1
|
Mo J, Guo J, Iwata H, Diamond J, Qu C, Xiong J, Han J. What Approaches Should be Used to Prioritize Pharmaceuticals and Personal Care Products for Research on Environmental and Human Health Exposure and Effects? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:488-501. [PMID: 36377688 DOI: 10.1002/etc.5520] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are released from multiple anthropogenic sources and thus have a ubiquitous presence in the environment. The environmental exposure and potential effects of PPCPs on biota and humans has aroused concern within the scientific community and the public. Risk assessments are commonly conducted to evaluate the likelihood of chemicals including PPCPs that pose health threats to organisms inhabiting various environmental compartments and humans. Because thousands of PPCPs are currently used, it is impractical to assess the environmental risk of all of them due to data limitations; in addition, new PPCPs are continually being produced. Prioritization approaches, based either on exposure, hazard, or risk, provide a possible means by which those PPCPs that are likely to pose the greatest risk to the environment are identified, thereby enabling more effective allocation of resources in environmental monitoring programs in specific geographical locations and ecotoxicological investigations. In the present review, the importance and current knowledge concerning PPCP occurrence and risk are discussed and priorities for future research are proposed, in terms of PPCP exposure (e.g., optimization of exposure modeling in freshwater ecosystems and more monitoring of PPCPs in the marine environment) or hazard (e.g., differential risk of PPCPs to lower vs. higher trophic level species and risks to human health). Recommended research questions for the next 10 years are also provided, which can be answered by future studies on prioritization of PPCPs. Environ Toxicol Chem 2024;43:488-501. © 2022 SETAC.
Collapse
Affiliation(s)
- Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | | | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Jiuqiang Xiong
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Jie Han
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
2
|
Ngo HTT, Nguyen TD, Nguyen TTH, Le TT, Nguyen DQ. Adverse Effects of Toxic Metal Pollution in Rivers on the Physiological Health of Fish. TOXICS 2022; 10:toxics10090528. [PMID: 36136493 PMCID: PMC9502420 DOI: 10.3390/toxics10090528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 05/19/2023]
Abstract
Toxic metal pollution influences the lives of diverse aquatic organisms and humans who consume contaminated aquatic products. However, its potential impacts on aquatic organism health and, thus, ecological health, have been neglected in many regions. This research was carried out to contribute to filling that knowledge gap. Three freshwater fish species in the Nhue−Day River basin, Vietnam, have been chosen to study the bioaccumulation of metals (Zn, Cu, Pb, and Cd) in the tissues (livers, kidneys, gills) and their effects on fish physiological health (changes in the oxidative-GST activity, and physiological biomarkers-energy reserves, respectively) from 2013 to 2017. The extensive results revealed significant spatial and temporal variations in metal concentrations in tissues of common carp (Cyprinus carpio), silver carp (Hypothalmic molitrix), and tilapia (Oreochromis niloticus), and well correlated to their concentration in the water (p < 0.05). Fish bioaccumulated metals in the following order: Zn > Cu > Pb > Cd, with more in the kidneys and livers (spring and summer) than in other tissues. Metal accumulation in O. niloticus and C. carpio was higher than in H. molitrix. Biomarker responses (except for glycogen variation) were also higher during warm seasons. Changes in metal levels in water and fish tissues caused variations in biomarkers in the respective fish tissues, particularly in the livers, as demonstrated by significant correlations of metal concentrations in water and fish tissues to biochemical and physiological responses (p < 0.05). The findings suggest that metal pollution in the river basin adversely impacts the physiological health of both wild and cultured fish. Seasonal shifts in the levels of metal accumulation and biomarkers could be connected to species-specific differences in physiology and the levels of metals in environments. This biomarker set is simple but effective in assessing the impact of metal pollution on fish health and, hence, the aquatic ecosystem. This is one of the first biomonitoring studies to assist in designing better water management strategies for the Nhue−Day River basin.
Collapse
Affiliation(s)
- Huong Thi Thuy Ngo
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
- Bioresource Center, Phenikaa University, Hanoi 12116, Vietnam
- Correspondence: ; Tel.: +84-9-17709596
| | - Thanh Dinh Nguyen
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
| | - Tien Thi Hanh Nguyen
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
- Bioresource Center, Phenikaa University, Hanoi 12116, Vietnam
| | - Thao Thanh Le
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
- Bioresource Center, Phenikaa University, Hanoi 12116, Vietnam
| | - Dinh Quoc Nguyen
- Economic Geology and Geomatics Department, Vietnam Institute of Geosciences and Mineral Resources, Hanoi 12109, Vietnam
| |
Collapse
|
3
|
Georgieva E, Yancheva V, Stoyanova S, Velcheva I, Iliev I, Vasileva T, Bivolarski V, Petkova E, László B, Nyeste K, Antal L. Which Is More Toxic? Evaluation of the Short-Term Toxic Effects of Chlorpyrifos and Cypermethrin on Selected Biomarkers in Common Carp ( Cyprinus carpio, Linnaeus 1758). TOXICS 2021; 9:toxics9060125. [PMID: 34072750 PMCID: PMC8229483 DOI: 10.3390/toxics9060125] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 01/02/2023]
Abstract
The general aim of this study was to investigate the negative short-term effects of different concentrations of chlorpyrifos (CPF) and cypermethrin (CYP), based on the EU legislation (MAC-EQS) in common carp (Cyprinus carpio Linnaeus, 1758) under laboratory conditions and to compare their toxicity. The fish were exposed to the pesticides for 96 h and then different histological and biochemical biomarkers were investigated in the gills and liver, and bioaccumulation analyses were conducted. The chemical studies showed increased pesticide concentrations in the gills as the first site for pollutants compared to the liver at the 96th hour. In addition, the histological analyses showed severe alterations in the gills and liver after exposure to both tested pesticides. In the gills, we found mainly intense proliferative and, to a lesser extent, degenerative changes and alterations in the circulatory system, such as necrosis and vasodilation. In the liver, regressive and progressive lesions, as well as circulatory disturbances and inflammation, were observed. The regressive lesions showed a higher degree of expression compared to the other changes. Furthermore, we found altered enzymatic activities—catalase, glutathione reductase, and glutathione peroxidase—in the liver, compared to the control. Overall, both tested pesticides impacted the studied biomarkers in common carp, even at concentrations lower than those permitted by law. However, the results of the comparative analysis showed a relatively higher toxicity of CYP compared to CPF in the fish. Still, questions persist as to whether the observed changes are adaptive or entirely destructive. To avoid any danger or risk, these pesticides must be applied cautiously, especially near water bodies.
Collapse
Affiliation(s)
- Elenka Georgieva
- Department of Developmental Biology, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria; (E.G.); (S.S.); (E.P.)
| | - Vesela Yancheva
- Department of Ecology and Environmental Conservation, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria; (V.Y.); (I.V.)
| | - Stela Stoyanova
- Department of Developmental Biology, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria; (E.G.); (S.S.); (E.P.)
| | - Iliana Velcheva
- Department of Ecology and Environmental Conservation, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria; (V.Y.); (I.V.)
| | - Ilia Iliev
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria; (I.I.); (T.V.); (V.B.)
| | - Tonka Vasileva
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria; (I.I.); (T.V.); (V.B.)
| | - Veselin Bivolarski
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria; (I.I.); (T.V.); (V.B.)
| | - Eleonora Petkova
- Department of Developmental Biology, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria; (E.G.); (S.S.); (E.P.)
| | - Brigitta László
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Krisztián Nyeste
- Department of Hydrobiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary;
- Correspondence:
| | - László Antal
- Department of Hydrobiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
4
|
Castaldo G, Pillet M, Slootmaekers B, Bervoets L, Town RM, Blust R, De Boeck G. Investigating the effects of a sub-lethal metal mixture of Cu, Zn and Cd on bioaccumulation and ionoregulation in common carp, Cyprinus carpio. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 218:105363. [PMID: 31783302 DOI: 10.1016/j.aquatox.2019.105363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
The aquatic environment is continuously under threat because it is the final receptor and sink of waste streams. The development of industry, mining activities and agriculture gave rise to an increase in metal pollution in the aquatic system. Thus a wide occurrence of metal mixtures exists in the aquatic environment. The assessment of mixture stress remains a challenge considering that we can not predict the toxicity of a mixture on the basis of single compounds. Therefore the analysis of the effects of environmentally relevant waterborne mixtures is needed to improve our understanding of the impact of metal pollution in aquatic ecosystems. Our aim was to assess whether 10 % of the concentration of the 96 h LC50 (the concentration that is lethal to 50 % of the population in 96 h) of individual metal exposures can be considered as a "safe" concentration when applied in a trinomial mixture. Therefore, common carp were exposed to a sublethal mixture of Cu 0.07 ± 0.001 μM (4.3 ± 0.6 μg/L), Zn 2.71 ± 0.81 μM (176.9 ± 52.8 μg/L) and Cd 0.03 ± 0.0004 μM (3.0 ± 0.4 μg/L) at 20 °C for a period of one week. Parameters assessed included survival rate, bioaccumulation and physiological biomarkers related to ionoregulation and defensive mechanisms such as MT induction. Our results showed a sharp increase in Cu and Cd concentration in gills within the first day of exposure while Zn levels remained stable. The accumulation of these metals led to a Na drop in gills, liver and muscle as well as a decreased K content in the liver. Biomarkers related to Na uptake were also affected: on the first day gene expression for H+-ATPase was transiently increased while a concomitant decreased gene expression of the Na+/H+ exchanger occurred. A fivefold induction of metallothionein gene expression was reported during the entire duration of the experiment. Despite the adverse effects on ionoregulation all fish survived, indicating that common carp are able to cope with these low metal concentrations, at least during a one week exposure.
Collapse
Affiliation(s)
- G Castaldo
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - M Pillet
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - B Slootmaekers
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - L Bervoets
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - R M Town
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - R Blust
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - G De Boeck
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|
5
|
Delahaut V, Daelemans O, Sinha AK, De Boeck G, Bervoets L. A multibiomarker approach for evaluating environmental contamination: Common carp (Cyprinus carpio) transplanted along a gradient of metal pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:481-492. [PMID: 30884270 DOI: 10.1016/j.scitotenv.2019.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/12/2019] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
Environmental monitoring and risk assessment approaches which include a more holistic view on the effects of pollutants on biota are increasingly sought by regulators and policy makers. Therefore, caged carp juveniles (Cyprinus carpio) were transplanted for 7 weeks along a known Cd and Zn pollution gradient. Metal (Cu, Cd and Zn) accumulation in gill and liver tissue and effect biomarkers (growth, condition factor (CF), hepatosomatic index (HSI), oxygen consumption, swimming capacity, Na+/K+-ATPase activity (NKA) and metallothionein (MT) levels) were compared. Up to 10-fold higher cadmium concentrations were measured in the gills of the fish at the most polluted locations compared to the laboratory control fish. Similarly, cadmium concentrations in liver tissues of field-exposed fish were significantly higher than those measured in laboratory control fish. Cu and Zn concentrations in the gills were not significantly different between field-exposed and control organisms, whereas higher levels in liver tissues were measured in carps deployed in some locations. Effects on liver MT levels were up to 10 times greater for organisms exposed to the field, whereas no clear effect of the metal exposure on NKA in the gill tissue was observed. A decrease in muscle glycogen stores was observed for all organisms deployed in the field, while liver glycogen levels decreased only in fish exposed to two of the 5 sites compared to the laboratory control fish. Additionally, significant drops in liver protein- and lipid stores were observed. No effect on oxygen consumption rates and swimming capacity was observed. The CF and HSI of caged fish reflected the pollution gradient in the river and considerable loss of weight was observed for fish transplanted in the most polluted site. Overall, this active biomonitoring study successfully revealed differences in metal accumulation, physiological and organismal endpoints as a direct consequence of field exposure.
Collapse
Affiliation(s)
- Vyshal Delahaut
- University of Antwerp, Department of Biology, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Oceanne Daelemans
- University of Antwerp, Department of Biology, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Amit Kumar Sinha
- University of Arkansas at Pine Bluff, Department of Aquaculture and Fisheries, 1200 North University Drive, Pine Bluff, AR 71601, United States of America
| | - Gudrun De Boeck
- University of Antwerp, Department of Biology, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Lieven Bervoets
- University of Antwerp, Department of Biology, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
6
|
Wolmarans NJ, Du Preez LH, Yohannes YB, Ikenaka Y, Ishizuka M, Smit NJ, Wepener V. Linking organochlorine exposure to biomarker response patterns in Anurans: a case study of Müller's clawed frog (Xenopus muelleri) from a tropical malaria vector control region. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:1203-1216. [PMID: 30173332 DOI: 10.1007/s10646-018-1972-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Organochlorine pesticides are highly persistent in aquatic ecosystems. Amphibians, specifically anurans, play an intricate part in the aquatic food web, and have very permeable skin which makes them prone to bioaccumulation of persistent pollutants. In this study the bioaccumulation of various legacy organochlorine pesticides (OCPs)-including dichlorodiphenyltrichloroethane (DDT), currently used for malaria vector control (MVC)-was assessed along with a set of biomarker responses in Müller's clawed frog Xenopus muelleri collected from the lower Phongolo River floodplain in South Africa. Possible relationships between bioaccumulation and biomarkers (of exposure, oxidative stress biomarkers, and cellular energy allocation) alongside their temporal changes were investigated. The OCP concentrations showed a significant increase over time for the duration of the study. The increase correlated negatively with rainfall from the region. DDT levels were well below expected effects levels with p,p-DDE being the main contributing metabolite. The results of this study indicate OCPs actively accumulate at sub-lethal levels in aquatic frogs from the study area, while showing possible relations towards some of the biochemical stress responses measured. Most notable were negative relationships indicated between p,p-DDE and acetylcholinesterase, malondialdehyde, and carbohydrates and protein energy availability. Levels of DDT were not found to be significantly higher than other legacy pesticides in the frog tissue, although evidence of newly introduced DDT in the frog tissue was found. Further investigation about sub-lethal effects of these pesticides on anurans is required to gain better insight into their full impact on animal livelihood.
Collapse
Affiliation(s)
- Nico J Wolmarans
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - Louis H Du Preez
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- South African Institute for Aquatic Biodiversity, Somerset Street, Grahamstown, 6139, South Africa
| | - Yared Beyene Yohannes
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan
| | - Yoshinori Ikenaka
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan
| | - Nico J Smit
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| |
Collapse
|
7
|
Gerber R, Smit NJ, van Vuren JHJ, Ikenaka Y, Wepener V. Biomarkers in tigerfish (Hydrocynus vittatus) as indicators of metal and organic pollution in ecologically sensitive subtropical rivers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:307-317. [PMID: 29627415 DOI: 10.1016/j.ecoenv.2018.03.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 03/19/2018] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
Studies have shown high levels of contamination of both metals and organochlorine pesticides (OCPs) in aquatic systems of the world renowned Kruger National Park, South Africa. With effects evident in top predators, including, unexplained Crocodylus niloticus deaths and organ level and histological changes in Hydrocynus vittatus. A suite of biomarkers reflecting exposure and were selected to evaluate biological responses of H. vittatus to anthropogenic stressors as well as to evaluate whether the chosen suite of biomarkers could successfully distinguish between the different pollution profiles present in the selected rivers. During this study a clear relationship was found between exposure to environmental contaminants and the concomitant responses of H. vittatus to these stressors. The ensuing biomarker responses indicated that there is a physiological attempt to deal with, and mitigate the deleterious effects that metals and OCPs may induce. In the Luvuvhu River there is a clear indication in H. vittatus of the stimulation of anti-oxidant protective mechanisms in response to internal OCP exposure. This is reflected by the increasing cytochrome P-450, superoxide dismutase, and more specifically reduced glutathione, which resulted in decreased lipid and protein breakdown (reflected in decreased lipid peroxidation and protein carbonyl levels). Consequently H. vittatus populations of the Luvuvhu River are under greater cumulative stress and this is reflected in the lower energy budgets. Our results further show the integrated application value of the current suite of biomarkers in assessing responses of subtropical fish to metal and OCP exposure as the entire suite of biomarkers when used in conjunction were able to explain 100% of the variation in the data.
Collapse
Affiliation(s)
- R Gerber
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - N J Smit
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Johan H J van Vuren
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Y Ikenaka
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| |
Collapse
|
8
|
Perkins EJ, Habib T, Escalon BL, Cavallin JE, Thomas L, Weberg M, Hughes MN, Jensen KM, Kahl MD, Villeneuve DL, Ankley GT, Garcia-Reyero N. Prioritization of Contaminants of Emerging Concern in Wastewater Treatment Plant Discharges Using Chemical:Gene Interactions in Caged Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51. [PMID: 28651047 PMCID: PMC6126926 DOI: 10.1021/acs.est.7b01567] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We examined whether contaminants present in surface waters could be prioritized for further assessment by linking the presence of specific chemicals to gene expression changes in exposed fish. Fathead minnows were deployed in cages for 2, 4, or 8 days at three locations near two different wastewater treatment plant discharge sites in the Saint Louis Bay, Duluth, MN and one upstream reference site. The biological impact of 51 chemicals detected in the surface water of 133 targeted chemicals was determined using biochemical endpoints, exposure activity ratios for biological and estrogenic responses, known chemical:gene interactions from biological pathways and knowledge bases, and analysis of the covariance of ovary gene expression with surface water chemistry. Thirty-two chemicals were significantly linked by covariance with expressed genes. No estrogenic impact on biochemical endpoints was observed in male or female minnows. However, bisphenol A (BPA) was identified by chemical:gene covariation as the most impactful estrogenic chemical across all exposure sites. This was consistent with identification of estrogenic effects on gene expression, high BPA exposure activity ratios across all test sites, and historical analysis of the study area. Gene expression analysis also indicated the presence of nontargeted chemicals including chemotherapeutics consistent with a local hospital waste stream. Overall impacts on gene expression appeared to be related to changes in treatment plant function during rain events. This approach appears useful in examining the impacts of complex mixtures on fish and offers a potential route in linking chemical exposure to adverse outcomes that may reduce population sustainability.
Collapse
Affiliation(s)
- Edward J. Perkins
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS, USA
- Corresponding author: ; ERDC, 3909 Halls Ferry Rd,Vicksburg, MS 39180; phone: +1-601-634-2872
| | - Tanwir Habib
- Badger Technical Services, 3909 Halls Ferry Road, Vicksburg, MS, USA
| | - Barbara L. Escalon
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS, USA
| | - Jenna E. Cavallin
- U.S. EPA, National Health and Environmental Effects Research Laboratory, Duluth, MN, USA
| | - Linnea Thomas
- U.S. EPA, National Health and Environmental Effects Research Laboratory, Duluth, MN, USA
| | - Matthew Weberg
- U.S. EPA, National Health and Environmental Effects Research Laboratory, Duluth, MN, USA
| | - Megan N. Hughes
- U.S. EPA, National Health and Environmental Effects Research Laboratory, Duluth, MN, USA
| | - Kathleen M. Jensen
- U.S. EPA, National Health and Environmental Effects Research Laboratory, Duluth, MN, USA
| | - Michael D. Kahl
- U.S. EPA, National Health and Environmental Effects Research Laboratory, Duluth, MN, USA
| | - Daniel L. Villeneuve
- U.S. EPA, National Health and Environmental Effects Research Laboratory, Duluth, MN, USA
| | - Gerald T. Ankley
- U.S. EPA, National Health and Environmental Effects Research Laboratory, Duluth, MN, USA
| | - Natàlia Garcia-Reyero
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS, USA
| |
Collapse
|
9
|
Michiels EDG, Vergauwen L, Hagenaars A, Fransen E, Dongen SV, Van Cruchten SJ, Bervoets L, Knapen D. Evaluating Complex Mixtures in the Zebrafish Embryo by Reconstituting Field Water Samples: A Metal Pollution Case Study. Int J Mol Sci 2017; 18:ijms18030539. [PMID: 28257097 PMCID: PMC5372555 DOI: 10.3390/ijms18030539] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/12/2017] [Accepted: 02/24/2017] [Indexed: 11/16/2022] Open
Abstract
Accurately assessing the toxicity of complex, environmentally relevant mixtures remains an important challenge in ecotoxicology. The goal was to identify biological effects after exposure to environmental water samples and to determine whether the observed effects could be explained by the waterborne metal mixture found in the samples. Zebrafish embryos were exposed to water samples of five different sites originating from two Flemish (Mol and Olen, Belgium) metal contaminated streams: “Scheppelijke Nete” (SN) and “Kneutersloop” (K), and a ditch (D), which is the contamination source of SN. Trace metal concentrations, and Na, K, Mg and Ca concentrations were measured using ICP-MS and were used to reconstitute site-specific water samples. We assessed whether the effects that were observed after exposure to environmental samples could be explained by metal mixture toxicity under standardized laboratory conditions. Exposure to “D” or “reconstituted D” water caused 100% mortality. SN and reconstituted SN water caused similar effects on hatching, swim bladder inflation, growth and swimming activity. A canonical discriminant analysis confirmed a high similarity between both exposure scenarios, indicating that the observed toxicity was indeed primarily caused by metals. The applied workflow could be a valuable approach to evaluate mixture toxicity that limits time and costs while maintaining biological relevance.
Collapse
Affiliation(s)
- Ellen D G Michiels
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - An Hagenaars
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Erik Fransen
- StatUa Center for Statistics, University of Antwerp, 2000 Antwerp, Belgium.
| | - Stefan Van Dongen
- Evolutionary Ecology, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Steven J Van Cruchten
- Applied Veterinary Morphology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Lieven Bervoets
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
10
|
Febbraio F. Biochemical strategies for the detection and detoxification of toxic chemicals in the environment. World J Biol Chem 2017; 8:13-20. [PMID: 28289515 PMCID: PMC5329710 DOI: 10.4331/wjbc.v8.i1.13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 12/12/2016] [Accepted: 01/18/2017] [Indexed: 02/05/2023] Open
Abstract
Addressing the problems related to the widespread presence of an increasing number of chemicals released into the environment by human activities represents one of the most important challenges of this century. In the last few years, to replace the high cost, in terms of time and money, of conventional technologies, the scientific community has directed considerable research towards the development both of new detection systems for the measurement of the contamination levels of chemicals in people’s body fluids and tissue, as well as in the environment, and of new remediation strategies for the removal of such chemicals from the environment, as a means of the prevention of human diseases. New emerging biosensors for the analysis of environmental chemicals have been proposed, including VHH antibodies, that combine the antibody performance with the affinity for small molecules, genetically engineered microorganisms, aptamers and new highly stable enzymes. However, the advances in the field of chemicals monitoring are still far from producing a continuous real-time and on-line system for their detection. Better results have been obtained in the development of strategies which use organisms (microorganisms, plants and animals) or metabolic pathway-based approaches (single enzymes or more complex enzymatic solutions) for the fixation, degradation and detoxification of chemicals in the environment. Systems for enzymatic detoxification and degradation of toxic agents in wastewater from chemical and manufacturing industries, such as ligninolytic enzymes for the treatment of wastewater from the textile industry, have been proposed. Considering the high value of these research studies, in terms of the protection of human health and of the ecosystem, science must play a major role in guiding policy changes in this field.
Collapse
|