1
|
Lin W, Zhao J, Wu X, Jiang J, Zhou C, Zheng J, Zhang C, Guo Y, Wang L, Ng HY, Li S, Wang S. The effects of perfluoroalkyl substance pollution on microbial community and key metabolic pathways in the Pearl River Estuary. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118293. [PMID: 40349469 DOI: 10.1016/j.ecoenv.2025.118293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 05/04/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
The extensive use of perfluoroalkyl substances (PFASs) has raised significant concerns regarding their adverse environmental implications. However, the understanding of their behaviors and biological effects in natural estuarine ecosystems remain limited. This study employed a multidisciplinary approach integrating chemical analysis, biological sequencing, and statistical modeling to comprehensively investigate the distribution of PFASs, as well as their intrinsic relationship with microbial community in the Pearl River Estuary (PRE), a rapidly urbanized area. Our findings demonstrate that the total PFAS concentrations ranged from 52-127 ng L-1 in water, and 2-70 μg kg-1 dry weight in sediment, with notably distinct compositions across habitats. Aquatic microbial communities exhibited higher sensitivity to environmental variables, including PFAS concentrations, attributed to increased stochasticity and reduced spatial turnover. Conversely, sediments harbored microbial communities with higher phylogenetic diversity, rendering them less susceptible to PFAS-induced stress. Furthermore, PFAS concentrations significantly affected microbial carbon, nitrogen, and phosphorus cycling, predominantly through indirect alterations in characteristic genus composition. Importantly, noteworthy variations in impacts were observed between perfluorinated carboxylic acids (PFCAs) and perfluorinated sulfonic acids (PFSAs), which might contingent upon C-F bond dissociation energies. The findings shed light on PFAS ecological roles and interaction patterns with microbial communities in human-impacted estuarine environments.
Collapse
Affiliation(s)
- Wei Lin
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China.
| | - Junlin Zhao
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Xingqi Wu
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Jiakun Jiang
- Center for Statistics and Data Science, Beijing Normal University, Zhuhai 519087, China
| | - Chunyang Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Jiating Zheng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Cheng Zhang
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai 519087, China
| | - Ying Guo
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Li Wang
- Scientific Institute of Pearl River Water Resources Protection, Guangzhou 510610, China
| | - How Yong Ng
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Song Li
- Technical Centre for Ecology and Environment of Soil, Agriculture and Rural Areas, Ministry of Ecology and Environment, Beijing 100012, China
| | - Shengrui Wang
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
2
|
Cai Z, Nong R, Dong S, Zhou G, He Y, Wang F, Gao S, Tang Q, Su C. Understanding the potential role of microbial electrolysis cells in promoting electron transfer and microbial metabolism during the drying period in treating metformin-containing wastewater with an adsorption-biological coupling system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125027. [PMID: 40112468 DOI: 10.1016/j.jenvman.2025.125027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/25/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Effective removal of metformin from wastewater through biological treatment technology has been a challenging issue. Enhancing electron transfer was demonstrated to be an effective measure to improve the removal of refractory pollutants from wastewater. In this study, the effects of a microbial electrolysis cell (MEC) in strengthening an adsorption-biological coupling reactor during the drying period in treating metformin wastewater were investigated, along with its microbial community and metabolism. Compared to without a MEC, the removal rates of chemical oxygen demand (COD), total phosphorus (TP), ammonia-nitrogen, and metformin all increased with the increase of voltage; at 1.0 V, their removal rates were 77.26 %-91.45 %, 59.22 %-75.85 %, 79.52 %-91.56 %, and 57.45 %-70.15 % respectively. The main dominant bacteria in the two groups were Pseudomonadota (28.14 %-75.72 % and 13.51 %-84.79 %, respectively) and Actinobacteria (16.27 %-67.10 % and 6.11 %-84.27 %). The MEC increased the relative abundance of glycolytic glucokinase and pyruvate kinase genes. In nitrogen metabolism, dissimilar nitrate reduction was strengthened. In addition, the relative abundance of the functional genes involved in phosphate translocation, electron transport-linked phosphorylation, and phosphate metabolism were all increased after voltage addition, which promoted microbial activity and increased the TP removal rate.
Collapse
Affiliation(s)
- Zhexiang Cai
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Ruxin Nong
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Shutong Dong
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Guangrong Zhou
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Yong He
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Fan Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Shu Gao
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; University Engineering Research Center of Green Remediation and Low Carbon Development for Lijiang River Basin, Guangxi, 15 Yucai Road, Guilin, 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Quanchang Tang
- Guangxi Dongxing Beitou Environmental Protection Water Co., LTD., 271 Xidong Road, Dongxing, 538100, PR China
| | - Chengyuan Su
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; University Engineering Research Center of Green Remediation and Low Carbon Development for Lijiang River Basin, Guangxi, 15 Yucai Road, Guilin, 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China.
| |
Collapse
|
3
|
Fei C, Booker A, Klass S, Vidyarathna NK, Ahn SH, Mohamed AR, Arshad M, Glibert PM, Heil CA, Martínez Martínez J, Amin SA. Friends and foes: symbiotic and algicidal bacterial influence on Karenia brevis blooms. ISME COMMUNICATIONS 2025; 5:ycae164. [PMID: 39830096 PMCID: PMC11740886 DOI: 10.1093/ismeco/ycae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
Harmful Algal Blooms (HABs) of the toxigenic dinoflagellate Karenia brevis (KB) are pivotal in structuring the ecosystem of the Gulf of Mexico (GoM), decimating coastal ecology, local economies, and human health. Bacterial communities associated with toxigenic phytoplankton species play an important role in influencing toxin production in the laboratory, supplying essential factors to phytoplankton and even killing blooming species. However, our knowledge of the prevalence of these mechanisms during HAB events is limited, especially for KB blooms. Here, we introduced native microbial communities from the GoM, collected during two phases of a Karenia bloom, into KB laboratory cultures. Using bacterial isolation, physiological experiments, and shotgun metagenomic sequencing, we identified both putative enhancers and mitigators of KB blooms. Metagenome-assembled genomes from the Roseobacter clade showed strong correlations with KB populations during HABs, akin to symbionts. A bacterial isolate from this group of metagenome-assembled genomes, Mameliella alba, alleviated vitamin limitations of KB by providing it with vitamins B1, B7 and B12. Conversely, bacterial isolates belonging to Bacteroidetes and Gammaproteobacteria, Croceibacter atlanticus, and Pseudoalteromonas spongiae, respectively, exhibited strong algicidal properties against KB. We identified a serine protease homolog in P. spongiae that putatively drives the algicidal activity in this isolate. While the algicidal mechanism in C. atlanticus is unknown, we demonstrated the efficiency of C. atlanticus to mitigate KB growth in blooms from the GoM. Our results highlight the importance of specific bacteria in influencing the dynamics of HABs and suggest strategies for future HAB management.
Collapse
Affiliation(s)
- Cong Fei
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Anne Booker
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, United States
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD 21613, United States
| | - Sarah Klass
- Red Tide Institute, Mote Marine Laboratory and Aquarium, Sarasota, FL 34236, United States
| | - Nayani K Vidyarathna
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD 21613, United States
| | - So Hyun Ahn
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD 21613, United States
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Amin R Mohamed
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Muhammad Arshad
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| | - Patricia M Glibert
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD 21613, United States
| | - Cynthia A Heil
- Red Tide Institute, Mote Marine Laboratory and Aquarium, Sarasota, FL 34236, United States
| | - Joaquín Martínez Martínez
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, United States
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD 21613, United States
| | - Shady A Amin
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
- Mubadala Arabian Center for Climate and Environmental Sciences Center, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
4
|
Jean N, James A, Balliau T, Martino C, Ghersy J, Savar V, Laabir M, Caruana AMN. Warming and polymetallic stress induce proteomic and physiological shifts in the neurotoxic Alexandrium pacificum as possible response to global changes. MARINE POLLUTION BULLETIN 2024; 209:117221. [PMID: 39522120 DOI: 10.1016/j.marpolbul.2024.117221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Harmful Algal Blooms involving the dinoflagellate Alexandrium pacificum continue to increase in ecosystems suffering the climate warming and anthropogenic pressure. Changes in the total proteome and physiological traits of the Mediterranean A. pacificum SG C10-3 strain were measured in response to increasing temperature (24 °C, 27 °C, 30 °C) and trace metal contamination (Cu2+, Pb2+, Zn2+, Cd2+). Warming reduced the cell densities and maximal growth rate (μmax), but the strain persisted at 30 °C with more large cells. The polymetallic stress increased cell sizes, reduced cell growth at 24 °C-27 °C and it increased this at 30 °C. Toxin profiles showed a predominance of GTX4 (32-38 %), then C2 (11-34 %) or GTX6 (18-24 %) among the total Paralytic Shellfish Toxins, however these were modified under warming, showing increased contents in GTX1 (among the most toxic), GTX5, C1 and NeoSTX, while dc-NeoSTX and STX (among the most toxic) only appeared at 30 °C. Under polymetallic contamination, warming also increased contents in GTX5 and NeoSTX. In contrast, polymetallic stress, or warming had harmful effects on C2 contents. Proteins were more quantitatively produced by A. pacificum SG C10-3 under warming in accordance with the high levels of up-regulated proteins found in the total proteome in this condition. Polymetallic stress, only or combined with warming, led to low proteomic modifications (1 % or 4 %), whereas warming induced strong 52 % modified proteomic response, mainly based on up-regulated proteins involved in photosynthesis (light harvesting complex protein), carbohydrate metabolism (arylsulfatase) and translation (ribosomal proteins), and with the lesser down-regulated proteins principally associated with the lipid metabolism (type I polyketide synthase). Our results show that warming triggers a strong up-regulated A. pacificum SG C10-3 proteomic response, which, coupled to modified cell sizes and toxin profiles, could help it to withstand stress conditions. This could presage the success of A. pacificum in anthropized ecosystems submitted to global warming in which this dinoflagellate also might be more toxic.
Collapse
Affiliation(s)
- Natacha Jean
- Université de Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Toulon, France.
| | - Amandin James
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), UMR7232, Laboratoire de Biodiversité et Biotechnologie Microbienne (LBBM), UAR3579, Observatoire Océanologique, 66 650 Banyuls-sur-mer, France
| | - Thierry Balliau
- PAPPSO, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91 190 Gif-sur-Yvette, France
| | - Christian Martino
- Université de Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Toulon, France
| | - Jérôme Ghersy
- Université de Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Toulon, France
| | - Véronique Savar
- IFREMER, Phycotoxin Laboratory, rue de l'île d'Yeu, BP 21105, 44 311 Nantes, France
| | - Mohamed Laabir
- Univ Montpellier, UMR Marbec, IRD, Ifremer, CNRS, Montpellier, France
| | - Amandine M N Caruana
- IFREMER, Phycotoxin Laboratory, rue de l'île d'Yeu, BP 21105, 44 311 Nantes, France
| |
Collapse
|
5
|
Lu J, Qing C, Huang X, Zeng J, Zheng Y, Xia P. Seasonal dynamics and driving mechanisms of microbial biogenic elements cycling function, assembly process, and co-occurrence network in plateau lake sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175510. [PMID: 39147055 DOI: 10.1016/j.scitotenv.2024.175510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Microbial community diversity significantly varies with seasonality. However, little is known about seasonal variation of microbial community functions in lake sediments and their associated environmental influences. In this study, metagenomic sequencing of sediments collected from winter, summer, and autumn from Caohai Lake, Guizhou Plateau, were used to evaluate the composition and function of sediment microbial communities, the potential interactions of functional genes, key genes associated with seasons, and community assembly mechanisms. The average concentrations of nitrogen (TN) and phosphorus (TP) in lake sediments were higher, which were 6.136 and 0.501 g/kg, respectively. TN and organic matter (OM) were the primary factors associated with sediment community composition and functional profiles. The diversity and structure of the microbial communities varied with seasons, and Proteobacteria relative abundances were significantly lower in summer than in other seasons (58.43-44.12 %). Seasons were also associated with the relative abundances of functional genes, and in particular korA, metF, narC, nrfA, pstC/S, and soxB genes. Network complexity was highest in the summer and key genes in the network also varied across seasons. Neutral community model analysis revealed that the assembly mechanisms related to carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) cycle-related genes were primarily associated with random processes. In summary, diverse functional genes were identified in lake sediments and exhibited evidence for synergistic interactions (Positive proportion: 74.91-99.82 %), while seasonal factors influenced their distribution. The results of this study provide new insights into seasonal impacts on microbial-driven biogeochemical cycling in shallow lakes.
Collapse
Affiliation(s)
- Jiaowei Lu
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Chun Qing
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Xianfei Huang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Jin Zeng
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yikun Zheng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Pinhua Xia
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China.
| |
Collapse
|
6
|
Liu X, Zang Y, Fan S, Miao X, Fu M, Ma X, Li M, Zhang X, Wang Z, Xiao J. Changes in the structure of the microbial community within the phycospheric microenvironment and potential biogeochemical effects induced in the demise stage of green tides caused by Ulva prolifera. Front Microbiol 2024; 15:1507660. [PMID: 39564489 PMCID: PMC11575915 DOI: 10.3389/fmicb.2024.1507660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Green tides caused by Ulva prolifera occur annually in the Yellow Sea of China, and the massive amount of biomass decomposing during the demise stage of this green tide has deleterious ecological effects. Although microorganisms are considered key factors influencing algal bloom demise, an understanding of the microbial-algae interactions within the phycospheric microenvironment during this process is still lacking. Here, we focused on the variations in phycospheric microbial communities during the late stage of the green tide in three typically affected areas of the Yellow Sea via metagenomic sequencing analysis. In total, 16.9 million reads obtained from 18 metagenome samples were incorporated into the assembled contigs (13.4 Gbp). The phycosphere microbial community composition and diversity changed visibly during the demise of U. prolifera. The abundances of algae-lysing bacteria, Flavobacteriaceae at the family level and Alteromonas, Maribacter, and Vibrio at the genus level increased significantly in the phycosphere. In addition, the levels of glycoside hydrolases (GHs) and polysaccharide lyases (PLs) enzymes, which decompose U. prolifera polysaccharides in the phycosphere, were greater. Therefore, the degradation of algal polysaccharides can increase the efficiency of carbon metabolism pathways in the phycospheric microenvironment. Most of the genes detected in the phycosphere, especially norC, nrfA, and nasA, were associated with nitrogen metabolism pathways and showed dynamics related to the demise of the large amount of organic matter released by a green tide. Therefore, the demise of green tide algae may affect the potential carbon and nitrogen cycles of the phycospheric microenvironment by driving changes in the structure and diversity of microbial communities. Our research provides a novel perspective to better understand the ecological impact of U. prolifera during the green tide demise stage.
Collapse
Affiliation(s)
- Xiaoxue Liu
- Research Center of Marine Ecology, First Institute of Oceanography, MNR, Qingdao, China
| | - Yu Zang
- Research Center of Marine Ecology, First Institute of Oceanography, MNR, Qingdao, China
| | - Shiliang Fan
- Research Center of Marine Ecology, First Institute of Oceanography, MNR, Qingdao, China
- Laboratory for Marine Ecology and Environment Science, Laoshan Laboratory, Qingdao, China
| | - Xiaoxiang Miao
- Research Center of Marine Ecology, First Institute of Oceanography, MNR, Qingdao, China
| | - Mingzhu Fu
- Research Center of Marine Ecology, First Institute of Oceanography, MNR, Qingdao, China
- Laboratory for Marine Ecology and Environment Science, Laoshan Laboratory, Qingdao, China
| | - Xiaojun Ma
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Mei Li
- Research Center of Marine Ecology, First Institute of Oceanography, MNR, Qingdao, China
| | - Xuelei Zhang
- Research Center of Marine Ecology, First Institute of Oceanography, MNR, Qingdao, China
- Laboratory for Marine Ecology and Environment Science, Laoshan Laboratory, Qingdao, China
| | - Zongling Wang
- Research Center of Marine Ecology, First Institute of Oceanography, MNR, Qingdao, China
- Laboratory for Marine Ecology and Environment Science, Laoshan Laboratory, Qingdao, China
| | - Jie Xiao
- Research Center of Marine Ecology, First Institute of Oceanography, MNR, Qingdao, China
- Laboratory for Marine Ecology and Environment Science, Laoshan Laboratory, Qingdao, China
| |
Collapse
|
7
|
Zhu J, Chen G, Tang S, Cheng K, Wu K, Cai Z, Zhou J. The micro-ecological feature of colonies is a potential strategy for Phaeocystis globosa bloom formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174134. [PMID: 38909792 DOI: 10.1016/j.scitotenv.2024.174134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Phaeocystis globosa is among the dominant microalgae associated with harmful algal blooms. P. globosa has a polymorphic life cycle and its ecological success has been attributed to algal colony formation, however, few studies have assessed differences in microbial communities and their functional profiles between intra- and extra-colonies during P. globosa blooms. To address this, environmental and metagenomics tools were used to conduct a time-series analysis of the bacterial composition and metabolic characteristics of intra- and extra-colonies during a natural P. globosa bloom. The results show that bacterial composition, biodiversity, and network interactions differed significantly between intra- and extra-colonies. Dominant extra-colonial bacteria were Bacteroidia and Saccharimonadis, while dominant intra-colonial bacteria included Alphaproteobacteria and Gammaproteobacteria. Despite the lower richness and diversity observed in the intra-colonial bacterial community, relative to extra-colonies, the complexity and interconnectedness of the intra-colonial networks were higher. Regarding bacterial function, more functional genes were enriched in substance metabolism (polysaccharides, iron element and dimethylsulfoniopropionate) and signal communication (quorum sensing, indoleacetic acid-IAA) pathways in intra- than in extra-colonies. Conceptual model construction showed that microbial cooperative synthesis of ammonium, vitamin B12, IAA, and siderophores were strongly related to the P. globosa bloom, particularly in the intra-colonial environment. Overall, our data highlight the differences in bacterial structure and functions within and outside the colony during P. globosa blooms. These findings represent fundamental information indicating that phenotypic heterogeneity is a selective strategy that improves microbial population competitiveness and environmental adaptation, benefiting P. globosa bloom formation and persistence.
Collapse
Affiliation(s)
- Jianming Zhu
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, Shandong Province, PR China
| | - Si Tang
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Keke Cheng
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Kebi Wu
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Zhonghua Cai
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Jin Zhou
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China.
| |
Collapse
|
8
|
Li X, Cheng X, Xu J, Wu J, Chan LL, Cai Z, Zhou J. Dynamic patterns of carbohydrate metabolism genes in bacterioplankton during marine algal blooms. Microbiol Res 2024; 286:127785. [PMID: 38851011 DOI: 10.1016/j.micres.2024.127785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/01/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
Carbohydrates play a pivotal role in nutrient recycling and regulation of algal-bacterial interactions. Despite their ecological significance, the intricate molecular mechanisms governing regulation of phycosphere carbohydrates by bacterial taxa linked with natural algal bloom have yet to be fully elucidated. Here, a comprehensive temporal metagenomic analysis was conducted to explore the carbohydrate-active enzyme (CAZyme) genes in two discrete algal bloom microorganisms (Gymnodinium catenatum and Phaeocystis globosa) across three distinct bloom stages: pre-bloom, peak bloom, and post-bloom. Elevated levels of extracellular carbohydrates, primarily rhamnose, galactose, glucose, and arabinose, were observed during the initial and post-peak stages. The prominent CAZyme families identified-glycoside hydrolases (GH) and carbohydrate-binding modules (CBMs)-were present in both algal bloom occurrences. In the G. catenatum bloom, GH23/24 and CBM13/14 were prevalent during the pre-bloom and peak bloom stages, whereas GH2/3/30 and CBM12/24 exhibited increased prevalence during the post-bloom phase. In contrast, the P. globosa bloom had a dominance of GH13/23 and CBM19 in the initial phase, and this was succeeded by GH3/19/24/30 and CBM54 in the later stages. This gene pool variation-observed distinctly in specific genera-highlighted the dynamic structural shifts in functional resources driven by temporal alterations in available substrates. Additionally, ecological linkage analysis underscored a correlation between carbohydrates (or their related genes) and phycospheric bacteria, hinting at a pattern of bottom-up control. These findings contribute to understanding of the dynamic nature of CAZymes, emphasizing the substantial influence of substrate availability on the metabolic capabilities of algal symbiotic bacteria, especially in terms of carbohydrates.
Collapse
Affiliation(s)
- Xinyang Li
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China
| | - Xueyu Cheng
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China
| | - Junjie Xu
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China
| | - Jiajun Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Leo Lai Chan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zhonghua Cai
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China
| | - Jin Zhou
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China.
| |
Collapse
|
9
|
Zheng N, Hu W, Liu Y, Li Z, Jiang Y, Bartlam M, Wang Y. Phycospheric bacteria limits the effect of nitrogen and phosphorus imbalance on diatom bloom. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173477. [PMID: 38788949 DOI: 10.1016/j.scitotenv.2024.173477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/23/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Human activities have caused an imbalance in the input nitrogen and phosphorus (N/P) in the biosphere. The imbalance of N/P is one of the characteristics of water eutrophication, which is the fundamental factor responsible for the blooms. The effects of the N/P imbalance on diatom and phycospheric bacteria in blooms are poorly understood. In this study, the N/P molar ratio in real water (14:1) and the predicted N/P molar ratio in future water (65:1) were simulated to analyze the response of Cyclotella sp. and phycospheric bacteria to the N/P imbalance. The results showed that the N/P imbalance inhibited the growth of Cyclotella sp., but prolonged diatom bloom duration. The resistance of Cyclotella sp. to the N/P imbalance is related to phycospheric bacteria, and there are dynamic regulatory mechanisms within the phycospheric bacteria community to resist the N/P imbalance: (1) the increase of HNA bacterial density, the decrease of LNA bacterial density, (2) the increase of phycospheric bacterial diversity and eutrophic bacteria abundance, and the change of denitrifying bacteria abundance, (3) the activity of nitrogen and phosphorus metabolism of HNA bacteria enhanced, while that of LNA bacteria decreased. And the gene hosts of nitrogen and phosphorus metabolism were most enriched in Proteobacteria, indicating that Proteobacteria played an important role in maintaining the stability of phycospheric bacteria and was the dominant phylum resistant to the N/P imbalance. This study clarified that the algal-bacteria system was resistant to the N/P imbalance and implied that the N/P imbalance had little effect on the occurrence of diatom bloom events due to the presence of phycospheric bacteria.
Collapse
Affiliation(s)
- Ningning Zheng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai International Advanced Research Institute (Shenzhen Futian), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wei Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai International Advanced Research Institute (Shenzhen Futian), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai International Advanced Research Institute (Shenzhen Futian), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zun Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai International Advanced Research Institute (Shenzhen Futian), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuxin Jiang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai International Advanced Research Institute (Shenzhen Futian), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China.
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai International Advanced Research Institute (Shenzhen Futian), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
10
|
Yuan H, Li L, Wang Y, Lin S. Succession of diversity, assembly mechanisms, and activities of the microeukaryotic community throughout Scrippsiella acuminata (Dinophyceae) bloom phases. HARMFUL ALGAE 2024; 134:102626. [PMID: 38705614 DOI: 10.1016/j.hal.2024.102626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 05/07/2024]
Abstract
Harmful algal bloom (HAB) is a rapidly expanding marine ecological hazard. Although numerous studies have been carried out about the ecological impact and the ecological mechanism of HAB outbreaks, few studies have comprehensively addressed the shifts of species composition, metabolic activity level, driving factors and community assembly mechanisms of microeukaryotic plankton in the course of the bloom event. To fill the gap of research, we conducted 18S ribosomal DNA and RNA sequencing during the initiation, development, sustenance and decline stages of a Scrippsiella acuminata (S. acuminata) bloom at the coastal sea of Fujian Province, China. We found that the bloom event caused a decrease in microeukaryotic plankton species diversity and increase in community homogeneity. Our results revealed that the RNA- and DNA-inferred communities were similar, but α-diversity was more dynamic in RNA- than in DNA-inferred communities. The main taxa with high projected metabolic activity (with RNA:DNA ratio as the proxy) during the bloom included dinoflagellates, Cercozoa, Chlorophyta, Protalveolata, and diatoms. The role of deterministic processes in microeukaryotic plankton community assembly increased during the bloom, but stochastic processes were always the dominant assembly mechanism throughout the bloom process. Our findings improve the understanding of temporal patterns, driving factors and assembly mechanisms underlying the microeukarytic plankton community in a dinoflagellate bloom.
Collapse
Affiliation(s)
- Huatao Yuan
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, and Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, Xiamen University, Xiamen 361102, China; College of Fisheries, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Henan Normal University, Xinxiang 453007, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, and Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, Xiamen University, Xiamen 361102, China
| | - Yujie Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, and Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, Xiamen University, Xiamen 361102, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, and Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, Xiamen University, Xiamen 361102, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266000, Shandong, China; Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA.
| |
Collapse
|
11
|
Wang T, Liu R, Huang G, Tian X, Zhang Y, He M, Wang C. Assembly dynamics of eukaryotic plankton and bacterioplankton in the Yangtze River estuary: A hybrid community perspective. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106414. [PMID: 38394975 DOI: 10.1016/j.marenvres.2024.106414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
Estuaries, acting as transitional habitats receiving species introductions from both freshwater and marine sources, undergo significant impacts from global climate changes. Planktonic microorganisms contribute significantly to estuarine biodiversity and ecological stability. These microorganisms primarily fall into three groups: eukaryotic plankton, particle-associated bacteria, and free-living bacteria. Understanding the structural characteristics and interactions within these subcommunities is crucial for comprehending estuarine dynamics. We collected samples from three distinct locations (< 0.1 PSU, 6.6 PSU, and 19 PSU) within the Yangtze River estuary. Samples underwent analysis for physicochemical indicators, while microbial communities were subjected to 16S/18S rRNA amplicon sequencing. Additionally, simulated mixing experiments were conducted using samples of varying salinities. Estuary samples, combined with simulated experiments, were employed to collectively examine the structural characteristics and assembly processes of estuarine microbes. Our research highlights the considerable impact of phylogenetic classification on prokaryotic behavior in these communities. We observed a transition in assembly processes from primarily stochastic for particle-associated bacteria to a predominant influence of homogeneous selection as salinity increased. Particle-associated bacterial communities exhibited a greater influence of stochastic processes compared to free-living bacteria, showcasing higher stability in diversity. The variations in composition and structure of estuarine microbial subcommunities were influenced by diverse environmental factors. Particle-associated bacteria displayed elevated network characterization values and established closer interactions with eukaryotic plankton. Structural equation modeling (SEM) analysis revealed that free-living bacteria displayed a heightened sensitivity to environmental factors and exerted a more significant influence on assembly processes and network characteristics. Simulated mixing in these environments resulted in the loss of species with similar microbial taxonomic relationships. The functioning of bacterioplankton is influenced by salinity and the processes governing their assembly, particularly in relation to different living states. These findings significantly contribute to our understanding of the intricate interplay between prokaryotic and eukaryotic plankton microorganisms in highly dynamic environments, laying a robust foundation for further exploration into the ecological mechanisms governing microbial dynamics in estuaries.
Collapse
Affiliation(s)
- Tong Wang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruiqing Liu
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guolin Huang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Tian
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaru Zhang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meilin He
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Changhai Wang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China; Co-Innovation Center for Jiangsu Marine Bio-Industry Technology, Lianyungang, 222005, China
| |
Collapse
|
12
|
Beauvais M, Schatt P, Montiel L, Logares R, Galand PE, Bouget FY. Functional redundancy of seasonal vitamin B 12 biosynthesis pathways in coastal marine microbial communities. Environ Microbiol 2023; 25:3753-3770. [PMID: 38031968 DOI: 10.1111/1462-2920.16545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
Vitamin B12 (cobalamin) is a major cofactor required by most marine microbes, but only produced by a few prokaryotes in the ocean, which is globally B12 -depleted. Despite the ecological importance of B12 , the seasonality of B12 metabolisms and the organisms involved in its synthesis in the ocean remain poorly known. Here we use metagenomics to assess the monthly dynamics of B12 -related pathways and the functional diversity of associated microbial communities in the coastal NW Mediterranean Sea over 7 years. We show that genes related to potential B12 metabolisms were characterized by an annual succession of different organisms carrying distinct production pathways. During the most productive winter months, archaea (Nitrosopumilus and Nitrosopelagicus) were the main contributors to B12 synthesis potential through the anaerobic pathway (cbi genes). In turn, Alphaproteobacteria (HIMB11, UBA8309, Puniceispirillum) contributed to B12 synthesis potential in spring and summer through the aerobic pathway (cob genes). Cyanobacteria could produce pseudo-cobalamin from spring to autumn. Finally, we show that during years with environmental perturbations, the organisms usually carrying B12 synthesis genes were replaced by others having the same gene, thus maintaining the potential for B12 production. Such ecological insurance could contribute to the long-term functional resilience of marine microbial communities exposed to contrasting inter-annual environmental conditions.
Collapse
Affiliation(s)
- Maxime Beauvais
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - Philippe Schatt
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - Lidia Montiel
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Ramiro Logares
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Écogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - François-Yves Bouget
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| |
Collapse
|
13
|
Fakhraldeen SA, Al-Haddad S, Habibi N, Alagarsamy S, F. K. Habeebullah S, Ali AK, Al-Zakri WM. Diversity and spatiotemporal variations in bacterial and archaeal communities within Kuwaiti territorial waters of the Northwest Arabian Gulf. PLoS One 2023; 18:e0291167. [PMID: 37972047 PMCID: PMC10653540 DOI: 10.1371/journal.pone.0291167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/23/2023] [Indexed: 11/19/2023] Open
Abstract
Kuwaiti territorial waters of the northwest Arabian Gulf represent a unique aquatic ecosystem prone to various environmental and anthropogenic stressors that pose significant constraints on the resident biota which must withstand extreme temperatures, salinity levels, and reducing conditions, among other factors to survive. Such conditions create the ideal environment for investigations into novel functional genetic adaptations of resident organisms. Firstly, however, it is essential to identify said organisms and understand the dynamic nature of their existence. Thus, this study provides the first comprehensive analysis of bacterial and archaeal community structures in the unique waters of Kuwait located in the Northwest Arabian Gulf and analyzes their variations with respect to depth, season, and location, as well as their susceptibility to changes in abundance with respect to various physicochemical parameters. Importantly, this study is the first of its kind to utilize a shotgun metagenomics approach with sequencing performed at an average depth of 15 million paired end reads per sample, which allows for species-level community profiling and sets the framework for future functional genomic investigations. Results showed an approximately even abundance of both archaeal (42.9%) and bacterial (57.1%) communities, but significantly greater diversity among the bacterial population, which predominantly consisted of members of the Proteobacteria, Cyanobacteria, and Bacteroidetes phyla in decreasing order of abundance. Little to no significant variations as assessed by various metrics including alpha and beta diversity analyses were observed in the abundance of archaeal and bacterial populations with respect to depth down the water column. Furthermore, although variations in differential abundance of key genera were detected at each of the three sampling locations, measurements of species richness and evenness revealed negligible variation (ANOVA p<0.05) and only a moderately defined community structure (ANOSIM r2 = 0.243; p>0.001) between the various locations. Interestingly, abundance of archaeal community members showed a significant increase (log2 median ratio of RA = 2.6) while the bacterial population showed a significant decrease (log2 median ratio = -1.29) in the winter season. These findings were supported by alpha and beta diversity analyses as well (ANOSIM r2 = 0.253; p>0.01). Overall, this study provides the first in-depth analysis of both bacterial and archaeal community structures developed using a shotgun metagenomic approach in the waters of the Northwest Arabian Gulf thus providing a framework for future investigations of functional genetic adaptations developed by resident biota attempting to survive in the uniquely extreme conditions to which they are exposed.
Collapse
Affiliation(s)
- Saja A. Fakhraldeen
- Ecosystem-based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya, Kuwait
| | - Sakinah Al-Haddad
- Ecosystem-based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya, Kuwait
| | - Nazima Habibi
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Shuwaikh, Kuwait
| | - Surendraraj Alagarsamy
- Ecosystem-based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya, Kuwait
| | - Sabeena F. K. Habeebullah
- Ecosystem-based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya, Kuwait
| | - Abdulmuhsen K. Ali
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Shuwaikh, Kuwait
| | - Walid M. Al-Zakri
- Ecosystem-based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya, Kuwait
| |
Collapse
|
14
|
Li H, Bhattarai B, Barber M, Goel R. Stringent Response of Cyanobacteria and Other Bacterioplankton during Different Stages of a Harmful Cyanobacterial Bloom. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16016-16032. [PMID: 37819800 DOI: 10.1021/acs.est.3c03114] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
We conducted a field study to investigate the role of stringent response in cyanobacteria and coexisting bacterioplankton during nutrient-deprived periods at various stages of bloom in a freshwater lake (Utah Lake) for the first time. Using metagenomics and metatranscriptomics analyses, we examined the cyanobacterial ecology and expression of important functional genes related to stringent response, N and P metabolism, and regulation. Our findings mark a significant advancement in understanding the mechanisms by which toxic cyanobacteria survive and proliferate during nitrogen (N) and phosphorus (P) limitations. We successfully identified and analyzed the metagenome-assembled genomes (MAGs) of the dominant bloom-forming cyanobacteria, namely, Dolichospermum circinale, Aphanizomenon flos-aquae UKL13-PB, Planktothrix agardhii, and Microcystis aeruginosa. By mapping RNA-seq data to the coding sequences of the MAGs, we observed that these four prevalent cyanobacteria species activated multiple functions to adapt to the depletion of inorganic nutrients. During and after the blooms, the four dominant cyanobacteria species expressed high levels of transcripts related to toxin production, such as microcystins (mcy), anatoxins (ana), and cylindrospermopsins (cyr). Additionally, genes associated with polyphosphate (poly-P) storage and the stringent response alarmone (p)ppGpp synthesis/hydrolysis, including ppk, relA, and spoT, were highly activated in both cyanobacteria and bacterioplankton. Under N deficiency, the main N pathways shifted from denitrification and dissimilatory nitrate reduction in bacterioplankton toward N2-fixing and assimilatory nitrate reduction in certain cyanobacteria with a corresponding shift in the community composition. P deprivation triggered a stringent response mediated by spoT-dependent (p)ppGpp accumulation and activation of the Pho regulon in both cyanobacteria and bacterioplankton, facilitating inorganic and organic P uptake. The dominant cyanobacterial MAGs exhibited the presence of multiple alkaline phosphatase (APase) transcripts (e.g., phoA in Dolichospermum, phoX in Planktothrix, and Microcystis), suggesting their ability to synthesize and release APase enzymes to convert ambient organic P into bioavailable forms. Conversely, transcripts associated with bacterioplankton-dominated pathways like denitrification were low and did not align with the occurrence of intense cyanoHABs. The strong correlations observed among N, P, stringent response metabolisms and the succession of blooms caused by dominant cyanobacterial species provide evidence that the stringent response, induced by nutrient limitation, may activate unique N and P functions in toxin-producing cyanobacteria, thereby sustaining cyanoHABs.
Collapse
Affiliation(s)
- Hanyan Li
- Institute for Environmental Genomics, The University of Oklahoma, 101 David L Boren Blvd, Norman, Oklahoma 73019, United States
| | - Bishav Bhattarai
- Department of Civil and Environmental Engineering, The University of Utah, 110 S Central Campus, Salt Lake City, Utah 84112, United States
| | - Michael Barber
- Department of Civil and Environmental Engineering, The University of Utah, 110 S Central Campus, Salt Lake City, Utah 84112, United States
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, The University of Utah, 110 S Central Campus, Salt Lake City, Utah 84112, United States
| |
Collapse
|
15
|
Li X, Fan S, Zhang Y, Li D, Su C, Qi Z, Liang H, Gao S, Chen M. Performance and microbial metabolic mechanism of imidacloprid removal in a microbial electrolysis cell-integrated adsorption biological coupling system. BIORESOURCE TECHNOLOGY 2023; 386:129513. [PMID: 37468017 DOI: 10.1016/j.biortech.2023.129513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Coke used as a filler to treat imidacloprid (IMI) wastewater by both adsorption biological coupling and microbial electrolysis cells (MEC)-adsorption biological coupling technologies, the removal efficiencies on pollutions in wastewater containing IMI were investigated, and the key functional genes related to IMI degradation pathways were also revealed. Results showed that the removal rates of COD, ammonia nitrogen, TP, and IMI under the adsorption biological coupling treatment and MEC-adsorption biological coupling treatment were 94.61-95.54%, 93.37-95.79%, 73.69-83.80%, and 100%, respectively. MEC increased the relative abundance of Proteobacteria by 9.01% and transformed the dominant bacteria from Lysobacter and Reyranella to Brevundimonas and Aquincola. Moreover, MEC up-regulated the abundance of the coding genes PK (9.30%), narG (2.26%), pstS (3.63%), and phnD (1.32%), and converted the IMI degradation products to smaller molecular weight C6H8N2 and C6H6ClNO. This study provided an important reference information for efficient treatment of IMI wastewater using the MEC-adsorption biological coupling technology.
Collapse
Affiliation(s)
- Xinjuan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Shuo Fan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Yunnan Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Daoning Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; College of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Zhifei Qi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Huayu Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Shu Gao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Menglin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
16
|
Du X, Li X, Cheng K, Zhao W, Cai Z, Chen G, Zhou J. Virome reveals effect of Ulva prolifera green tide on the structural and functional profiles of virus communities in coastal environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163609. [PMID: 37100126 DOI: 10.1016/j.scitotenv.2023.163609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 06/03/2023]
Abstract
Viruses are widely distributed in marine environments, where they influence the transformation of matter and energy by modulating host metabolism. Driven by eutrophication, green tides are a rising concern in Chinese coastal areas, and are a serious ecological disaster that negatively affects coastal ecosystems and disrupts biogeochemical cycles. Although the composition of bacterial communities in green algae has been investigated, the diversity and roles of viruses in green algal blooms are largely unexplored. Therefore, the diversity, abundance, lifestyle, and metabolic potential of viruses in a natural bloom in Qingdao coastal area were investigated at three different stages (pre-bloom, during-bloom, and post-bloom) by metagenomics analysis. The dsDNA viruses, Siphoviridae, Myoviridae, Podoviridae, and Phycodnaviridae, were found to dominate the viral community. The viral dynamics exhibited distinct temporal patterns across different stages. The composition of the viral community varied during the bloom, especially in populations with low abundance. The lytic cycle was most predominant, and the abundance of lytic viruses increased slightly in the post-bloom stage. The diversity and richness of the viral communities varied distinctly during the green tide, and the post-bloom stage favored viral diversity and richness. The total organic carbon, dissolved oxygen, NO3-, NO2-, PO43-, chlorophyll-a contents, and temperature variably co-influenced the viral communities. The primary hosts included bacteria, algae, and other microplankton. Network analysis revealed the closer links between the viral communities as the bloom progressed. Functional prediction revealed that the viruses possibly influenced the biodegradation of microbial hydrocarbons and carbon by metabolic augmentation via auxiliary metabolic genes. The composition, structure, metabolic potential, and interaction taxonomy of the viromes differed significantly across the different stages of the green tide. The study demonstrated that the ecological event shaped the viral communities during algal bloom, and the viral communities played a significant role in phycospheric microecology.
Collapse
Affiliation(s)
- Xiaopeng Du
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xinyang Li
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Wei Zhao
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, Shandong Province, PR China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
17
|
Li X, Huang X, Fan S, Su C, Ding F, Wen S, Li D, Chen M. Effects of perfluoroalkyl substances on the operational efficiency, microbial communities, and key metabolic pathways of constructed rapid infiltration system with coke as filler layer. BIORESOURCE TECHNOLOGY 2023; 378:128998. [PMID: 37011846 DOI: 10.1016/j.biortech.2023.128998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Influences of perfluoroalkyl substances on the performance and microbial metabolic pathways of constructed rapid infiltration systems are not fully understood. In this study, wastewater containing different concentrations of perfluorooctanoic acid (PFOA)/perfluorobutyric acid (PFBA) was treated in constructed rapid infiltration systems with coke as filler. The addition of 5 and 10 mg/L PFOA inhibited the removal of chemical oxygen demand (COD) (80.42%, 89.27%), ammonia nitrogen (31.32%, 41.14%), and total phosphorus (TP) (43.30%, 39.34%). Meanwhile, 10 mg/L PFBA inhibited TP removal of the systems. Based on X-ray photoelectron spectroscopy, the percentages of F- within the PFOA and PFBA groups were 12.91% and 48.46%, respectively. PFOA transformed Proteobacteria (71.79%) into the dominant phyla of the systems, whereas PFBA enriched Actinobacteria (72.51%). The PFBA up-regulated the coding gene of 6-phosphofructokinase by 14.44%, whereas PFOA down-regulated it by 4.76%. These findings provide insights into the toxicity of perfluoroalkyl substances on constructed rapid infiltration systems.
Collapse
Affiliation(s)
- Xinjuan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xian Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Shuo Fan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; College of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Fengxiu Ding
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Shitong Wen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Daoning Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Menglin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
18
|
Zhang Y, Whalen JK, Cai C, Shan K, Zhou H. Harmful cyanobacteria-diatom/dinoflagellate blooms and their cyanotoxins in freshwaters: A nonnegligible chronic health and ecological hazard. WATER RESEARCH 2023; 233:119807. [PMID: 36871382 DOI: 10.1016/j.watres.2023.119807] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/06/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Human and ecological health depends on the vitality of freshwater systems, but these are increasingly threatened by cyanotoxins released from harmful algal blooms (HABs). Periodic cyanotoxin production, although undesirable, may be tolerable when there is enough time for cyanotoxins to degrade and dissipate in the environment, but the year-round presence of these toxins will be a chronic health for humans and ecosystems. The purpose of this critical review is to document the seasonal shifts of algal species and their ecophysiological acclimatation to dynamic environmental conditions. We discuss how these conditions will create successive occurrences of algal blooms and the release of cyanotoxins into freshwater. We first review the most common cyanotoxins, and evaluate the multiple ecological roles and physiological functions of these toxins for algae. Then, the annual recurring patterns HABs are considered in the context of global change, which demonstrates the capacity for algal blooms to shift from seasonal to year-round growth regimes that are driven by abiotic and biotic factors, leading to chronic loading of freshwaters with cyanotoxins. At last, we illustrate the impacts of HABs on the environment by compiling four health issues and four ecology issues emanating from their presence in the that covers atmosphere, aquatic ecosystems and terrestrial ecosystems. Our study highlights the annual patterns of algal blooms, and proposes that a "perfect storm" of events is lurking that will cause the 'seasonal toxicity' to become a full-blown, 'chronic toxicity' in the context of the deterioration of HABs, highlighting a non-negligible chronic health and ecological hazard.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; Department of Natural Resource Science, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste-Anne-de Bellevue, QC H9×3V9, Canada; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, China.
| | - Joann K Whalen
- Department of Natural Resource Science, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste-Anne-de Bellevue, QC H9×3V9, Canada
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Kun Shan
- Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China, CAS Key Lab on Reservoir Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Hongxu Zhou
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| |
Collapse
|
19
|
Qu T, Zhao X, Guan C, Hou C, Chen J, Zhong Y, Lin Z, Xu Y, Tang X, Wang Y. Structure-Function Covariation of Phycospheric Microorganisms Associated with the Typical Cross-Regional Harmful Macroalgal Bloom. Appl Environ Microbiol 2023; 89:e0181522. [PMID: 36533927 PMCID: PMC9888261 DOI: 10.1128/aem.01815-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Unravelling the structure-function variation of phycospheric microorganisms and its ecological correlation with harmful macroalgal blooms (HMBs) is a challenging research topic that remains unclear in the natural dynamic process of HMBs. During the world's largest green tide bloom, causative macroalgae Ulva prolifera experienced dramatic changes in growth state and environmental conditions, providing ideal scenarios for this investment. Here, we assess the phycospheric physicochemical characteristics, the algal host's biology, the phycospheric bacterial constitutive patterns, and the functional potential during the U. prolifera green tide. Our results indicated that (i) variation in the phycosphere nutrient structure was closely related to the growth state of U. prolifera; (ii) stochastic processes govern phycospheric bacterial assembly, and the contribution of deterministic processes to assembly varied among phycospheric seawater bacteria and epiphytic bacteria; (iii) phycospheric seawater bacteria and epiphytic bacteria exhibited significant heterogeneity variation patterns in community composition, structure, and metabolic potential; and (iv) phycospheric bacteria with carbon or nitrogen metabolic functions potentially influenced the nutrient utilization of U. prolifera. Furthermore, the keystone genera play a decisive role in the structure-function covariation of phycospheric bacterial communities. Our study reveals complex interactions and linkages among environment-algae-bacterial communities which existed in the macroalgal phycosphere and highlights the fact that phycospheric microorganisms are closely related to the fate of the HMBs represented by the green tide. IMPORTANCE Harmful macroalgal blooms represented by green tides have become a worldwide marine ecological problem. Unraveling the structure-function variation of phycospheric microorganisms and their ecological correlation with HMBs is challenging. This issue is still unclear in the natural dynamics of HMBs. Here, we revealed the complex interactions and linkages among environment-algae-bacterial communities in the phycosphere of the green macroalgae Ulva prolifera, which causes the world's largest green tides. Our study provides new ideas to increase our understanding of the variation patterns of macroalgal phycospheric bacterial communities and the formation mechanisms and ecological effects of green tides and highlights the importance of phycospheric microorganisms as a robust tool to help understand the fate of HMBs.
Collapse
Affiliation(s)
- Tongfei Qu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xinyu Zhao
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chen Guan
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Chengzong Hou
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yi Zhong
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhihao Lin
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yu Xu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
20
|
Wu K, Tang S, Wu X, Zhu J, Song J, Zhong Y, Zhou J, Cai Z. Colony formation of Phaeocystis globosa: A case study of evolutionary strategy for competitive adaptation. MARINE POLLUTION BULLETIN 2023; 186:114453. [PMID: 36495614 DOI: 10.1016/j.marpolbul.2022.114453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Some algae possess a multi-morphic life cycle, either in the form of free-living solitary cells or colonies which constantly occur in algal blooms. Though colony formation seems to consume extra energy and materials, many algae tend to outbreak in form of colonies. Here, we hypothesized that colony formation is a selected evolutionary strategy to improve population competitiveness and environmental adaptation. To test the hypothesis, different sizes of colonies and solitary cells in a natural bloom of Phaeocystis globosa were investigated. The large colony showed a relatively low oxidant stress level, a nutrient trap effect, and high nutrient use efficiency. The colonial nitrogen and phosphorus concentrations were about 5-10 times higher than solitary cell phycosphere and cellular nutrient allocation decreased with the enlargement of the colonial diameter following the economies of scale law. These features provide the colony with monopolistic competence and could function as an evolutionary strategy for competitive adaptation.
Collapse
Affiliation(s)
- Kebi Wu
- School of Life Sciences, Tsinghua University, Beijing 100086, China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Si Tang
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaotian Wu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jianming Zhu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Junting Song
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yanlin Zhong
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
21
|
Zhu J, Tang S, Cheng K, Cai Z, Chen G, Zhou J. Microbial community composition and metabolic potential during a succession of algal blooms from Skeletonema sp. to Phaeocystis sp. Front Microbiol 2023; 14:1147187. [PMID: 37138603 PMCID: PMC10149697 DOI: 10.3389/fmicb.2023.1147187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Elucidating the interactions between algal and microbial communities is essential for understanding the dynamic mechanisms regulating algal blooms in the marine environment. Shifts in bacterial communities when a single species dominates algal blooms have been extensively investigated. However, bacterioplankton community dynamics during bloom succession when one algal species shift to another is still poorly understood. In this study, we used metagenomic analysis to investigate the bacterial community composition and function during algal bloom succession from Skeletonema sp. to Phaeocystis sp. The results revealed that bacterial community structure and function shifted with bloom succession. The dominant group in the Skeletonema bloom was Alphaproteobacteria, while Bacteroidia and Gammaproteobacteria dominated the Phaeocystis bloom. The most noticeable feature during the successions was the change from Rhodobacteraceae to Flavobacteriaceae in the bacterial communities. The Shannon diversity indices were significantly higher in the transitional phase of the two blooms. Metabolic reconstruction of the metagenome-assembled genomes (MAGs) showed that dominant bacteria exhibited some environmental adaptability in both blooms, capable of metabolizing the main organic compounds, and possibly providing inorganic sulfur to the host algae. Moreover, we identified specific metabolic capabilities of cofactor biosynthesis (e.g., B vitamins) in MAGs in the two algal blooms. In the Skeletonema bloom, Rhodobacteraceae family members might participate in synthesizing vitamin B1 and B12 to the host, whereas in the Phaeocystis bloom, Flavobacteriaceae was the potential contributor for synthesizing vitamin B7 to the host. In addition, signal communication (quorum sensing and indole-3-acetic acid molecules) might have also participated in the bacterial response to bloom succession. Bloom-associated microorganisms showed a noticeable response in composition and function to algal succession. The changes in bacterial community structure and function might be an internal driving factor for the bloom succession.
Collapse
Affiliation(s)
- Jianming Zhu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shandong, China
| | - Si Tang
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shandong, China
- *Correspondence: Guofu Chen,
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
- Jin Zhou,
| |
Collapse
|
22
|
Xue G, Wang X, Xu C, Song B, Chen H. Removal of harmful algae by Shigella sp. H3 and Alcaligenes sp. H5: algicidal pathways and characteristics. ENVIRONMENTAL TECHNOLOGY 2022; 43:4341-4353. [PMID: 34184617 DOI: 10.1080/09593330.2021.1949047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Application of algicidal bacteria is a promising technology to control harmful algal blooms (HABs). In this study, algicidal bacteria strains Shigella sp. H3 and Alcaligenes sp. H5 were obtained via two different isolation methods from the same lake water sample, with optimal algicidal efficiencies 96% and 74% against algae mixture. The Shigella sp. H3 and Alcaligenes sp. H5 lysed algae cells through cells-to-cells direct contact and secretion of algicidal metabolites, respectively. The stronger algicidal capability of Shigella sp. H3 was also attributable to its higher efficiency for triggering reactive oxygen species, which led to broken down of the antioxidant system and more severe damage to the bacterial cells. The antioxidant enzyme activities in Alcaligenes sp. H5 group were still expressed because of its relatively weaker algicidal capability and some intact algal cells were remained. The liquid carbohydrates from algal lysis in both groups increased significantly, whereas the quantities of liquid protein decreased, which might be assimilated by algicidal bacteria. Nonetheless, the whole algicidal process resulted in the increase of total released organic matters content. This study revealed the algicidal pathways of diverse bacterial strains, and the possible secondary environmental problem caused by the algal released organic matters should be considered when applying bacteria to control HABs.
Collapse
Affiliation(s)
- Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China
- Shanghai Institute of Pollution control and Ecological Security, People's Republic of China
| | - Xiaonuan Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China
| | - Chenlan Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China
| | - Binxue Song
- College of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China
- Jiangsu Tongyan Environmental Production Science & Technology Co. Ltd, Yancheng, People's Republic of China
| |
Collapse
|
23
|
Xu S, Lyu P, Zheng X, Yang H, Xia B, Li H, Zhang H, Ma S. Monitoring and control methods of harmful algal blooms in Chinese freshwater system: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56908-56927. [PMID: 35708805 DOI: 10.1007/s11356-022-21382-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Harmful algal blooms (HABs) are a worldwide problem with substantial adverse effects on the aquatic environment as well as human health, which have prompted researchers to study measures to stem and control them. Meanwhile, it is key to research and develop monitoring methods to establish early warning HABs. However, both the current monitoring methods and control methods have some shortcomings, making the field application limited. Thus, we need to improve current approaches for monitoring and controlling HABs efficiently. Based on the freshwater system features in China, we review various monitoring and control methods of HABs, summarize and discuss the problems with these methods, and propose the future development direction of monitoring and control HABs. Finally, we envision that it can combine physical, chemical, and biological methods to inhibit HAB expansion in the future, complementing each other with advantages. Further, we promise to establish a long-term strategy of controlling HABs with various algicidal bacteria co-cultivate for field applications in China. Efforts in studying algicidal bacteria must be increased to better control HABs and mitigate the risks of aquatic ecosystems and human health in China.
Collapse
Affiliation(s)
- Shengjun Xu
- Shenzhen BLY Landscape & Architecture Planning & Design Institute, Shenzhen, 518055, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ping Lyu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiaoxu Zheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Haijun Yang
- Shenzhen BLY Landscape & Architecture Planning & Design Institute, Shenzhen, 518055, China
| | - Bing Xia
- Shenzhen BLY Landscape & Architecture Planning & Design Institute, Shenzhen, 518055, China
| | - Hui Li
- Shenzhen BLY Landscape & Architecture Planning & Design Institute, Shenzhen, 518055, China
| | - Hao Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Shuanglong Ma
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
24
|
Isolation and identification of allelochemicals produced by Phaeodactylum tricornutum for Prorocentrum donghaiense. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Li D, He Y, Zheng Y, Zhang S, Zhang H, Lin L, Wang D. Metaproteomics reveals unique metabolic niches of dominant bacterial groups in response to rapid regime shifts during a mixed dinoflagellate bloom. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153557. [PMID: 35114235 DOI: 10.1016/j.scitotenv.2022.153557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The dynamics of bacterial composition and metabolic activity during a distinct phytoplankton bloom have been reported. However, there is limited information on the bacterial community response to drastic environmental changes caused by species succession during a mixed-species bloom. This study investigated active bacterial groups and metabolic activity during a mixed bloom formed by dinoflagellates Prorocentrum obtusidens and Karenia mikimotoi using a metaproteomic approach. Bacterial community structure and dominant bacterial groups varied rapidly with the bloom regime shifts caused by species succession. Pseudoalteromonas and Vibrio dominated the bacterial community in the P. obtusidens-dominated regime, while Alteromonas, Cytophaga-Flavobacteria-Bacteroides (CFB) group, and marine Roseobacter clade (MRC) were the major contributors in other regimes, with the most abundant taxa being Alteromonas in the K. mikimotoi-dominated regime and the CFB group in the dissipation regime. Specific metabolic niches and unique substrate specificity of different bacterial groups enabled them to dominate and thrive in different bloom regimes. High metabolic plasticity in signal response, substrate utilization, motility, and adhesion are essential for bacteria to respond to drastic bloom regime shift, and the predominance of specific bacteria under unique bloom regimes may be the result of long-term coevolution between bacteria and bloom-forming phytoplankton species.
Collapse
Affiliation(s)
- Dongxu Li
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, China
| | - Yaohui He
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Yue Zheng
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Shufeng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Hao Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Dazhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
26
|
Li Y, Xiong X, Zhang C, Liu A. Sustainable restoration of anoxic freshwater using environmentally-compatible oxygen-carrying biochar: Performance and mechanisms. WATER RESEARCH 2022; 214:118204. [PMID: 35219183 DOI: 10.1016/j.watres.2022.118204] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The long-term decline in dissolved oxygen (DO) levels in freshwater systems including rivers and lakes has become a worldwide concern, which can threaten biodiversity, nutrient biogeochemistry, water quality and ultimately human health. Herein, we report a sustainable restoration strategy for anoxic freshwater using local sediment-based biochar as novel oxygen nanobubble carriers. Column incubation experiments were conducted with water and sediment samples from an urban tributary of the Yangtze River. The oxygen-carrying sediment-based biochar (O-SBC) showed long-lasting re-oxygenation performance for anoxic river waters during 28-day period, in which DO was rapidly elevated from ∼0.14 to ∼7.87 mg/L and gradually maintained at ∼4.78 mg/L until the end. O-SBC with multiple functions switched the sediments from a source to a sink of nutrients, and its release of oxygen nanobubbles contributed further decrements of 66.3% NH4+-N and 142.9% PO43--P except for physical blocking and physicochemical adsorption. Notably, a comprehensive focus on restoration mechanism was explored in view of microbial community response. The re-oxygenation was followed by a ∼5.05% increase of bacterial diversity (Shannon index) in water, but a ∼2.40% decrease in sediments. A proliferation of some specific aerobic populations was observed, of which the nitrifying Nitrospira abundances were ∼10-fold higher in the water from O-SBC than the control. Additionally, functional genes involved in nitrous oxide reduction, polyphosphate synthesis/degradation, and thiosulfate oxidation were also enriched. Taken together, our findings can not only expand the promising candidates for oxygen nanobubble carriers based on sediment recycling, but also highlight the microbial molecular mechanisms for anoxic freshwater restoration based on nutrient cycle regulation.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Xinyan Xiong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Chi Zhang
- College of Mechanics and Materials, Hohai University, Xikang Road #1, Nanjing 210098, PR China.
| | - An Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Xueyuan Avenue #1066, Shenzhen 518060, PR China
| |
Collapse
|
27
|
Wu X, Kong L, Pan J, Feng Y, Liu S. Metagenomic Approaches to Explore the Quorum Sensing-Mediated Interactions Between Algae and Bacteria in Sequence Membrane Photo-Bioreactors. Front Bioeng Biotechnol 2022; 10:851376. [PMID: 35480974 PMCID: PMC9036987 DOI: 10.3389/fbioe.2022.851376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/25/2022] [Indexed: 11/29/2022] Open
Abstract
Algal–bacterial water treatment is more effective for better harvesting and promotes energy savings than other traditional treatments, while the relationships between them are multifarious. Among all the interactions, quorum sensing plays an essential ecological role. However, the relative contributions of signaling in the interaction between algae and bacteria are not clear. To elucidate the role of quorum sensing by indole-3-acetic acid (IAA) in terms of the algal–bacterial interaction during the nitrogen removal process, the bioreactors, respectively, inoculated with Chlorella, Phormidium, and both of them were started. We manifest the existence of multiple signaling-related proteins by alignment with the constructed database, and the signaling was analyzed using metagenomic sequence data obtained during bioreactor operation. We found that IAA was mainly synthetized depending on indole-3-acetamide (IAM) and indole-3-pyruvic acid (IPA) pathways by calculating the gene abundance of IAA synthetase. Both Chlorella and the co-culture reactor possessed higher nitrogen removal rate (NRR) than the Phormidium reactor, and the abundance profile of the signaling-related gene is similar with the NRR. The signaling-related gene abundance increased in Chlorella and co-culture reactors but decreased in the Phormidium reactor. Pseudomonas, Hydrogenophaga, and Zoogloea are the dominant signaled bacteria. Chlorella is the dominant signaled algae. The relative abundance of total signaled bacteria in the whole bacterial community increased during the start-up in Chlorella and co-culture reactors. According to the network analysis, phytoplankton prefers to positively correlate with signaled bacteria than non-signaled bacteria, which indicated that the signaling influences the algal–bacterial interaction. These findings hint at the significance of algal–bacterial signaling in this interkingdom interaction during nitrogen removal.
Collapse
Affiliation(s)
- Xiaogang Wu
- College of Environmental Sciences and Engineering, Peking University, Beijing, China.,Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, China
| | - Lingrui Kong
- College of Environmental Sciences and Engineering, Peking University, Beijing, China.,Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, China
| | - Juejun Pan
- College of Environmental Sciences and Engineering, Peking University, Beijing, China.,Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, China
| | - Yiming Feng
- College of Environmental Sciences and Engineering, Peking University, Beijing, China.,Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, China
| | - Sitong Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing, China.,Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
28
|
Zheng M, Han H, Shi J, Zhang Z, Ma W, Xu C. Metagenomic analysis of aromatic ring-cleavage mechanism in nano-Fe 3O 4@activated coke enhanced bio-system for coal pyrolysis wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125387. [PMID: 33676245 DOI: 10.1016/j.jhazmat.2021.125387] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/25/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
In current study, nano-Fe3O4@activated coke enhanced bio-system (FEBS) under limited-oxygen condition was applied for efficient treatment of aromatic organics in coal pyrolysis wastewater. Metagenomic analyses revealed functional microbiome linkages and mechanism involved in aromatic ring-cleavage. Based on biodegradation efficiency in different reactors, FEBS supplementation conferred the best organic removal (avg. 92.29%). It also showed a remarkable advantage in biodegradability maintenance (>40%) over control reactors. Metagenomics profiling revealed the degradation processes were driven by Fe3O4 redox reactions and microbial biofilm, while the suspended sludge was the principal force for aromatic mineralization. Based on the analysis of functional species and genes, most bacteria cleaved the benzene ring preferably through the aerobic pathways, mediated by catechol 1, 2-dioxygenase, catechol 2, 3-dioxygenase and protocatechuate 3, 4-dioxygenase (66-84%). Ecological network showed that Comamonas testosterone-centered microbiome and Azotobacter linked to the nitrogen (N)-heterocyclic ring-cleavage. Network linkage further demonstrated that Alicycliphilus and Acidovorax were the key tone taxa involved in benzene ring-cleavage. Finally, combined with analysis of degradation products, bacteria degraded N-heterocyclic ring containing organic aromatic compounds (quinoline) mainly through anaerobic processes, whereas cleavage of benzene ring preferred aerobic pathways. The enriched functional species were the primary reason for the enhanced biodegradation in FEBS.
Collapse
Affiliation(s)
- Mengqi Zheng
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongjun Han
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jingxin Shi
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhengwen Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wencheng Ma
- School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Chunyan Xu
- Harbin Gongchuang Environmental Protection Technology Company, Harbin, Heilongjiang 150090, China.
| |
Collapse
|
29
|
Lounas R, Kasmi H, Chernai S, Amarni N, Hamdi B. Dynamics of the genus Ostreopsis (Gonyaulacales, Dinophyceae) in a Mediterranean fish farm. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:333. [PMID: 33970342 DOI: 10.1007/s10661-021-09117-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
This study revealed the dynamics of the genus Ostreopsis in the south-western Mediterranean Sea fish farm during the 2016 and 2017 summers. This phytoplankton is known to produce palytoxin-like compounds, listed among the most potent marine toxins known, and can pose a serious concern for humans in the Mediterranean area. Principal component analysis (PCA) explained the significance of temperature, salinity, and dissolved inorganic nitrogen in the proliferation of this toxic dinoflagellate. The peak of the Ostreopsis sp. (6.34 × 103 cells L-1) was recorded at 28.4 °C, at a salinity of 38.3 PSU, and the dissolved inorganic nitrogen had a value of 0.60 μmol L-1. Our results highlight the importance of monitoring the proliferation of this harmful dinoflagellate in southern Mediterranean waters.
Collapse
Affiliation(s)
- Ryhane Lounas
- Laboratory of Conservation and Valorization of Marine Resources, National Higher School of Marine Science and Coastal Management (ENSSMAL), University Campus of Dely Ibrahim, Bois des Cars, 16320, Algiers, Algeria.
| | - Hamza Kasmi
- Sécurité de Convoyage de Fonds Et de Produits Sensibles Et/Ou Dangereux, SGS Centre, Bois des cars III Villa n°96 Dely-Ibrahim, 16320, Algiers, Algeria
| | - Safia Chernai
- Laboratory of Conservation and Valorization of Marine Resources, National Higher School of Marine Science and Coastal Management (ENSSMAL), University Campus of Dely Ibrahim, Bois des Cars, 16320, Algiers, Algeria
| | - Nadia Amarni
- Laboratory of Conservation and Valorization of Marine Resources, National Higher School of Marine Science and Coastal Management (ENSSMAL), University Campus of Dely Ibrahim, Bois des Cars, 16320, Algiers, Algeria
| | - Boualem Hamdi
- Laboratory of Conservation and Valorization of Marine Resources, National Higher School of Marine Science and Coastal Management (ENSSMAL), University Campus of Dely Ibrahim, Bois des Cars, 16320, Algiers, Algeria
| |
Collapse
|
30
|
Zhang H, Yan M, Huang T, Huang X, Yang S, Li N, Wang N. Water-lifting aerator reduces algal growth in stratified drinking water reservoir: Novel insights into algal metabolic profiling and engineering applications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115384. [PMID: 32823043 DOI: 10.1016/j.envpol.2020.115384] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Water-lifting aerator (WLA) which was developed by Professor Tinglin Huang at Xi'an University of Architecture and Technology, China has multi-functional water quality improvement that significantly inhibits the occurrence of harmful algal blooms (HABs) in deep drinking water reservoirs. However, the biological mechanism of WLA to the suppress algal growth has not been comprehensively understood. Here, the cellular mechanism that allows WLA to control HABs was explored based on the combination of both laboratory simulation and field investigation. Under simulated hydrodynamic conditions, the results showed that the cell density, chlorophyll a content, chlorophyll fluorescence parameters, and dehydrogenase activity in Microcystis aeruginosa all peaked under light conditions at 25 °C. The metabolic activity of M. aeruginosa varied significantly under low temperature at 6 °C and light conditions when cultured for 48 h. The extracellular organic matter (EOM) and intracellular organic matter (IOM) contents of M. aeruginosa were both resolved into three components. Moreover, the total fluorescence intensities from EOM and IOM both peaked under light conditions at 25 °C. The field investigation showed that the growth of algae was decreased significantly in Lijiahe drinking water reservoir with WLA application. The chlorophyll fluorescence parameters decreased significantly after vertical mixing, thereby indicating that the WLA weakened the photosynthetic ability and reduced the biological activity of algae in situ. In addition, the WLA significantly affected the vertical distribution of the phytoplankton community composition. Altogether, these results shed new lights on understanding the control of algal blooms by WLA in stratified drinking water reservoirs. WLA has broad prospect of engineering applications, which can control algal blooms of water supply resources in situ, therefore, reduce the content of disinfection by-products in drinking water treatment plants.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Xi'an Key Laboratory of Water Source and Water Quality Guarantee, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Miaomiao Yan
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Xi'an Key Laboratory of Water Source and Water Quality Guarantee, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Xi'an Key Laboratory of Water Source and Water Quality Guarantee, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Xin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Xi'an Key Laboratory of Water Source and Water Quality Guarantee, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shangye Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Xi'an Key Laboratory of Water Source and Water Quality Guarantee, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Nan Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Xi'an Key Laboratory of Water Source and Water Quality Guarantee, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Na Wang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Xi'an Key Laboratory of Water Source and Water Quality Guarantee, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
31
|
Chen S, Yan M, Huang T, Zhang H, Liu K, Huang X, Li N, Miao Y, Sekar R. Disentangling the drivers of Microcystis decomposition: Metabolic profile and co-occurrence of bacterial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140062. [PMID: 32544693 DOI: 10.1016/j.scitotenv.2020.140062] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/06/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
In aquatic ecosystems, water microbial communities can trigger the outbreak or decline of cyanobacterial blooms. However, the microbiological drivers of Microcystis decomposition in reservoirs remain unclear. Here, we explored the bacterial community metabolic profile and co-occurrence dynamics during Microcystis decomposition. The results showed that the decomposition of Microcystis greatly altered the metabolic characteristics and composition of the water bacterial community. Significant variations in bacterial community composition were observed: the bacterial community was mainly dominated by Proteobacteria, Actinobacteria, Planctomycetes, and Bacteroidetes during Microcystis decomposition. Additionally, members of Exiguobacterium, Rhodobacter, and Stenotrophomonas significantly increased during the terminal stages. Dissolved organic matters (DOM) primarily composed of fulvic-like, humic acid-like, and tryptophan-like components, which varied distinctly during Microcystis decomposition. Additionally, the metabolic activity of the bacterial community showed a continuous decrease during Microcystis decomposition. Functional prediction showed a sharp increase in the cell communication and sensory systems of the bacterial communities from day 12 to day 22. Co-occurrence networks showed that bacteria responded significantly to variations in the dynamics of Microcystis decomposition through close interactions between each other. Redundancy analysis (RDA) indicated that Chlorophyll a, nitrate nitrogen (NO3--N), dissolved oxygen (DO), and dissolved organic carbon (DOC) were crucial drivers for shaping the bacterial community structure. Taken together, these findings highlight the dynamics of the water bacterial community during Microcystis decomposition from the perspective of metabolism and community composition, however, further studies are needed to understand the algal degradation process associated with bacteria.
Collapse
Affiliation(s)
- Shengnan Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Miaomiao Yan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hui Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kaiwen Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Nan Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yutian Miao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Raju Sekar
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|