1
|
Kasiński S, Kowal P, Czerwionka K. Advanced Technologies for Nitrogen Removal and Recovery from Municipal and Industrial Wastewater. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1422. [PMID: 40271632 PMCID: PMC11989660 DOI: 10.3390/ma18071422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/25/2025]
Abstract
Nitrogen pollution poses significant environmental challenges, contributing to eutrophication, soil acidification, and greenhouse gas emissions. This study explores advanced methods for nitrogen removal and recovery from municipal and industrial wastewater, with a focus on biological, chemical, and physical processes. Key processes, such as nitrification-denitrification and emerging technologies like shortcut nitrogen pathways, were analyzed for their efficiency, cost-effectiveness, and environmental benefits. This review highlights the integration of innovative techniques, including membrane systems and ammonia stripping, with traditional approaches to enhance nitrogen management. Emphasis is placed on optimizing operational conditions, such as pH, temperature, and carbon-to-nitrogen ratios, to achieve high removal rates while minimizing energy consumption and environmental impact. These findings underline the critical role of interdisciplinary strategies in addressing the challenges of nitrogen pollution and promoting sustainable wastewater management.
Collapse
Affiliation(s)
- Sławomir Kasiński
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego Street 15, 10-720 Olsztyn, Poland;
| | - Przemysław Kowal
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland;
| | - Krzysztof Czerwionka
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland;
| |
Collapse
|
2
|
Lan B, Liu C, Wang S, Jin Y, Yadav AK, Srivastava P, Yuan S, Hu C, Zhu G. Enhanced electron transfer for the improvement of nitrogen removal efficiency and N 2O reduction at low temperatures. WATER RESEARCH 2025; 272:122993. [PMID: 39708380 DOI: 10.1016/j.watres.2024.122993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Low temperature generally restricts biological activity, slowing down electron transfer in biogeochemical cycles and causing a series of environmental problems such as nitrogen pollution. We present a strategy to boost electron transfer in microbial cell at low temperatures via stimulation with low current. It is demonstrated by establishing a constructed wetland system coupled with solar powered microbial electrolysis cell, which enhances microbial activity through external micro currents (18.9 ± 5.5 μA) for removing nitrogen pollution in winter (average temperature from -6.6 to 4.5 °C). We investigated the efficiency of pollutants removal, microbial activity, N2O production and its mechanisms using complexes activity detection, RT-qPCR, incubation, and 15N-18O dual-isotope labeling techniques. The activity of complexes I, II, III, and IV collectively represent the microbial electron transfer rate. Results indicated that the microcurrents increased the activity of complexes II, III and IV by 96 %, 172 %, and 313 %, respectively. The transcription abundance of amoA genes in ammonia oxidation and nirS/K genes in denitrification by 263 % and 51 %, respectively. Consequently, NH4+-N removal efficiency improved from 23 % to 35 %, and NO3--N removal efficiency from 21 % to 31 %. Moreover, microcurrents reduced N2O emission by 44 %. However, external microcurrent stimulation did not alter the microbial production pathway of N2O as determined by the 15N-18O dual isotope labeling technique. The relative abundance of the nitrifying bacteria Nitrosomonas, Nitrosospira, and Nitrospira, as well as the denitrifying bacteria Methylotenera, significantly increased due to microcurrent stimulation. Specifically, Nitrospira exhibited the highest increase of 156 %. Our findings provide a novel way to enhance N removal efficiency and simultaneously reduce N2O emission of biological system like constructed wetlands in winter conditions.
Collapse
Affiliation(s)
- Bangrui Lan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chunlei Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shanyun Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yucheng Jin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, PR China
| | - Asheesh Kumar Yadav
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pratiksha Srivastava
- Department of Chemical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, 3010, VIC, Australia
| | - Shengguang Yuan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Chengzhi Hu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guibing Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
3
|
You J, Ye L, Zhang S, Zhao J, Zhao Y, He Y, Chen J, Kennes C, Chen D. Electrode functional microorganisms in bioelectrochemical systems and its regulation: A review. Biotechnol Adv 2025; 79:108521. [PMID: 39814087 DOI: 10.1016/j.biotechadv.2025.108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 12/03/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Bioelectrochemical systems (BES) as environmental remediation biotechnologies have boomed in the last two decades. Although BESs combined technologies with electro-chemistry, -biology, and -physics, microorganisms and biofilms remain at their core. In this review, various functional microorganisms in BESs for CO2 reduction, dehalogenation, nitrate, phosphate, and sulfate reduction, metal removal, and volatile organic compound oxidation are summarized and compared in detail. Moreover, interrelationship regulation approaches for functional microorganisms and methods for electroactive biofilm development, such as targeted electrode surface modification, chemical treatment, physical revealing, biological optimization, and genetic programming are pointed out. This review provides promising guidance and suggestions for the selection of microbial inoculants and provides an analysis of the role of individual microorganisms in mixed microbial communities and its metabolisms.
Collapse
Affiliation(s)
- Juping You
- Zhejiang Key Laboratory of Pullution control for Port-Petrochemical Industry, Zhejiang Ocean University, Zhoushan 316022, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Zhejiang Shuren University, Hangzhou 312028, China
| | - Lei Ye
- Zhejiang Key Laboratory of Pullution control for Port-Petrochemical Industry, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shihan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingkai Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yan Zhao
- Zhejiang Key Laboratory of Pullution control for Port-Petrochemical Industry, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yaxue He
- Zhejiang Key Laboratory of Pullution control for Port-Petrochemical Industry, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jianmeng Chen
- School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310018, China
| | - Christian Kennes
- Chemical Engineering Laboratory and Center for Advance Scientific Research (CICA), Faculty of Sciences, Universidade da Coruña, Spain
| | - Dongzhi Chen
- Zhejiang Key Laboratory of Pullution control for Port-Petrochemical Industry, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
4
|
Tang X, Yao Q, Jiang X, Wang C, Liu Y, Li C, Chen Y, Liu W, Chen F, Wang Y. Response of ammonium transformation in bioanodes to potential regulation: Performance, electromicrobiome and implications. BIORESOURCE TECHNOLOGY 2025; 415:131731. [PMID: 39486651 DOI: 10.1016/j.biortech.2024.131731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Understanding how potential regulation affects ammonium transformation in bioanodes is crucial for promoting their application. This study explored the performance, electrochemical properties, electromicrobiome of bioanodes across potentials from 0.0 V to 0.4 V vs. standard hydrogen electrode (SHE). Higher anode potentials enhanced the performance of electroactive biofilms and ammonium removal but suppressed nitrite oxidation while favoring dissimilatory nitrate reduction (DNRA), leading to increased nitrite accumulation. A reduction in nitrite-oxidizing bacteria (NOB) and an increase in DNRA-related genes resulted in an optimal nitrite-to-ammonium ratio of 1.32 for the Anammox process. Higher anodic potentials (0.3 and 0.4 V) were less effective for TN removal than lower potentials (0, 0.1, and 0.2 V), likely due to increased NOB and denitrification genes at lower potentials enhancing nitrite oxidation and denitrification. These findings indicate that regulating anodic potential effectively directs ammonium transformation in bioanodes, optimizing its conversion to N2 or nitrite.
Collapse
Affiliation(s)
- Xin Tang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, PR China
| | - Qianjing Yao
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, PR China
| | - Xiaodun Jiang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, PR China
| | - Chunlin Wang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, PR China
| | - Yang Liu
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, PR China
| | - Cui Li
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, PR China
| | - Yanlong Chen
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, PR China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Fan Chen
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, PR China.
| | - Yuheng Wang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, PR China
| |
Collapse
|
5
|
Rusyn I, Gómora-Hernández JC. Constructed wetland microbial fuel cell as enhancing pollutants treatment technology to produce green energy. Biotechnol Adv 2024; 77:108468. [PMID: 39437879 DOI: 10.1016/j.biotechadv.2024.108468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/02/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
The persistent challenge of water pollution, exacerbated by slow progress in ecofriendly technologies and accumulating pollutants, underscores the need for innovative solutions. Constructed Wetland Microbial Fuel Cell (CW-MFC) emerges as an intriguing environmental technology capable of adressing this issue by eliminating contaminants from wastewater while simultaneously producing green energy as an additional bonus. In recent years, CW-MFC technology has gained attention due to its sustainability and promising prospects for a circular waste-free industry. However, due to various technological and biological challenges, it has not yet achieved wide-scale application. This review examines the current state of CW-MFC technology and identifies both biotic and abiotic strategies for optimization through operational and structural improvements affecting biocomponents. Our review highlights several key findings: (1) Plants play an important role in reducing the system's inner resistance through mechanisms such as radial oxygen loss, evapotranspiration, and high photosynthetic flow, which facilitate electroactive bacteria and affect redox potential. (2) Plant characteristics such as root porosity, phloem and aerenchyma development, chlorophyll content, and plant biomass are key indicators of CW-MFC performance and significantly impact both pollutant removal and energy harvesting. (3) We expand the criteria for selecting suitable plants to include mesophytes and C3 pollutant-tolerant species, in addition to traditional aquatic and C4 plants. Additionally, the review presents several technical approaches that enhance CW-MFC efficiency: (1) design optimization, (2) use of novel materials, and (3) application of external electrical fields, aeration, light, and temperature adjustments. CW-MFCs are capable of nearly complete elimination of a wide range of contaminants, including organic matter (84 % ± 10), total nitrogen (80 % ± 7) and phosphorus (79 % ± 18) compounds, metals (86 % ± 10), pharmaceuticals (87 % ± 7), dyes (90 % ± 8), and other complex pollutants, while generating green energy. We hope our findings will be useful in optimizing CW-MFC design and providing insights for researchers aiming to advance the technology and facilitate its future scaling.
Collapse
Affiliation(s)
- Iryna Rusyn
- Department of Ecology and Sustainable Environmental Management, Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, Stepan Bandera St., 12, Lviv 79013, Ukraine.
| | - Julio César Gómora-Hernández
- Division of Environmental Engineering, National Technological Institute of Mexico (TecNM) / Technological of Higher Studies of Tianguistenco, Tianguistenco 52650, Mexico.
| |
Collapse
|
6
|
Wang B, Liu Y, Zhang X, Wen G, Chen X, Wen C, Zhang H. Enhanced ammonia nitration by Bio-Electrochemical systems with constructed wetlands. BIORESOURCE TECHNOLOGY 2024; 410:131296. [PMID: 39153692 DOI: 10.1016/j.biortech.2024.131296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
The insufficient abundance of electron acceptors for ammonia during electron transfer in constructed wetlands (CWs) results in low nitrification rates. This study developed a green, low-carbon CWs enhanced by a bio-electrochemical systems (BESs-CWs) to achieve efficient ammonia (NH4+-N) removal. Electrode enhancement significantly promoted NH4+-N removal. Compared with traditional CWs, the average removal efficiency of NH4+-N in the BESs-CWs increased from 62.9 % to 90.6 %. The intermittent voltage driven by the photovoltaic power system caused minimal plant stress. However, electrode enhancement significantly affected microbial communities involved in short-path nitrification and denitrification within the biofilm. Specifically, the removal rate of NH4+-N by BESs-CWs under electrode enhancement was increased by 27.7 % compared to traditional CWs, enhancing the electron output of NH4+-N in the BESs-CWs. This system provides a method of ammonia nitration for CWs under poor electron acceptor conditions.
Collapse
Affiliation(s)
- Baoshan Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China.
| | - Yingming Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China.
| | - Xu Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China.
| | - Gang Wen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Xiaojie Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China.
| | - Chengcheng Wen
- Gansu Academy of Eco-environmental Sciences, Lanzhou 730030, PR China.
| | - Hongwei Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China.
| |
Collapse
|
7
|
Yan X, Liu D, de Smit SM, Komin V, Buisman CJN, Ter Heijne A. Oxygen-to-ammonium-nitrogen ratio as an indicator for oxygen supply management in microoxic bioanodic ammonium oxidation. WATER RESEARCH 2024; 261:121993. [PMID: 38968732 DOI: 10.1016/j.watres.2024.121993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/16/2024] [Accepted: 06/22/2024] [Indexed: 07/07/2024]
Abstract
Microbial electrolysis cells (MECs) have been proven effective for oxidizing ammonium (NH4+), where the anode acts as an electron acceptor, reducing the energy input by substituting oxygen (O2). However, O2 has been proved to be essential for achieving high removal rates MECs. Thus, precise control of oxygen supply is crucial for optimizing treatment performance and minimizing energy consumption. Unlike previous studies focusing on dissolved oxygen (DO) levels, this study introduces the O2/NH4+-N ratio as a novel control parameter for balancing oxidation rates and the selectivity of NH4+ oxidation towards dinitrogen gas (N2) under limited oxygen condition. Our results demonstrated that the O2/NH4+-N ratio is a more relevant oxygen supply indicator compared to DO level. Oxygen served as a more favorable electron acceptor than the electrode, increasing NH4+ oxidation rates but also resulting in more oxidized products such as nitrate (NO3-). Additionally, nitrous oxide (N2O) and N2 production were higher with the electrode as the electron acceptor compared to oxygen alone. An O2/NH4+-N ratio of 0.5 was found to be optimal, achieving a balance between product selectivity for N2 (51.4 % ± 4.5 %) and oxidation rates (344.6 ± 14.7 mg-N/L*d), with the columbic efficiency of 30.7 % ± 2.0 %. Microbial community analysis revealed that nitrifiers and denitrifiers were the primary bacteria involved, with oxygen promoting the growth of nitrite-oxidizing bacteria, thus facilitating complete NH4+ oxidation to NO3-. Our study provides new insights and guidelines on the appropriate oxygen dosage, offering strategies into optimizing operational conditions for NH4+ removal using MECs.
Collapse
Affiliation(s)
- Xiaofang Yan
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Dandan Liu
- Paqell B.V., Reactorweg 301, 3542 CE Utrecht, the Netherlands
| | - Sanne M de Smit
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Vera Komin
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Cees J N Buisman
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands
| | - Annemiek Ter Heijne
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
8
|
Ye W, Yan J, Yan J, Lin JG, Ji Q, Li Z, Ganjidoust H, Huang L, Li M, Zhang H. Potential electron acceptors for ammonium oxidation in wastewater treatment system under anoxic condition: A review. ENVIRONMENTAL RESEARCH 2024; 252:118984. [PMID: 38670211 DOI: 10.1016/j.envres.2024.118984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Anaerobic ammonium oxidation has been considered as an environmental-friendly and energy-efficient biological nitrogen removal (BNR) technology. Recently, new reaction pathway for ammonium oxidation under anaerobic condition had been discovered. In addition to nitrite, iron trivalent, sulfate, manganese and electrons from electrode might be potential electron acceptors for ammonium oxidation, which can be coupled to traditional BNR process for wastewater treatment. In this paper, the pathway and mechanism for ammonium oxidation with various electron acceptors under anaerobic condition is studied comprehensively, and the research progress of potentially functional microbes is summarized. The potential application of various electron acceptors for ammonium oxidation in wastewater is addressed, and the N2O emission during nitrogen removal is also discussed, which was important greenhouse gas for global climate change. The problems remained unclear for ammonium oxidation by multi-electron acceptors and potential interactions are also discussed in this review.
Collapse
Affiliation(s)
- Weizhuo Ye
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Jiaqi Yan
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China.
| | - Jih-Gaw Lin
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu City, 30010, Taiwan
| | - Qixing Ji
- The Earth, Ocean and atmospheric sciences thrust (EOAS), Hong Gong University of Science and Technology (Guangzhou), 511442, Guangzhou, China
| | - Zilei Li
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Hossein Ganjidoust
- Faculty of Civil and Environmental Engineering, Tarbiat Modarres University, 14115-397, Tehran, Iran
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Meng Li
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| |
Collapse
|
9
|
Kadam R, Jo S, Cha J, Yang H, Park J, Jun HB. Influence of increasing anode surface area on nitrite-absent ammonium oxidation in a continuous single-chamber bio-electrochemical system. CHEMOSPHERE 2024; 353:141579. [PMID: 38430944 DOI: 10.1016/j.chemosphere.2024.141579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Reducing energy consumption in conventional nitrogen removal processes is a crucial and urgent requirement. This study proposes an efficient electrode-dependent bio-electrochemical anaerobic ammonium (NH4+-N) oxidation (BE-ANAMMOX) process, employing a carbon brush as the electron acceptor and voltage of 0.8 V. The applied voltage facilitated the removal of NH4+-N with a maximum removal efficiency of 41% and a Coulombic efficiency of 40.92%, without the addition of nitrite (NO2--N). Furthermore, the NH4+-N removal efficiency demonstrated an increase corresponding to the increase in the anodic surface area. The bio-electrochemical NH4+-N removal achieved remarkable reductions, eliminating the need for O2 and NO2--N by 100%, lowering energy consumption by 67%, and reducing CO2 emissions by 66% when treating 1 kg of NH4+-N. An analysis of the microbial community revealed an increase in nitrifiers and denitrifiers, including Exiguobacterium aestuarii, Alishewanella aestuarii, Comamonas granuli, and Acinetobacter baumannii. This intricate process involved the direct conversion of NH4+-N to N2 by ANAMMOX bacteria through extracellular electron transfer, all without NO2--N. Thus, bio-electrochemical NH4+-N removal exhibits promising potential for effective nitrogen removal in wastewater treatment facilities.
Collapse
Affiliation(s)
- Rahul Kadam
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea.
| | - Sangyeol Jo
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Jihwan Cha
- Department of Environmental Engineering, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hyeonmyeong Yang
- Department of Environmental Engineering, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jungyu Park
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Hang Bae Jun
- Department of Environmental Engineering, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
10
|
Xin H, Chen X, Ye Y, Liao Y, Luo H, Tang CY, Liu G. Enhanced metronidazole removal in seawater using a single-chamber bioelectrochemical system. WATER RESEARCH 2024; 252:121212. [PMID: 38320394 DOI: 10.1016/j.watres.2024.121212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/08/2024]
Abstract
The aim of this study was to investigate the removal of metronidazole (MNZ) from seawater using a bioelectrochemical system (BES). Single-chamber BES (i.e., S-BES) and dual-chamber BES (i.e., D-BES) were constructed with carbon brush as the anode and cathode. With the inoculum of sea mud and 2 g/L of glucose as the substrate in seawater, S-BES and D-BES were acclimated to test the MNZ removal. Results showed that S-BES could remove almost 100 % of 200 mg/L MNZ within 120 h and remain stable within 10 cycles of operation (∼50 d) under the applied voltage of 0.8 V. The MNZ removal reached ∼100 % and 60.2 % in the cathodic and anodic chambers of D-BES fed by 100 mg/L MNZ under 0.8 V, respectively. The MNZ concentration of 200 mg/L significantly inhibited the sulfur metabolism, decreased the ratio of live to dead cells in the electrode biofilms, and thus reduced the SO42- removal in the S-BES. The MNZ degradation and S2- oxidation was mainly attributed to the cathodic and anodic biofilms of S-BES, respectively. Three degradation pathways of MNZ were proposed based on the identified intermediates and results of density functional theory calculations. The synergies among different genus species in the bacterial communities of biofilms, and between anodic and cathodic reactions could be responsible for the high performance of S-BES. Results from this study should be not only useful for the MNZ removal but also for effective MNZ inhibition of sulfate-reducing bacteria induced microbiologically influenced corrosion in seawater.
Collapse
Affiliation(s)
- Haoran Xin
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xindi Chen
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yongbei Ye
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yongjun Liao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Haiping Luo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
11
|
Fathima A, Ilankoon IMSK, Zhang Y, Chong MN. Scaling up of dual-chamber microbial electrochemical systems - An appraisal using systems design approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169186. [PMID: 38086487 DOI: 10.1016/j.scitotenv.2023.169186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
Impetus to minimise the energy and carbon footprints of evolving wastewater resource recovery facilities has promoted the development of microbial electrochemical systems (MES) as an emerging energy-neutral and sustainable platform technology. Using separators in dual-chamber MES to isolate anodic and cathodic environments creates endless opportunities for its myriad applications. Nevertheless, the high internal resistance and the complex interdependencies among various system factors have challenged its scale-up. This critical review employed a systems approach to examine the complex interdependencies and practical issues surrounding the implementation and scalability of dual-chamber MES, where the anodic and cathodic reactions are mutually appraised to improve the overall system efficiency. The robustness and stability of anodic biofilms in large-volume MES is dependent on its inoculum source, antecedent history and enrichment strategies. The composition and anode-respiring activity of these biofilms are modulated by the anolyte composition, while their performance demands a delicate balance between the electrode size, macrostructure and the availability of substrates, buffers and nutrients when using real wastewater as anolyte. Additionally, the catholyte governed the reduction environment and associated energy consumption of MES with scalable electrocatalysts needed to enhance the sluggish reaction kinetics for energy-efficient resource recovery. A comprehensive assessment of the dual-chamber reactor configuration revealed that the tubular, spiral-wound, or plug-in modular MES configurations are suitable for pilot-scale, where it could be designed more effectively using efficient electrode macrostructure, suitable membranes and bespoke strategies for continuous operation to maximise their performance. It is anticipated that the critical and analytical understanding gained through this review will support the continuous development and scaling-up of dual-chamber MES for prospective energy-neutral treatment of wastewater and simultaneous circular management of highly relevant environmental resources.
Collapse
Affiliation(s)
- Arshia Fathima
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - I M S K Ilankoon
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Meng Nan Chong
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
12
|
Ponce-Jahen SJ, Cercado B, Estrada-Arriaga EB, Rangel-Mendez JR, Cervantes FJ. Anammox with alternative electron acceptors: perspectives for nitrogen removal from wastewaters. Biodegradation 2024; 35:47-70. [PMID: 37436663 PMCID: PMC10774155 DOI: 10.1007/s10532-023-10044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/09/2023] [Indexed: 07/13/2023]
Abstract
In the context of the anaerobic ammonium oxidation process (anammox), great scientific advances have been made over the past two decades, making anammox a consolidated technology widely used worldwide for nitrogen removal from wastewaters. This review provides a detailed and comprehensive description of the anammox process, the microorganisms involved and their metabolism. In addition, recent research on the application of the anammox process with alternative electron acceptors is described, highlighting the biochemical reactions involved, its advantages and potential applications for specific wastewaters. An updated description is also given of studies reporting the ability of microorganisms to couple the anammox process to extracellular electron transfer to insoluble electron acceptors; particularly iron, carbon-based materials and electrodes in bioelectrochemical systems (BES). The latter, also referred to as anodic anammox, is a promising strategy to combine the ammonium removal from wastewater with bioelectricity production, which is discussed here in terms of its efficiency, economic feasibility, and energetic aspects. Therefore, the information provided in this review is relevant for future applications.
Collapse
Affiliation(s)
- Sergio J Ponce-Jahen
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3001, 76230, Querétaro, Mexico
| | - Bibiana Cercado
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C., Parque Tecnológico Querétaro Sanfandila, Querétaro, 76703, Pedro Escobedo, Mexico
| | - Edson Baltazar Estrada-Arriaga
- Subcoordinación de Tratamiento de Aguas Residuales, Instituto Mexicano de Tecnología del Agua, Paseo Cuauhnáhuac 8532, Progreso, C.P. 62550, Morelos, Mexico
| | - J Rene Rangel-Mendez
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4ª Sección, SLP78216, San Luis Potosí, Mexico
| | - Francisco J Cervantes
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3001, 76230, Querétaro, Mexico.
| |
Collapse
|
13
|
Zhang HB, Wang HF, Liu JB, Bi Z, Jin RF, Tian T. Anaerobic ammonium oxidation coupled to iron(III) reduction catalyzed by a lithoautotrophic nitrate-reducing iron(II) oxidizing enrichment culture. THE ISME JOURNAL 2024; 18:wrae149. [PMID: 39083023 PMCID: PMC11366258 DOI: 10.1093/ismejo/wrae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024]
Abstract
The last two decades have seen nitrogen/iron-transforming bacteria at the forefront of new biogeochemical discoveries, such as anaerobic ammonium oxidation coupled to ferric iron reduction (feammox) and lithoautotrophic nitrate-reducing ferrous iron-oxidation (NRFeOx). These emerging findings continue to expand our knowledge of the nitrogen/iron cycle in nature and also highlight the need to re-understand the functional traits of the microorganisms involved. Here, as a proof-of-principle, we report compelling evidence for the capability of an NRFeOx enrichment culture to catalyze the feammox process. Our results demonstrate that the NRFeOx culture predominantly oxidizes NH4+ to nitrogen gas, by reducing both chelated nitrilotriacetic acid (NTA)-Fe(III) and poorly soluble Fe(III)-bearing minerals (γ-FeOOH) at pH 4.0 and 8.0, respectively. In the NRFeOx culture, Fe(II)-oxidizing bacteria of Rhodanobacter and Fe(III)-reducing bacteria of unclassified_Acidobacteriota coexisted. Their relative abundances were dynamically regulated by the supplemented iron sources. Metagenomic analysis revealed that the NRFeOx culture contained a complete set of denitrifying genes along with hao genes for ammonium oxidation. Additionally, numerous genes encoding extracellular electron transport-associated proteins or their homologs were identified, which facilitated the reduction of extracellular iron by this culture. More broadly, this work lightens the unexplored potential of specific microbial groups in driving nitrogen transformation through multiple pathways and highlights the essential role of microbial iron metabolism in the integral biogeochemical nitrogen cycle.
Collapse
Affiliation(s)
- Hong-Bin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - He-Fei Wang
- National Marine Environmental Monitoring Center, Laboratory of Island Ecological Environment Protection, Dalian 116023, China
| | - Jia-Bo Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhen Bi
- School of Environment Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ruo-Fei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tian Tian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
14
|
Khanthong K, Jang H, Kadam R, Jo S, Lee J, Park J. Bioelectrochemical system for nitrogen removal: Fundamentals, current status, trends, and challenges. CHEMOSPHERE 2023; 339:139776. [PMID: 37567277 DOI: 10.1016/j.chemosphere.2023.139776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Biological nitrogen removal (BNR) is essential for the treatment of nitrogen-containing wastewater. However, the requirement for aeration and the addition of external carbon sources, resulting in greenhouse gas emissions and additional costs, are disadvantages of the traditional BNR process. Alternative technologies have been devised to overcome these drawbacks. Bioelectrochemical nitrogen removal (BENR) has been proposed for efficient nitrogen removal, demonstrating flexibility and versatility. BENR can be performed by combining nitrification, denitrification, anaerobic ammonium oxidation (ANAMMOX), or organic carbon oxidation. Bioelectrochemical-ANAMMOX (BE-ANAMMOX) is the most promising method for nitrogen removal, as it can directly convert NH4+ to N2 and H2 in one step when the electrode is arranged as an electron acceptor. High-value-added hydrogen can potentially be recovered with efficient nitrogen removal using this concept, maximizing the benefits of BENR. Using alternative electron acceptors, such as electrodes and metal ions, for complete total nitrogen removal is a promising technology to substitute NO2- production from NH4+ oxidation by aeration. However, the requirement of electron donors for NO3- reduction, low NH4+ removal efficiency, and low competitiveness of exoelectrogenic bacteria still remain the main obstacles. The future direction for successful BENR should aim to achieve complete anaerobic NH4+ oxidation without any electron acceptor and to maximize selectivity in H2 production. Therefore, the bioelectrochemical pathways and balances between efficient nitrogen removal and high-value-added chemical production should be further studied for carbon and energy neutralities.
Collapse
Affiliation(s)
- Kamonwan Khanthong
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61457, Republic of Korea.
| | - Heewon Jang
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61457, Republic of Korea
| | - Rahul Kadam
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61457, Republic of Korea
| | - Sangyeol Jo
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61457, Republic of Korea
| | - Jonghwa Lee
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61457, Republic of Korea
| | - Jungyu Park
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61457, Republic of Korea.
| |
Collapse
|
15
|
Wang T, Chen M, Zhu J, Li N, Wang X. Anodic ammonium oxidation in microbial electrolysis cell: Towards nitrogen removal in low C/N environment. WATER RESEARCH 2023; 242:120276. [PMID: 37392506 DOI: 10.1016/j.watres.2023.120276] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Biological nitrogen removal in low C/N environment is challenging in wastewater treatment for a long time. Autotrophic ammonium oxidation is promising due to the no need of carbon source addition, but alternative electron acceptors other than oxygen has to be widely investigated. Recently, microbial electrolysis cell (MEC), which applies a polarized inert electrode as the electron harvester, has been proved effective to oxidize ammonium with electroactive biofilm. That is, anodic microbes stimulated by exogenous low power can extract electron from ammonium and transfer electron to electrodes. This review aims to consolidate the recent advances in anodic ammonium oxidation in MEC. Various technologies based on different functional microbes and mechanisms of these processes are reviewed. Thereafter, the crucial factors influencing the ammonium oxidation technology are discussed. Challenges and prospects of anodic ammonium oxidation in ammonium-containing wastewater treatment are also proposed to provide valuable insights on the technologic reference and potential value of MEC in ammonium-containing wastewater treatment.
Collapse
Affiliation(s)
- Tuo Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Mei Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| | - Jiaxuan Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
16
|
Yan X, Liu D, Klok JBM, de Smit SM, Buisman CJN, ter Heijne A. Enhancement of Ammonium Oxidation at Microoxic Bioanodes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11561-11571. [PMID: 37498945 PMCID: PMC10413939 DOI: 10.1021/acs.est.3c02227] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Bioelectrochemical systems (BESs) are considered to be energy-efficient to convert ammonium, which is present in wastewater. The application of BESs as a technology to treat wastewater on an industrial scale is hindered by the slow removal rate and lack of understanding of the underlying ammonium conversion pathways. This study shows ammonium oxidation rates up to 228 ± 0.4 g-N m-3 d-1 under microoxic conditions (dissolved oxygen at 0.02-0.2 mg-O2/L), which is a significant improvement compared to anoxic conditions (120 ± 21 g-N m-3 d-1). We found that this enhancement was related to the formation of hydroxylamine (NH2OH), which is rate limiting in ammonium oxidation by ammonia-oxidizing microorganisms. NH2OH was intermediate in both the absence and presence of oxygen. The dominant end-product of ammonium oxidation was dinitrogen gas, with about 75% conversion efficiency in the presence of a microoxic level of dissolved oxygen and 100% conversion efficiency in the absence of oxygen. This work elucidates the dominant pathways under microoxic and anoxic conditions which is a step toward the application of BESs for ammonium removal in wastewater treatment.
Collapse
Affiliation(s)
- Xiaofang Yan
- Environmental
Technology, Wageningen University &
Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Dandan Liu
- Paqell
B.V., Reactorweg 301, 3542 AD Utrecht, The Netherlands
| | - Johannes B. M. Klok
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Sanne M. de Smit
- Environmental
Technology, Wageningen University &
Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Cees J. N. Buisman
- Environmental
Technology, Wageningen University &
Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Annemiek ter Heijne
- Environmental
Technology, Wageningen University &
Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
17
|
Gulay A, Fournier G, Smets BF, Girguis PR. Proterozoic Acquisition of Archaeal Genes for Extracellular Electron Transfer: A Metabolic Adaptation of Aerobic Ammonia-Oxidizing Bacteria to Oxygen Limitation. Mol Biol Evol 2023; 40:msad161. [PMID: 37440531 PMCID: PMC10415592 DOI: 10.1093/molbev/msad161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/09/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Many aerobic microbes can utilize alternative electron acceptors under oxygen-limited conditions. In some cases, this is mediated by extracellular electron transfer (or EET), wherein electrons are transferred to extracellular oxidants such as iron oxide and manganese oxide minerals. Here, we show that an ammonia-oxidizer previously known to be strictly aerobic, Nitrosomonas communis, may have been able to utilize a poised electrode to maintain metabolic activity in anoxic conditions. The presence and activity of multiheme cytochromes in N. communis further suggest a capacity for EET. Molecular clock analysis shows that the ancestors of β-proteobacterial ammonia oxidizers appeared after Earth's atmospheric oxygenation when the oxygen levels were >10-4pO2 (present atmospheric level [PAL]), consistent with aerobic origins. Equally important, phylogenetic reconciliations of gene and species trees show that the multiheme c-type EET proteins in Nitrosomonas and Nitrosospira lineages were likely acquired by gene transfer from γ-proteobacteria when the oxygen levels were between 0.1 and 1 pO2 (PAL). These results suggest that β-proteobacterial EET evolved during the Proterozoic when oxygen limitation was widespread, but oxidized minerals were abundant.
Collapse
Affiliation(s)
- Arda Gulay
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Greg Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Barth F Smets
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Peter R Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
18
|
Pous N, Bañeras L, Corvini PFX, Liu SJ, Puig S. Direct ammonium oxidation to nitrogen gas (Dirammox) in Alcaligenes strain HO-1: The electrode role. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 15:100253. [PMID: 36896143 PMCID: PMC9988695 DOI: 10.1016/j.ese.2023.100253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 05/14/2023]
Abstract
It has been recently suggested that Alcaligenes use a previously unknown pathway to convert ammonium into dinitrogen gas (Dirammox) via hydroxylamine (NH2OH). This fact alone already implies a significant decrease in the aeration requirements for the process, but the process would still be dependent on external aeration. This work studied the potential use of a polarised electrode as an electron acceptor for ammonium oxidation using the recently described Alcaligenes strain HO-1 as a model heterotrophic nitrifier. Results indicated that Alcaligenes strain HO-1 requires aeration for metabolism, a requirement that cannot be replaced for a polarised electrode alone. However, concomitant elimination of succinate and ammonium was observed when operating a previously grown Alcaligenes strain HO-1 culture in the presence of a polarised electrode and without aeration. The usage of a polarised electrode together with aeration did not increase the succinate nor the nitrogen removal rates observed with aeration alone. However, current density generation was observed along a feeding batch test representing an electron share of 3% of the ammonium removed in the presence of aeration and 16% without aeration. Additional tests suggested that hydroxylamine oxidation to dinitrogen gas could have a relevant role in the electron discharge onto the anode. Therefore, the presence of a polarised electrode supported the metabolic functions of Alcaligenes strain HO-1 on the simultaneous oxidation of succinate and ammonium.
Collapse
Affiliation(s)
- Narcís Pous
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurèlia Capmany, 69, E-17003, Girona, Spain
| | - Lluis Bañeras
- Group of Environmental Microbial Ecology, Institute of Aquatic Ecology, University of Girona, C/Maria Aurèlia Capmany, 40, E-17003, Girona, Spain
| | - Philippe F.-X. Corvini
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, 4132, Switzerland
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resource at Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sebastià Puig
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurèlia Capmany, 69, E-17003, Girona, Spain
- Corresponding author.
| |
Collapse
|
19
|
Cano V, Nolasco MA, Kurt H, Long C, Cano J, Nunes SC, Chandran K. Comparative assessment of energy generation from ammonia oxidation by different functional bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161688. [PMID: 36708822 DOI: 10.1016/j.scitotenv.2023.161688] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Bioelectrochemical ammonia oxidation (BEAO) in a microbial fuel cell (MFC) is a recently discovered process that has the potential to reduce energy consumption in wastewater treatment. However, level of energy and limiting factors of this process in different microbial groups are not fully understood. This study comparatively investigated the BEAO in wastewater treatment by MFCs enriched with different functional groups of bacteria (confirmed by 16S rRNA gene sequencing): electroactive bacteria (EAB), ammonia oxidizing bacteria (AOB), and anammox bacteria (AnAOB). Ammonia oxidation rates of 0.066, 0.083 and 0.082 g NH4+-N L-1 d-1 were achieved by biofilms enriched with EAB, AOB, and AnAOB, respectively. With influent 444 ± 65 mg NH4+-N d-1, nitrite accumulation between 84 and 105 mg N d-1 was observed independently of the biofilm type. The AnAOB-enriched biofilm released electrons at higher potential energy levels (anode potential of 0.253 V vs. SHE) but had high internal resistance (Rint) of 299 Ω, which limits its power density (0.2 W m-3). For AnAOB enriched biofilm, accumulation of nitrite was a limiting factor for power output by allowing conventional anammox activity without current generation. AOB enriched biofilm had Rint of 18 ± 1 Ω and yielded power density of up to 1.4 W m-3. The activity of the AOB-enriched biofilm was not dependent on the accumulation of dissolved oxygen and achieved 1.5 fold higher coulombic efficiency when sulfate was not available. The EAB-enriched biofilm adapted to oxidize ammonia without organic carbon, with Rint of 19 ± 1 Ω and achieved the highest power density of 11 W m-3. Based on lab-scale experiments (scaling-up factors not considered) energy savings of up to 7 % (AnAOB), 44 % (AOB) and 475 % (EAB) (positive energy balance), compared to conventional nitrification, are projected from the applications of BEAO in wastewater treatment plants.
Collapse
Affiliation(s)
- Vitor Cano
- University of São Paulo, School of Arts, Sciences and Humanities, Av. Arlindo Béttio, 1000, Sao Paulo, SP 03828-000, Brazil; Columbia University, Department of Earth and Environmental Engineering, 500 West 120th Street, Room 1045 Mudd Hall, New York, NY 10027, United States.
| | - Marcelo A Nolasco
- University of São Paulo, School of Arts, Sciences and Humanities, Av. Arlindo Béttio, 1000, Sao Paulo, SP 03828-000, Brazil.
| | - Halil Kurt
- Columbia University, Department of Earth and Environmental Engineering, 500 West 120th Street, Room 1045 Mudd Hall, New York, NY 10027, United States.
| | - Chenghua Long
- Columbia University, Department of Earth and Environmental Engineering, 500 West 120th Street, Room 1045 Mudd Hall, New York, NY 10027, United States.
| | - Julio Cano
- University of São Paulo, School of Arts, Sciences and Humanities, Av. Arlindo Béttio, 1000, Sao Paulo, SP 03828-000, Brazil.
| | - Sabrina C Nunes
- University of São Paulo, School of Arts, Sciences and Humanities, Av. Arlindo Béttio, 1000, Sao Paulo, SP 03828-000, Brazil.
| | - Kartik Chandran
- Columbia University, Department of Earth and Environmental Engineering, 500 West 120th Street, Room 1045 Mudd Hall, New York, NY 10027, United States.
| |
Collapse
|
20
|
Kong Z, Wang H, Yan G, Yan Q, Kim JR. Limited dissolved oxygen facilitated nitrogen removal at biocathode during the hydrogenotrophic denitrification process using bioelectrochemical system. BIORESOURCE TECHNOLOGY 2023; 372:128662. [PMID: 36693505 DOI: 10.1016/j.biortech.2023.128662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Effects of limited dissolved oxygen (DO) on hydrogenotrophic denitrification at biocathode was investigated using bioelectrochemical system. It was found that total nitrogen removal increased by 5.9%, as DO reached about 0.24 mg/L with the cathodic chamber unplugged (group R_Exposure). With the presence of limited DO, not only the nitrogen metabolic pathway was influenced, but the composition of microbial communities of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria were enriched accordingly. After metagenomic analysis, enriched genes in R_Exposure were found to be associated with nearly each of nitrogen removal steps as denitrification, nitrification, DNRA, nitrate assimilation and even nitrogen fixation. Moreover, genes encoding both Complexes III and IV constituted the electron transfer chain were significantly enriched, indicating that more electrons would be orientated to the reduction of NO2--N, NO-N and oxygen. Therefore, enhanced nitrogen removal could be attained through the co-respiration of nitrate and oxygen by means of NH4+-N oxidation.
Collapse
Affiliation(s)
- Ziang Kong
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Han Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Guoliang Yan
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd, Beijing 100083, China
| | - Qun Yan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, China.
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| |
Collapse
|
21
|
Kadam R, Khanthong K, Park B, Jun H, Park J. Realizable wastewater treatment process for carbon neutrality and energy sustainability: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116927. [PMID: 36473349 DOI: 10.1016/j.jenvman.2022.116927] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/29/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Despite a quick shift of global goals toward carbon-neutral infrastructure, activated sludge based conventional systems inhibit the Green New Deal. Here, a municipal wastewater treatment plant (MWWTP) for carbon neutrality and energy sustainability is suggested and discussed based on realizable technical aspects. Organics have been recovered using variously enhanced primary treatment techniques, thereby reducing oxygen demand for the oxidation of organics and maximizing biogas production in biological processes. Meanwhile, ammonium in organic-separated wastewater is bio-electrochemically oxidized to N2 and reduced to H2 under completely anaerobic conditions, resulting in the minimization of energy requirements and waste sludge production, which are the main problems in activated sludge based conventional processes. The anaerobic digestion process converts concentrated primary sludge to biomethane, and H2 gas recovered from nitrogen upgrades the biomethane quality by reducing carbon dioxide in biogas. Based on these results, MWWTPs can be simplified and improved with high process and energy efficiencies.
Collapse
Affiliation(s)
- Rahul Kadam
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Kamonwan Khanthong
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Byeongchang Park
- Department of Environmental Engineering, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hangbae Jun
- Department of Environmental Engineering, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jungyu Park
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
22
|
Simultaneous Anaerobic Ammonium Oxidation and Electricity Generation in Microbial Fuel Cell: Performance and Electrochemical Characteristics. Processes (Basel) 2022. [DOI: 10.3390/pr10112379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, a microbial fuel cell (MFC) that can achieve simultaneous anode anaerobic ammonium oxidation (anammox) and electricity generation (anode anammox MFC) by high-effective anammox bacteria fed with purely inorganic nitrogen media was constructed. As the influent concentrations of ammonium (NH4+-N) and nitrite (NO2−-N) gradually increased from 25 to 250 mg/L and 33–330 mg/L, the removal efficiencies of NH4+-N, NO2−-N and TN were over 90%, 90% and 80%, respectively, and the maximum volumetric nitrogen removal rate reached 3.01 ± 0.27 kgN/(m3·d). The maximum voltage and maximum power density were 225.48 ± 10.71 mV and 1308.23 ± 40.38 mW/m3, respectively. Substrate inhibition took place at high nitrogen concentrations (NH4+-N = 300 mg/L, NO2−-N = 396 mg/L). Electricity production performance significantly depended upon the nitrogen removal rate under different nitrogen concentrations. The reported low coulombic efficiency (CE, 4.09–5.99%) may be due to severe anodic polarization. The anode charge transfer resistance accounted for about 90% of the anode resistance. The anode process was the bottleneck for energy recovery and should be further optimized in anode anammox MFCs. The high nitrogen removal efficiency with certain electricity recovery potential in the MFCs suggested that anode anammox MFCs may be used in energy sustainable nitrogen-containing wastewater treatment.
Collapse
|
23
|
Xia Q, Ai Z, Huang W, Yang F, Liu F, Lei Z, Huang W. Recent progress in applications of Feammox technology for nitrogen removal from wastewaters: A review. BIORESOURCE TECHNOLOGY 2022; 362:127868. [PMID: 36049707 DOI: 10.1016/j.biortech.2022.127868] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Feammox process is crucial for the global nitrogen cycle and has great potentials for the treatment of low COD/NH4+-N wastewaters. This work provides a systematic and comprehensive overview of the Feammox process. Specifically, underlying mechanisms and functional microbes mediating the Feammox process are summarized in detail. And key influencing factors including pH, temperature, dissolved oxygen, organic carbon, source of Fe(III) as well as various electron shuttles are discussed. Additionally, recent development trends and attempts of the Feammox technology in wastewater treatment applications are reviewed, and perspectives for future development are presented. A thorough review of the recent progress in Feammox process is expected to provide valuable information for further process optimization, which is helpful to achieve a more economical operation and better nitrogen removal performance in future field applications.
Collapse
Affiliation(s)
- Qing Xia
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Ziyin Ai
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Wenli Huang
- MOE Key Laboratory of Pollution Process and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Fei Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Fei Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Weiwei Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China.
| |
Collapse
|
24
|
Lee YJ, Lin BL, Lei Z. Nitrous oxide emission mitigation from biological wastewater treatment - A review. BIORESOURCE TECHNOLOGY 2022; 362:127747. [PMID: 35964917 DOI: 10.1016/j.biortech.2022.127747] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Nitrous oxide (N2O) emitted from wastewater treatment processes has emerged as a focal point for academic and practical research amidst pressing environmental issues. This review presents an updated view on the biological pathways for N2O production and consumption in addition to the critical process factors affecting N2O emission. The current research trends including the strain and reactor aspects were then outlined with discussions. Last but not least, the research needs were proposed. The holistic life cycle assessment needs to be performed to evaluate the technical and economic feasibility of the proposed mitigation strategies or recovery options. This review also provides the background information for the proposed future research prospects on N2O mitigation and recovery technologies. As pointed out, dilution effects of the produced N2O gas product would hinder its use as renewable energy; instead, its use as an effective oxidizing agent is proposed as a promising recovery option.
Collapse
Affiliation(s)
- Yu-Jen Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10649, Taiwan
| | - Bin-le Lin
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
25
|
Cui M, Gu W, Yang X, Li D, Zhang L, Yang N, Wang X, Zhan G. Microbial electrochemical driven anaerobic ammonium oxidation coupling to denitrification in a single-chamber stainless steel reactor for simultaneous nitrogen and carbon removal. Bioelectrochemistry 2022; 145:108097. [DOI: 10.1016/j.bioelechem.2022.108097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/20/2022] [Accepted: 03/14/2022] [Indexed: 11/02/2022]
|
26
|
Korth B, Pous N, Hönig R, Haus P, Corrêa FB, Nunes da Rocha U, Puig S, Harnisch F. Electrochemical and Microbial Dissection of Electrified Biotrickling Filters. Front Microbiol 2022; 13:869474. [PMID: 35711746 PMCID: PMC9197458 DOI: 10.3389/fmicb.2022.869474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Electrified biotrickling filters represent sustainable microbial electrochemical technology for treating organic carbon-deficient ammonium-contaminated waters. However, information on the microbiome of the conductive granule bed cathode remains inexistent. For uncovering this black box and for identifying key process parameters, minimally invasive sampling units were introduced, allowing for the extraction of granules from different reactor layers during reactor operation. Sampled granules were analyzed using cyclic voltammetry and molecular biological tools. Two main redox sites [-288 ± 18 mV and -206 ± 21 mV vs. standard hydrogen electrode (SHE)] related to bioelectrochemical denitrification were identified, exhibiting high activity in a broad pH range (pH 6-10). A genome-centric analysis revealed a complex nitrogen food web and the presence of typical denitrifiers like Pseudomonas nitroreducens and Paracoccus versutus with none of these species being identified as electroactive microorganism so far. These are the first results to provide insights into microbial structure-function relationships within electrified biotrickling filters and underline the robustness and application potential of bioelectrochemical denitrification for environmental remediation.
Collapse
Affiliation(s)
- Benjamin Korth
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Narcís Pous
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Girona, Spain
| | - Richard Hönig
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Philip Haus
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Felipe Borim Corrêa
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Sebastià Puig
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Girona, Spain
| | - Falk Harnisch
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
27
|
Wan L, Liu H, Wang X. Anaerobic ammonium oxidation coupled to Fe(III) reduction: Discovery, mechanism and application prospects in wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151687. [PMID: 34788664 DOI: 10.1016/j.scitotenv.2021.151687] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Fe(III) reduction coupled with anaerobic ammonium oxidation is known as Feammox. Feammox, which was first discovered in wetland ecosystems, has the potential to be used in wastewater treatment systems due to its ability to remove ammonium. Feammox can produce N2, NO2- or NO3- through the reduction of Fe(III) and oxidation of ammonium, which is a potential process to nitrogen loss from aquatic ecosystems and terrestrial ecosystems. The Acidimicrobiaceae sp. A6 was the first Feammox functional bacteria that was successfully isolated from wetlands. The nitrogen removal effect of Feammox can be influenced by many environmental factors, such as pH, organic matter, and different sources of Fe(III). Feammox has broad application prospects, but more exploration is needed to apply this principle to wastewater treatment. This review introduces the development, mechanism, functional microbes and factors affecting the Feammox process, and discusses its potential applications.
Collapse
Affiliation(s)
- Liuyang Wan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xingzu Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
28
|
Su D, Chen Y. Advanced bioelectrochemical system for nitrogen removal in wastewater. CHEMOSPHERE 2022; 292:133206. [PMID: 34922956 DOI: 10.1016/j.chemosphere.2021.133206] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) pollution in water has become a serious issue that cannot be ignored due to the harm posed by excessive nitrogen to environmental safety and human health; as such, N concentrations in water are strictly limited. The bioelectrochemical system (BES) is a new method to remove excessive N from water, and has attracted considerable attention. Compared with other methods, it is highly efficient and has low energy consumption. However, the BES has not been applied for N removal in practice due to lack of in-depth research on the mechanism and construction of high-performance electrodes, separators, and reactor configurations; this highlights a need to review and examine the efforts in this field. This paper provides a comprehensive review on the current BES research for N removal focusing on the reaction principles, reactor configurations, electrodes and separators, and treatment of actual wastewater; the corresponding performances in these realms are also discussed. Finally, the prospects for N removal in water using the BES are presented.
Collapse
Affiliation(s)
- Dexin Su
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China
| | - Yupeng Chen
- School of Chemistry, Beihang University, Beijing, 100191, PR China.
| |
Collapse
|
29
|
Paquete CM, Rosenbaum MA, Bañeras L, Rotaru AE, Puig S. Let's chat: Communication between electroactive microorganisms. BIORESOURCE TECHNOLOGY 2022; 347:126705. [PMID: 35065228 DOI: 10.1016/j.biortech.2022.126705] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Electroactive microorganisms can exchange electrons with other cells or conductive interfaces in their extracellular environment. This property opens the way to a broad range of practical biotechnological applications, from manufacturing sustainable chemicals via electrosynthesis, to bioenergy, bioelectronics or improved, low-energy demanding wastewater treatments. Besides, electroactive microorganisms play key roles in environmental bioremediation, significantly impacting process efficiencies. This review highlights our present knowledge on microbial interactions promoting the communication between electroactive microorganisms in a biofilm on an electrode in bioelectrochemical systems (BES). Furthermore, the immediate knowledge gaps that must be closed to develop novel technologies will also be acknowledged.
Collapse
Affiliation(s)
- Catarina M Paquete
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-156 Oeiras, Portugal
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Beutenbergstrasse 11a, Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Lluís Bañeras
- Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, C/ Maria Aurèlia Capmany, 40, E-17003 Girona, Spain
| | - Amelia-Elena Rotaru
- Faculty of Natural Sciences, Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Sebastià Puig
- LEQUiA, Institute of the Environment, University of Girona, Carrer Maria Aurelia Capmany, 69, E-17003 Girona, Spain.
| |
Collapse
|
30
|
Joel Koffi N, Okabe S. Effect of poised cathodic potential on anodic ammonium nitrogen removal from domestic wastewater by air-cathode microbial fuel cells. BIORESOURCE TECHNOLOGY 2022; 348:126807. [PMID: 35124217 DOI: 10.1016/j.biortech.2022.126807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Performances of anodic ammonia oxidation have been investigated for various bioelectrochemical systems at a wide range of poised anodic potentials in the literature. The effect of poised cathodic potential on ammonium nitrogen (NH4+-N) and total nitrogen (TN, sum of NH4+-N, NO2--N, and NO3--N) removal from domestic wastewater by single chamber air-cathode microbial fuel cells (MFCs) was investigated. Poising the air-cathode potential at +0.7 V vs. SHE significantly increased current generation (from 11 ± 1 mA to 22.8 ± 5 mA) and oxygen permeation into the MFC through the air-cathode (from 75.4 ± 1.2 g-O2/m3/d to 151 ± 3.7 g-O2/m3/d), which consequently resulted in a high NH4+-N removal rate of 150 ± 13 g-NH4+-N/m3/d and TN removal rate of 63 ± 16 g-TN/m3/d. These high NH4+-N and TN removal rates could be attributed to the enhancement of dual respiratory pathways: the electrode-assisted anodic and aerobic NH4+ oxidation.
Collapse
Affiliation(s)
- N'dah Joel Koffi
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| |
Collapse
|
31
|
De La Fuente MJ, Gallardo-Bustos C, De la Iglesia R, Vargas IT. Microbial Electrochemical Technologies for Sustainable Nitrogen Removal in Marine and Coastal Environments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2411. [PMID: 35206599 PMCID: PMC8875524 DOI: 10.3390/ijerph19042411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023]
Abstract
For many years, the world's coastal marine ecosystems have received industrial waste with high nitrogen concentrations, generating the eutrophication of these ecosystems. Different physicochemical-biological technologies have been developed to remove the nitrogen present in wastewater. However, conventional technologies have high operating costs and excessive production of brines or sludge which compromise the sustainability of the treatment. Microbial electrochemical technologies (METs) have begun to gain attention due to their cost-efficiency in removing nitrogen and organic matter using the metabolic capacity of microorganisms. This article combines a critical review of the environmental problems associated with the discharge of the excess nitrogen and the biological processes involved in its biogeochemical cycle; with a comparative analysis of conventional treatment technologies and METs especially designed for nitrogen removal. Finally, current METs limitations and perspectives as a sustainable nitrogen treatment alternative and efficient microbial enrichment techniques are included.
Collapse
Affiliation(s)
- María José De La Fuente
- Departamento de Ingeniería Hidráulica y Ambiental, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (M.J.D.L.F.); (C.G.B.)
- Marine Energy Research & Innovation Center (MERIC), Santiago 7550268, Chile;
| | - Carlos Gallardo-Bustos
- Departamento de Ingeniería Hidráulica y Ambiental, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (M.J.D.L.F.); (C.G.B.)
- Centro de Desarrollo Urbano Sustentable (CEDEUS), Santiago 7820436, Chile
| | - Rodrigo De la Iglesia
- Marine Energy Research & Innovation Center (MERIC), Santiago 7550268, Chile;
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Ignacio T. Vargas
- Departamento de Ingeniería Hidráulica y Ambiental, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (M.J.D.L.F.); (C.G.B.)
- Marine Energy Research & Innovation Center (MERIC), Santiago 7550268, Chile;
- Centro de Desarrollo Urbano Sustentable (CEDEUS), Santiago 7820436, Chile
| |
Collapse
|
32
|
Chen G, Bai R, Zhang Y, Zhao B, Xiao Y. Application of metagenomics to biological wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150737. [PMID: 34606860 DOI: 10.1016/j.scitotenv.2021.150737] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Biological wastewater treatment is a process in which the microbial metabolism of complex communities transforms pollutants into low- or non-toxic products. Due to the absence of an in-depth understanding of the diversity and complexity of microbial communities, it is very likely to ignore the potential mechanisms of microbial community in wastewater treatment. Metagenomics is a technology based on molecular biology, in which massive gene sequences are obtained from environmental samples and analyzed by bioinformatics to determine the composition and function of a microbial community. Metagenomics can identify the state of microbes in their native environments more effectively than traditional molecular methods. This review summarizes the application of metagenomics to assess microbial communities in biological wastewater treatment, such as the biological removal of phosphorus and nitrogen by bacteria, the study of antibiotic resistance genes (ARGs), and the reduction of heavy metals by microbial communities, with an emphasis on the contribution of microbial diversity and metabolic diversity. Technical bottlenecks in the application of metagenomics to biological wastewater treatment are elucidated, and future research directions for metagenomics are proposed, among which the application of multi-omics will be an important research method for future biological wastewater treatment.
Collapse
Affiliation(s)
- Geng Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rui Bai
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yiqing Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Biyi Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yong Xiao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
33
|
Chandrasekhar K, Raj T, Ramanaiah SV, Kumar G, Jeon BH, Jang M, Kim SH. Regulation and augmentation of anaerobic digestion processes via the use of bioelectrochemical systems. BIORESOURCE TECHNOLOGY 2022; 346:126628. [PMID: 34968642 DOI: 10.1016/j.biortech.2021.126628] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Anaerobic digestion (AD) is a biological process that can be used to treat a wide range of carbon-rich wastes and producerenewable, green energy. To maximize energy recovery from various resources while controlling inhibitory chemicals, notwithstanding AD's efficiency, many limitations must be addressed. As a result, bioelectrochemical systems (BESs) have emerged as a hybrid technology, extensively studied to remediate AD inhibitory chemicals, increase AD operating efficacy, and make the process economically viable via integration approaches. Biogas and residual intermediatory metabolites such as volatile fatty acids are upgraded to value-added chemicals and fuels with the help of the BES as a pre-treatment step, within AD or after the AD process. It may also be used directly to generate power. To overcome the constraints of AD in lab-scale applications, this article summarizes BES technology and operations and endorses ways to scale up BES-AD systems in the future.
Collapse
Affiliation(s)
- K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Tirath Raj
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - S V Ramanaiah
- Food and Biotechnology Research Lab, South Ural State University (National Research University), Chelyabinsk 454080, Russian Federation
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
34
|
Zhu TT, Lai WX, Zhang YB, Liu YW. Feammox process driven anaerobic ammonium removal of wastewater treatment under supplementing Fe(III) compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:149965. [PMID: 34508937 DOI: 10.1016/j.scitotenv.2021.149965] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Ammonium removal in wastewater treatment plants demands large quantities energy input, such as aeration for wastewater and the addition of organics for nitrate reduction. Anaerobic ammonium oxidation coupled to Fe(III) reduction, called Feammox process play a crucial role in natural nitrogen cycle, which has been rarely investigated in the field of wastewater treatment. Besides, Iron-reducing bacteria (FeRB) as function bacteria of Feammox could transfer electrons to iron oxide by oxidizing organics. The possibility of anaerobic ammonium removal coupled with organics should be investigated to assess the potential of Feammox process for conventional wastewater treatment. In this study, five Fe(III) compounds, Fe2O3, Fe3O4, Fe(OH)3, Citrate-Fe and pyrite were supplemented to investigate the effect of iron oxides on ammonium removal in serum bottles with working volume of 100 mL. It was found that ammonium removal efficiency of the Fe2O3 group was the highest. To simulate wastewater treatment process in sewage treatment plant, three Up-flow anaerobic sludge blanket reactors with volume of 250 mL adding Fe2O3 were applied with influent of ammonium and carbon sources. It was found that the organics significantly inhibited the ammonium removal by Feammox process. This was attributed to that carbon sources and ammonium could be used as electron donors for Fe(III) reduction. In addition, this nitrogen removal was also likely related with the iron cycle, i.e., Fe(III) reduction with ammonium oxidation and Fe(II) oxidation with nitrate/nitrite reduction. This study provides a promising alternative technology for anaerobic ammonium removal in wastewater treatment. Optimizing nitrogen removal and carbon sources applied in conventional wastewater plants are required in future.
Collapse
Affiliation(s)
- Ting-Ting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wen-Xia Lai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yao-Bin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yi-Wen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
35
|
Zhang L, Jiang M, Zhou S. Conversion of nitrogen and carbon in enriched paddy soil by denitrification coupled with anammox in a bioelectrochemical system. J Environ Sci (China) 2022; 111:197-207. [PMID: 34949349 DOI: 10.1016/j.jes.2021.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 06/14/2023]
Abstract
The aim of this study is to investigate conversion of nitrogen and COD in enriched paddy soil by nitrification coupled with anammox process in a dual chamber bioelectrochemical system. The paddy soil was enriched for denitrification coupled with anammox by microbial consortia and was acclimatized in the cathodic chamber of microbial fuel cells (MFCs). The bioelectrochemical systems were treated with different ammonium concentrations in the cathodic chamber: the MFC with low concentration ammonium (LA-MFC, 50 mg/L ammonium), the MFC with medium concentration ammonium (MA-MFC, 500 mg/L ammonium), and MFC with high concentration ammonium (HA-MFC, 1000 mg/L ammonium), and the initial COD in the anodic chamber was 1200 mg/L. The CK treatments were conducted with 1000 mg/L ammonium under the same conditions, except without inoculum in the cathode chamber. The consumption rate of ammonium in the cathodic chambers of CK, LA-MFC, MA-MFC, and HA-MFC were 9%, 64%, 84%, and 84%, respectively. The degradation rate for COD achieved in the anode chambers of CK, LA-MFC, MA-MFC, and HA-MFC were 70%, 86%, 93%, and 93%, respectively. The analysis of the microbial community of three treated MFCs in the cathode chamber indicated that the nitrification-denitrification process occurs in the cathode chamber. The dominant species for nitrification was Nitrospira, and the dominant species for denitrification were Denitratisoma, Dechloromonas, and Candidatus_Competibacter. Moreover, anammox process also observed in the cathode chamber. The functional genes nirS/K, hzsB, and 16S rDNA were assessed by qPCR analysis, and the results confirmed the presence of denitrification-coupled anammox in the cathodic chamber.
Collapse
Affiliation(s)
- Luan Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Minghe Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
36
|
Nagendranatha Reddy C, Kondaveeti S, Mohanakrishna G, Min B. Application of bioelectrochemical systems to regulate and accelerate the anaerobic digestion processes. CHEMOSPHERE 2022; 287:132299. [PMID: 34627010 DOI: 10.1016/j.chemosphere.2021.132299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 08/23/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion (AD) serves as a potential bioconversion process to treat various organic wastes/wastewaters, including sewage sludge, and generate renewable green energy. Despite its efficiency, AD has several limitations that need to be overcome to achieve maximum energy recovery from organic materials while regulating inhibitory substances. Hence, bioelectrochemical systems (BESs) have been widely investigated to treat inhibitory compounds including ammonia in AD processes and improve the AD operational efficiency, stability, and economic viability with various integrations. The BES operations as a pretreatment process, inside AD or after the AD process aids in the upgradation of biogas (CO2 to methane) and residual volatile fatty acids (VFAs) to valuable chemicals and fuels (alcohols) and even directly to electricity generation. This review presents a comprehensive summary of BES technologies and operations for overcoming the limitations of AD in lab-scale applications and suggests upscaling and future opportunities for BES-AD systems.
Collapse
Affiliation(s)
- C Nagendranatha Reddy
- Department of Environmental Science and Engineering, Kyung Hee University, Seocheon-dong, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea; Department of Biotechnology, Chaitanya Bharathi Institute of Technology (Autonomous), Gandipet, 500075, Hyderabad, Telangana State, India
| | - Sanath Kondaveeti
- Division of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029, South Korea
| | | | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University, Seocheon-dong, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea.
| |
Collapse
|
37
|
Mixotrophic bacteria for environmental detoxification of contaminated waste and wastewater. Appl Microbiol Biotechnol 2021; 105:6627-6648. [PMID: 34468802 DOI: 10.1007/s00253-021-11514-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/31/2022]
Abstract
Mixotrophic bacteria provide a desirable alternative to the use of classical heterotrophic or chemolithoautotrophic bacteria in environmental technology, particularly under limiting nutrients conditions. Their bi-modal ability of adapting to inorganic or organic carbon feed and sulfur, nitrogen, or even heavy metal stress conditions are attractive features to achieve efficient bacterial activity and favorable operation conditions for the environmental detoxification or remediation of contaminated waste and wastewater. This review provides an overview on the state of the art and summarizes the metabolic traits of the most promising and emerging non-model mixotrophic bacteria for the environmental detoxification of contaminated wastewater and waste containing excess amounts of limiting nutrients. Although mixotrophic bacteria usually function with low organic carbon sources, the unusual capabilities of mixotrophic electroactive exoelectrogens and electrotrophs in bioelectrochemical systems and in microbial electrosynthesis for accelerating simultaneous metabolism of inorganic or organic C and N, S or heavy metals are reviewed. The identification of the mixotrophic properties of electroactive bacteria and their capability to drive mono- or bidirectional electron transfer processes are highly exciting and promising aspects. These aspects provide an appealing potential for unearthing new mixotrophic exoelectrogens and electrotrophs, and thus inspire the next generation of microbial electrochemical technology and mixotrophic bacterial metabolic engineering. KEY POINTS: • Mixotrophic bacteria efficiently and simultaneously remove C and N, S or heavy metals. • Exoelectrogens and electrotrophs accelerate metabolism of C and N, S or heavy metals. • New mixotrophic exoelectrogens and electrotrophs should be discovered and exploited.
Collapse
|
38
|
Koffi NJ, Okabe S. Bioelectrochemical anoxic ammonium nitrogen removal by an MFC driven single chamber microbial electrolysis cell. CHEMOSPHERE 2021; 274:129715. [PMID: 33529951 DOI: 10.1016/j.chemosphere.2021.129715] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 05/27/2023]
Abstract
Nitrogen removal from wastewater is an indispensable but highly energy-demanding process, and thus more energy-saving treatment processes are required. Here, we investigated the performance of bioelectrochemical ammonium nitrogen (NH4+-N) removal from real domestic wastewater without energy-intensive aeration by a single chamber microbial electrolysis cell (MEC) that was electrically powered by a double chamber microbial fuel cell (MFC). Anoxic NH4+-N oxidation and total nitrogen (TN) removal rates were determined at various applied voltages (0-1.2 V), provided by the MFC. The MEC achieved a NH4+-N oxidation rate of 151 ± 42 g NH4+-N m-3 d-1 and TN removal rate of 95 ± 42 g-TN m-3 d-1 without aeration at the applied voltage of 0.8 V (the anode potential Eanode = +0.633 ± 0.218 V vs. SHE). These removal rates were much higher than the previously reported values and conventional biological nitrogen removal processes. Open and closed-circuit MEC batch experiments confirmed that anoxic NH4+-N oxidation was an electrochemically mediated biological process (that is, an anode acted as an electron acceptor) and denitrification occurred simultaneously without NO2- and NO3- accumulation. Moreover, ex-situ15N tracer experiment and microbial community analysis revealed that anammox and heterotrophic denitrification mainly contributed to the TN removal. Thus, the bioelectrochemical anodic NH4+-N oxidation was coupled with anammox and denitrification in this MFC-assisted MEC system. Taken together, our MFC-driven single chamber MEC could be a high rate energy-saving nitrogen removal process without external carbon and energy input and high energy-demanding aeration.
Collapse
Affiliation(s)
- N'Dah Joel Koffi
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.
| |
Collapse
|
39
|
Park Y, Yu J, Nguyen VK, Park S, Kim J, Lee T. Understanding complete ammonium removal mechanism in single-chamber microbial fuel cells based on microbial ecology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:144231. [PMID: 33385649 DOI: 10.1016/j.scitotenv.2020.144231] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
The removal of organics and ammonium from domestic wastewater was successfully achieved by a flat-panel air-cathode microbial fuel cell (FA-MFC). To elucidate the reason for complete ammonium removal in the single-chamber MFCs, microbial communities were analyzed in biofilms on the surface of each anode, separator, and cathode of separator-electrode assemblies (SEAs). The spatial distribution of bacterial families related to the nitrogen cycle varied based on local conditions. Since oxygen diffusing from the air-cathode created a locally aerobic condition, ammonia-oxidizing bacteria (AOB) Nitrosomonadacea and nitrite-oxidizing bacteria (NOB) Nitrospiraceae were present near the cathode. NOB (~12.1%) was more abundant than AOB (~4.4%), suggesting that the nitrate produced by NOB may be reduced back to nitrite by heterotrophic denitrifiers such as Rhodocyclaceae (~21.7%) and Comamonadaceae (~5%) in the anoxic zone close to the NOB layer. Near that zone, the "nitrite loop" also substantially enriched two nitrite-reducing bacterial families: Ignavibacteriaceae (~18.1%), facultative heterotrophs, and Brocadiaceae (~11.2%), anaerobic ammonium oxidizing autotrophs. A larger inner area of biofilm contained abundant heterotrophic denitrifiers and fermentation bacteria. These results indicate that the large-surface SEA of FA-MFC allows counter-diffusion between substrates and oxygen, resulting in interactions of bacteria involved in the nitrogen cycle for complete ammonium removal.
Collapse
Affiliation(s)
- Younghyun Park
- Korea Testing & Research Institute, Ulsan 44412, Republic of Korea
| | - Jaecheul Yu
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Van Khanh Nguyen
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
| | - Seonghwan Park
- Future Environmental Research Center, Gyeongnam Department of Environmental Toxicology & Chemistry, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Jeongmi Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Taeho Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
40
|
Zhu TT, Zhang YB, Liu YW, Zhao ZS. Electrostimulation enhanced ammonium removal during Fe(III) reduction coupled with anaerobic ammonium oxidation (Feammox) process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141703. [PMID: 32882553 DOI: 10.1016/j.scitotenv.2020.141703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Ammonium removal in wastewater treatment plants requires a large number of energy input, such as aeration and the addition of organics. Alternative, more economical technologies for nitrogen removal from wastewater are required. This study comprehensively investigated the feasible of microbial electricity coupled with Fe(III) reduction promoting the anaerobic ammonium removal. It was found that electrostimulation coupled with Fe(III) reduction (bioelectrochemical systems-Fe(III) (BES-Fe(III)) reactor) enhanced the anaerobic ammonium removal by 50.38% and 38.8% compared with the BES reactor and Fe(III) reactor, respectively. The ammonium removal rate reached the highest value of 80.62 ± 0.26 g N m-3·d-1 in the Fe(III)-BES reactor comparable to conventional wastewater treatment plants (WWWTPs). The improvement of ammonium removal might be the synergistic effect of BES and Feammox process on reaction process and microorganisms. Firstly, the addition of Fe2O3 could improve the electrochemical characteristics by enriching iron-reducing bacterial (FeRB). Secondly, the improved ammonium removal could be due to nitrite generated from Feammox process driving the anodic ammonium oxidation. Additionally, the ammonium removal improvement might be the effect of BES on the Fe2+ leaching so as to accelerate the Fe (II)/Fe(III) cycle. In agreement, higher abundance of FeRB and iron-oxidizing bacteria was detected in the Fe(III)-BES reactor. This study provides a lower energy consumption and operational cost technology compared with the conventional partial nitrification/denitrification, which was more than 800 times less than for the conventional wastewater treatment.
Collapse
Affiliation(s)
- Ting-Ting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yao-Bin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Yi-Wen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zi-Sheng Zhao
- School of Ecology and Environment, Zhengzhou University, Kexue Road 100, Zhengzhou 450001, China
| |
Collapse
|
41
|
Pous N, Korth B, Osset-Álvarez M, Balaguer MD, Harnisch F, Puig S. Electrifying biotrickling filters for the treatment of aquaponics wastewater. BIORESOURCE TECHNOLOGY 2021; 319:124221. [PMID: 33254451 PMCID: PMC7547830 DOI: 10.1016/j.biortech.2020.124221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 05/10/2023]
Abstract
This work aimed to study the electrification of biotrickling filters by means of Microbial electrochemical technologies (MET) to develop an easy-to-assemble and easy-to-use MET for nitrogen removal without external aeration nor addition of chemicals. Four different designs were tested. The highest ammonium and nitrate removal rates (94 gN·m-3·d-1 and 43 gN·m-3·d-1, respectively) were reached by combining an aerobic zone with an electrified anoxic zone. The standards of effluent quality suitable for hydroponics were met at low energy cost (8.3 × 10-2 kWh·gN-1). Electrified biotrickling filters are a promising alternative for aquaponics and a potential treatment for organic carbon-deficient ammonium-contaminated waters.
Collapse
Affiliation(s)
- Narcís Pous
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Spain
| | - Benjamin Korth
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Permoser Str. 15, 04318 Leipzig, Germany
| | - Miguel Osset-Álvarez
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Spain
| | - Maria Dolors Balaguer
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Spain
| | - Falk Harnisch
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Permoser Str. 15, 04318 Leipzig, Germany
| | - Sebastià Puig
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Spain.
| |
Collapse
|
42
|
Chen D, Zhang X, Chen H, Shi H, Jiang X, Mu Y, Pant D, Han W, Sun X, Li J, Shen J, Wang L. Simultaneous removal of pyridine and denitrification in an integrated bioelectro-photocatalytic system utilizing N-doped graphene/α-Fe2O3 modified photoanode. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Mohamed A, Zmuda HM, Ha PT, Coats ER, Beyenal H. Large-scale switchable potentiostatically controlled/microbial fuel cell bioelectrochemical wastewater treatment system. Bioelectrochemistry 2020; 138:107724. [PMID: 33485135 DOI: 10.1016/j.bioelechem.2020.107724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Abstract
The treatment of municipal wastewater is an energy-intensive process, with the delivery of oxygen as an electron acceptor accounting for a significant share of the total energy consumption. Microbial communities growing on polarized electrodes can facilitate wastewater treatment processes by exchanging electrons with the electrodes. As a new approach, we combined the use of polarized electrodes with microbial fuel cells (MFCs) to develop a switchable dual-mode bioelectrochemical wastewater treatment system. In this system, we first enriched microbial communities on polarized anodes and cathodes. After enrichment, the system was switched to either a self-powered MFC (SP-MFC) mode or a potentiostatically controlled (PC) mode. The system was evaluated at the laboratory scale (260 L, 4 anode and cathode pairs) and the pilot scale (1200 L, 16 anode and cathode pairs). PC and SP-MFC systems showed improved COD removal relative to control (41.6 ± 3.5 and 38.4 ± 3.1 vs 28.8 ± 2.1 mg L-1 d-1, respectively). The laboratory-scale system was operated without biological or electrical interruption for one year. Finally, specific enrichment of active microbial communities was observed on PC anodes in comparison to mixed-operation and non-polarized control anodes. The combined PC and SP-MFC systems allowed us to develop a sustainable and failure-free bioelectrochemical wastewater treatment system.
Collapse
Affiliation(s)
- Abdelrhman Mohamed
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Hannah M Zmuda
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Phuc T Ha
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Erik R Coats
- Department of Civil and Environmental Engineering, University of Idaho, Moscow, ID, USA
| | - Haluk Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA.
| |
Collapse
|
44
|
Zhao J, Li F, Cao Y, Zhang X, Chen T, Song H, Wang Z. Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms. Biotechnol Adv 2020; 53:107682. [PMID: 33326817 DOI: 10.1016/j.biotechadv.2020.107682] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/04/2020] [Accepted: 12/09/2020] [Indexed: 11/27/2022]
Abstract
Electroactive microorganisms (EAMs) are ubiquitous in nature and have attracted considerable attention as they can be used for energy recovery and environmental remediation via their extracellular electron transfer (EET) capabilities. Although the EET mechanisms of Shewanella and Geobacter have been rigorously investigated and are well characterized, much less is known about the EET mechanisms of other microorganisms. For EAMs, efficient EET is crucial for the sustainable economic development of bioelectrochemical systems (BESs). Currently, the low efficiency of EET remains a key factor in limiting the development of BESs. In this review, we focus on the EET mechanisms of different microorganisms, (i.e., bacteria, fungi, and archaea). In addition, we describe in detail three engineering strategies for improving the EET ability of EAMs: (1) enhancing transmembrane electron transport via cytochrome protein channels; (2) accelerating electron transport via electron shuttle synthesis and transmission; and (3) promoting the microbe-electrode interface reaction via regulating biofilm formation. At the end of this review, we look to the future, with an emphasis on the cross-disciplinary integration of systems biology and synthetic biology to build high-performance EAM systems.
Collapse
Affiliation(s)
- Juntao Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBioResearch Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Feng Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBioResearch Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBioResearch Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBioResearch Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBioResearch Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBioResearch Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.
| |
Collapse
|
45
|
Electrochemical ammonia stripping from non-nitrified animal rendering wastewater. CHEMICAL ENGINEERING JOURNAL ADVANCES 2020. [DOI: 10.1016/j.ceja.2020.100020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
46
|
Katuri KP, Kamireddy S, Kavanagh P, Muhammad A, Conghaile PÓ, Kumar A, Saikaly PE, Leech D. Electroactive biofilms on surface functionalized anodes: The anode respiring behavior of a novel electroactive bacterium, Desulfuromonas acetexigens. WATER RESEARCH 2020; 185:116284. [PMID: 32818731 DOI: 10.1016/j.watres.2020.116284] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Surface chemistry is known to influence the formation, composition, and electroactivity of electron-conducting biofilms. However, understanding of the evolution of microbial composition during biofilm development and its impact on the electrochemical response is limited. Here we present voltammetric, microscopic and microbial community analysis of biofilms formed under fixed applied potential for modified graphite electrodes during early (90 h) and mature (340 h) growth phases. Electrodes modified to introduce hydrophilic groups (-NH2, -COOH and -OH) enhance early-stage biofilm formation compared to unmodified or electrodes modified with hydrophobic groups (-C2H5). In addition, early-stage films formed on hydrophilic electrodes are dominated by the gram-negative sulfur-reducing bacterium Desulfuromonas acetexigens while Geobacter sp. dominates on -C2H5 and unmodified electrodes. As biofilms mature, current generation becomes similar, and D. acetexigens dominates in all biofilms irrespective of surface chemistry. Electrochemistry of pure culture D. acetexigens biofilms reveal that this microbe is capable of forming electroactive biofilms producing considerable current density of > 9 A/m2 in a short period of potential-induced growth (~19 h following inoculation) using acetate as an electron donor. The inability of D. acetexigens biofilms to use H2 as a sole source electron donor for current generation shows promise for maximizing H2 recovery in single-chambered microbial electrolysis cell systems treating wastewaters.
Collapse
Affiliation(s)
- Krishna P Katuri
- School of Chemistry & Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland; Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Sirisha Kamireddy
- School of Chemistry & Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland; Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Paul Kavanagh
- School of Chemistry & Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Ali Muhammad
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Peter Ó Conghaile
- School of Chemistry & Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Amit Kumar
- School of Chemistry & Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Pascal E Saikaly
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Dónal Leech
- School of Chemistry & Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| |
Collapse
|
47
|
Elmaadawy K, Liu B, Hu J, Hou H, Yang J. Performance evaluation of microbial fuel cell for landfill leachate treatment: Research updates and synergistic effects of hybrid systems. J Environ Sci (China) 2020; 96:1-20. [PMID: 32819684 DOI: 10.1016/j.jes.2020.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Over half of century, sanitary landfill was and is still the most economical treatment strategy for solid waste disposal, but the environmental risks associated with the leachate have brought attention of scientists for its proper treatment to avoid surface and ground water deterioration. Most of the treatment technologies are energy-negative and cost intensive processes, which are unable to meet current environmental regulations. There are continuous demands of alternatives concomitant with positive energy and high effluent quality. Microbial fuel cells (MFCs) were launched in the last two decades as a potential treatment technology with bioelectricity generation accompanied with simultaneous carbon and nutrient removal. This study reviews capability and mechanisms of carbon, nitrogen and phosphorous removal from landfill leachate through MFC technology, as well as summarizes and discusses the recent advances of standalone and hybrid MFCs performances in landfill leachate (LFL) treatment. Recent improvements and synergetic effect of hybrid MFC technology upon the increasing of power densities, organic and nutrient removal, and future challenges were discussed in details.
Collapse
Affiliation(s)
- Khaled Elmaadawy
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, China
| | - Bingchuan Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, China.
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
48
|
Chmielewská E. Zeolites Against Ecotoxicological Ammonia. CURRENT GREEN CHEMISTRY 2020. [DOI: 10.2174/221334610702200721143656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Eva Chmielewská
- Department of Environmental Ecology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Mlynska dolina B2, 842 15 Bratislava, Slovakia
| |
Collapse
|
49
|
Srivastava P, Abbassi R, Yadav AK, Garaniya V, Asadnia M. A review on the contribution of electron flow in electroactive wetlands: Electricity generation and enhanced wastewater treatment. CHEMOSPHERE 2020; 254:126926. [PMID: 32957303 DOI: 10.1016/j.chemosphere.2020.126926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
In less than a decade, bioelectrochemical systems/microbial fuel cell integrated constructed wetlands (electroactive wetlands) have gained a considerable amount of attention due to enhanced wastewater treatment and electricity generation. The enhancement in treatment has majorly emanated from the electron transfer or flow, particularly in anaerobic regions. However, the chemistry associated with electron transfer is complex to understand in electroactive wetlands. The electroactive wetlands accommodate diverse microbial community in which each microbe set their own potential to further participate in electron transfer. The conductive materials/electrodes in electroactive wetlands also contain some potential, due to which, several conflicts occur between microbes and electrode, and results in inadequate electron transfer or involvement of some other reaction mechanisms. Still, there is a considerable research gap in understanding of electron transfer between electrode-anode and cathode in electroactive wetlands. Additionally, the interaction of microbes with the electrodes and understanding of mass transfer is also essential to further understand the electron recovery. This review mainly deals with the electron transfer mechanism and its role in pollutant removal and electricity generation in electroactive wetlands.
Collapse
Affiliation(s)
- Pratiksha Srivastava
- Australian Maritime College, College of Sciences and Engineering, University of Tasmania, Launceston, 7248, Australia
| | - Rouzbeh Abbassi
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Asheesh Kumar Yadav
- Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
| | - Vikram Garaniya
- Australian Maritime College, College of Sciences and Engineering, University of Tasmania, Launceston, 7248, Australia
| | - Mohsen Asadnia
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
50
|
Zheng D, Gu W, Zhou Q, Zhang L, Wei C, Yang Q, Li D. Ammonia oxidation and denitrification in a bio-anode single-chambered microbial electrolysis cell. BIORESOURCE TECHNOLOGY 2020; 310:123466. [PMID: 32388207 DOI: 10.1016/j.biortech.2020.123466] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
In this study, anodic ammonia oxidation and denitrification were performed in single-chamber bioelectrochemical systems at a wide range of anodic potentials (-400 to +400 mV) versus Ag/AgCl. The low coulombic efficiencies (~30.84%) in reactors were mainly due to electrons being transferred to atmospheric oxygen through the electrode and reversal of the electrode. The removal efficiencies of acetate, ammonia, and total nitrogen were 100%, 100%, and 40.44% at +200 mV and 100%, 100%, and 50.24% at -200 mV, respectively. The nitrogen-removal mechanisms were nitrogen respiration/nitrate reduction at +200 mV and denitrification at -200 mV, and ammonia oxidation occurred by coupling with sulfate-reducing at -300 and -400 mV. Thauera, Comamonas, Alicycliphilus, Nitrosomonas, Desulforhabdus, Dethiosulfatibacter, and Desulfomicrobium were the dominant genera at the anode which participated in the nitrification/denitrification or sulfate-reducing processes. In summary, ammonia oxidation and denitrification could be coupled with carbon-removal or sulfur-reduction using a bio-anode with a suitable anodic potential.
Collapse
Affiliation(s)
- Decong Zheng
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenzhi Gu
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinmao Zhou
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixia Zhang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuicui Wei
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingzhuoma Yang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daping Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|