrane Bioreactor: Evolution of the Foulants' Composition and Aggregation Ability. MEMBRANES 2019; 9:membranes9070085. [PMID: 31315190 PMCID: PMC6680539 DOI: 10.3390/membranes9070085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/05/2019] [Accepted: 07/11/2019] [Indexed: 01/08/2023]
Abstract
In this study, the characteristics of membrane foulants were analyzed with regard to morphology, composition, and aggregation ability during the three stages of transmembrane pressure (TMP) development (fast-slow-fast rise in TMP) in a steady operational membrane bioreactor (MBR). The results obtained show that the fouling layer at the slow TMP-increase stage possessed a higher average roughness (71.27 nm) and increased fractal dimension (2.33), which resulted in a low membrane fouling rate (0.87 kPa/d). A higher extracellular DNA (eDNA) proportion (26.12%) in the extracellular polymeric substances (EPS) resulted in both higher zeta potential (-23.3 mV) and higher hydrophobicity (82.3%) for initial foulants, which induced and increased the protein proportion in the subsequent fouling layer (74.11%). Furthermore, the main composition of the EPS shifted from protein toward polysaccharide dominance in the final fouling layer. The aggregation test confirmed that eDNA was essential for foulant aggregation in the initial fouling layer, whereas ion interaction significantly affected foulant aggregation in the final fouling layer.
Collapse
|
20
|
Abstract
Abstract
Polysulfone (PSf) is a favorite polymer for the production of membrane due to its excellent physicochemical properties, including thermal stability; good chemical resistance to different materials such as different bases, acids, and chlorine; sufficient mechanical strength; and good processability. The present study offers an overview of the recent development in the application and modification of PSf membranes, focusing on some applications such as water and wastewater treatment, membrane distillation, pollutant removal, gas separation, separator for lithium ion battery, and support of composite membranes. In general, there are two major difficulties in the use of membranes made of PSf: membrane fouling and membrane wetting. Therefore, PSf membrane with good anticompaction and antifouling properties is reviewed. Finally, important issues related to the modification of PSf membranes for real applications are discussed. This article provides an intelligent direction for the progress of PSf membranes in the future.
Collapse
|
21
|
Banti DC, Samaras P, Tsioptsias C, Zouboulis A, Mitrakas M. Mechanism of SMP aggregation within the pores of hydrophilic and hydrophobic MBR membranes and aggregates detachment. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.03.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
Fan H, Xiao K, Mu S, Zhou Y, Ma J, Wang X, Huang X. Impact of membrane pore morphology on multi-cycle fouling and cleaning of hydrophobic and hydrophilic membranes during MBR operation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.04.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Maqbool T, Cho J, Hur J. Dynamic changes of dissolved organic matter in membrane bioreactors at different organic loading rates: Evidence from spectroscopic and chromatographic methods. BIORESOURCE TECHNOLOGY 2017; 234:131-139. [PMID: 28319761 DOI: 10.1016/j.biortech.2017.03.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/26/2017] [Accepted: 03/05/2017] [Indexed: 06/06/2023]
Abstract
Excitation emission matrix-parallel factor analysis (EEM-PARAFAC) and size exclusion chromatography (SEC) were utilized to explore the dynamics in extracellular polymeric substances (EPS), soluble microbial products (SMP), and effluent for the membrane bioreactors at two different organic loading rates (OLRs). Combination of three different fluorescent components explained the compositional changes of dissolved organic matter. The lower OLR resulted in a higher production of tryptophan-like component (C1) in EPS, while the opposite trends were found for the other two components (humic-like C2 and tyrosine-like C3), signifying the role of C1 in the endogenous condition. Larger sized molecules were more greatly produced in EPS at the lower OLR. Meanwhile, all the size fractions of SMP were more abundant at the higher OLR particular for the early phase of the operation. Irrespective of the OLR, the higher degrees of the membrane retention were found for relatively large sized and protein-like molecules.
Collapse
Affiliation(s)
- Tahir Maqbool
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
24
|
Lu R, Zhang C, Piatkovsky M, Ulbricht M, Herzberg M, Nguyen TH. Improvement of virus removal using ultrafiltration membranes modified with grafted zwitterionic polymer hydrogels. WATER RESEARCH 2017; 116:86-94. [PMID: 28324709 DOI: 10.1016/j.watres.2017.03.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 05/24/2023]
Abstract
Potable water reuse has been adopted by cities suffering water scarcity in recent years. The microbial safety in water reuse, especially with respect to pathogenic viruses, is still a concern for water consumers. Membrane filtration can achieve sufficient removal of pathogenic viruses without disinfection byproducts, but the required energy is intensive. In this study, we graft-polymerized zwitterionic SPP ([3-(methacryloylamino) propyl] dimethyl (3-sulfopropyl) ammonium hydroxide) on a 150 kDa ultrafiltration polyethersulfone membrane to achieve a significantly higher virus removal. The redox-initiated graft-polymerization was performed in an aqueous solution during filtration of the monomer and initiators, allowing for functionalizing the membrane pores with hydrophilic polySPP. Bacteriophage MS2 and human adenovirus type 2 (HAdV-2) were used as surrogates for pathogenic human norovirus and human adenovirus. The grafting resulted in ∼18% loss of the membrane permeability but an increase of 4 log10 in HAdV-2 removal and 3 log10 in MS2 removal. The pristine and the grafted membranes were both conditioned with soluble microbial products (SMP) extracted from a full-scale membrane bioreactor (MBR) in order to test the virus removal after fouling the membranes. After fouling, the HAdV-2 removal by the grafted membrane was 1 log10 higher than that of the pristine membrane. For MS2, the grafted membrane after fouling with SMP achieved an additional 5 log10 removal compared to the unmodified membrane. The simple graft-polymerization functionalization of commercialized membrane achieving enhanced virus removal efficiency highlights the promise of membrane filtration for pathogen control in potable water reuse.
Collapse
Affiliation(s)
- Ruiqing Lu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Chang Zhang
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Maria Piatkovsky
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Israel
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, 45117, Essen, Germany
| | - Moshe Herzberg
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Israel.
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States.
| |
Collapse
|
25
|
Liu J, Tian C, Xiong J, Wang L. Polypyrrole blending modification for PVDF conductive membrane preparing and fouling mitigation. J Colloid Interface Sci 2017; 494:124-129. [DOI: 10.1016/j.jcis.2017.01.078] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/12/2017] [Accepted: 01/22/2017] [Indexed: 10/20/2022]
|
26
|
The Effect of Membrane Material and Surface Pore Size on the Fouling Properties of Submerged Membranes. WATER 2016. [DOI: 10.3390/w8120602] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Fortunato L, Jeong S, Wang Y, Behzad AR, Leiknes T. Integrated approach to characterize fouling on a flat sheet membrane gravity driven submerged membrane bioreactor. BIORESOURCE TECHNOLOGY 2016; 222:335-343. [PMID: 27741471 DOI: 10.1016/j.biortech.2016.09.127] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
Fouling in membrane bioreactors (MBR) is acknowledged to be complex and unclear. An integrated characterization methodology was employed in this study to understand the fouling on a gravity-driven submerged MBR (GD-SMBR). It involved the use of different analytical tools, including optical coherence tomography (OCT), liquid chromatography with organic carbon detection (LC-OCD), total organic carbon (TOC), flow cytometer (FCM), adenosine triphosphate analysis (ATP) and scanning electron microscopy (SEM). The three-dimensional (3D) biomass morphology was acquired in a real-time through non-destructive and in situ OCT scanning of 75% of the total membrane surface directly in the tank. Results showed that the biomass layer was homogeneously distributed on the membrane surface. The amount of biomass was selectively linked with final destructive autopsy techniques. The LC-OCD analysis indicated the abundance of low molecular weight (LMW) organics in the fouling composition. Three different SEM techniques were applied to investigate the detailed fouling morphology on the membrane.
Collapse
Affiliation(s)
- Luca Fortunato
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Sanghyun Jeong
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yiran Wang
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Ali R Behzad
- Advanced Nanofabrication Imaging and Characterization Laboratory, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - TorOve Leiknes
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia,.
| |
Collapse
|
28
|
Lei Q, Li F, Shen L, Yang L, Liao BQ, Lin H. Tuning anti-adhesion ability of membrane for a membrane bioreactor by thermodynamic analysis. BIORESOURCE TECHNOLOGY 2016; 216:691-698. [PMID: 27289061 DOI: 10.1016/j.biortech.2016.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/28/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
Developing strategies that allow tuning anti-adhesion ability of membranes in membrane bioreactors (MBRs) is of primary interest in membrane fouling research. In this study, interaction energies between foulants and membrane in three different interaction scenarios were systematically assessed based on thermodynamic methods. It was found that, membrane surface electron donor tension (γ(-)) rather than surface hydrophilicity was a more reliable indicator to predict adsorptive fouling. The interaction energy would be continuously repulsive in the initial range of separation distance when membrane γ(-) is higher than a critical value, suggesting that designing membrane with γ(-) higher than a critical value would confer membrane with high anti-adhesion ability. It was also found that, zeta potential on the membrane surface exerted certain effects on adsorptive fouling. This study proposed a novel strategy regarding adjusting membrane γ(-) to tune anti-adhesion ability of membrane, and also offered a thermodynamic theoretical background to this strategy.
Collapse
Affiliation(s)
- Qian Lei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Fengquan Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Lining Yang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Bao-Qiang Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B5E1, Canada
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| |
Collapse
|