1
|
Zhang X, Xue X, Hu J. Combined ozonation-biological activated carbon process for antibiotic resistance control in treated effluent from wastewater treatment plant. WATER RESEARCH 2024; 268:122610. [PMID: 39426045 DOI: 10.1016/j.watres.2024.122610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Biological activated carbon (BAC) treatment plays a crucial role in wastewater treatment plants due to its economic and effective promotion of organic matter degradation or mineralization. However, whether the changes in antibiotic resistance (AR) resulting from BAC or O3-BAC treatment are related to environmental factors remains unclear, as previous studies have primarily focused on isolated aspects, or have combined these aspects without systematically comparing the BAC and O3-BAC treatment processes or analyzing their interrelationships. In this study, to gain a clearer understanding of the factors related to AR during the BAC treatment, the treatment process of BAC and O3-BAC were comprehensively compared, including antibiotics removal, wastewater matrix changes, antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs), and bacterial community characteristics. The roles of O3 pretreatment and the bed depth of BAC were also clarified. ARGs were found to be not as sensitive to ozone as ARB. In addition, further strengthening of control measures should be needed for trimethoprim and tetracycline, due to their low removal efficiencies by ozone pretreatment, and their close relationship with the increased AR. Besides, 2 mg/L ozonation pretreatment could significantly influence the microbial community composition of wastewater and biofilm samples, while 1 mg/L ozonation could not. Finally, the correlation of environmental factors, bacterial communities, and ARGs revealed that to reduce the AR risks of O3-BAC treatment, antibiotics in wastewater should be strictly controlled, since they were positively correlated with the accumulation of ARGs and Pseudomonadota, Actinomycetota, and Bacteroidota, which were responsible for carrying and disseminating ARGs. The results showed that higher dose ozonation pre-treatment and longer bed depth of BAC process could help control the AR of BAC.
Collapse
Affiliation(s)
- Xinyang Zhang
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Xi Xue
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Jiangyong Hu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
2
|
Zhang XY, Liu TS, Hu JY. Antibiotics removal and antimicrobial resistance control by ozone/peroxymonosulfate-biological activated carbon: A novel treatment process. WATER RESEARCH 2024; 261:122069. [PMID: 39003878 DOI: 10.1016/j.watres.2024.122069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Biological activated carbon (BAC) is one of the important treatment processes in wastewater and advanced water treatment. However, the BAC process has been reported to have antimicrobial resistance (AMR) risks. In this study, a new BAC-related treatment process was developed to reduce AMR caused by BAC treatment: ozone/peroxymonosulfate-BAC (O3/PMS-BAC). The O3/PMS-BAC showed better treatment performance on the targeted five antibiotics and dissolved organic matter removal than O3-BAC and BAC treatments. The O3/PMS-BAC process had better control over the AMR than the O3-BAC and BAC processes. Specifically, the amount of targeted antibiotic-resistant bacteria in the effluent and biofilm of O3/PMS-BAC was only 0.01-0.03 and 0.11-0.26 times that of the BAC process, respectively. Additionally, the O3/PMS-BAC process removed 1.76 %-62.83 % and 38.14 %-99.27 % more of the targeted ARGs in the effluent and biofilm than the BAC process. The total relative abundance of the targeted 12 ARGs in the O3/PMS-BAC effluent was decreased by 86 % compared to the effluent after BAC treatment. In addition, Proteobacteria and Bacteroidetes were probably the main hosts for transmitting ARGs in this study, and their relative abundance decreased by 9.6 % and 6.0 % in the effluent of the O3/PMS-BAC treatment compared to that in BAC treatment. The relationship analysis revealed that controlling antibiotic discharge was crucial for managing AMR, as antibiotics were closely related to both ARGs and bacteria associated with their emergence. The results showed that the newly developed treatment process could reduce AMR caused by BAC treatment while ensuring effluent quality. Therefore, O3/PMS-BAC is a promising alternative to BAC treatment for future applications.
Collapse
Affiliation(s)
- Xin Yang Zhang
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Tai Shan Liu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiang Yong Hu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
3
|
Wei L, Han Y, Zheng J, Xu X, Zhu L. Accelerated dissemination of antibiotic resistant genes via conjugative transfer driven by deficient denitrification in biochar-based biofiltration systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173268. [PMID: 38754503 DOI: 10.1016/j.scitotenv.2024.173268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Biofiltration systems harbored and disseminated antibiotic resistance genes (ARGs), when confronting antibiotic-contained wastewater. Biochar, a widely used environmental remediation material, can mitigate antibiotic stress on adjoining microbes by lowering the availability of sorbed antibiotics, and enhance the attachment of denitrifiers. Herein, bench-scale biofiltration systems, packed with commercial biochars, were established to explore the pivotal drivers affecting ARG emergence. Results showed that biofiltration columns, achieving higher TN removal and denitrification capacity, showed a significant decrease in ARG accumulation (p < 0.05). The relative abundance of ARGs (0.014 ± 0.0008) in the attached biofilms decreased to 1/5-folds of that in the control group (0.065 ± 0.004). Functional analysis indicated ARGs' accumulation was less attributed to ARG activation or horizontal gene transfer (HGT) driven by sorbed antibiotics. Most denitrifiers, like Bradyrhizobium, Geothrix, etc., were found to be enriched and host ARGs. Nitrosative stress from deficient denitrification was demonstrated to be the dominant driver for affecting ARG accumulation and dissemination. Metagenomic and metaproteomic analysis revealed that nitrosative stress promoted the conjugative HGT of ARGs mainly via increasing the transmembrane permeability and enhancing the amino acid transport and metabolism, such as cysteine, methionine, and valine metabolism. Overall, this study highlighted the risks of deficient denitrification in promoting ARG transfer and transmission in biofiltration systems and natural ecosystems.
Collapse
Affiliation(s)
- Lecheng Wei
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University
| | - Yutong Han
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University
| | - Jingjing Zheng
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University
| | - Xiangyang Xu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China
| | - Liang Zhu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University.
| |
Collapse
|
4
|
Li J, Liao Q, Wang Y, Wang X, Liu J, Zha R, He JZ, Zhang M, Zhang W. Involvement of functional metabolism promotes the enrichment of antibiotic resistome in drinking water: Based on the PICRUSt2 functional prediction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120544. [PMID: 38471323 DOI: 10.1016/j.jenvman.2024.120544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Biofilters are the important source and sink of antibiotic resistance genes (ARGs) and antibiotic resistance bacteria (ARB) in the drinking water. Current studies generally ascribed the prevalence of BAR in biofilter from the perspective of gene behavior, i.e. horizontal gene transfer (HGT), little attentions have been paid on the ARGs carrier- ARB. In this study, we proposed the hypothesis that ARB participating in pollutant metabolism processes and becoming dominant is an important way for the enrichment of ARGs. To verify this, the antibiotic resistome and bacterial functional metabolic pathways of a sand filter was profiled using heterotrophic bacterial plate counting method (HPC), high-throughput qPCR, Illumina Hiseq sequencing and PICRUSt2 functional prediction. The results illustrated a significant leakage of ARB in the effluent of the sand filter with an average absolute abundance of approximately 102-103 CFU/mL. Further contribution analysis revealed that the dominant genera, such as Acinetobacter spp., Aeromonas spp., Elizabethkingia spp., and Bacillus spp., were primary ARGs hosts, conferring resistance to multiple antibiotics including sulfamethoxazole, tetracycline and β-lactams. Notably, these ARGs hosts were involved in nitrogen metabolism, including extracellular nitrate/nitrite transport and nitrite reduction, which are crucial in nitrification and denitrification in biofilters. For example, Acinetobacter spp., the dominant bacteria in the filter (relative abundance 69.97 %), contributed the majority of ARGs and 53.79 % of nitrite reduction function. That is, ARB can predominate by participating in the nitrogen metabolism pathways, facilitating the enrichment of ARGs. These findings provide insights into the stable presence of ARGs in biofilters from a functional metabolism perspective, offering a significant supplementary to the mechanisms of the emergence, maintenance, and transmission of BARin drinking water.
Collapse
Affiliation(s)
- Jiabing Li
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China
| | - Qiuyu Liao
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China
| | - Yun Wang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China
| | - Xuansen Wang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China
| | - Jinchi Liu
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China
| | - Ruibo Zha
- School of Cultural Tourism and Public Administration, Fujian Normal University, Fuzhou 350117, China
| | - Ji-Zheng He
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Sanming 365002, China
| | - Menglu Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Sanming 365002, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China.
| | - Weifang Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China
| |
Collapse
|
5
|
Gao J, Xing X, Cai W, Li Z, Shi G, Chen Y, Liang H, Chen C, Ma K, Chen J, Hu C. Effect of micropollutants on disinfection byproducts and antibiotic resistance genes in drinking water in the process of biological activated carbon treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132304. [PMID: 37748307 DOI: 10.1016/j.jhazmat.2023.132304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 09/27/2023]
Abstract
The biofilm stress response of biological activated carbon (BAC) was investigated under prolonged exposure to sulfadiazine and 2,4-Dichlorophenoxyacetic acid, simulating complex emerging organic contaminants (EOCs) that are mainly involved in the formation of nitrogenous disinfection byproducts (N-DBPs) and antibiotic resistance genes (ARGs). Under trace complex EOCs condition (2 µg/L), N-DBP precursors and abundance of ARGs increased significantly in BAC effluent. The total formation potential of haloacetonitriles (HANs) and halonitromethanes (HNMs) was 751.47 ± 2.98 ng/L, which was much higher than the control group (440.67 ± 13.38 ng/L without EOCs). Similarly, the relative abundance of ARGs was more than twice that in the control group. The complex EOCs induce excessive extracellular polymeric substance secretion (EPS), thereby causing more N-DBP precursors and stronger horizontal gene transfer. Metagenome analysis revealed that functional amino acid and protein biosynthesis genes were overexpressed compared to the control group, causing more EPS to be secreted into the external environment. Complex EOCs promote Cobetia, Clostridium, and Streptomyces dominance, contributing to the production of N-DBP precursors and ARGs. For the first time, in addition to the direct hazards of the EOCs, this study successfully revealed the indirect water quality risks of complex EOCs from the microbial stress response during BAC treatment. Synergistic regulation of EOCs and microorganisms is important for tap water security.
Collapse
Affiliation(s)
- Jingyu Gao
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xueci Xing
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Wu Cai
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zesong Li
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Guogui Shi
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Youyi Chen
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Hao Liang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Chaoxiang Chen
- Nanzhou Waterworks of Guangzhou Water Supply Co. Ltd., Guangzhou 510000, China
| | - Kunyu Ma
- Nanzhou Waterworks of Guangzhou Water Supply Co. Ltd., Guangzhou 510000, China
| | - Jinrong Chen
- Nanzhou Waterworks of Guangzhou Water Supply Co. Ltd., Guangzhou 510000, China
| | - Chun Hu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Lin H, Hou Q, Sun X, Hu G, Yu R. Oyster shell for drinking water filtration compared with granular activated carbon: advantages and limitations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121475-121486. [PMID: 37950780 DOI: 10.1007/s11356-023-30781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/27/2023] [Indexed: 11/13/2023]
Abstract
Deliberate media selection can be conducted to achieve targeted objective in filters. In this study, three biofilters (BFs) packed with calcinated oyster shell (COS), granular activated carbon (GAC), and COS + GAC (Mix) were set up in parallel following a rough filter packed with natural oyster shell to compare the performance for treating micro-polluted source water. Different media showed selective removal effects for different pollutants. GAC outperformed COS in terms of TOC and UV254. COS achieved higher reduction in turbidity than GAC. Due to the removal of total bacteria, the absolute and relative abundance of antibiotic resistance genes (ARGs) both decreased much in rough filter treated water (1.16 × 1014 to 1.40 × 1013 copies L-1 and 81.6 to 36.9%, respectively). The highest diverse and rich bacterial community was found in the biofilms on the COS filler, so microbial leakage gave rise to high bacterial content, leading to the highest absolute abundance of ARGs in COS BF effluent (2.11 × 1013 copies L-1). The highest relative abundance of ARGs (41.2%) was found in GAC BF effluent. SourceTracker and biomarker analysis both suggested that treatment process played a more important role in shaping the bacterial community structure in Mix BF effluent than single media BFs, which contributed to the lowest absolute (8.69 × 1012 copies L-1) and relative abundance (25.2%) of ARGs in Mix BF effluent among the three BFs. Our results suggested that mix COS + GAC can not only give full play to their respective advantages for traditional pollutants, but also achieve highest reduction in ARGs.
Collapse
Affiliation(s)
- Huirong Lin
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
- Institute of Environmental and Ecological Engineering, Huaqiao University, Xiamen, 361021, China
| | - Quanyang Hou
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
- Institute of Environmental and Ecological Engineering, Huaqiao University, Xiamen, 361021, China
| | - Xiaohui Sun
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Gongren Hu
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
- Institute of Environmental and Ecological Engineering, Huaqiao University, Xiamen, 361021, China
| | - Ruilian Yu
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China.
- Institute of Environmental and Ecological Engineering, Huaqiao University, Xiamen, 361021, China.
| |
Collapse
|
7
|
Li X, Xie J, Ding C, Du H, Gao S, Ma W, Liang F, Zhang H, Wang A. Occurrence, fate and potential health risks of antibiotic resistomes in a constructed wetlands-reservoir ecosystem for drinking water source improvement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166055. [PMID: 37543322 DOI: 10.1016/j.scitotenv.2023.166055] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/16/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
The development of effective and feasible engineering technologies to control the transmission of antibiotic resistance genes (ARGs) and pathogenic antibiotic-resistant bacteria (PARB) form drinking water sources is urgently needed for ensuring drinking water safety. In this study, metagenomic analysis was applied to systematically explore the full profiles, removal, and potential health risks of antibiotic resistomes in a large constructed wetlands-reservoir ecosystem (CWs-R) for drinking water source improvement. A total of 343 ARG subtypes belonging to 18 ARG types were identified from water and sediment samples in the CWs-R ecosystem, with an average abundance of 0.339 copies/cell, and bacitracin and multidrug resistance genes were the predominant ARG types in the water and sediment, respectively. The CWs-R ecosystem showed an excellent removal efficiency of ARGs and mobile genetic elements (MGEs) in water, with the total removal rate reaching 64.82 % and 77.09 %, respectively, among which the emergent plant zone and ecological storage unit played major roles. The metagenomic assembly tracked many mobile ARGs and opportunistic pathogens in the CWs-R ecosystem and identified 19 contigs as ARG-carrying pathogens, including Staphylococcus aureus, Salmonella enterica, Escherichia coli, and Klebsiella pneumonia. Overall, the CWs-R ecosystem has an important role in reducing the potential public health risks posed by antibiotic resistomes in drinking water sources but still cannot fully eliminate them. Therefore, we further classified water and sediment samples in the CWs-R ecosystem and identified potential ARGs and PARB indicators based on the metagenomic analysis results by considering the potential for horizontal transfer of ARGs to opportunistic pathogens. Taken together, this work demonstrates the CWs-R ecosystem as an economical and feasible engineering technology to reduce the dissemination of antibiotic resistomes in the drinking water source, provides useful information for monitoring and controlling antibiotic resistance in similar water sources, and ensures biosafety of drinking water.
Collapse
Affiliation(s)
- Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Jiahao Xie
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Cheng Ding
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China.
| | - Hongqiu Du
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Shuhong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Weixing Ma
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Feng Liang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Center for Water and Environmental Technology, YCEST, Yancheng 224051, PR China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Aijie Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| |
Collapse
|
8
|
Zhang L, Song Z, Dong T, Fan X, Peng Y, Yang J. Mitigating mechanism of nZVI-C on the inhibition of anammox consortia under long-term tetracycline hydrochloride stress: Extracellular polymeric substance properties and microbial community evolution. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131035. [PMID: 36958165 DOI: 10.1016/j.jhazmat.2023.131035] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 05/03/2023]
Abstract
In this study, activated carbon-loaded nano-zero-valent iron (nZVI-C) composites were added to anaerobic ammonium oxidation bacteria (AnAOB) to overcome the inhibition of tetracycline hydrochloride (TCH). Results showed that 500 mg L-1 nZVI-C effectively mitigated the long-term inhibition of 1.5 mg L-1 TCH on AnAOB and significantly improved the total nitrogen removal efficiency (TNRE) (from 65.27% to 86.99%). Spectroscopic analysis revealed that nZVI-C increased the content of N-H and CO groups in EPS, which contributed to the adsorption of TCH. The accumulation of humic acid-like substances in EPS was also conducive to strengthening the extracellular defense level. In addition, TCH-degrading bacteria (Clostridium and Mycobacterium) were enriched in situ, and the abundance of Ca. Brocadia was significantly increased (from 10.69% to 18.59%). Furthermore, nZVI-C increased the abundance of genes encoding tetracycline inactivation (tetX), promoted mineralization of TCH by 90%, weakening the inhibition of TCH on microbial nitrogen metabolism. nZVI-C accelerated the electron consumption of anammox bacteria by upregulating the abundance of electron generation genes (nxrA, hdh) and providing electrons directly.
Collapse
Affiliation(s)
- Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Zixuan Song
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Tingjun Dong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xuepeng Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jiachun Yang
- Environmental Protection Development Group Co., Ltd., Shandong 250101, China.
| |
Collapse
|
9
|
Liu M, Graham N, Xu L, Zhang K, Yu W. Bubbleless aerated-biological activated carbon as a superior process for drinking water treatment in rural areas. WATER RESEARCH 2023; 240:120089. [PMID: 37216786 DOI: 10.1016/j.watres.2023.120089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Drinking water supply in rural areas remains a substantial challenge due to complex natural, technical and economic conditions. To provide safe and affordable drinking water to all, as targeted in the UN Sustainable Development Goals (2030 Agenda), low-cost, efficient water treatment processes suitable for rural areas need to be developed. In this study, a bubbleless aeration BAC (termed ABAC) process is proposed and evaluated, involving the incorporation of a hollow fiber membrane (HFM) assembly within a slow-rate BAC filter, to provide dissolved oxygen (DO) throughout the BAC filter and an increased DOM removal efficiency. The results showed that after a 210-day period of operation, the ABAC increased the DOC removal by 54%, and decreased the disinfection byproduct formation potential (DBPFP) by 41%, compared to a comparable BAC filter without aeration (termed NBAC). The elevated DO (> 4 mg/L) not only reduced secreted extracellular polymer, but also modified the microbial community with a stronger degradation ability. The HFM-based aeration showed comparable performance to 3 mg/L pre-ozonation, and the DOC removal efficiency was four times greater than that of a conventional coagulation process. The proposed ABAC treatment, with its various advantages (e.g., high stability, avoidance of chemicals, ease of operation and maintenance), is well-suited to be integrated as a prefabricated device, for decentralized drinking water systems in rural areas.
Collapse
Affiliation(s)
- Mengjie Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Lei Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Kai Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
10
|
Calderón-Franco D, Corbera-Rubio F, Cuesta-Sanz M, Pieterse B, de Ridder D, van Loosdrecht MCM, van Halem D, Laureni M, Weissbrodt DG. Microbiome, resistome and mobilome of chlorine-free drinking water treatment systems. WATER RESEARCH 2023; 235:119905. [PMID: 36989799 DOI: 10.1016/j.watres.2023.119905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Drinking water treatment plants (DWTPs) are designed to remove physical, chemical, and biological contaminants. However, until recently, the role of DWTPs in minimizing the cycling of antibiotic resistance determinants has got limited attention. In particular, the risk of selecting antibiotic-resistant bacteria (ARB) is largely overlooked in chlorine-free DWTPs where biological processes are applied. Here, we combined high-throughput quantitative PCR and metagenomics to analyze the abundance and dynamics of microbial communities, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) across the treatment trains of two chlorine-free DWTPs involving dune-based and reservoir-based systems. The microbial diversity of the water increased after all biological unit operations, namely rapid and slow sand filtration (SSF), and granular activated carbon filtration. Both DWTPs reduced the concentration of ARGs and MGEs in the water by circa 2.5 log gene copies mL-1, despite their relative increase in the disinfection sub-units (SSF in dune-based and UV treatment in reservoir-based DWTPs). The total microbial concentration was also reduced (2.5 log units), and none of the DWTPs enriched for bacteria containing genes linked to antibiotic resistance. Our findings highlight the effectiveness of chlorine-free DWTPs in supplying safe drinking water while reducing the concentration of antibiotic resistance determinants. To the best of our knowledge, this is the first study that monitors the presence and dynamics of antibiotic resistance determinants in chlorine-free DWTPs.
Collapse
Affiliation(s)
| | | | | | - Brent Pieterse
- Dunea, Utility for drinking water and nature conservancy, Plein van de Verenigde Naties 11-15, 2719 EG Zoetermeer, the Netherlands
| | - David de Ridder
- Evides Water Company N.V., Schaardijk 150, 3063 NH, Rotterdam, the Netherlands
| | | | | | | | - David G Weissbrodt
- Delft University of Technology, Delft, the Netherlands; Department of Biotechnology and Food Science, Division of Analysis and Control of Microbial Systems, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
11
|
Zhou Q, Zhang J, Fang Q, Zhang M, Wang X, Zhang D, Pan X. Microplastic biodegradability dependent responses of plastisphere antibiotic resistance to simulated freshwater-seawater shift in onshore marine aquaculture zones. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121828. [PMID: 37187278 DOI: 10.1016/j.envpol.2023.121828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 05/17/2023]
Abstract
MPs carrying ARGs can travel between freshwater and seawater due to intensive land-sea interaction in onshore marine aquaculture zones (OMAZ). However, the response of ARGs in plastisphere with different biodegradability to freshwater-seawater shift is still unknown. In this study, ARG dynamics and associated microbiota on biodegradable poly (butyleneadipate-co-terephthalate) (PBAT) and non-biodegradable polyethylene terephthalate (PET) MPs were investigated through a simulated freshwater-seawater shift. The results exhibited that freshwater-seawater shift significantly influenced ARG abundance in plastisphere. The relative abundance of most studied ARGs decreased rapidly in plastisphere after they entered seawater from freshwater but increased on PBAT after MPs entered freshwater from seawater. Besides, the high relative abundance of multi-drug resistance (MDR) genes occurred in plastisphere, and the co-change between most ARGs and mobile genetic elements indicated the role of horizontal gene transfer on ARG regulation. Proteobacteria was dominant phylum in plastisphere and the dominant genera, such as Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Afipia, Gemmobacter and Enhydrobacter, were significantly associated with qnrS, tet and MDR genes in plastisphere. Moreover, after MPs entered new water environment, the ARGs and microbiota genera in plastisphere changed significantly and tended to converge with those in receiving water. These results indicated that MP biodegradability and freshwater-seawater interaction influenced potential hosts and distributions of ARGs, of which biodegradable PBAT posed a high risk in ARG dissemination. This study would be helpful for understanding the impact of biodegradable MP pollution on spread of antibiotic resistance in OMAZ.
Collapse
Affiliation(s)
- Qian Zhou
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jun Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qunkai Fang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ming Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaonan Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
12
|
Liang J, Lin H, Singh B, Wang A, Yan Z. A global perspective on compositions, risks, and ecological genesis of antibiotic resistance genes in biofilters of drinking water treatment plants. WATER RESEARCH 2023; 233:119822. [PMID: 36871385 DOI: 10.1016/j.watres.2023.119822] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/16/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Antibiotic resistance genes (ARGs) in biofilters of drinking water treatment plants (DWTPs) are regarded to be a remarkable potential health risk to human. A global survey on ARGs in biofilters may help evaluate their risk features as a whole. This study aims to explore the compositions, risks, and ecological genesis of ARGs in the biofilters of DWTPs. In total, 98 metagenomes of DWTP biofilters were collected from Sequence Read Archive (SRA) of National center for Biotechnology Information (NCBI), and the main ARG types were recognized, with multidrug, bacitracin, and beta-lactam as the first three types. Source water types (surface water vs. groundwater) were found to significantly influence antibiotic resistome, overpassing biofilter media and locations. Although ARG abundances of surface water biofilters were approximately five times higher than that of groundwater biofilters, the risk pattern of ARGs was highly similar between surface water biofilters and groundwater biofilters, and up to 99.61% of the ARGs on average belong to the least risk and unassessed ranks, and only 0.23% the highest risk rank. Monobactam biosynthesis pathway and prodigiosin biosynthesis pathway, two antibiotics biosynthesis pathways, were observed to be positively correlated with several ARG types and total ARG abundance in samples of surface water and groundwater biofilters, respectively, suggesting their potential roles in ecological genesis of ARGs. Overall, the results of this study would deepen our understanding of the ARG risks in biofilters of DWTPs and shed light on their ecological genesis inside.
Collapse
Affiliation(s)
- Jinsong Liang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Huan Lin
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Brajesh Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, 2751, NSW Australia; Global Centre for Land-Based Innovation, Western Sydney University, Penrith, 2751, NSW Australia
| | - Aijie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Zhenzhen Yan
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, 2751, NSW Australia
| |
Collapse
|
13
|
Wang F, Pan J, Hu Y, Zhou J, Wang H, Huang X, Chu W, van der Hoek JP. Effects of biological activated carbon filter running time on disinfection by-product precursor removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155936. [PMID: 35580672 DOI: 10.1016/j.scitotenv.2022.155936] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Biological activated carbon (BAC) filtration is usually considered to be able to decrease formation potentials (FPs) of disinfection by-products (DBPs) in drinking water treatment plant (DWTP). However, BAC filters with long running time may release microbial metabolites to effluents and therefore increase FPs of nitrogenous DBPs with high toxicity. To verify this hypothesis, this study continuously tracked BAC filters in a DWTP for one year, and assessed effects of old (running time 8-9 years) and new (running time 0-13 months) BAC filters on FPs of 15 regulated and unregulated DBPs. Results revealed that dissolved organic carbon (DOC) removal was slightly higher in the new BAC than the old one. All fluorescent components of dissolved organic matter evidently declined after new BAC filtration, but fulvic acid-like and soluble microbial product-like substances increased after old BAC filtration, which could be caused by microbial leakage. Correspondingly, new BAC filter generally removed more DBP FPs than the old one. 46.5% HAA7 FPs from chlorination and 44.3% THM4 FPs from chloramination were removed by new BAC filter. However, some DBP FPs, especially HAN FPs, were poorly removed or even increased by the old BAC filter. Proteobacteria could be a main contributor for DBP precursor removal in BAC filters. Herminiimonas, most abundant genera in new BAC filter, may explain its better DOC and UV254 removal performance and lower DBP FPs, while Bradyrhizobium, most abundant genera in old BAC filter, might produce more extracellular polymeric substances and therefore increased N-DBP FPs in old BAC effluent. This study provided insight into variations of DBP FPs and microbial communities in the new and old BAC filters, and will be helpful for the optimization of DWTP design and operation for public health.
Collapse
Affiliation(s)
- Feifei Wang
- School of Environmental and Chemical Engineering, Shanghai University, 200444 Shanghai, PR China
| | - Jiazheng Pan
- School of Environmental and Chemical Engineering, Shanghai University, 200444 Shanghai, PR China.
| | - Yulin Hu
- School of Environmental and Chemical Engineering, Shanghai University, 200444 Shanghai, PR China
| | - Jie Zhou
- School of Environmental and Chemical Engineering, Shanghai University, 200444 Shanghai, PR China
| | - Haoqian Wang
- School of Environmental and Chemical Engineering, Shanghai University, 200444 Shanghai, PR China
| | - Xin Huang
- School of Environmental and Chemical Engineering, Shanghai University, 200444 Shanghai, PR China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, PR China.
| | - Jan Peter van der Hoek
- Department of Water Management, Delft University of Technology, 2628 CN Delft, the Netherlands; Research & Innovation Program, Waternet, 1096 AC Amsterdam, the Netherlands
| |
Collapse
|
14
|
Lin H, Hou Q, Luo Y, Hu G, Yu J, Yu R. Reutilization of waste oyster shell as filler for filter for drinking water pretreatment: Feasibility and implication. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115142. [PMID: 35500484 DOI: 10.1016/j.jenvman.2022.115142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/09/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Oyster shell (OS) is a kind of reusable resource that can serve as carbon source, biofilms carrier and basifying agent, suggesting it is an attractive filler option for biofiltration, but studies on its application in drinking water treatment are limited. In this study, one pilot-scale up-flow filter filled with OS media were designed to pretreat surface source water. Filter performance and biological functions were investigated to determine its application scope. The results showed that effluent pH increased and was stable around 7.5 due to the alkalinity provided by OS and its buffering capacity. High and stable removal efficiencies of turbidity (mostly >60%) were achieved. The removal efficiencies of NH4+-N changed in a wide range (mostly <30%). TOC and UV254 removal rate was low (<10%). The biofilms formation period took about 45 days. During this period, this filter mainly removed pollutants through adsorption by OS. High-throughput sequencing results showed that functional taxa did not play a key role after adsorption saturation in early operation period. Functional microbial taxa formed on the OS surface after long-term operation and NH4+-N removal rate increased to some extent. Our results suggested that unburned OS filter can be used as rough filter for turbidity removal instead of coagulation and sedimentation process. Preoxidation, calcination of OS, mixed with other filler and are recommended to improve the performance if it would be used for biofiltration. This study provides an insight for the reuse of OS in drinking water treatment.
Collapse
Affiliation(s)
- Huirong Lin
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China; Institute of Environmental and Ecological Engineering, Huaqiao University, Xiamen 361021, China
| | - Quanyang Hou
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China; Institute of Environmental and Ecological Engineering, Huaqiao University, Xiamen 361021, China
| | - Yang Luo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Gongren Hu
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China; Key Laboratory of Environmental Monitoring of University in Fujian Province, Xiamen 361024, China
| | | | - Ruilian Yu
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China; Institute of Environmental and Ecological Engineering, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
15
|
Antibiotic Resistance in the Drinking Water: Old and New Strategies to Remove Antibiotics, Resistant Bacteria, and Resistance Genes. Pharmaceuticals (Basel) 2022; 15:ph15040393. [PMID: 35455389 PMCID: PMC9029892 DOI: 10.3390/ph15040393] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
Bacterial resistance is a naturally occurring process. However, bacterial antibiotic resistance has emerged as a major public health problem in recent years. The accumulation of antibiotics in the environment, including in wastewaters and drinking water, has contributed to the development of antibiotic resistant bacteria and the dissemination of antibiotic resistance genes (ARGs). Such can be justified by the growing consumption of antibiotics and their inadequate elimination. The conventional water treatments are ineffective in promoting the complete elimination of antibiotics and bacteria, mainly in removing ARGs. Therefore, ARGs can be horizontally transferred to other microorganisms within the aquatic environment, thus promoting the dissemination of antibiotic resistance. In this review, we discuss the efficiency of conventional water treatment processes in removing agents that can spread/stimulate the development of antibiotic resistance and the promising strategies for water remediation, mainly those based on nanotechnology and microalgae. Despite the potential of some of these approaches, the elimination of ARGs remains a challenge that requires further research. Moreover, the development of new processes must avoid the release of new contaminants for the environment, such as the chemicals resulting from nanomaterials synthesis, and consider the utilization of green and eco-friendly alternatives such as biogenic nanomaterials and microalgae-based technologies.
Collapse
|
16
|
Shu Y, Liang D. Effect of tetracycline on nitrogen removal in Moving Bed Biofilm Reactor (MBBR) System. PLoS One 2022; 17:e0261306. [PMID: 35007308 PMCID: PMC8746769 DOI: 10.1371/journal.pone.0261306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
The effect of tetracycline (TC) on nitrogen removal in wastewater treatment plants has become a new problem. This study investigated the effects of TC on nitrogen removal using a Moving Bed Biofilm Reactor system. The results showed that there was no significant effect on nitrogen removal performance when the concentration of TC was 5 mg/L, and that the total nitrogen (TN) removal efficiency could reach 75–77%. However, when the concentration of TC increased to 10 mg/L, the denitrification performance was affected and the TN removal efficiency decreased to 58%. The abundance of denitrifying bacteria such as those in the genus Thauera decreased, and TC-resistant bacteria gradually became dominant. At a TC concentration of 10 mg/L, there were also increases and decreases, respectively, in the abundance of resistance and denitrification functional genes. The inhibitory effect of TC on denitrification was achieved mainly by the inhibition of nitrite-reducing bacteria.
Collapse
Affiliation(s)
- Yan Shu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- * E-mail:
| | - Donghui Liang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
| |
Collapse
|
17
|
Xiang Y, Rene ER, Ma W. Enhanced bio-reductive degradation of fluoroglucocorticoids in the groundwater fluctuation zone by external electron donors: Performance, microbial community, and functional genes. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127015. [PMID: 34482082 DOI: 10.1016/j.jhazmat.2021.127015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/03/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated the effectiveness of external electron donors on the bio-reductive degradation enhancement of fluoroglucocorticoids (FGCs) in the groundwater fluctuation zone during the wet season when reverse upward fluctuation of the groundwater table occurs and the dry season after the groundwater table declines. The results showed that the external electron donors, provided by the addition of nano zero-valent iron-modified biochar (nZVI@BC), inhibited the migration and enhanced the reductive defluorination of triamcinolone acetonide (TA), a representative FGC. The accumulation rate constant with temporal fluctuation depth and the attenuation rate constant with vertical fluctuation depth were -2.55 × 10-3 and 4.20 × 10-2, respectively, in the groundwater of the natural groundwater fluctuation zone (N-FZ). In contrast, the accumulation and attenuation rate constants were, respectively, 35.6% and 2.64 times higher in the groundwater fluctuation zone amended with nZVI@BC (nZVI@BC-FZ) as compared with those observed in the N-FZ. Furthermore, the decay rate constant of the TA residue in the dry season was 0.843 × 10-2 μg/d in N-FZ and was 2.19 times higher in nZVI@BC-FZ. This enhancement effect, caused by the addition of external electrons, was positively correlated with the evolution of the microbial community and the expression of functional genes. The microbes evolved into functional genera with reductive dehalogenation (Xylophilus and Hydrogenophaga) and iron-oxidizing (Lysobacter, Pseudoxanthomonas, and Sphingomonas) abilities in the nZVI@BC-FZ system, which increased dehalogenation and iron oxide genes by a 4-5 order of magnitude. The utilization proportion of external electrons for TA metabolism was 50.04%, of which 30.82%, 10.26%, and 8.96% were utilized for defluorination, hydrogenation, and ring-opening, respectively. This study provides an effective method to reduce pollutant diffusion and enhance the bio-reductive degradation caused by groundwater table fluctuation.
Collapse
Affiliation(s)
- Yayun Xiang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands
| | - Weifang Ma
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
18
|
Wan K, Zheng S, Ye C, Hu D, Zhang Y, Dao H, Chen S, Yu X. Ancient Oriental Wisdom still Works: Removing ARGs in Drinking Water by Boiling as compared to Chlorination. WATER RESEARCH 2022; 209:117902. [PMID: 34910990 DOI: 10.1016/j.watres.2021.117902] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Antibiotic resistance genes (ARGs) in municipal drinking water may not be effectively removed during centralized treatment. To reduce potential health risks, water disinfection at the point-of-use scale is warranted. This study investigated the performance of boiling, a prevalent household water disinfection means, in response to ARGs contamination. We found that boiling was more efficient in inactivating both Escherichia coli and environmental bacteria compared to chlorination and pasteurization. Boiling of environmental bacteria suspension removed a much broader spectrum of ARGs and mobile genetic elements (up to 141 genes) than chlorination (up to 13 genes), such better performance was largely attributed to a stronger inactivation of chlorine-tolerant bacteria including Acinetobacter and Bacillus. Accumulation of extracellular ARGs was found during low-temperature heating (≤ 80°C) and in the initial stage of chlorination (first 3 min when initial chlorine was 5 mg/L and first 12 min when initial chlorine was 1 mg/L). These extracellular ARGs as well as the intracellular ARGs got removed as the heating temperature increased or the chlorination time prolonged. Under the same treatment time (30 min), high-temperature heating (≥ 90.1°C) damaged the DNA structure more thoroughly than chlorination (5 mg/L). Taking into account the low transferability of ARGs after DNA melting, boiling may provide an effective point-of-use approach to attenuating bacterial ARGs in drinking water and is still worth promoting in the future.
Collapse
Affiliation(s)
- Kun Wan
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shikan Zheng
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Chengsong Ye
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Dong Hu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yiting Zhang
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Haosha Dao
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shaohua Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xin Yu
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
19
|
Xu H, Tian B, Shi W, Tian J, Zhang X, Zeng J, Qin M. A Correlation Study of the Microbiota Between Oral Cavity and Tonsils in Children With Tonsillar Hypertrophy. Front Cell Infect Microbiol 2022; 11:724142. [PMID: 35155268 PMCID: PMC8831826 DOI: 10.3389/fcimb.2021.724142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Tonsillar hypertrophy is a common disease in 3-to-6-year-old children, which may cause serve symptoms like airway obstruction. Microbiological factors play an important role in the etiology of tonsillar hypertrophy. As the starting point of digestive and respiratory tracts, the microbial composition of the oral cavity is not only unique but also closely related to the resident microbiota in other body sites. Here we reported a correlation study of the microbiota between oral cavity and tonsils in children with tonsillar hypertrophy. Saliva, supragingival plaque, and wiped samples from the tonsil surface were collected from both tonsillar hypertrophy patients and participants with healthy tonsils and were then analyzed using Illumina Miseq Sequencing of the 16S rRNA gene. In the tonsillar hypertrophic state, more genera were detected on the tonsil surface than in the tonsil parenchyma, with more intra-microbiota correlations. When tonsillar hypertrophy occurred, both the oral cavity and tonsil surface endured microbiome shift with increased genera category and more active bacterial interactions. Over half of the newly detected genera from the tonsillar hypertrophic state were associated with infection and inflammation process or exhibited antibiotic-resistant characters. Of each individual, the microbial composition and structure of saliva seemed more similar to that of the tonsil surface, compared with the supragingival plaque. In salivary microbiota, genus Johnsonella might be relative with the healthy state of tonsils, while Pseudoxanthomonas might be relative with tonsillar hypertrophy. Our study supported the link between oral microbiota with the healthy and hypertrophic states of tonsils and may provide new directions for future researches in the specific role of oral microbiota in the etiology of tonsil diseases.
Collapse
Affiliation(s)
- He Xu
- Pediatric Department, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Bijun Tian
- Pediatric Department, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Weihua Shi
- Pediatric Department, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jing Tian
- Pediatric Department, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xuexi Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health (NCCH), Beijing, China
| | - Jin Zeng
- Department of Otorhinolaryngology - Head and Neck Surgery, Peking University Third Hospital, Beijing, China
| | - Man Qin
- Pediatric Department, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- *Correspondence: Man Qin,
| |
Collapse
|
20
|
Li J, Guo N, Zhao S, Xu J, Wang Y. Mechanisms of metabolic performance enhancement and ARGs attenuation during nZVI-assisted anaerobic chloramphenicol wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126508. [PMID: 34323729 DOI: 10.1016/j.jhazmat.2021.126508] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic wastewater treatment is a promising technology for refractory pollutant treatment. The nano zero-valent iron (nZVI) assisted anaerobic system could enhance contaminant removal. In this work, we added nZVI into an anaerobic system to investigate the effects on system performances and metabolic mechanism for chloramphenicol (CAP) wastewater treatment. As nZVI concentrations increased from 0 to 1 g/L, the CAP removal efficiency was appreciably improved from 46.5% to 99.2%, while the CH4 production enhanced more than 20 times. The enhanced CAP removal resulted from the enrichments of dechlorination-related bacteria (Hyphomicrobium) and other functional bacteria (e.g., Zoogloea, Syntrophorhabdus) associated with refractory contaminants degradation. The improved CH4 production was ascribed to the increases in fermentative-related bacteria (Smithella and Acetobacteroides), homoacetogen (Treponema), and methanogens. The increased abundances of anaerobic functional genes further verified the mechanism of CH4 production. Furthermore, the abundances of potential hosts of antibiotic resistance genes (ARGs) were reduced under high nZVI concentration (1 g/L), contributing to ARGs attenuation. This study provides a comprehensive analysis of the mechanism in metabolic performance enhancement and ARGs attenuation during nZVI-assisted anaerobic CAP wastewater treatment.
Collapse
Affiliation(s)
- Jiahuan Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Ning Guo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Juan Xu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yunkun Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
21
|
Evaluation of the production of alginate-like exopolysaccharides (ALE) and tryptophan in aerobic granular sludge systems. Bioprocess Biosyst Eng 2020; 44:259-270. [PMID: 32889571 DOI: 10.1007/s00449-020-02439-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/25/2020] [Indexed: 01/02/2023]
Abstract
The engineering and microbiological aspects involved in the production of alginate-like exopolysaccharides (ALE) and tryptophan (TRY) in aerobic granular sludge systems were evaluated. The inclusion of short anoxic phase (A/O/A cycle-anaerobic, oxic, and anoxic phase) and the control of sludge retention time (SRT ≈ 10 days) proved to be an important strategy to increase the content of these bioproducts in granules. The substrate concentration also has a relevant impact on the production of ALE and TRY. The results of the microbiological analysis showed that slow-growing heterotrophic microbial groups (i.e., PAOs and GAOs) might be associated with the production of ALE, and the EPS-producing fermentative bacteria might be associated with the TRY production. The preliminary economic evaluation indicated the potential of ALE recovery in AGS systems in decreasing the OPEX (operational expenditure) of the treatment, especially for larger sewage treatment plants or industrial wastewaters with a high organic load.
Collapse
|