1
|
Li C, Zhu L, Axe L, Li M. Acclimation of sludge-derived biofilms for effective removal of emerging contaminants: Impacts of inoculum source and carbon supplementation. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138235. [PMID: 40220383 DOI: 10.1016/j.jhazmat.2025.138235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Contaminants of emerging concern (CECs) have gathered significant public attention due to their widespread occurrence, high persistence, and increasing exposure potential. In this study, we used polyethylene biocarriers for acclimating biofilms from singular or combined activated sludges collected from three wastewater treatment plants (R, P, and L) over 5 month-long cycles. The acclimated biofilms achieved an average removal rate at 0.333, 0.313, and 0.185 week-1 for N, N-diethyl-meta-toluamide (DEET), sulfamethoxazole (SMX), and carbamazepine (CBZ), respectively, when external carbon was supplemented, which were significantly higher (p < 0.05) than biofilms that did not receive external carbons. Metabolite screening revealed SMX transformation through ipso-hydroxylation and acetyl conjugation, while CBZ degradation could be initiated by epoxidation. Significant but slower degradation rates (0.024∼0.031 week-1) were observed for aminotriazole (AMT), lidocaine (LDC), and trimethoprim (TMP), whereas atrazine (ATZ) exhibited minimal removal, highlighting its high recalcitrance. Biofilms acclimated from individual R and P sludges, with external carbon supplementation, attained the greatest removal efficiencies for 7 CECs. Multivariate statistical correlations (p < 0.05) identified potential degraders, including Sphingomonas and Zoogolea for AMT, Labrys and Koazkia for CBZ, and Asprobacter, unclassified Cyclobacteriaceae (ELB16-189) and Bryobacteraceae (Fen-178) for LDC. Abundance distribution of potential degraders among biofilms revealed that Sludge R favored the enrichment of key degraders for AMT, CBZ and LDC, while Sludge P was more conducive to acclimating CBZ degraders. This study advances our understanding of strategies in biofilm acclimation to improve CEC removal and provides insights into degradation pathways and associated microbial communities for future research.
Collapse
Affiliation(s)
- Chao Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Liang Zhu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Lisa Axe
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
2
|
Ke X, Wu ZD, Zhang XY, Zhou SP, Zhang YC, Xue YP, Zheng YG. Nitrogen removal characteristics and salt tolerance mechanisms of the novel bacterium Halomonas sp. W07 in saline wastewater treatment. BIORESOURCE TECHNOLOGY 2025; 426:132338. [PMID: 40044054 DOI: 10.1016/j.biortech.2025.132338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/02/2025] [Accepted: 03/02/2025] [Indexed: 03/24/2025]
Abstract
The extremely high osmotic pressure that frequently emerges in industrial wastewater will notably impact microorganisms' survival and nitrogen removal efficiency. A newly isolated Halomonas sp. strain W07 demonstrated the ability to efficiently remove nitrate and nitrite at an average rate of 4.68 and 5.56 mg/L/h, respectively, under an 8 % salinity condition. Whole-genome sequencing and nitrogen balance analysis revealed that W07 utilize the dissimilatory nitrate reduction to ammonium (DNRA) and ammonium assimilation pathways, including genes nap, nar, nasA, nir, glnA, gltBD, and gdhA2, to accomplish efficient nitrogen assimilation and removal in a high-salt environment. Furthermore, the expression of genes associated with salinity tolerance in W07 suggested that the strain can withstand osmotic stress by enhancing extracellular polymer secretion and facilitating the transport and synthesis of compatible solutes. The notable nitrogen removal efficiency and high salinity tolerance exhibited by strain W07 make it a promising candidate for nitrate removal under high-salt conditions.
Collapse
Affiliation(s)
- Xia Ke
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhao-Dong Wu
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xin-Yu Zhang
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shi-Peng Zhou
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yi-Cheng Zhang
- Hangzhou Environmental Group, Hangzhou 310022 Zhejiang, China
| | - Ya-Ping Xue
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yu-Guo Zheng
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
3
|
Kalt M, Udressy CI, Yu Y, Colliquet A, Fenner K. Preserving the Biotransformation Potential of Activated Sludge in Time: Toward Reproducible Incubation Experiments for Persistence Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4597-4607. [PMID: 40000168 PMCID: PMC11912309 DOI: 10.1021/acs.est.4c08657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Biotransformation assays conducted in activated sludge (AS) from wastewater treatment plants (WWTPs) offer various benefits, most notably the high microbial density and comparably high bioavailability of the chemicals, enabling short experimental times of 72 h. Moreover, rate constants determined in AS experiments have shown the potential to be used as predictors for half-lives in other environmental compartments, such as soil. Therefore, biotransformation experiments with AS could serve as a valuable basis for developing standardized, high-throughput persistence tests used for screening purposes, e.g., in a benign-by-design framework, if reproducibility of experimental outcomes can be ensured. Here, we tested protocols for the preservation of AS microbial communities using lyophilization or cryopreservation. Their preservation performance was evaluated for 36 representative micropollutants (MPs) in 72 h, lab-scale batch experiments, with fresh AS as a reference. Cryopreservation, using either DMSO or glycerol as a protective agent, preserved the biotransformation potential for most of the MPs (∼65%), showing significant deviations in biotransformation kinetics almost exclusively for amine-containing substances. Lyophilization, however, performed worse with over ∼89% of MPs exhibiting significantly decreased or enhanced biotransformation compared to fresh AS. We further demonstrate nonsignificant impacts of storage time and the possibility of using artificial instead of preserved native supernatant. Major shifts in community composition based on 16S rRNA gene sequencing results aligned with biotransformation outcomes. Overall, the results suggest that our optimized cryopreservation protocol holds promise to preserve the biotransformation potential of AS and, upon further refinement and testing, might effectively support long-term reproducibility in persistence assessment.
Collapse
Affiliation(s)
- Martina Kalt
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dubendorf, Switzerland
- Department
of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Chloé Iris Udressy
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dubendorf, Switzerland
- Department
of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Yaochun Yu
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dubendorf, Switzerland
| | - Axelle Colliquet
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dubendorf, Switzerland
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, 8092 Zurich, Switzerland
| | - Kathrin Fenner
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dubendorf, Switzerland
- Department
of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
4
|
Gong B, Zhang K, Su M, Yang J, Peng C, Wang Y. Efficient nitrogen and phosphorus removal performance and microbial community in a pilot-scale anaerobic/anoxic/oxic (AOA) system with long sludge retention time: Significant roles of endogenous carbon source. ENVIRONMENTAL RESEARCH 2024; 263:120164. [PMID: 39414113 DOI: 10.1016/j.envres.2024.120164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024]
Abstract
Stringent wastewater discharge standards require wastewater treatment plants (WWTPs) to focus on enhancing nitrogen (N) and phosphorus (P) removal efficiency. Increasing sludge concentration by regulation of sludge retention time (SRT) would enhance wastewater treatment loads. However, phosphorus-accumulating organisms (PAOs) would be outcompeted by glycogen-accumulating organisms (GAOs) under long SRT, leading to a collapse of P removal. In this work, pilot-scale anaerobic-oxic-anoxic (AOA) and anaerobic-anoxic-oxic (AAO) systems with long SRT (30 d) were parallelly established for actual urban wastewater treatment. The results indicated that sludge reflux ratio, temperature, and C/N ratio significantly impact N and P removal performance of AOA and AAO systems with long SRT, and removal efficiency of AOA system significantly exceeded that of AAO system. AOA system with long SRT achieved the optimal performance at sludge reflux ratio of 200%, temperature of 25 °C, and C/N ratio of 8, with COD, NH4+-N, TN, and PO43--P removal ratio of 92.80 ± 2.24%, 97.38 ± 0.89%, 88.97 ± 2.47%, and 94.33 ± 3.27%, respectively. In addition, compared to AAO system, AOA system could save 23.08% of the aeration volume. This work highlighted that AOA system with long SRT included multiple coupled nitrogen and phosphorus removal pathways, such as autotrophic/heterotrophic nitrification, anoxic/oxic denitrification, endogenous denitrification, and denitrifying phosphorus removal. Among these, the synergistic effect of endogenous denitrification and denitrifying phosphorus removal driven by internal carbon sources contributed to satisfactory nitrogen and phosphorus removal efficiency in AOA system with long SRT.
Collapse
Affiliation(s)
- Benzhou Gong
- Changjiang Survey Planning Design and Research Co., Ltd, Wuhan, 430010, PR China
| | - Kui Zhang
- Changjiang Survey Planning Design and Research Co., Ltd, Wuhan, 430010, PR China
| | - Mubai Su
- College of Civil Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Jun Yang
- College of Civil Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Cuiyan Peng
- College of Civil Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Yingmu Wang
- College of Civil Engineering, Fuzhou University, Fuzhou, 350116, PR China.
| |
Collapse
|
5
|
Salinas-Toledano MA, Gómez-Borraz TL, Belmont MA, Garcia-Becerra FY. Optimizing constructed wetland design and operation for dual benefits: A critical review to enhance micropollutant removal while mitigating greenhouse gas emissions. ENVIRONMENTAL RESEARCH 2024; 263:120144. [PMID: 39414101 DOI: 10.1016/j.envres.2024.120144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Constructed wetlands (CWs) are increasingly considered for secondary wastewater treatment, removing both conventional contaminants and emerging pollutants, notably pharmaceutical and personal care products (PPCPs). However, the CW design and operational conditions to biodegrade PPCPs as micropollutants may promote greenhouse gas (GHG) emissions, raising sustainability concerns. This meta-analysis investigates the relationship between PPCP removal (caffeine, ibuprofen, naproxen, diclofenac, ketoprofen, carbamazepine, sulfonamide compounds) and GHG emissions (methane, carbon dioxide, nitrous oxide) in CWs. We uniquely integrate two sets of studies, as prior research has not linked PPCP biodegradation with GHG emissions. Data from 26 papers identify factors driving PPCP removal and 26 publications inform GHG emission factors. Spearman's correlation coefficient and multiple linear regression assess parameter effects and interlinkages. Results highlight biological processes, particularly secondary metabolism or co-metabolism, as pivotal for PPCP removal and GHG emissions, with inlet PPCP concentration, carbon load, and temperature being significant influencers (p < 0.05). Challenges persist in optimizing operations to improve PPCP removal and abate GHG emissions simultaneously. Still, CW depth, influent chemical oxygen demand (COD), hydraulic retention time, and subsurface flow wetland configuration emerge as strategic parameters. This study underscores the need for integrated approaches to enhance PPCP removal and decrease GHG emissions in CWs, thereby advancing sustainable water management practices.
Collapse
Affiliation(s)
- M A Salinas-Toledano
- School of Engineering, University of Northern British Columbia, Prince George, BC V2N AZ9, Canada.
| | - T L Gómez-Borraz
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - M A Belmont
- Toronto Public Health, Toronto, ON, M5B 1W2, Canada.
| | - F Y Garcia-Becerra
- School of Engineering, University of Northern British Columbia, Prince George, BC V2N AZ9, Canada.
| |
Collapse
|
6
|
Seller-Brison C, Brison A, Yu Y, Robinson SL, Fenner K. Adaptation towards catabolic biodegradation of trace organic contaminants in activated sludge. WATER RESEARCH 2024; 266:122431. [PMID: 39298898 DOI: 10.1016/j.watres.2024.122431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Trace organic contaminants (TrOCs) are omnipresent in wastewater treatment plants (WWTPs), yet, their removal during wastewater treatment is oftentimes incomplete and underlying biotransformation mechanisms are not fully understood. In this study, we elucidate how different factors, including pre-exposure levels and duration, influence microbial adaptation towards catabolic TrOC biodegradation and its potential role in biological wastewater treatment. Four sequencing batch reactors (SBRs) were operated in parallel in three succeeding phases, adding and removing a selection of 26 TrOCs at different concentration levels. After each phase of SBR operation, a series of batch experiments was conducted to monitor biotransformation kinetics of those same TrOCs across various spike concentrations. For half of our test TrOCs, we detected increased biotransformation in sludge pre-exposed to TrOC concentrations ≥5 µg L-1 over a 30-day period, with most significant differences observed for the insect repellent DEET and the artificial sweetener saccharin. Accordingly, 16S rRNA amplicon sequencing revealed enrichment of taxa that have previously been linked to catabolic biodegradation of several test TrOCs, e.g., Bosea sp. and Shinella sp. for acesulfame degradation, and Pseudomonas sp. for caffeine, cyclamate, DEET, metformin, paracetamol, and isoproturon degradation. We further conducted shotgun metagenomics to query for gene products previously reported to be involved in the TrOCs' biodegradation pathways. In the future, directed microbial adaptation may be a solution to improve bioremediation of TrOCs in contaminated environments or in WWTPs.
Collapse
Affiliation(s)
- Carolin Seller-Brison
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland.
| | - Antoine Brison
- Department of Process Engineering, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| | - Yaochun Yu
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| | - Serina L Robinson
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| | - Kathrin Fenner
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland; Department of Chemistry, University of Zürich, Zürich 8057, Switzerland
| |
Collapse
|
7
|
Choi S, Lee W, Son H, Lee W, Choi Y, Yeom H, Seo C, Lee H, Lee Y, Lim SJ, Chae SH, Park HK, Hong SW, Kim YM, Lee Y. Occurrence, removal, and prioritization of organic micropollutants in four full-scale wastewater treatment plants in Korea. CHEMOSPHERE 2024; 361:142460. [PMID: 38821128 DOI: 10.1016/j.chemosphere.2024.142460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/14/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
This study investigated the occurrence, removal rate, and potential risks of 43 organic micropollutants (OMPs) in four municipal wastewater treatment plants (WWTPs) in Korea. Results from two-year intensive monitoring confirmed the presence of various OMPs in the influents, including pharmaceuticals such as acetaminophen (pain relief), caffeine (stimulants), cimetidine (H2-blockers), ibuprofen (non-steroidal anti-inflammatory drugs- NSAIDs), metformin (antidiabetics), and naproxen (NSAIDs) with median concentrations of >1 μg/L. Some pharmaceuticals (carbamazepine-anticonvulsants, diclofenac-NSAIDs, propranolol-β-blockers), corrosion inhibitors (1H-benzotriazole-BTR, 4-methyl-1H-benzotriazole-4-TTR), and perfluorinated compounds (PFCs) were negligibly removed during WWTP treatment. The OMP concentrations in the influents and effluents were mostly lower in August than those of other months (p-value <0.05) possibly due to wastewater dilution by high precipitation or enhanced biodegradation under high-temperature conditions. The anaerobic-anoxic-oxic process (A2O) with a membrane bioreactor exhibited higher OMP removal than other processes, such as A2O with sedimentation or the conventional activated sludge process (p-value <0.05). Pesticides (DEET and atrazine), corrosion inhibitors (4-TTR and BTR), and metformin were selected as priority OMPs in toxicity-driven prioritization, whereas PFCs were determined as priority OMPs given their persistence and bioaccumulation properties. Overall, our results contribute to an important database on the occurrence, removal, and potential risks of OMPs in Korean WWTPs.
Collapse
Affiliation(s)
- Sangki Choi
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea; Busan Water Quality Institute, Gimhae, Gyeongnam, 50804, Republic of Korea
| | - Woorim Lee
- Environment and Energy Research Laboratory, Research Institute of Industrial Science and Technology (RIST), Pohang, Gyeongbuk, 37673, Republic of Korea; Busan Water Quality Institute, Gimhae, Gyeongnam, 50804, Republic of Korea
| | - Heejong Son
- Busan Water Quality Institute, Gimhae, Gyeongnam, 50804, Republic of Korea
| | - Woongbae Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Yegyun Choi
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hoonsik Yeom
- Busan Water Quality Institute, Gimhae, Gyeongnam, 50804, Republic of Korea
| | - Changdong Seo
- Busan Water Quality Institute, Gimhae, Gyeongnam, 50804, Republic of Korea
| | - Hyejin Lee
- Busan Water Quality Institute, Gimhae, Gyeongnam, 50804, Republic of Korea
| | - Yujin Lee
- Busan Water Quality Institute, Gimhae, Gyeongnam, 50804, Republic of Korea
| | - Seung Ji Lim
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sung Ho Chae
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hong Ki Park
- Busan Water Quality Institute, Gimhae, Gyeongnam, 50804, Republic of Korea
| | - Seok Won Hong
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
8
|
Chen S, Peng L, Xu Y, Wang N, Wang X, Liang C, Song K, Zhou Y. Modeling Free Nitrous Acid Inhibition on the Removal of Nitrogen and Atenolol during Sidestream Partial Nitritation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5162-5173. [PMID: 38358933 DOI: 10.1021/acs.est.3c10107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Sidestream serves as an important reservoir collecting pharmaceuticals from sludge. However, the knowledge on sidestream pharmaceutical removal is still insufficient. In this work, atenolol biodegradation during sidestream partial nitritation (PN) processes characterized by high free nitrous acid (FNA) accumulation was modeled. To describe the FNA inhibition on ammonia oxidation and atenolol removal, Vadivelu-type and Hellinga-type inhibition kinetics were introduced into the model framework. Four inhibitory parameters along with four biodegradation kinetic parameters were calibrated and validated separately with eight sets of batch experimental data and 60 days' PN reactor operational data. The developed model could accurately reproduce the dynamics of nitrogen and atenolol. The model prediction further revealed that atenolol biodegradation efficiencies by ammonia-oxidizing bacteria (AOB)-induced cometabolism, AOB-induced metabolism, and heterotrophic bacteria-induced biodegradation were 0, ∼ 60, and ∼35% in the absence of ammonium and FNA; ∼ 14, ∼ 29, and ∼28% at 0.03 mg-N L-1 FNA; and 7, 15, and 5% at 0.19 mg-N L-1 FNA. Model simulation showed that the nitritation efficiency of ∼99% and atenolol removal efficiency of 57.5% in the PN process could be achieved simultaneously by controlling pH at 8.5, while 89.2% total nitrogen and 57.1% atenolol were removed to the maximum at pH of 7.0 in PN coupling with the anammox process. The pH-based operational strategy to regulate FNA levels was mathematically demonstrated to be effective for achieving the simultaneous removal of nitrogen and atenolol in PN-based sidestream processes.
Collapse
Affiliation(s)
- Shi Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Ning Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Xi Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
9
|
Wang L, Lei Z, Yun S, Yang X, Chen R. Quantitative structure-biotransformation relationships of organic micropollutants in aerobic and anaerobic wastewater treatments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169170. [PMID: 38072270 DOI: 10.1016/j.scitotenv.2023.169170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/05/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Biotransformation is one of the dominant processes to remove organic micropollutants (OMPs) in wastewater treatment. However, studies on the role of molecular structure in determining the biotransformation rates of OMPs are limited. We evaluated the biotransformation of 14 OMPs belonging to different chemical classes under aerobic and anaerobic conditions, and then explored the quantitative structure-biotransformation relationships (QSBRs) of the OMPs based on biotransformation rates using valid molecular structure descriptors (electrical and physicochemical parameters). Pseudo-first-order kinetic modeling was used to fit the biotransformation rate, and only 2 of the 14 OMPs showed that the biotransformation rate constant (kbio) values were higher under anaerobic conditions than aerobic conditions, indicating that aerobic conditions were more favorable for biotransformation of most OMPs. QSBRs infer that the electrophilicity index (ω) is a reliable predictor for OMPs biotransformation under aerobic conditions. ω corresponds to the interaction between OMPs and microbial enzyme active sites, this process is the rate-limiting step of biotransformation. However, under anaerobic conditions the QSBR based on ω was not significant, indicating that specific functional groups may be more critical than electrophilicity. In conclusion, QSBRs can serve as alternative tools for the prediction of the biotransformation of OMPs and provide further insights into the factors that influence biotransformation.
Collapse
Affiliation(s)
- Lianxu Wang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Zhen Lei
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Sining Yun
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Xiaohuan Yang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
10
|
Pang Q, Xie L, Shen C, Zhu X, Wang L, Ni L, Peng F, Yu J, Wang L, He F. Triclosan disturbs nitrogen removal in constructed wetlands: Responses of microbial structure and functions. ENVIRONMENTAL RESEARCH 2024; 243:117847. [PMID: 38065393 DOI: 10.1016/j.envres.2023.117847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/14/2023] [Accepted: 11/30/2023] [Indexed: 02/06/2024]
Abstract
This study investigated the influence of wetland types (vertical and tidal flow constructed wetlands [CWs] [VFCW and TFCW, respectively]) and concentrations of triclosan (TCS) on the removal of pollutants (TCS and nitrogen) and microbial characteristics. The efficiency of TCS removal was significantly higher with 5 μg/L TCS (Phase B) than with 30 μg/L (Phase C) in the two CWs. The efficiencies of removal of NH4+-N and NO3--N were significantly inhibited in Phase C. Compared with the VFCW, the TFCW removed more NH4+-N at the same concentration of TCS, whereas less NO3--N was removed, and it even accumulated. Saccharimondales, an important functional genus with the highest abundance and more node connections with other genera, had a sharp decrease in relative abundance as the increasing concentrations of TCS of the two CWs conformed with its relative abundance and significantly negatively correlated with the concentration of TCS. Differentiated Roseobacter_Clade_CHAB-I-5_Lineage and Sphaerotilus were enriched in the VFCW and TFCW, respectively. The abundance of enzymes that catalyzed nitritation was significantly inhibited by TCS, whereas nitrate reductase (EC 1.7.99.4) catalyzed both denitrification and dissimilatory nitrate reduction to ammonium (DNRA), and nitrite reductase (NADH) (EC 1.7.1.15) that catalyzed DNRA comprised a larger proportion in the two CWs. Simultaneously, the abundances of two enzymes were higher in the TFCW than in the VFCW. The network analysis indicated that the main genera were promoted more by TCS in the VFCW, while inhibited in the TFCW. Moreover, the concentrations of nitrogen (NH4+-N, NO3--N, and TN) significantly positively correlated with TCS-resistant bacteria, and negatively correlated with most nitrogen-transforming bacteria with species that varied between the VFCW and TFCW. The results of this study provide a reference for the molecular biological mechanism of the simultaneous removal of nitrogen and TCS in the CWs.
Collapse
Affiliation(s)
- Qingqing Pang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Lei Xie
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Caofeng Shen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiang Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Longmian Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Lixiao Ni
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Fuquan Peng
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Jianghua Yu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Ling Wang
- Xinjiang Tianxi Environmental Protection Technology Co., LTD., Urumqi, 830000, China
| | - Fei He
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| |
Collapse
|
11
|
Perez-Bou L, Gonzalez-Martinez A, Gonzalez-Lopez J, Correa-Galeote D. Promising bioprocesses for the efficient removal of antibiotics and antibiotic-resistance genes from urban and hospital wastewaters: Potentialities of aerobic granular systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123115. [PMID: 38086508 DOI: 10.1016/j.envpol.2023.123115] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
The use, overuse, and improper use of antibiotics have resulted in higher levels of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs), which have profoundly disturbed the equilibrium of the environment. Furthermore, once antibiotic agents are excreted in urine and feces, these substances often can reach wastewater treatment plants (WWTPs), in which improper treatments have been highlighted as the main reason for stronger dissemination of antibiotics, ARB, and ARGs to the receiving bodies. Hence, achieving better antibiotic removal capacities in WWTPs is proposed as an adequate approach to limit the spread of antibiotics, ARB, and ARGs into the environment. In this review, we highlight hospital wastewater (WW) as a critical hotspot for the dissemination of antibiotic resistance due to its high level of antibiotics and pathogens. Hence, monitoring the composition and structure of the bacterial communities related to hospital WW is a key factor in controlling the spread of ARGs. In addition, we discuss the advantages and drawbacks of the current biological WW treatments regarding the antibiotic-resistance phenomenon. Widely used conventional activated sludge technology has proved to be ineffective in mitigating the dissemination of ARB and ARGs to the environment. However, aerobic granular sludge (AGS) technology is a promising technology-with broad adaptability and excellent performance-that could successfully reduce antibiotics, ARB, and ARGs in the generated effluents. We also outline the main operational parameters involved in mitigating antibiotics, ARB, and ARGs in WWTPs. In this regard, WW operation under long hydraulic and solid retention times allows better removal of antibiotics, ARB, and ARGs independently of the WW technology employed. Finally, we address the current knowledge of the adsorption and degradation of antibiotics and their importance in removing ARB and ARGs. Notably, AGS can enhance the removal of antibiotics, ARB, and ARGs due to the complex microbial metabolism within the granular biomass.
Collapse
Affiliation(s)
- Lizandra Perez-Bou
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain; Microbial Biotechnology Group, Microbiology and Virology Department, Faculty of Biology, University of Havana, Cuba
| | - Alejandro Gonzalez-Martinez
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain
| | - Jesus Gonzalez-Lopez
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain
| | - David Correa-Galeote
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain.
| |
Collapse
|
12
|
Xu Y, Wang X, Gu Y, Liang C, Guo W, Ngo HH, Peng L. Optimizing ciprofloxacin removal through regulations of trophic modes and FNA levels in a moving bed biofilm reactor performing sidestream partial nitritation. WATER RESEARCH X 2024; 22:100216. [PMID: 38831973 PMCID: PMC11144728 DOI: 10.1016/j.wroa.2024.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 06/05/2024]
Abstract
The performance of partial nitritation (PN)-moving bed biofilm reactor (MBBR) in removal of antibiotics in the sidestream wastewater has not been investigated so far. In this work, the removal of ciprofloxacin was assessed under varying free nitrous acid (FNA) levels and different trophic modes. For the first time, a positive correlation was observed between ciprofloxacin removal and FNA levels, either in the autotrophic PN-MBBR or in the mixotrophic PN-MBBR, mainly ascribed to the FNA-stimulating effect on heterotrophic bacteria (HB)-induced biodegradation. The maximum ciprofloxacin removal efficiency (∼98 %) and removal rate constant (0.021 L g-1 SS h-1) were obtained in the mixotrophic PN-MBBR at an average FNA level of 0.056 mg-N L-1, which were 5.8 and 51.2 times higher than the corresponding values in the autotrophic PN-MBBR at 0 mg FNA-N L-1. Increasing FNA from 0.006 to 0.056 mg-N L-1 would inhibit ammonia oxidizing bacteria (AOB)-induced cometabolism and metabolism from 10.2 % and 6.9 % to 6.2 % and 6.4 %, respectively, while HB-induced cometabolism and metabolism increased from 31.2 % and 22.7 % to 41.9 % and 34.5 %, respectively. HB-induced cometabolism became the predominant biodegradation pathway (75.9 %-85.8 %) in the mixotrophic mode. Less antimicrobial biotransformation products without the piperazine or fluorine were newly identified to propose potential degradation pathways, corresponding to microbial-induced metabolic types and FNA levels. This work shed light on enhancing antibiotic removal via regulating both FNA accumulation and organic carbon addition in the PN-MBBR process treating sidestream wastewater.
Collapse
Affiliation(s)
- Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Xi Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Ying Gu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| |
Collapse
|
13
|
Xie Y, Tian X, He Y, Dong S, Zhao K. Nitrogen removal capability and mechanism of a novel heterotrophic nitrification-aerobic denitrification bacterium Halomonas sp. DN3. BIORESOURCE TECHNOLOGY 2023; 387:129569. [PMID: 37517711 DOI: 10.1016/j.biortech.2023.129569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Recently, the functional microorganisms capable of eliminating nitrogenous waste have been applied in mariculture systems. As a potential candidate for treating mariculture wastewater, strain DN3 eliminated 100% of ammonia and nitrate and 96.61%-100% of nitrite within 72 h, when single nitrogen sources at concentrations of 0-50 mg/L. Strain DN3 also exhibited the efficient removal performance of mixed-form nitrogen (ammonia, nitrate, and nitrite) at salinity 30 ‰, C/N ratio 20, and 180 rpm. The nitrogen assimilation pathway dominated inorganic nitrogen metabolism, with less nitrogen (14.23%-25.02% of TN) lost into the air via nitrification and denitrification, based on nitrogen balance analysis. Moreover, the bacterial nitrification pathway was explored by enzymatic assays and inhibition assays. These complex nitrogen assimilation and dissimilation processes were further revealed by bacterial genome analysis. These results provide important insight into nitrogen metabolism of Halomonas sp. and theoretical support for treating mariculture wastewater with strain DN3.
Collapse
Affiliation(s)
- Yumeng Xie
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266000, PR China
| | - Xiangli Tian
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266000, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, PR China.
| | - Yu He
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266000, PR China
| | - Shuanglin Dong
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266000, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, PR China
| | - Kun Zhao
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266000, PR China
| |
Collapse
|
14
|
Ding C, He T. Bacillus thuringiensis EM-A1: A novel bacterium for high concentration of ammonium elimination with low nitrite accumulation. CHEMOSPHERE 2023; 338:139465. [PMID: 37437615 DOI: 10.1016/j.chemosphere.2023.139465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
The biological elimination of high concentration of ammonium from wastewater has attracted increasing attention in recent years. However, few studies on the efficient elimination of high concentration of ammonium by a single bacterium have been reported. Here, the efficient elimination of NH4+-N (>99%) and total nitrogen (TN) (>77%) were attained by Bacillus thuringiensis EM-A1 under 150 rpm at pH 7.2 with sodium succinate and a carbon/nitrogen ratio of 15 at 30 °C with an inoculum size (as measured by absorbance at 600 nm) of 0.2. Strain EM-A1 effectively eliminated 100 mg/L of inorganic nitrogen with maximal NH4+-N, NO3--N, and NO2--N elimination rates of 4.88, 2.57, and 3.06 mg/L/h, respectively. The elimination efficiencies of NH4+-N were 99.87% and 97.13% at initial concentrations of 500 and 1000 mg/L, respectively. Only 0.91 mg/L of NO2--N was accumulated with the elimination of 1000 mg/L NH4+-N. A concentration of 5 mg/L exogenous hydroxylamine was toxic and further inhibited heterotrophic nitrification and aerobic denitrification (HN-AD). The NH4+-N and NO2--N elimination capacities of strain EM-A1 were specifically inhibited by 2-Octyne (OCT) over 4 μmol/L and diethyldithiocarbamate (DDC) over 0.5 mmol/L, respectively. Above 25 mg/L procyanidin (PCY) inhibited the bioconversion of NO3--N and NO2--N. The results demonstrated that strain EM-A1 had HN-AD capacity under halophilic conditions, and has great potential for use in the treatment of nitrogen pollution wastewater; this study also provides new insights into this strain's nitrogen elimination mechanism, helping advance environmental biotechnology.
Collapse
Affiliation(s)
- Chenyu Ding
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Zhijuan East Road, Huaxi, Guiyang, 550025, Guizhou Province, China.
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Zhijuan East Road, Huaxi, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
15
|
Bernadet O, Larasati A, van Veelen HPJ, Euverink GJW, Gagliano MC. Biological Oxygen-dosed Activated Carbon (BODAC) filters - A bioprocess for ultrapure water production removing organics, nutrients and micropollutants. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131882. [PMID: 37356180 DOI: 10.1016/j.jhazmat.2023.131882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
Biological oxygen-dosed activated carbon (BODAC) filters in an Ultrapure water plant were demonstrated to have the potential to further treat secondary wastewater treatment effluent. The BODAC filters were operated for 11 years without carbon regeneration or replacement, while still functioning as pre-treatment step to reverse osmosis (RO) membranes by actively removing organic micropollutants (OMPs) and foulants. In this study, the removal of nutrients and 13 OMPs from secondary wastewater treatment effluent was investigated for 2 years and simultaneously, the granules' characterization and microbial community analysis were conducted to gain insights behind the stable long-term operation of the BODAC filters. The results showed that the BODAC granules' surface area was reduced by ∼70 % of what is in virgin carbon granules and covered by biofilm and inorganic depositions. The BODAC filters reduced the concentration of soluble organics, mainly proteins, performed as an effective nitrification system, and almost completely removed manganese. During the 2 years of observation, the filters consistently removed some OMPs such as hydrochlorothiazide, metoprolol, sotalol, and trimethoprim by at least 70 %. Finally, through microbial community analysis, we found that nitrifying and manganese-oxidizing bacteria were detected in high relative abundance on BODAC granules, supporting BODAC performance in removing OMPs and manganese as well as converting nitrogenous species in the water.
Collapse
Affiliation(s)
- Olga Bernadet
- Wetsus, Center of European Excellence in Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands; Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, Groningen, the Netherlands
| | - Amanda Larasati
- Wetsus, Center of European Excellence in Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands
| | - H Pieter J van Veelen
- Wetsus, Center of European Excellence in Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands
| | - Gert Jan Willem Euverink
- Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, Groningen, the Netherlands.
| | - Maria Cristina Gagliano
- Wetsus, Center of European Excellence in Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands
| |
Collapse
|
16
|
Liu Y, Song X, Wang Y, Hou X, Cao X, Wang Y. Manganese-mediated ammonium removal by a bacterial consortium from wastewater: Experimental proof and biochemical mechanisms. BIORESOURCE TECHNOLOGY 2023:129353. [PMID: 37336457 DOI: 10.1016/j.biortech.2023.129353] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Manganese-redox-mediated nitrogen transformation is promising for ammonium wastewater treatment. However, due to the limited contact between insoluble Mn and the microbe, extracellular electron transfer (EET) inefficiencies become a technical bottleneck in the technical practical application. To overcome this obstacle, humic acid (HA) was introduced to synthesize manganese-humic acid complex (Mn-HA) to increase Mn solubility. The TIN (Total Inorganic Nitrogen) removal rate constant k was 3.18, 1.08, 3.56, 1.13 and 1.05 times higher than CK (Control group) at 10, 15, 20, 40 and 60 mg/L influent nitrate in the MH group, respectively. Mn-HA was inferred to stimulated the nitrogen removal by providing more reaction active sites, bridging Mn-O bonds to transfer electrons and playing a redox role in the respiratory chain. A Mnammox-NDMO (manganese oxide reduction-coupled ammonium oxidation - nitrate/nitrite- dependent manganese oxidation) bacteria consortium was enriched in MH group, containing Mnammox bacteria Geothrix, Geobacter and NDMO bacteria Pseudomonas and Bacillus.
Collapse
Affiliation(s)
- Yingying Liu
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai 201620, China.
| | - Xinshan Song
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai 201620, China.
| | - Yifei Wang
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai 201620, China.
| | - Xiaoxiao Hou
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai 201620, China.
| | - Xin Cao
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai 201620, China
| | - Yuhui Wang
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai 201620, China
| |
Collapse
|
17
|
Rios-Miguel AB, Jhm van Bergen T, Zillien C, Mj Ragas A, van Zelm R, Sm Jetten M, Jan Hendriks A, Welte CU. Predicting and improving the microbial removal of organic micropollutants during wastewater treatment: A review. CHEMOSPHERE 2023; 333:138908. [PMID: 37187378 DOI: 10.1016/j.chemosphere.2023.138908] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Organic micropollutants (OMPs) consist of widely used chemicals such as pharmaceuticals and pesticides that can persist in surface and groundwaters at low concentrations (ng/L to μg/L) for a long time. The presence of OMPs in water can disrupt aquatic ecosystems and threaten the quality of drinking water sources. Wastewater treatment plants (WWTPs) rely on microorganisms to remove major nutrients from water, but their effectiveness at removing OMPs varies. Low removal efficiency might be the result of low concentrations, inherent stable chemical structures of OMPs, or suboptimal conditions in WWTPs. In this review, we discuss these factors, with special emphasis on the ongoing adaptation of microorganisms to degrade OMPs. Finally, recommendations are drawn to improve the prediction of OMP removal in WWTPs and to optimize the design of new microbial treatment strategies. OMP removal seems to be concentration-, compound-, and process-dependent, which poses a great complexity to develop accurate prediction models and effective microbial processes targeting all OMPs.
Collapse
Affiliation(s)
- Ana B Rios-Miguel
- Department of Microbiology, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands.
| | - Tamara Jhm van Bergen
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands.
| | - Caterina Zillien
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Ad Mj Ragas
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Rosalie van Zelm
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Mike Sm Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - A Jan Hendriks
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
18
|
Wang L, Li A. Impact of zero-valent iron on nitrifying granular sludge for 17α-ethinylestradiol removal and its mechanism. CHEMOSPHERE 2023; 333:138904. [PMID: 37182710 DOI: 10.1016/j.chemosphere.2023.138904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
Aerobic granulation of nitrifying activated sludge could enhance the removal of 17α-ethinylestradiol (EE2) via abiotic nitration induced by reactive nitrogen species, cometabolism by ammonia-oxidizing bacteria and biodegradation by heterotrophic bacteria. Zero-valent iron (ZVI), a promising and low-cost material, has previously been applied to effectively enhance biological wastewater treatment. The impact and the effect mechanism of ZVI on nitrifying granular sludge (NGS) for EE2 removal was investigated in this study. The results showed that the addition of ZVI achieved better EE2 removal, though ZVI was not conducive to the accumulation of nitrite in NGS which reduced the abiotic transformation of EE2. Moreover, ZVI enriched heterotrophic denitrifying bacteria such as Arenimonas, thus changing the EE2 removal pathway and improving the degradation and mineralization of EE2. In addition, ZVI reduced the emission risk of the greenhouse gas N2O and strengthened the stability of the granules. Metagenomic analysis further revealed that the functional genes related to EE2 mineralization, nitrite oxidation, N2O reduction and quorum sensing in NGS were enriched with ZVI addition. This study provides meaningful guidance for ZVI application in the NGS process to achieve efficient and simultaneous removal of ammonia and emerging contaminants.
Collapse
Affiliation(s)
- Lili Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Laboratory of Environmental Protection in Water Transport Engineering, Tianjin Research Institute of Water Transport Engineering, Tanggu, Tianjin, 300456, China
| | - Anjie Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
19
|
Vega MAP, Scholes RC, Brady AR, Daly RA, Narrowe AB, Vanzin GF, Wrighton KC, Sedlak DL, Sharp JO. Methane-Oxidizing Activity Enhances Sulfamethoxazole Biotransformation in a Benthic Constructed Wetland Biomat. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7240-7253. [PMID: 37099683 DOI: 10.1021/acs.est.2c09314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ammonia monooxygenase and analogous oxygenase enzymes contribute to pharmaceutical biotransformation in activated sludge. In this study, we hypothesized that methane monooxygenase can enhance pharmaceutical biotransformation within the benthic, diffuse periphytic sediments (i.e., "biomat") of a shallow, open-water constructed wetland. To test this hypothesis, we combined field-scale metatranscriptomics, porewater geochemistry, and methane gas fluxes to inform microcosms targeting methane monooxygenase activity and its potential role in pharmaceutical biotransformation. In the field, sulfamethoxazole concentrations decreased within surficial biomat layers where genes encoding for the particulate methane monooxygenase (pMMO) were transcribed by a novel methanotroph classified as Methylotetracoccus. Inhibition microcosms provided independent confirmation that methane oxidation was mediated by the pMMO. In these same incubations, sulfamethoxazole biotransformation was stimulated proportional to aerobic methane-oxidizing activity and exhibited negligible removal in the absence of methane, in the presence of methane and pMMO inhibitors, and under anoxia. Nitrate reduction was similarly enhanced under aerobic methane-oxidizing conditions with rates several times faster than for canonical denitrification. Collectively, our results provide convergent in situ and laboratory evidence that methane-oxidizing activity can enhance sulfamethoxazole biotransformation, with possible implications for the combined removal of nitrogen and trace organic contaminants in wetland sediments.
Collapse
Affiliation(s)
- Michael A P Vega
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rachel C Scholes
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), Colorado School of Mines, Golden, Colorado 80401, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Adam R Brady
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rebecca A Daly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Adrienne B Narrowe
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Gary F Vanzin
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - David L Sedlak
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), Colorado School of Mines, Golden, Colorado 80401, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Jonathan O Sharp
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), Colorado School of Mines, Golden, Colorado 80401, United States
- Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
20
|
Wang D, Ma Q, Lin H, Zhou J, Yuan S, Ma B, Bai Y, Qu J. Enhancement of micropollutant biotransformation by adding manganese sand in constructed wetlands. Heliyon 2023; 9:e15092. [PMID: 37089304 PMCID: PMC10119567 DOI: 10.1016/j.heliyon.2023.e15092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Recent investigations have shown that the addition of manganese (Mn) sand to constructed wetlands (i.e., Mn-amended CWs) can improve the performance of organic micropollutants (MPs) removal. In addition to the direct oxidation and adsorption of Mn oxides, the indirect role of Mn oxides in MP biotransformation is crucial to the removal of MPs but has seldom been referred to. Herein, we constructed lab-scale CWs with or without the addition of natural Mn sand (∼35% Mn oxides) to decipher the influence of Mn oxides on the biotransformation of the six selected MPs which commonly existed in the wastewater. The experimental results showed that the addition of Mn sand to CWs can improve the removal of MPs (8.48% atrazine, 13.16% atenolol, and 6.27% sulfamethoxazole [pairwise Wilcoxon test p < 0.05]). Combining the detection of transformation products and metagenomic sequencing, we found that the enhanced removal of atrazine in the Mn-amended CWs was mainly due to the bioaugmented hydroxylation process. The enrichment of biotransformation-related genes and associated microbes of atenolol and sulfamethoxazole in Mn-amended CWs indicated that the addition of Mn sand to CWs can strengthen the biotransformation of MPs. Furthermore, we found that these MP-biodegrading microbes were widely present in the full-scale CWs. Overall, our research provides fundamental information and insights for further application of Mn-amended CWs in MP removal.
Collapse
|
21
|
Han P, Rios-Miguel AB, Tang X, Yu Y, Zhou LJ, Hou L, Liu M, Sun D, Jetten MSM, Welte CU, Men Y, Lücker S. Benzimidazole fungicide biotransformation by comammox Nitrospira bacteria: Transformation pathways and associated proteomic responses. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130558. [PMID: 36495641 DOI: 10.1016/j.jhazmat.2022.130558] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/23/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Benzimidazole fungicides are frequently detected in aquatic environments and pose a serious health risk. Here, we investigated the metabolic capacity of the recently discovered complete ammonia-oxidizing (comammox) Nitrospira inopinata and kreftii to transform a representative set of benzimidazole fungicides (i.e., benzimidazole, albendazole, carbendazim, fuberidazole, and thiabendazole). Ammonia-oxidizing bacteria and archaea, as well as the canonical nitrite-oxidizing Nitrospira exhibited no or minor biotransformation activity towards all the five benzimidazole fungicides. In contrast, the investigated comammox bacteria actively transformed all the five benzimidazole fungicides, except for thiabendazole. The identified transformation products indicated hydroxylation, S-oxidation, and glycosylation as the major biotransformation pathways of benzimidazole fungicides. We speculated that these reactions were catalyzed by comammox-specific ammonia monooxygenase, cytochrome P450 monooxygenases, and glycosylases, respectively. Interestingly, the exposure to albendazole enhanced the expression of the antibiotic resistance gene acrB of Nitrospira inopinata, suggesting that some benzimidazole fungicides could act as environmental stressors that trigger cellular defense mechanisms. Altogether, this study demonstrated the distinct substrate specificity of comammox bacteria towards benzimidazole fungicides and implies their significant roles in the biotransformation of these fungicides in nitrifying environments.
Collapse
Affiliation(s)
- Ping Han
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming (IEC), 3663 North Zhongshan Road, Shanghai 200062, China.
| | - Ana B Rios-Miguel
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Xiufeng Tang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yaochun Yu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, United States; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Li-Jun Zhou
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming (IEC), 3663 North Zhongshan Road, Shanghai 200062, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming (IEC), 3663 North Zhongshan Road, Shanghai 200062, China
| | - Dongyao Sun
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mike S M Jetten
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Cornelia U Welte
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Yujie Men
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, United States; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Sebastian Lücker
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| |
Collapse
|
22
|
Guo N, Liu M, Yang Z, Wu D, Chen F, Wang J, Zhu Z, Wang L. The synergistic mechanism of β-lactam antibiotic removal between ammonia-oxidizing microorganisms and heterotrophs. ENVIRONMENTAL RESEARCH 2023; 216:114419. [PMID: 36174754 DOI: 10.1016/j.envres.2022.114419] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Nitrifying system is an effective strategy to remove numerous antibiotics, however, the contribution of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and heterotrophs for antibiotic removal are still unclear. In this study, the mechanism of β-lactam antibiotic (cefalexin, CFX) removal was studied in a nitrifying sludge system. Results showed that CFX was synergistically removed by AOB (Nitrosomonas, played a major role) and AOA (Candidatus_Nitrososphaera) through ammonia monooxygenase-mediated co-metabolism, and by heterotrophs (Pseudofulvimonas, Hydrogenophaga, RB41, Thauera, UTCFX1, Plasticicumulans, Phaeodactylibacter) through antibiotic resistance genes (ARGs)-encoded β-lactamases-mediated hydrolysis. Regardless of increased archaeal and heterotrophic CFX removal with the upregulation of amoA in AOA and ARGs, the system exhibited poorer CFX removal performance at 10 mg/L, mainly due to the inhibition of AOB. This study provides new reference for the important roles of heterotrophs and ARGs, opening the possibilities for the application of ARGs in antibiotic biodegradation.
Collapse
Affiliation(s)
- Ning Guo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Mengmeng Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Zhuhui Yang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Feiyong Chen
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Jinhe Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Zhaoliang Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| | - Lin Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China.
| |
Collapse
|
23
|
Beretsou VG, Nika MC, Manoli K, Michael C, Sui Q, Lundy L, Revitt DM, Thomaidis NS, Fatta-Kassinos D. Multiclass target analysis of contaminants of emerging concern including transformation products, soil bioavailability assessment and retrospective screening as tools to evaluate risks associated with reclaimed water reuse. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158391. [PMID: 36049679 DOI: 10.1016/j.scitotenv.2022.158391] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
The occurrence of 200 multiclass contaminants of emerging concern (CECs) encompassing 168 medicinal products and transformation products (TPs), 5 artificial sweeteners, 12 industrial chemicals, and 15 other compounds was investigated in influent and effluent wastewater samples collected during 7 consecutive days from 5 wastewater treatment plants (WWTPs) located in Cyprus. The methodology included a generic solid-phase extraction protocol using mixed-bed cartridges followed by Ultra-High Performance Liquid Chromatography coupled with Quadrupole-Time of Flight Mass Spectrometry (UHPLC-QTOF-MS) analysis. A total of 63 CECs were detected at least in one sample, with 52 and 55 out of the 200 compounds detected in influents and effluents, respectively. Ten (10) out of the 24 families of parent compounds and associated TPs were found in the wastewater samples (influent or effluent). 1-H-benzotriazole, carbamazepine, citalopram, lamotrigine, sucralose, tramadol, and venlafaxine (>80 % frequency of appearance in effluents) were assessed with respect to their bioavailability in soil as part of different scenarios of irrigation with reclaimed water following a qualitative approach. A high score of 12 (high probability) was predicted for 2 scenarios, a low score of 3 (rare occasions) for 2 scenarios, while the rest 28 scenarios had scores 5-8 (unlikely or limited possibility) and 9-11 (possibly). Retrospective screening was performed with the use of a target database of 2466 compounds and led to the detection of 158 additional compounds (medicinal products (65), medicinal products TPs (15), illicit drugs (7), illicit drugs TPs (3), industrial chemicals (11), plant protection products (25), plant protection products TPs (10), and various other compounds (22). This work aspires to showcase how the presence of CECs in wastewater could be investigated and assessed at WWTP level, including an expert-based methodology for assessing the soil bioavailability of CECs, with the aim to develop sustainable practices and enhance reclaimed water reuse.
Collapse
Affiliation(s)
- Vasiliki G Beretsou
- Department of Civil and Environmental Engineering, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus; Nireas-International Water Research Center, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Maria-Christina Nika
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Kyriakos Manoli
- Nireas-International Water Research Center, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Costas Michael
- Nireas-International Water Research Center, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Lian Lundy
- Middlesex University, Department of Natural Sciences, School of Science and Technology, London NW4 4BT, United Kingdom
| | - D Michael Revitt
- Middlesex University, Department of Natural Sciences, School of Science and Technology, London NW4 4BT, United Kingdom
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus; Nireas-International Water Research Center, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus.
| |
Collapse
|
24
|
Wu Q, He T, Chen M, Zhang M. Nitrogen removal characterization and functional enzymes identification of a hypothermia bacterium Pseudomonas fragi EH-H1. BIORESOURCE TECHNOLOGY 2022; 365:128156. [PMID: 36272678 DOI: 10.1016/j.biortech.2022.128156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
A novel hypothermic strain, Pseudomonas fragi EH-H1, was found to effectively perform heterotrophic nitrification and aerobic denitrification at 15 °C. This strain could consume 100 %, 100 % and 99.95 % of ammonium (54.90 mg∙L-1), nitrate (56.12 mg∙L-1) and nitrite (54.15 mg∙L-1), accompanied by peak removal rates of 5.51, 3.63 and 3.14 mg/L/h, respectively. The ammonium was removed preferentially during simultaneous nitrification and denitrification. Notably, the elimination rate of the toxic nitrite nitrogen remained approximately 3.14 mg/L/h, whether supplemented with ammonium or not. Stepwise inhibition experiments revealed that the key enzymes of ammonia monooxygenase (AMO) and nitrite oxidoreductase (NiR) for nitrification and denitrification coexisted in strain EH-H1. AMO, nitrate reductase and NiR were successfully expressed and detected at 0.637, 0.239 and 0.018 U/mg proteins, respectively. Overall, strain EH-H1 had an outstanding ability to remove nitrogen at low temperatures and could provide guidance for cryogenic wastewater treatment.
Collapse
Affiliation(s)
- Qifeng Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China.
| | - Mengping Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Manman Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
25
|
Technologies for removing pharmaceuticals and personal care products (PPCPs) from aqueous solutions: Recent advances, performances, challenges and recommendations for improvements. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Zhao J, Fang S, Liu G, Qi W, Bai Y, Liu H, Qu J. Role of ammonia-oxidizing microorganisms in the removal of organic micropollutants during simulated riverbank filtration. WATER RESEARCH 2022; 226:119250. [PMID: 36274354 DOI: 10.1016/j.watres.2022.119250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Biodegradation plays an important role in the removal of organic micropollutants (OMPs) during riverbank filtration (RBF) for drinking water production. The ability of ammonia-oxidizing microorganisms (AOM) to remove OMPs has attracted increasing attention. However, the distribution of AOM in RBF and its role in the degradation of OMPs remains unknown. In this study, the behavior of 128 selected OMPs and the distribution of AOM and their roles in the degradation of OMPs in RBF were explored by column and batch experiments simulating the first meter of the riverbank. The results showed that the selected OMPs were effectively removed (82/128 OMPs, >70% removal) primarily by biodegradation and partly by adsorption. Inefficiently removed OMPs tended to have low molecular weights, low log P, and contain secondary amides, secondary sulfonamides, secondary ketimines, and benzyls. In terms of the microbial communities, the relative abundance of AOM increased from 0.1%-0.2% (inlet-sand) to 5.3%-5.9% (outlet-sand), which was dominated by ammonia-oxidizing archaea whose relative abundance increased from 23%-72% (inlet-sand) to 97% (outlet-sand). Comammox accounted for 23%-64% in the inlet-sand and 1% in the outlet-sand. The abundances of AOM amoA genes kept stable in the inlet-sand of control columns, while decreased by 78% in the treatment columns, suggesting the inhibition effect of allylthiourea (ATU) on AOM. It is observed that AOM played an important role in the degradation of OMPs, where its inhibition led to the corresponding inhibition of 32 OMPs (5/32 were completely suppressed). In particular, OMPs with low molecular weights and containing primary amides, secondary amides, benzyls, and secondary sulfonamides were more likely to be removed by AOM. This study reveals the vital role of AOM in the removal of OMPs, deepens our understanding of the degradation of OMPs in RBF, and offers valuable insights into the physiochemical properties of OMPs and their AOM co-metabolic potential.
Collapse
Affiliation(s)
- Jian Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shangbiao Fang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600GA, Delft, the Netherlands
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Laboratory of Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Laboratory of Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Vega MAP, Scholes RC, Brady AR, Daly RA, Narrowe AB, Bosworth LB, Wrighton KC, Sedlak DL, Sharp JO. Pharmaceutical Biotransformation is Influenced by Photosynthesis and Microbial Nitrogen Cycling in a Benthic Wetland Biomat. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14462-14477. [PMID: 36197061 DOI: 10.1021/acs.est.2c03566] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In shallow, open-water engineered wetlands, design parameters select for a photosynthetic microbial biomat capable of robust pharmaceutical biotransformation, yet the contributions of specific microbial processes remain unclear. Here, we combined genome-resolved metatranscriptomics and oxygen profiling of a field-scale biomat to inform laboratory inhibition microcosms amended with a suite of pharmaceuticals. Our analyses revealed a dynamic surficial layer harboring oxic-anoxic cycling and simultaneous photosynthetic, nitrifying, and denitrifying microbial transcription spanning nine bacterial phyla, with unbinned eukaryotic scaffolds suggesting a dominance of diatoms. In the laboratory, photosynthesis, nitrification, and denitrification were broadly decoupled by incubating oxic and anoxic microcosms in the presence and absence of light and nitrogen cycling enzyme inhibitors. Through combining microcosm inhibition data with field-scale metagenomics, we inferred microbial clades responsible for biotransformation associated with membrane-bound nitrate reductase activity (emtricitabine, trimethoprim, and atenolol), nitrous oxide reduction (trimethoprim), ammonium oxidation (trimethoprim and emtricitabine), and photosynthesis (metoprolol). Monitoring of transformation products of atenolol and emtricitabine confirmed that inhibition was specific to biotransformation and highlighted the value of oscillating redox environments for the further transformation of atenolol acid. Our findings shed light on microbial processes contributing to pharmaceutical biotransformation in open-water wetlands with implications for similar nature-based treatment systems.
Collapse
Affiliation(s)
- Michael A P Vega
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
| | - Rachel C Scholes
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Adam R Brady
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
| | - Rebecca A Daly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Adrienne B Narrowe
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Lily B Bosworth
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
- Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - David L Sedlak
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Jonathan O Sharp
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
- Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
28
|
Li L, Zhang Z, Men Y, Baskaran S, Sangion A, Wang S, Arnot JA, Wania F. Retrieval, Selection, and Evaluation of Chemical Property Data for Assessments of Chemical Emissions, Fate, Hazard, Exposure, and Risks. ACS ENVIRONMENTAL AU 2022; 2:376-395. [PMID: 37101455 PMCID: PMC10125307 DOI: 10.1021/acsenvironau.2c00010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 04/28/2023]
Abstract
Reliable chemical property data are the key to defensible and unbiased assessments of chemical emissions, fate, hazard, exposure, and risks. However, the retrieval, evaluation, and use of reliable chemical property data can often be a formidable challenge for chemical assessors and model users. This comprehensive review provides practical guidance for use of chemical property data in chemical assessments. We assemble available sources for obtaining experimentally derived and in silico predicted property data; we also elaborate strategies for evaluating and curating the obtained property data. We demonstrate that both experimentally derived and in silico predicted property data can be subject to considerable uncertainty and variability. Chemical assessors are encouraged to use property data derived through the harmonization of multiple carefully selected experimental data if a sufficient number of reliable laboratory measurements is available or through the consensus consolidation of predictions from multiple in silico tools if the data pool from laboratory measurements is not adequate.
Collapse
Affiliation(s)
- Li Li
- School
of Public Health, University of Nevada Reno, Reno, Nevada 89557, United States
- . Phone: +1 (775) 682 7077
| | - Zhizhen Zhang
- School
of Public Health, University of Nevada Reno, Reno, Nevada 89557, United States
| | - Yujie Men
- Department
of Chemical & Environmental Engineering, University of California Riverside, Riverside, California 92521, United States
| | - Sivani Baskaran
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Alessandro Sangion
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- ARC
Arnot Research & Consulting, Toronto, Ontario M4M 1W4, Canada
| | - Shenghong Wang
- School
of Public Health, University of Nevada Reno, Reno, Nevada 89557, United States
| | - Jon A. Arnot
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- ARC
Arnot Research & Consulting, Toronto, Ontario M4M 1W4, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Frank Wania
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
29
|
Yan R, Wang Y, Li J, Wang X, Wang Y. Determination of the lower limits of antibiotic biodegradation and the fate of antibiotic resistant genes in activated sludge: Both nitrifying bacteria and heterotrophic bacteria matter. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127764. [PMID: 34799165 DOI: 10.1016/j.jhazmat.2021.127764] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 10/05/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics can be biodegraded in activated sludge via co-metabolism and metabolism. In this study, we investigated the biodegradation pathways of sulfamethoxazole (SMX) and antibiotic resistant genes' (ARGs) fate in different autotrophic and heterotrophic microorganisms, by employing aerobic sludge, mixed sludge, and nitrifying sludge. A threshold concentration of SMX activating the degradation pathways in the initial stage of antibiotics degradation was found and proved in different activated sludge systems. Heterotrophic bacteria played an important role in SMX biodegradation. However, ammonia-oxidizing bacteria (AOB) had a faster metabolic rate, which was about 15 times higher than heterotrophic bacteria, contributing much to SMX removal via co-metabolism. As SMX concentration increases, the amoA gene and AOB relative abundance decreased in aerobic sludge due to the enrichment of functional heterotrophic bacteria, while it increased in nitrifying sludge. Microbial community analysis showed that functional bacteria which possess the capacity of SMX removal and antibiotic resistance were selected by SMX pressure. Potential ARGs hosts could increase their resistance to the biotoxicity of SMX and maintain system performance. These findings are of practical significance to guide antibiotic biodegradation and ARGs control in wastewater treatment plants.
Collapse
Affiliation(s)
- Ruofan Yan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yibing Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jiahuan Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xinhua Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Yunkun Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Chinese Academy of Science Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
30
|
He T, Zhang M, Ding C, Wu Q, Chen M, Mou S, Cheng D, Duan S, Wang Y. New insight into the nitrogen removal capacity and mechanism of Streptomyces mediolani EM-B2. BIORESOURCE TECHNOLOGY 2022; 348:126819. [PMID: 35134523 DOI: 10.1016/j.biortech.2022.126819] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
The utilization of actinomycetes as the bioresources for heterotrophic nitrification and aerobic denitrification is rarely reported due to the lack of work to explore their nitrogen biodegradation capabilities. Streptomyces mediolani EM-B2 belonging to actinomycetes could effectively remove high concentration of multiple nitrogen forms, and the maximum removal rates of ammonium, nitrate and nitrite reached 3.46 mg/(L·h), 1.71 mg/(L·h) and 1.73 mg/(L·h), respectively. Nitrite was preferentially consumed from the simultaneous nitrification and denitrification reaction system. Nitrogen balance analysis uncovered that more than 37% of the initial total nitrogen was converted to nitrogenous gas by aerobic denitrification. Experiments with specific inhibitors of nitrification and denitrification revealed that strain EM-B2 contained ammonia monooxygenase, hydroxylamine oxidoreductase, nitrate reductase and nitrite oxidoreductase, which were successfully expressed and detected as 0.43, 0.59, 0.12 and 0.005 U/mg proteins, respectively. These findings may provide new insights into the actinomycetes for bioremediation of nitrogen pollution wastewater.
Collapse
Affiliation(s)
- Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China.
| | - Manman Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Chenyu Ding
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Qifeng Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Mengping Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Shuanglong Mou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Dujuan Cheng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Sijun Duan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Yu Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
31
|
Tamang A, Roy JW, Boreux MP, Robinson CE. Variation in septic system effluent inputs to tributaries in multiple subwatersheds and approaches to distinguish contributing pathways and areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151054. [PMID: 34699817 DOI: 10.1016/j.scitotenv.2021.151054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Quantifying the contribution of septic systems to contaminant, including nutrient, loading to streams is needed in many watersheds to inform water quality management programs. However, this quantification is challenging due to the distributed locations of septic systems and uncertainties regarding the pathways delivering effluent from septic systems (functioning and failing) to a stream. The objectives of this study were firstly to evaluate how septic effluent inputs to streams vary with stream discharge conditions for multiple subwatersheds with different characteristics (i.e., geology, septic system density, and typical age), and secondly to examine new approaches for distinguishing the pathways and the contributing areas delivering septic effluent to streams. These approaches use the artificial sweetener acesulfame as a conservative tracer for septic effluent in applications of: (i) stream concentration-discharge (C-Q) relationships using low frequency sampling data, (ii) hysteresis behavior in event-based C-Q relationships, and (iii) longitudinal stream sampling. For all nine subwatersheds studied, the amount of septic effluent reaching the subwatershed outlets was considerably higher during high stream discharge (event) conditions compared to low discharge (baseflow) conditions, suggesting pathways other than groundwater may also be important. Generally, the percentage of septic effluent reaching the outlets was less for subwatersheds with newer households compared to those with older households. The combined interpretation of low frequency and event-based C-Q relationships indicate that complex pathways control the delivery of septic effluent to the subwatershed outlets. The interpretations suggest that groundwater pathways may dominate in some subwatersheds, while more rapid pathways associated with failing septic systems (e.g., overland runoff) may be important in others. Finally, longitudinal stream sampling illustrate the potential of acesulfame data to identify key areas contributing septic effluent to the stream. The novel approaches used here can be applied to guide future investigations aiming to quantify and manage water quality impairment from septic systems.
Collapse
Affiliation(s)
- Archana Tamang
- Department of Civil and Environmental Engineering, Western University, London, ON N6A 5B9, Canada
| | - James W Roy
- Department of Civil and Environmental Engineering, Western University, London, ON N6A 5B9, Canada; Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Maxime P Boreux
- Department of Civil and Environmental Engineering, Western University, London, ON N6A 5B9, Canada
| | - Clare E Robinson
- Department of Civil and Environmental Engineering, Western University, London, ON N6A 5B9, Canada.
| |
Collapse
|
32
|
Osorio V, Cruz-Alcalde A, Pérez S. Nitrosation and nitration of diclofenac and structurally related nonsteroidal anti-inflammatory drugs (NSAIDs) in nitrifying activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150533. [PMID: 34597575 DOI: 10.1016/j.scitotenv.2021.150533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Diclofenac (DCF) is a highly consumed non-steroidal anti-inflammatory drug that is excreted partially metabolized and is poorly removed during wastewater treatment. Previous findings demonstrated that DCF in wastewater treatment plants (WWTP) is partially removed to nitro/nitroso compounds. The reactive nitrogen species, that are microbially produced during nitrification in the activated sludge of WWTP, were suspected to be involved in the transformation of DCF. Therefore, here, we investigated the molecular features governing such biotransformation and the role played by nitrifying bacteria by biodegradation experiments at lab scale in enriched nitrifying sludge bioreactors spiked with DCF and other structurally related non-steroidal anti-inflammatory drugs (NSAIDs). We provided evidence of the incorporation of NO/NO2 groups into DCF originated from ammonia by isotopically labelled biodegradation experiments. Nitroso and nitro-derivatives were tentatively identified for all NSAIDs studied and biotransformation mechanisms were proposed. Our findings from biodegradation experiments performed under different incubation conditions suggested that biotransformation of DCF and its related NSAIDs might not only be microbially mediated by ammonia oxidizing bacteria, but other nitrifiers co-occurring in the activated sludge as ammonia oxidizing archaea and nitrite oxidizing bacteria. Follow-up studies should be conducted to disentangle such complex behaviour in order to improve removal of these contaminants in WWTPs.
Collapse
Affiliation(s)
- Victoria Osorio
- ENFOCHEM, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Department of Chemistry, University of Girona, c/ Maria Aurèlia Capmany, 69, E-17003 Girona, Spain.
| | | | - Sandra Pérez
- ENFOCHEM, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
33
|
Athanasakoglou A, Fenner K. Toward Characterizing the Genetic Basis of Trace Organic Contaminant Biotransformation in Activated Sludge: The Role of Multicopper Oxidases as a Case Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:313-324. [PMID: 34932304 DOI: 10.1021/acs.est.1c05803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Activated sludge treatment leverages the ability of microbes to uptake and (co)-metabolize chemicals and has shown promise in eliminating trace organic contaminants (TrOCs) during wastewater treatment. However, targeted interventions to optimize the process are limited as the fundamental drivers of the observed reactions remain elusive. In this work, we present a comprehensive workflow for the identification and characterization of key enzymes involved in TrOCs biotransformation pathways in complex microbial communities. To demonstrate the applicability of the workflow, we investigated the role of the enzymatic group of multicopper oxidases (MCOs) as one putatively relevant driver of TrOCs biotransformation. To this end, we analyzed activated sludge metatranscriptomic data and selected, synthesized, and heterologously expressed three phylogenetically distinct MCO-encoding genes expressed in communities with different TrOCs oxidation potentials. Following the purification of the encoded enzymes, we screened their activities against different substrates. We saw that MCOs exhibit significant activities against selected TrOCs in the presence of the mediator compound 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid and, in some cases, also in the presence of the wastewater contaminant 4'-hydroxy-benzotriazole. In the first case, we identified oxidation products previously reported from activated sludge communities and concluded that in the presence of appropriate mediators, bacterial MCOs could contribute to the biological removal of TrOCs. Similar investigations of other key enzyme systems may significantly advance our understanding of TrOCs biodegradation and assist the rational design of biology-based water treatment strategies in the future.
Collapse
Affiliation(s)
- Anastasia Athanasakoglou
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Kathrin Fenner
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
34
|
Li S, Xu Y, Liang C, Wang N, Song S, Peng L. Enhanced biodegradation of ciprofloxacin by enriched nitrifying sludge: assessment of removal pathways and microbial responses. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:409-419. [PMID: 35050892 DOI: 10.2166/wst.2021.609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Antibiotics are mostly collected by sewage systems, but not completely removed within wastewater treatment plants. Their release to aquatic environment poses a great threat to public health. This study evaluated the removal of a widely used fluoroquinolone antibiotic, ciprofloxacin, in enriched nitrifying culture through a series of experiments by controlling ammonium concentrations and inhibiting functional microorganisms. The removal efficiency of ciprofloxacin at an initial concentration of 50 μg L-1 reached 81.86 ± 3.21% in the presence of ammonium, while only 22.83 ± 8.22% of ciprofloxacin was removed in its absence. A positive linear correlation was found between the ammonia oxidation rate (AOR) and ciprofloxacin biodegradation rate. These jointly confirmed the importance of the AOB-induced cometabolism in ciprofloxacin biodegradation, with adsorption and metabolic degradation pathways playing minor roles. The continuous exposure of AOB to ciprofloxacin led to decreases of ammonia monooxygenase (AMO) activities and AOR. The antibacterial effects of ciprofloxacin and its biodegradation products were further evaluated and the results revealed that biodegradation products of ciprofloxacin exhibited less toxicity compared to the parent compound, implying the potential application of cometabolism in alleviation of antimicrobial activity. The findings provided new insights into the AOB-induced cometabolic biodegradation of fluoroquinolone antibiotics.
Collapse
Affiliation(s)
- Shengjun Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China E-mail: ; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China E-mail: ; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China E-mail: ; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Ning Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Shaoxian Song
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China E-mail: ; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China E-mail: ; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; Shenzhen Research Institute, Wuhan University of Technology, Gaoxin South Fourth Road 19, Yuehai Street, Nanshan District, Shenzhen 518063, China
| |
Collapse
|
35
|
Kennes-Veiga DM, Gónzalez-Gil L, Carballa M, Lema JM. Enzymatic cometabolic biotransformation of organic micropollutants in wastewater treatment plants: A review. BIORESOURCE TECHNOLOGY 2022; 344:126291. [PMID: 34752884 DOI: 10.1016/j.biortech.2021.126291] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Biotransformation of trace-level organic micropollutants (OMPs) by complex microbial communities in wastewater treatment facilities is a key process for their detoxification and environmental impact reduction. Therefore, understanding the metabolic activities and mechanisms that contribute to their biotransformation is essential when developing approaches aiming to minimize their discharge. This review addresses the relevance of cometabolic processes and discusses the main enzymatic activities currently known to take part in OMPs removal under different redox environments in the compartments of wastewater treatment plants. Furthermore, the most common methodologies to decipher such enzymes are discussed, including the use of in vitro enzyme assays, enzymatic inhibitors, the analysis of transformation products and the application of several -omic techniques. Finally, perspectives on major challenges and future research requirements to improve OMPs biotransformation are proposed.
Collapse
Affiliation(s)
- David M Kennes-Veiga
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Lorena Gónzalez-Gil
- Defence University Centre, Spanish Naval Academy, Plaza de España, 36920 Marín, Spain
| | - Marta Carballa
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Juan M Lema
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
36
|
Hidrovo A, Luek JL, Antonellis C, Malley JP, Mouser PJ. The fate and removal of pharmaceuticals and personal care products within wastewater treatment facilities discharging to the Great Bay Estuary. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e1680. [PMID: 35075725 DOI: 10.1002/wer.1680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are contaminants of emerging concern that derive primarily in the water environment from combined sewer overflows and discharges from industrial and municipal wastewater treatment facilities (WWTFs). Due to incomplete removal during wastewater treatment, PPCP impacts to aquatic ecosystems are a major concern. The Great Bay Estuary (New Hampshire, USA) is an important ecological, commercial, and recreational resource where upstream WWTFs have recently been under pressure to reduce nitrogen loading to the estuary and consequently upgrade treatment systems. Therefore, we investigated the distribution and abundance of 18 PPCPs and three flame retardants within the Great Bay Estuary and WWTFs discharging to the estuary to examine how WWTF type influenced PPCP removal. All 21 analytes were frequently detected at μg/L to ng/L concentrations in influent and effluent and ng/kg in sludge. WWTFs with enhanced nutrient removal and longer solids retention times correlated to higher PPCP removal, indicating facility upgrades may have benefits related to PPCP removal. Understanding PPCP fate during treatment and in downstream waters informs our ability to assess the environmental and ecological impacts of PPCPs on estuarine resources and develop mitigation strategies to better protect marine ecosystems from emerging contaminant exposure. PRACTITIONER POINTS: PPCP removal positively correlated with solids retention time and varied by treatment facility and compound. Upgrade of WWTFs for biological nitrogen removal may also increase PPCP removal. Surface water fluoxetine concentrations may present an ecological risk to the Great Bay Estuary.
Collapse
Affiliation(s)
- Alexandria Hidrovo
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, New Hampshire, USA
- Weston & Sampson, Portsmouth, New Hampshire, USA
| | - Jenna L Luek
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, New Hampshire, USA
| | - Carmela Antonellis
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, New Hampshire, USA
| | - James P Malley
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, New Hampshire, USA
| | - Paula J Mouser
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
37
|
Evaluating acute toxicity in enriched nitrifying cultures: Lessons learned. J Microbiol Methods 2021; 192:106377. [PMID: 34798174 DOI: 10.1016/j.mimet.2021.106377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/14/2021] [Accepted: 11/14/2021] [Indexed: 11/22/2022]
Abstract
Toxicological batch assays are essential to assess a compound's acute effect on microorganisms. This methodology is frequently employed to evaluate the effect of contaminants in sensitive microbial communities from wastewater treatment plants (WWTPs), such as autotrophic nitrifying populations. However, despite nitrifying batch assays being commonly mentioned in the literature, their experimental design criteria are rarely reported or overlooked. Here, we found that slight deviations in culture preparations and conditions impacted bacterial community performance and could skew assay results. From pre-experimental trials and experience, we determined how mishandling and treatment of cultures could affect nitrification activity. While media and biomass preparations are needed to establish baseline conditions (e.g., biomass washing), we found extensive centrifugation selectively destabilised nitrification activities. Further, it is paramount that the air supply is adjusted to minimise nitrite build-up in the culture and maintain suitable aeration levels without sparging ammonia. DMSO and acetone up to 0.03% (v/v) were suitable organic solvents with minimal impact on nitrification activity. In the nitrification assays with allylthiourea (ATU), dilute cultures exhibited more significant inhibition than concentrated cultures. So there were biomass-related effects; however, these differences minimally impacted the EC50 values. Using different nutrient-media compositions had a minimal effect; however, switching mineral media for the toxicity test from the original cultivation media is not recommended because it reduced the original biomass nitrification capacity. Our results demonstrated that these factors substantially impact the performance of the nitrifying inoculum used in acute bioassays, and consequently, affect the response of AOB-NOB populations during the toxicant exposure. These are not highlighted in operation standards, and unfortunately, they can have significant consequential impacts on the determinations of toxicological endpoints. Moreover, the practical procedures tested here could support other authors in developing testing methodologies, adding quality checks in the experimental framework with minimal waste of time and resources.
Collapse
|
38
|
Fenner K, Men Y. Comment on "Role of Ammonia Oxidation in Organic Micropollutant Transformation during Wastewater Treatment": Overlooked Evidence to the Contrary. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12128-12129. [PMID: 34405990 DOI: 10.1021/acs.est.1c04178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Kathrin Fenner
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Yujie Men
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside California 92521, United States
| |
Collapse
|
39
|
Chalifour A, Walser JC, Pomati F, Fenner K. Temperature, phytoplankton density and bacteria diversity drive the biotransformation of micropollutants in a lake ecosystem. WATER RESEARCH 2021; 202:117412. [PMID: 34303164 DOI: 10.1016/j.watres.2021.117412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
For most micropollutants (MPs) present in surface waters, such as pesticides and pharmaceuticals, the contribution of biotransformation to their overall removal from lake ecosystems is largely unknown. This study aims at empirically determining the biotransformation rate constants for 35 MPs at different periods of the year and depths of a meso-eutrophic lake. We then tested statistically the association of environmental parameters and microbial community composition with the biotransformation rate constants obtained. Biotransformation was observed for 14 out of 35 studied MPs for at least one sampling time. Large variations in biotransformation rate constants were observed over the seasons and between compounds. Overall, the transformation of MPs was mostly influenced by the lake's temperature, phytoplankton density and bacterial diversity. However, some individual MPs were not following the general trend or association with microorganism biomass. The antidepressant mianserin, for instance, was transformed in all experiments and depths, but did not show any relationship with measured environmental parameters, suggesting the importance of specific microorganisms in its transformation. The results presented here contribute to our understanding of the fate of MPs in surface waters and thus support improved risk assessment of contaminants in the environment.
Collapse
Affiliation(s)
- Annie Chalifour
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland.
| | - Jean-Claude Walser
- Department of Environmental Systems Science, Genetic Diversity Centre, ETH Zürich, Universitätstrasse 16, 8006 Zürich, Switzerland
| | - Francesco Pomati
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
40
|
Melo A, Costa J, Quintelas C, Ferreira EC, Mesquita DP. Effect of ibuprofen on extracellular polymeric substances (EPS) production and composition, and assessment of microbial structure by quantitative image analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112852. [PMID: 34091137 DOI: 10.1016/j.jenvman.2021.112852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/16/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
A Sequencing Batch Reactor (SBR) with activated sludge was operated with synthetic wastewater containing ibuprofen (IBU) to investigate the biomass stress-responses under long-term IBU exposure. There were 3 different phases: phase I as the control without IBU for 56 days, phase II (40 days), and phase III (60 days) containing IBU at 10 and 5 mg L-1 each. The overall performance of the SBR as well as the extracellular polymeric substances (EPS) in terms of polysaccharides, proteins, and humic acid substances were estimated. Morphological parameters of microbial aggregates in the presence of IBU (phase II and phase III) were assessed by quantitative image analysis (QIA). Removal efficiencies of chemical oxygen demand (COD) and ammonium (NH4+) were significantly reduced by IBU. Loosely bound EPS (LB-EPS) decreased during phase II and phase III, and tightly bound EPS (TB-EPS) was slightly higher in phase II than phase I. TB-EPS proteins were greater in phase II, perhaps to protect microbial cells from IBU exposure. These findings provided insight into both activated sludge stress-responses and EPS composition under long-term IBU exposure. Spearman correlation showed that EPS and morphological parameters significantly affected sludge settleability and flocculation. QIA also proved to be a powerful technique in investigating dysfunctions in activated sludge under IBU exposure.
Collapse
Affiliation(s)
- António Melo
- CEB - Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Joana Costa
- CEB - Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Cristina Quintelas
- CEB - Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Eugénio C Ferreira
- CEB - Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Daniela P Mesquita
- CEB - Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
41
|
Wang Y, Ji XM, Jin RC. How anammox responds to the emerging contaminants: Status and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112906. [PMID: 34087646 DOI: 10.1016/j.jenvman.2021.112906] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Numerous researches have been carried out to study the effects of emerging contaminants in wastewater, such as antibiotics, nanomaterials, heavy metals, and microplastics, on the anammox process. However, they are fragmented and difficult to provide a comprehensive understanding of their effects on reactor performance and the metabolic mechanisms in anammox bacteria. Therefore, this paper overviews the effects on anammox processes by the introduced emerging contaminants in the past years to fulfill such knowledge gaps that affect our perception of the inhibitory mechanisms and limit the optimization of the anammox process. In detail, their effects on anammox processes from the aspects of reactor performance, microbial community, antibiotic resistance genes (ARGs), and functional genes related to anammox and nitrogen transformation in anammox consortia are summarized. Furthermore, the metabolic mechanisms causing the cell death of anammox bacteria, such as induction of reactive oxygen species, limitation of substrates diffusion, and membrane binding are proposed. By offering this review, the remaining research gaps are identified, and the potential metabolic mechanisms in anammox consortia are highlighted.
Collapse
Affiliation(s)
- Ye Wang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xiao-Ming Ji
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Ren-Cun Jin
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
42
|
Kennes-Veiga DM, Vogler B, Fenner K, Carballa M, Lema JM. Heterotrophic enzymatic biotransformations of organic micropollutants in activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146564. [PMID: 33774287 DOI: 10.1016/j.scitotenv.2021.146564] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/16/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
While heterotrophic microorganisms constitute the major fraction of activated sludge biomass, the role of heterotrophs in the biotransformation of organic micropollutants (OMPs) has not been fully elucidated. Yet, such knowledge is essential, particularly when conceiving novel wastewater treatment plants based on a two-stage process including an A-stage under heterotrophic conditions and a B-stage based on anammox activity. Biotransformation of OMPs in activated sludge is thought to mostly occur cometabolically thanks to the action of low specificity enzymes involved in the metabolism of the primary substrates. For a better understanding of the process, it is important to determine such enzymatic activities and the underlying mechanisms involved in OMPs biotransformation. This task has proven to be difficult due to the lack of information about the enzymatic processes and the complexity of the biological systems present in activated sludge. In this paper, a continuous aerobic heterotrophic reactor following 20 OMPs at environmental concentrations was operated to (i) assess the potential of heterotrophs during the cometabolic biotransformation of OMPs, (ii) identify biotransformation reactions catalyzed by aerobic heterotrophs and (iii) predict possible heterotrophic enzymatic activities responsible for such biotransformations. Contradicting previous reports on the dominant role of nitrifiers in OMPs removal during activated sludge treatment, the heterotrophic population proved its capacity to biotransform the OMPs to extents equivalent to reported values in nitrifying activated sludge plants. Besides, 12 transformation products potentially formed through the activity of several enzymes present in heterotrophs, including monooxygenases, dioxygenases, hydrolases and transferases, were identified.
Collapse
Affiliation(s)
- David M Kennes-Veiga
- Cretus Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain.
| | - Bernadette Vogler
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland
| | - Kathrin Fenner
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland; Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Marta Carballa
- Cretus Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Juan M Lema
- Cretus Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| |
Collapse
|
43
|
Sheng Q, Yi M, Men Y, Lu H. Cometabolism of 17α-ethynylestradiol by nitrifying bacteria depends on reducing power availability and leads to elevated nitric oxide formation. ENVIRONMENT INTERNATIONAL 2021; 153:106528. [PMID: 33774495 DOI: 10.1016/j.envint.2021.106528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
17α-ethynylestradiol (EE2) is a priority emerging contaminant (EC) in diverse environments that can be cometabolized by ammonia oxidizing bacteria (AOB). However, its transformation kinetics and the underlying molecular mechanism are unclear. In this study, kinetic parameters, including maximum specific EE2 transformation rate, EE2 half-saturation coefficient, and EE2transformation capacity of AOBwere obtained by using the model AOB strain, Nitrosomonas europaea 19718. The relationship between EE2 cometabolism and ammonia oxidation was divided into three phases according to reducing power availability, namely "activation", "coupling", and "saturation". Specifically, there was a universal lag of EE2 transformation after ammonia oxidation was initiated, suggesting that sufficient reducing power (approximately 0.95 ± 0.06 mol NADH/L) was required to activate EE2 cometabolism. Interestingly, nitric oxide emission increased by 12 ± 2% during EE2 cometabolism, along with significantly upregulated nirK cluster genes. The findings are of importance to understanding the cometabolic behavior and mechanism of EE2 in natural and engineered environments. Maintaining relatively high and stable reducing power supply from ammonia oxidation can potentially improve the cometabolic removal of EE2 and other ECs during wastewater nitrification processes.
Collapse
Affiliation(s)
- Qi Sheng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming Yi
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yujie Men
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, United States
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
44
|
Fenner K, Elsner M, Lueders T, McLachlan MS, Wackett LP, Zimmermann M, Drewes JE. Methodological Advances to Study Contaminant Biotransformation: New Prospects for Understanding and Reducing Environmental Persistence? ACS ES&T WATER 2021; 1:1541-1554. [PMID: 34278380 PMCID: PMC8276273 DOI: 10.1021/acsestwater.1c00025] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 05/14/2023]
Abstract
Complex microbial communities in environmental systems play a key role in the detoxification of chemical contaminants by transforming them into less active metabolites or by complete mineralization. Biotransformation, i.e., transformation by microbes, is well understood for a number of priority pollutants, but a similar level of understanding is lacking for many emerging contaminants encountered at low concentrations and in complex mixtures across natural and engineered systems. Any advanced approaches aiming to reduce environmental exposure to such contaminants (e.g., novel engineered biological water treatment systems, design of readily degradable chemicals, or improved regulatory assessment strategies to determine contaminant persistence a priori) will depend on understanding the causal links among contaminant removal, the key driving agents of biotransformation at low concentrations (i.e., relevant microbes and their metabolic activities), and how their presence and activity depend on environmental conditions. In this Perspective, we present the current understanding and recent methodological advances that can help to identify such links, even in complex environmental microbiomes and for contaminants present at low concentrations in complex chemical mixtures. We discuss the ensuing insights into contaminant biotransformation across varying environments and conditions and ask how much closer we have come to designing improved approaches to reducing environmental exposure to contaminants.
Collapse
Affiliation(s)
- Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Martin Elsner
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Tillmann Lueders
- Chair of Ecological Microbiology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95448 Bayreuth, Germany
| | - Michael S McLachlan
- Department of Environmental Science (ACES), Stockholm University, 106 91 Stockholm, Sweden
| | - Lawrence P Wackett
- Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Michael Zimmermann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
45
|
Rios‐Miguel AB, Jetten MSM, Welte CU. Effect of concentration and hydraulic reaction time on the removal of pharmaceutical compounds in a membrane bioreactor inoculated with activated sludge. Microb Biotechnol 2021; 14:1707-1721. [PMID: 34132479 PMCID: PMC8313272 DOI: 10.1111/1751-7915.13837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 01/04/2023] Open
Abstract
Pharmaceuticals are often not fully removed in wastewater treatment plants (WWTPs) and are thus being detected at trace levels in water bodies all over the world posing a risk to numerous organisms. These organic micropollutants (OMPs) reach WWTPs at concentrations sometimes too low to serve as growth substrate for microorganisms; thus, co-metabolism is thought to be the main conversion mechanism. In this study, the microbial removal of six pharmaceuticals was investigated in a membrane bioreactor at increasing concentrations (4-800 nM) of the compounds and using three different hydraulic retention times (HRT; 1, 3.5 and 5 days). The bioreactor was inoculated with activated sludge from a municipal WWTP and fed with ammonium, acetate and methanol as main growth substrates to mimic co-metabolism. Each pharmaceutical had a different average removal efficiency: acetaminophen (100%) > fluoxetine (50%) > metoprolol (25%) > diclofenac (20%) > metformin (15%) > carbamazepine (10%). Higher pharmaceutical influent concentrations proportionally increased the removal rate of each compound, but surprisingly not the removal percentage. Furthermore, only metformin removal improved to 80-100% when HRT or biomass concentration was increased. Microbial community changes were followed with 16S rRNA gene amplicon sequencing in response to the increment of pharmaceutical concentration: Nitrospirae and Planctomycetes 16S rRNA relative gene abundance decreased, whereas Acidobacteria and Bacteroidetes increased. Remarkably, the Dokdonella genus, previously implicated in acetaminophen metabolism, showed a 30-fold increase in abundance at the highest concentration of pharmaceuticals applied. Taken together, these results suggest that the incomplete removal of most pharmaceutical compounds in WWTPs is dependent on neither concentration nor reaction time. Accordingly, we propose a chemical equilibrium or a growth substrate limitation as the responsible mechanisms of the incomplete removal. Finally, Dokdonella could be the main acetaminophen degrader under activated sludge conditions, and non-antibiotic pharmaceuticals might still be toxic to relevant WWTP bacteria.
Collapse
Affiliation(s)
- Ana B. Rios‐Miguel
- Department of MicrobiologyInstitute for Water and Wetland ResearchRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Mike S. M. Jetten
- Department of MicrobiologyInstitute for Water and Wetland ResearchRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
- Soehngen Institute of Anaerobic MicrobiologyRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Cornelia U. Welte
- Department of MicrobiologyInstitute for Water and Wetland ResearchRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
- Soehngen Institute of Anaerobic MicrobiologyRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| |
Collapse
|
46
|
Trejo-Castillo R, El Kassis EG, Cuervo-López F, Texier AC. Cometabolic biotransformation of benzotriazole in nitrifying batch cultures. CHEMOSPHERE 2021; 270:129461. [PMID: 33412355 DOI: 10.1016/j.chemosphere.2020.129461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/05/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Benzotriazole (BT) is a corrosion inhibitor widely distributed in aquatic environments. Little is known about the cometabolic capacity of stabilized nitrifying sludge to biotransform BT. The contribution of the nitrification process in the simultaneous oxidation of ammonium and biotransformation of BT (5 mg/L) was evaluated in 49 d batch cultures inoculated with a sludge produced in steady-state nitrification. The nitrifying sludge could consume BT in the obligate presence of ammonium. A higher cometabolic biotransformation capacity was obtained by increasing the initial ammonium concentration (100-300 mg N/L), reaching 2.3- and 5.8-fold increases for efficiency and specific rate of BT removal. At 300 mg NH4+-N/L, the sludge biotransform 40.8% of BT and 77.6% of ammonium which was completely oxidized into nitrate. In assays with allylthiourea added as specific inhibitor of ammonium monooxygenase (AMO), it was shown that the totality of BT cometabolic biotransformation was associated with the AMO activity. The addition of acetate did not favor heterotrophic biotransformation of BT. BT provoked inhibitory effects on nitrification. This is the first study showing the role of ammonium oxidizing bacteria in the cometabolic biotransformation of BT and their potential use for cometabolism application in treatment of wastewater contaminated with ammonium and BT.
Collapse
Affiliation(s)
- Rubén Trejo-Castillo
- UAM-Iztapalapa, Departamento de Biotecnología, Av. San Rafael Atlixco 186, Col. Vicentina, C.P., 09340, Ciudad de México, Mexico
| | - Elie Girgis El Kassis
- UPAEP, Departamento de Ciencias Biológicas, 11 Poniente 2316, Col. Barrio de Santiago, C.P., 72410, Puebla, Mexico
| | - Flor Cuervo-López
- UAM-Iztapalapa, Departamento de Biotecnología, Av. San Rafael Atlixco 186, Col. Vicentina, C.P., 09340, Ciudad de México, Mexico
| | - Anne-Claire Texier
- UAM-Iztapalapa, Departamento de Biotecnología, Av. San Rafael Atlixco 186, Col. Vicentina, C.P., 09340, Ciudad de México, Mexico.
| |
Collapse
|
47
|
An Z, Kent TR, Sun Y, Bott CB, Wang ZW. Free ammonia resistance of nitrite-oxidizing bacteria developed in aerobic granular sludge cultivated in continuous upflow airlift reactors performing partial nitritation. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:421-432. [PMID: 32816336 DOI: 10.1002/wer.1440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/18/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Free ammonia (FA) inhibition has been taken advantage as a strategy to suppress the growth of nitrite-oxidizing bacteria (NOB) in aerobic granules stabilized in a continuous upflow airlift reactor to achieve partial nitritation. However, after nearly 18 months of continuous exposure of aerobic granules to FA in the reactor, the FA inhibition of NOB was proven ineffective, and the partial nitritation gradually shifted to partial nitrification even though the long-term granule structural stability remained excellent under the continuous-flow mode. The extent of NOB resistance to FA inhibition was quantified based on the kinetic response of NOB to various FA concentrations in the form of an uncompetitive inhibition coefficient. It was confirmed that the NOB immobilized in larger granules under longer term exposure to FA tend to become more resistant to FA. Thereby, it was concluded that NOB can develop strong resistance to FA after continuous exposure, and thus, FA inhibition is not a reliable strategy to achieve partial nitritation in mainstream wastewater treatment. PRACTITIONER POINTS: Nitrifying aerobic granules can remain structurally stable in continuous-flow bioreactors. NOB developed free ammonia resistance after 6-month continuous exposure. Larger aerobic granules tended to develop stronger free ammonia resistance. Free ammonia inhibition is not a reliable strategy for mainstream anammox.
Collapse
Affiliation(s)
- Zhaohui An
- Occoquan Laboratory, Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA, USA
| | | | - Yewei Sun
- Occoquan Laboratory, Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA, USA
- Hazen and Sawyer, Fairfax, VA, USA
| | - Charles B Bott
- Hampton Roads Sanitation District, Virginia Beach, VA, USA
| | - Zhi-Wu Wang
- Occoquan Laboratory, Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA, USA
| |
Collapse
|
48
|
Xiao R, Ni BJ, Liu S, Lu H. Impacts of organics on the microbial ecology of wastewater anammox processes: Recent advances and meta-analysis. WATER RESEARCH 2021; 191:116817. [PMID: 33461083 DOI: 10.1016/j.watres.2021.116817] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/16/2020] [Accepted: 01/05/2021] [Indexed: 05/25/2023]
Abstract
Anaerobic ammonium oxidation (anammox) represents a promising technology for wastewater nitrogen removal. Organics management is critical to achieving efficient and stable performance of anammox or integrated processes, e.g., denitratation-anammox. The aim of this systematic review is to synthesize the state-of-the-art knowledge on the multifaceted impacts of organics on wastewater anammox community structure and function. Both exogenous and endogenous organics are discussed with respect to their effects on the biofilm/granule structure and function, as well as the interactions between anammox bacteria (AnAOB) and a broad range of coexisting functional groups. A global core community consisting of 19 taxa is identified and a co-occurrence network is constructed by meta-analysis on the 16S rDNA sequences of 149 wastewater anammox samples. Correlations between core taxa, keystone taxa, and environmental factors, including COD, nitrogen loading rate (NLR) and C/N ratio are obtained. This review provides a holistic understanding of the microbial responses to different origins and types of organics in wastewater anammox reactors, which will facilitate the design and operation of more efficient anammox-based wastewater nitrogen removal process.
Collapse
Affiliation(s)
- Rui Xiao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Sitong Liu
- Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China.
| |
Collapse
|
49
|
Sagova-Mareckova M, Boenigk J, Bouchez A, Cermakova K, Chonova T, Cordier T, Eisendle U, Elersek T, Fazi S, Fleituch T, Frühe L, Gajdosova M, Graupner N, Haegerbaeumer A, Kelly AM, Kopecky J, Leese F, Nõges P, Orlic S, Panksep K, Pawlowski J, Petrusek A, Piggott JJ, Rusch JC, Salis R, Schenk J, Simek K, Stovicek A, Strand DA, Vasquez MI, Vrålstad T, Zlatkovic S, Zupancic M, Stoeck T. Expanding ecological assessment by integrating microorganisms into routine freshwater biomonitoring. WATER RESEARCH 2021; 191:116767. [PMID: 33418487 DOI: 10.1016/j.watres.2020.116767] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Bioindication has become an indispensable part of water quality monitoring in most countries of the world, with the presence and abundance of bioindicator taxa, mostly multicellular eukaryotes, used for biotic indices. In contrast, microbes (bacteria, archaea and protists) are seldom used as bioindicators in routine assessments, although they have been recognized for their importance in environmental processes. Recently, the use of molecular methods has revealed unexpected diversity within known functional groups and novel metabolic pathways that are particularly important in energy and nutrient cycling. In various habitats, microbial communities respond to eutrophication, metals, and natural or anthropogenic organic pollutants through changes in diversity and function. In this review, we evaluated the common trends in these changes, documenting that they have value as bioindicators and can be used not only for monitoring but also for improving our understanding of the major processes in lotic and lentic environments. Current knowledge provides a solid foundation for exploiting microbial taxa, community structures and diversity, as well as functional genes, in novel monitoring programs. These microbial community measures can also be combined into biotic indices, improving the resolution of individual bioindicators. Here, we assess particular molecular approaches complemented by advanced bioinformatic analysis, as these are the most promising with respect to detailed bioindication value. We conclude that microbial community dynamics are a missing link important for our understanding of rapid changes in the structure and function of aquatic ecosystems, and should be addressed in the future environmental monitoring of freshwater ecosystems.
Collapse
Affiliation(s)
- M Sagova-Mareckova
- Dept. of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Kamýcká 129, Prague 6, 16500, Czechia.
| | - J Boenigk
- Biodiversity, University of Duisburg-Essen, Universitaetsstraße 5, 45141 Essen, Germany
| | - A Bouchez
- UMR CARRTEL, INRAE, UMR Carrtel, 75 av. de Corzent, FR-74203 Thonon les Bains cedex, France; University Savoie Mont-Blanc, UMR CARRTEL, FR-73370 Le Bourget du Lac, France
| | - K Cermakova
- ID-Gene Ecodiagnostics, Campus Biotech Innovation Park, 15, av. Sécheron, 1202 Geneva, Switzerland
| | - T Chonova
- UMR CARRTEL, INRAE, UMR Carrtel, 75 av. de Corzent, FR-74203 Thonon les Bains cedex, France; University Savoie Mont-Blanc, UMR CARRTEL, FR-73370 Le Bourget du Lac, France
| | - T Cordier
- Department of Genetics and Evolution, University of Geneva, Science III, 4 Boulevard d'Yvoy, 1205 Geneva, Switzerland
| | - U Eisendle
- University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - T Elersek
- National Institute of Biology, Vecna pot 111, SI-1000 Ljubljana, Slovenia
| | - S Fazi
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Via Salaria km 29,300 - C.P. 10, 00015 Monterotondo St., Rome, Italy
| | - T Fleituch
- Institute of Nature Conservation, Polish Academy of Sciences, ul. Adama Mickiewicza 33, 31-120 Krakow, Poland
| | - L Frühe
- Ecology Group, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - M Gajdosova
- Dept. of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czechia
| | - N Graupner
- Biodiversity, University of Duisburg-Essen, Universitaetsstraße 5, 45141 Essen, Germany
| | - A Haegerbaeumer
- Dept. of Animal Ecology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| | - A-M Kelly
- School of Natural Sciences, Trinity College Dublin, University of Dublin, College Green, Dublin 2, D02 PN40, Ireland
| | - J Kopecky
- Epidemiology and Ecology of Microoganisms, Crop Research Institute, Drnovská 507, 16106 Prague 6, Czechia
| | - F Leese
- Biodiversity, University of Duisburg-Essen, Universitaetsstraße 5, 45141 Essen, Germany; Aquatic Ecosystem Resarch, University of Duisburg-Essen, Universitaetsstrasse 5 D-45141 Essen, Germany
| | - P Nõges
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51006, Estonia
| | - S Orlic
- Institute Ruđer Bošković, Bijenička 54, 10000 Zagreb, Croatia; Center of Excellence for Science and Technology Integrating Mediterranean, Bijenička 54,10 000 Zagreb, Croatia
| | - K Panksep
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51006, Estonia
| | - J Pawlowski
- ID-Gene Ecodiagnostics, Campus Biotech Innovation Park, 15, av. Sécheron, 1202 Geneva, Switzerland; Department of Genetics and Evolution, University of Geneva, Science III, 4 Boulevard d'Yvoy, 1205 Geneva, Switzerland; Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - A Petrusek
- Dept. of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czechia
| | - J J Piggott
- School of Natural Sciences, Trinity College Dublin, University of Dublin, College Green, Dublin 2, D02 PN40, Ireland
| | - J C Rusch
- Norwegian Veterinary Institute, P.O. Box 750, Sentrum, NO-0106 Oslo, Norway; Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| | - R Salis
- Department of Biology, Faculty of Science, Lund University, Sölvegatan 37, 223 62 Lund, Sweden
| | - J Schenk
- Dept. of Animal Ecology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| | - K Simek
- Institute of Hydrobiology, Biology Centre CAS, Branišovská 31, 370 05 České Budějovice, Czechia
| | - A Stovicek
- Dept. of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Kamýcká 129, Prague 6, 16500, Czechia
| | - D A Strand
- Norwegian Veterinary Institute, P.O. Box 750, Sentrum, NO-0106 Oslo, Norway
| | - M I Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, 30 Arch. Kyprianos Str., 3036 Limassol, Cyprus
| | - T Vrålstad
- Norwegian Veterinary Institute, P.O. Box 750, Sentrum, NO-0106 Oslo, Norway
| | - S Zlatkovic
- Ministry of Environmental Protection, Omladinskih brigada 1, 11070 Belgrade, Serbia; Agency "Akvatorija", 11. krajiške divizije 49, 11090 Belgrade, Serbia
| | - M Zupancic
- National Institute of Biology, Vecna pot 111, SI-1000 Ljubljana, Slovenia
| | - T Stoeck
- Ecology Group, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany
| |
Collapse
|
50
|
Su Q, Schittich AR, Jensen MM, Ng H, Smets BF. Role of Ammonia Oxidation in Organic Micropollutant Transformation during Wastewater Treatment: Insights from Molecular, Cellular, and Community Level Observations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2173-2188. [PMID: 33543927 DOI: 10.1021/acs.est.0c06466] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organic micropollutants (OMPs) are a threat to aquatic environments, and wastewater treatment plants may act as a source or a barrier of OMPs entering the environment. Understanding the fate of OMPs in wastewater treatment processes is needed to establish efficient OMP removal strategies. Enhanced OMP biotransformation has been documented during biological nitrogen removal and has been attributed to the cometabolic activity of ammonia-oxidizing bacteria (AOB) and, specifically, to the ammonia monooxygenase (AMO) enzyme. Yet, the exact mechanisms of OMP biotransformation are often unknown. This critical review aims to fundamentally and quantitatively evaluate the role of ammonia oxidation in OMP biotransformation during wastewater treatment processes. OMPs can be transformed by AOB via direct and indirect enzymatic reactions: AMO directly transforms OMPs primarily via hydroxylation, while biologically produced reactive nitrogen species (hydroxylamine (NH2OH), nitrite (NO2-), and nitric oxide (NO)) can chemically transform OMPs through nitration, hydroxylation, and deamination and can contribute significantly to the observed OMP transformations. OMPs containing alkyl, aliphatic hydroxyl, ether, and sulfide functional groups as well as substituted aromatic rings and aromatic primary amines can be biotransformed by AMO, while OMPs containing alkyl groups, phenols, secondary amines, and aromatic primary amines can undergo abiotic transformations mediated by reactive nitrogen species. Higher OMP biotransformation efficiencies and rates are obtained in AOB-dominant microbial communities, especially in autotrophic reactors performing nitrification or nitritation, than in non-AOB-dominant microbial communities. The biotransformations of OMPs in wastewater treatment systems can often be linked to ammonium (NH4+) removal following two central lines of evidence: (i) Similar transformation products (i.e., hydroxylated, nitrated, and desaminated TPs) are detected in wastewater treatment systems as in AOB pure cultures. (ii) Consistency in OMP biotransformation (rbio, μmol/g VSS/d) to NH4+ removal (rNH4+, mol/g VSS/d) rate ratios (rbio/rNH4+) is observed for individual OMPs across different systems with similar rNH4+ and AOB abundances. In this review, we conclude that AOB are the main drivers of OMP biotransformation during wastewater treatment processes. The importance of biologically driven abiotic OMP transformation is quantitatively assessed, and functional groups susceptible to transformations by AMO and reactive nitrogen species are systematically classified. This critical review will improve the prediction of OMP transformation and facilitate the design of efficient OMP removal strategies during wastewater treatment.
Collapse
Affiliation(s)
- Qingxian Su
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore, Singapore
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Anna-Ricarda Schittich
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Marlene Mark Jensen
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Howyong Ng
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore, Singapore
- Centre for Water Research, Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576 Singapore, Singapore
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| |
Collapse
|