1
|
Cao X, He W, Wang XG, Chen X, Yi B, Ma C, Li X, Liu Y, He W, Shi Y. Carbon Isotopic Signatures of Aquifer Organic Molecules along Anthropogenic Recharge Gradients. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7613-7623. [PMID: 40193595 DOI: 10.1021/acs.est.4c10929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The property of groundwater dissolved organic matter (DOM) subjected to anthropogenic groundwater recharge (AGR) might be affected by the water quality disparity between surface water and natural groundwater. However, the diverse molecular scenarios of groundwater DOM under uneven recharging levels remain largely unexplored. We combined molecular characteristics, carbon isotopic signatures of organic molecules, and end-member mixing analysis to explore the sensitivity and potential tracking capabilities of DOM to AGR along with recharging gradients. Our findings suggested that AGR enriched groundwater with diverse, saturated, labile, and sulfur-rich molecules, amplifying DOM abundance and intensity, which intensified with recharge gradients. Additionally, S-containing molecules and their indicators like CHOS% (with threshold values of 7.82%) exhibited high sensitivity and predictive power for AGR recognition. The major signatures (diversity, saturated degree, and stability) indicated by 13C-containing molecules were similar to the whole molecular pool. Notably, specific molecules (C12H10O5S and C15H16O12), although not detected in all groundwater samples, exhibit robust stability or favorable solubility, rendering them potential candidates as AGR-sensitive molecules. The R13C/12C ratio of 13C-containing C19H24O5 emerged as the most robust tracer, exhibiting a strong correlation with the recharge ratio and the smallest deviation from the theoretical mixing line, signifying its optimal suitability for precise groundwater DOM source apportionment. This study offers novel insights into AGR impacts and contributes to fostering a harmonious balance between human activities and water resource sustainability.
Collapse
Affiliation(s)
- Xu Cao
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Wei He
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Xian-Ge Wang
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Xiaorui Chen
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Bing Yi
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Chao Ma
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xiaobo Li
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yu Liu
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Wei He
- Beijing Municipal Research Institute of Eco-Environment Protection, Beijing 100037, China
| | - Yuanyuan Shi
- Beijing Municipal Research Institute of Eco-Environment Protection, Beijing 100037, China
| |
Collapse
|
2
|
Wei S, Zhang Y, Cai Z, Bi D, Wei H, Zheng X, Man X. Evaluation of groundwater quality and health risk assessment in Dawen River Basin, North China. ENVIRONMENTAL RESEARCH 2025; 264:120292. [PMID: 39521260 DOI: 10.1016/j.envres.2024.120292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Groundwater is the principal water source of drinking and irrigation in the Dawen River Basin of Shandong Province. Thus, its investigations and evaluations are of significant importances. Based on collected groundwater samples, this study employed a combination of the entropy-weighted water quality index(EWQI), Nitrate Pollution Index(NPI) and the human health risk assessment(HHRA) model to evaluate groundwater quality and associated health risks. The combination of EWQI and NPI provides a more refined classification of groundwater quality in the Dawen River Basin. Geostatistical and GIS spatial analysis methods are employed to analyze the spatial characteristics of groundwater quality and its relationship with geomorphology. Results indicate that the region generally enjoys good water quality, with Entropy Water Quality Index (EWQI) values ranging from 20.32 to 302.37, and an average of 70.88. Downstream quality is poorer than upstream, and flat terrains typically exhibit poorer water quality. The major indicators affecting groundwater quality include Na⁺, Cl⁻, SO₄2⁻, and NO₃⁻. The NPI results show that due to differences in anthropogenic sources, 38.1%, 27.38%, 26.19%, 4.76%, and 3.57% of the groundwater samples are classified into non-polluted, slightly polluted, moderately polluted, significantly polluted, and extremely significantly polluted types, respectively. The HHRA model reveals high potential non-carcinogenic risks for NO₃⁻ and low risks for F⁻ in the study area. The health risks associated with high levels of NO3- in the areas surrounding Dongping Lake and Ningyang County are greater than in those other regions and therefore should be a significant concern for public health. Furthermore, this study attempts to combine the EWQI and NPI to categorize groundwater protection and governance statuses into four types: protective, utilizable, preventive, and remedial. This approach addresses the shortcomings in comprehensively identifying water quality types by single evaluation methods and offers valuable insights for distinguishing water quality types under nitrogen pollution conditions.
Collapse
Affiliation(s)
- Shanming Wei
- 801 Institute of Hydrogeology and Engineering Geology, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China; Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Yaxin Zhang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China; School of Resources and Environment, Henan Polytechnic University, Jiaozuo, China
| | - Zizhao Cai
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China.
| | - Dongwei Bi
- 801 Institute of Hydrogeology and Engineering Geology, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China; Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Haihong Wei
- 801 Institute of Hydrogeology and Engineering Geology, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China; Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Xuefei Zheng
- 801 Institute of Hydrogeology and Engineering Geology, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China; Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Xubo Man
- 801 Institute of Hydrogeology and Engineering Geology, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China; Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| |
Collapse
|
3
|
Ye M, Zhang W, Zhao S, Zhang J, Li Y, Pan H, Jiang Z, Li J, Xie X. Coupled transformation pathways of iron minerals and natural organic matter related to iodine mobilization in alluvial-lacustrine aquifer. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135944. [PMID: 39332257 DOI: 10.1016/j.jhazmat.2024.135944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/14/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
The complex of natural organic matter (NOM) and iron minerals in sediment is the main host and source of groundwater iodine. However, the transformation pathways of the complex remain unclear. The groundwater and sediment from the Hetao Basin were collected in this study to analyze multi-isotopes, NOM molecular characteristics, and iron mineral phases. The results showed that high-iodine groundwater was mainly observed in the discharge area, where biodegradation of NOM, sulfate reduction and methanogenesis occurred. Compared to the shallow clayey sediments, the confined sandy sediments had lower iodine content, a lower fraction of crystalline iron oxides, and a higher fraction of carbonate associated Fe(II) minerals, suggesting that the release of sediment iodine in the aquifer is related to the transformation of sediment Fe(III) hydroxides/oxides. Moreover, the molecular features of high-iodine groundwater NOM and sandy sediment NOM were characterized by a higher proportion of refractory compounds, suggesting that the reductive transformation of sediment Fe(III) hydroxides/oxides is fueled by degradable organic compounds. The microbial Fe-reducing and/or sulfate-reducing processes cause the enrichment of groundwater iodine in the form of iodide via the transformation of iodine species. These findings provide new insights into the genesis of high-iodine groundwater.
Collapse
Affiliation(s)
- Mingxia Ye
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Wenyi Zhang
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Shilin Zhao
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Jingxian Zhang
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yanlong Li
- Geological Survey Academy of Inner Mongolia Autonomous Region, Huhhot 010020, China
| | - Hongjie Pan
- Geological Survey Academy of Inner Mongolia Autonomous Region, Huhhot 010020, China
| | - Zhou Jiang
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Junxia Li
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China.
| | - Xianjun Xie
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
4
|
Yin Z, Zhang M, Jing C, Cai Y. Organic matter in geothermal springs and its association with the microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176775. [PMID: 39378948 DOI: 10.1016/j.scitotenv.2024.176775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/08/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Organic matter (OM) plays an important role in the biogeochemical cycles of carbon, nitrogen, and other elements, shaping the structure of the microbiome and vice versa. However, the molecular composition of OM and its impact on the microbial community in terrestrial geothermal environments remain unclear. In this study, we characterized the OM in water and sediment from a typical geothermal field using ultra-high-resolution Fourier transform ion cyclotron resonance mass spectrometry. By combining high-throughput amplicon sequencing and multivariate analyses, we deciphered the association between OM components and microbial community. A surprisingly high chemodiversity of OM was observed in the waters (11,088 compounds) and sediments (7772 compounds) in geothermal springs. Sulfur-containing organic compounds, a characteristic molecular signature of geothermal springs, accounted for 21 % ± 5 % in waters and 33 % ± 4 % in sediments. Multivariate analyses revealed that both labile and recalcitrant fractions of OM (e.g., carbohydrates intensity and tannins chemodiversity) influenced the structure and function of the microbial community. Co-occurrence networks showed that Proteobacteria and Crenarchaeota accounted for most of the connections with OM in waters (33 % and 15 %, respectively) and sediments (15 % and 12 %, respectively), highlighting their key roles in carbon cycling. This study expands our understanding of the molecular compositions of OM in geothermal springs and highlights its potentially important role in global climate change through microbial carbon cycling.
Collapse
Affiliation(s)
- Zhipeng Yin
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Min Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Chuanyong Jing
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Cai
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States.
| |
Collapse
|
5
|
Zhang LZ, Xing SP, Huang FY, Xiu W, Lloyd JR, Rensing C, Zhao Y, Guo H. Hydrogeochemical differences drive distinct microbial community assembly and arsenic biotransformation in unconfined and confined groundwater of the geothermal system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176546. [PMID: 39332718 DOI: 10.1016/j.scitotenv.2024.176546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/02/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
High‑arsenic (As) groundwater in geothermal aquifers poses a serious threat to public health. Assembly processes governing groundwater microbial community related to As biotransformation are still unexplored in geothermal groundwater across different aquifers. To fill this gap, groundwater microorganisms, community assembly processes, and microbially metabolic coupling of carbon (C), nitrogen (N), phosphorus (P), sulfur (S), and arsenic (As) were investigated in unconfined and confined groundwater in the thermal reservoirs of the Guide Basin. The difference in groundwater hydrogeochemicals led to the heterogeneity of the microbial community and microbially mediated C, N, P, S, and As cycling between unconfined and confined groundwater. Higher temperature and As concentrations, low nutrient supply, and reduced conditions in confined groundwater supported stronger interspecific coexistence and environmental selection, thus promoting the proliferation of As-resistant microorganisms (ARMs) and simplifying the community assemblage. Abundant available nutrient supply and oxidizing conditions supported an increased species diversity and metabolic functionality in unconfined groundwater. S oxidizers, C fixation, and C degradation bacteria potentially contributed to the decreased As concentrations in unconfined groundwater. However, ARMs, ammonification, and anaerobic ammonia-oxidizing bacteria potentially caused As mobilization in confined groundwater. Overall, our results give a comprehensive insight into the interaction between As and microorganisms in geothermal groundwater.
Collapse
Affiliation(s)
- Ling-Zhi Zhang
- Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Shi-Ping Xing
- Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Fu-Yi Huang
- Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, PR China
| | - Wei Xiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China; Institutes of Earth Sciences, China University of Geosciences, Beijing 100083, PR China
| | - Jonathan R Lloyd
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, the University of Manchester, Manchester, United Kingdom
| | - Christopher Rensing
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yi Zhao
- Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Huaming Guo
- Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| |
Collapse
|
6
|
Jiang H, Xie X, Li J, Jiang Z, Pi K, Wang Y. Metagenomic and FT-ICR MS insights into the mechanism for the arsenic biogeochemical cycling in groundwater. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135047. [PMID: 38959833 DOI: 10.1016/j.jhazmat.2024.135047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Arsenic (As) is a groundwater contaminant of global concern. The degradation of dissolved organic matter (DOM) can provide a reducing environment for As release. However, the interaction of DOM with local microbial communities and how different sources and types of DOM influence the biotransformation of As in aquifers is uncertain. This study used optical spectroscopy, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), metagenomics, and structural equation modeling (SEM) to demonstrate the how the biotransformation of As in aquifers is promoted. The results indicated that the DOM in high-As groundwater is dominated by highly unsaturated low-oxygen(O) compounds that are quite humic and stable. Metagenomics analysis indicated Acinetobacter, Pseudoxanthomonas, and Pseudomonas predominate in high-As environments; these genera all contain As detoxification genes and are members of the same phylum (Proteobacteria). SEM analyses indicated the presence of Proteobacteria is positively related to highly unsaturated low-O compounds in the groundwater and conditions that promote arsenite release. The results illustrate how the biogeochemical transformation of As in groundwater systems is affected by DOM from different sources and with different characteristics.
Collapse
Affiliation(s)
- Honglin Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xianjun Xie
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China.
| | - Junxia Li
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Kunfu Pi
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
| | - Yanxin Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
7
|
Lu C, Xiu W, Yang B, Zhang H, Lian G, Zhang T, Bi E, Guo H. Natural Attenuation of Groundwater Uranium in Post-Neutral-Mining Sites Evidenced from Multiple Isotopes and Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12674-12684. [PMID: 38965983 DOI: 10.1021/acs.est.4c04498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Although natural attenuation is an economic remediation strategy for uranium (U) contamination, the role of organic molecules in driving U natural attenuation in postmining aquifers is not well-understood. Groundwaters were sampled to investigate the chemical, isotopic, and dissolved organic matter (DOM) compositions and their relationships to U natural attenuation from production wells and postmining wells in a typical U deposit (the Qianjiadian U deposit) mined by neutral in situ leaching. Results showed that Fe(II) concentrations and δ34SSO4 and δ18OSO4 values increased, but U concentrations decreased significantly from production wells to postmining wells, indicating that Fe(III) reduction and sulfate reduction were the predominant processes contributing to U natural attenuation. Microbial humic-like and protein-like components mediated the reduction of Fe(III) and sulfate, respectively. Organic molecules with H/C > 1.5 were conducive to microbe-mediated reduction of Fe(III) and sulfate and facilitated the natural attenuation of dissolved U. The average U attenuation rate was -1.07 mg/L/yr, with which the U-contaminated groundwater would be naturally attenuated in approximately 11.2 years. The study highlights the specific organic molecules regulating the natural attenuation of groundwater U via the reduction of Fe(III) and sulfate.
Collapse
Affiliation(s)
- Chongsheng Lu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Beijing, Beijing 100083, China
- MOE Key Laboratory of Groundwater Circulation and Environment Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Wei Xiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Beijing, Beijing 100083, China
- MOE Key Laboratory of Groundwater Circulation and Environment Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Bing Yang
- The Fourth Research and Design Engineering Corporation of CNNC, Shijiazhuang 050021, China
| | - Haoyan Zhang
- The Fourth Research and Design Engineering Corporation of CNNC, Shijiazhuang 050021, China
| | - Guoxi Lian
- The Fourth Research and Design Engineering Corporation of CNNC, Shijiazhuang 050021, China
| | - Tianjing Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Beijing, Beijing 100083, China
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Erping Bi
- MOE Key Laboratory of Groundwater Circulation and Environment Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Beijing, Beijing 100083, China
- MOE Key Laboratory of Groundwater Circulation and Environment Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
8
|
Jin Y, Zhu W, Li J, Cui D, Zhang Z, Sun G, Zhu Y, Yang H, Zhang X. Arsenic pollution concerning surface water and sediment of Jie River: A pilot area where gold smelting enterprises are concentrated. ENVIRONMENTAL RESEARCH 2024; 249:118384. [PMID: 38307180 DOI: 10.1016/j.envres.2024.118384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
A comprehensive monitoring and risk assessment of arsenic (As) pollution concerning surface water and sediment is performed in the Jie River basin, where gold smelting enterprises are concentrated. The study area is divide into six regions, labeled as A, B, C, D, E, and F, from sewage outlets to downstream. Results shows that with far away from the sewage outlets, the total As concentrations in water and sediment gradually decrease from regions A to F. However, in region F, the concentration of bioavailable As significantly increases in the sediment due to the higher pH, leading to the transformation of As(V) into more mobile As(III). In sediment, Paracladius sp. exhibits strong resistance to As pollution in sediment, which can potentially elevate the risk of disease transmission. In water bodies, diatoms and euglena are the main phytoplankton in the Jie River while toxic cyanobacteria exhibits lower resistance to As pollution. Overall, measures should be taken to ecologically remediate the sediment in downstream while implementing appropriate isolation methods to prevent the spread of highly contaminated sediments from regions near sewage outlets.
Collapse
Affiliation(s)
- Yan Jin
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; Resources and Environmental Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Weichen Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; Resources and Environmental Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Jia Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Dayong Cui
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Zhibin Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Guoxin Sun
- Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing, 100085, China
| | - Yongguan Zhu
- Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing, 100085, China
| | - Huanhuan Yang
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China.
| | - Xu Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
9
|
Xie X, Yan L, Sun S, Pi K, Shi J, Wang Y. Arsenic biogeochemical cycling association with basin-scale dynamics of microbial functionality and organic matter molecular composition. WATER RESEARCH 2024; 251:121117. [PMID: 38219691 DOI: 10.1016/j.watres.2024.121117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/05/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Geogenic arsenic (As)-contaminated groundwater is a sustaining global health concern that is tightly constrained by multiple interrelated biogeochemical processes. However, a complete spectrum of the biogeochemical network of high-As groundwater remains to be established, concurrently neglecting systematic zonation of groundwater biogeochemistry on the regional scale. We uncovered the geomicrobial interaction network governing As biogeochemical pathways by merging in-field hydrogeochemical monitoring, metagenomic analyses, and ultrahigh resolution mass spectrometry (FT-ICR MS) characterization of dissolved organic matter. In oxidizing to weakly reducing environments, the nitrate-reduction and sulfate-reduction encoding genes (narGHI, sat) inhibited the dissolution of As-bearing iron minerals, leading to lower As levels in groundwater. In settings from weakly to moderately reducing, high abundances of sulfate-reduction and iron-transport encoding genes boosted iron mineral dissolution and consequent As release. As it evolved to strongly reducing stage, elevated abundance of methane cycle-related genes (fae, fwd, fmd) further enhanced As mobilization in part by triggering the formation of gaseous methylarsenic. During redox cycling of N, S, Fe, C and As in groundwater, As migration to groundwater and immobilization in mineral particles are geochemically constrained by basin-scale dynamics of microbial functionality and DOM molecular composition. The study constructs a theoretical model to summarize new perspectives on the biogeochemical network of As cycling.
Collapse
Affiliation(s)
- Xianjun Xie
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, China; MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China.
| | - Lu Yan
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, China; MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China
| | - Shige Sun
- Central Southern China Electric Power Design Institute Co, LTD. of China Power Engineering Consulting Group, Wuhan 430074, China
| | - Kunfu Pi
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, China; MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China
| | - Jianbo Shi
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, China; MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China
| | - Yanxin Wang
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, China; MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
10
|
Zhang LZ, Xing SP, Huang FY, Xiu W, Rensing C, Zhao Y, Guo H. Metabolic coupling of arsenic, carbon, nitrogen, and sulfur in high arsenic geothermal groundwater: Evidence from molecular mechanisms to community ecology. WATER RESEARCH 2024; 249:120953. [PMID: 38071906 DOI: 10.1016/j.watres.2023.120953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
Groundwater arsenic (As) poses a global environmental problem and is regulated by complex biogeochemical processes. However, the As biogeochemistry and its metabolic coupling with carbon (C), nitrogen (N), and sulfur (S) in high As geothermal groundwater remain unclear. Here, we reported significant shifts in the geothermal groundwater microbiome and its functional ecological clusters along the flow path with increased As levels and dynamic As-C-N-S biogeochemical cycle from the Guide Basin, China. Strong associations among As(III), NH4+, HCO3-, and corresponding functional microbial taxa suggest that microbe-mediated As transformation, ammonification, and organic carbon biodegradation potentially contributed to the As mobilization in the discharge area. And As oxidizers (coupling with denitrification or carbon fixation) and S oxidizers were closely linked to the transformation of As(III) to immobile As(V) in the recharge area. Our study provides a comprehensive insight into the complex microbial As-C-N-S coupling network and its potential role in groundwater As mobilization under hydrological disturbances.
Collapse
Affiliation(s)
- Ling-Zhi Zhang
- Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Shi-Ping Xing
- Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Fu-Yi Huang
- Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, PR China
| | - Wei Xiu
- Institutes of Earth Sciences, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China
| | - Christopher Rensing
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yi Zhao
- Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Huaming Guo
- Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| |
Collapse
|
11
|
Tao Y, Du Y, Deng Y, Liu P, Ye Z, Zhang X, Ma T, Wang Y. Coupled Processes Involving Organic Matter and Fe Oxyhydroxides Control Geogenic Phosphorus Enrichment in Groundwater Systems: New Evidence from FT-ICR-MS and XANES. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17427-17438. [PMID: 37697639 DOI: 10.1021/acs.est.3c03696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The enrichment of geogenic phosphorus (P) in groundwater systems threatens environmental and public health worldwide. Two significant factors affecting geogenic P enrichment include organic matter (OM) and Fe (oxyhydr)oxide (FeOOH). However, due to variable reactivities of OM and FeOOH, variable strategies of their coupled influence controlling P enrichment in groundwater systems remain elusive. This research reveals that when the depositional environment is enriched in more labile aliphatic OM, its fermentation is coupled with the reductive dissolution of both amorphous and crystalline FeOOHs. When the depositional environment is enriched in more recalcitrant aromatic OM, it largely relies on crystalline FeOOH acting concurrently as electron acceptors while serving as "conduits" to help itself stimulate degradation and methanogenesis. The main source of geogenic P enriched by these two different coupled processes is different: the former is P-containing OM, which mainly contained unsaturated aliphatic compounds and highly unsaturated-low O compounds, and the latter is P associated with crystalline FeOOH. In addition, geological setting affects the deposition rate of sediments, which can alter OM degradation/preservation, and subsequently affects geochemical conditions of geogenic P occurrence. These findings provide new evidence and perspectives for understanding the hydro(bio)geochemical processes controlling geogenic P enrichment in alluvial-lacustrine aquifer systems.
Collapse
Affiliation(s)
- Yanqiu Tao
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430078, China
| | - Yao Du
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430078, China
| | - Yamin Deng
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430078, China
| | - Peng Liu
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430078, China
| | - Zhihang Ye
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430078, China
| | - Xinxin Zhang
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430078, China
| | - Teng Ma
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430078, China
| | - Yanxin Wang
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
12
|
Wang Y, Cheng H. Environmental fate and ecological impact of the potentially toxic elements from the geothermal springs. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6287-6303. [PMID: 37289258 DOI: 10.1007/s10653-023-01628-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Potentially toxic elements from geothermal springs can cause significant pollution of the surrounding environment and pose potential risk to the ecosystem. The fate of potentially toxic elements in the water-soil-plant system in the Yangbajain geothermal field on the Tibetan Plateau, China was investigated to assess their impact on the eco-environment. The concentrations of Be, F, As, and Tl were highly elevated in the headwaters of the Yangbajain geothermal springs, and their concentrations in the local surface water impacted by the geothermal springs reached 8.1 μg/L (Be), 23.9 mg/L (F), 3.83 mg/L (As), and 8.4 μg/L (Tl), respectively, far exceeding the corresponding thresholds for surface and drinking water. The absence of As-Fe co-precipitation, undersaturated F-, and weak adsorption on minerals at high geothermal spring pH may be responsible for the As- and F-rich drainage, which caused pollution of local river. As concentrations in the leaves of Orinus thoroldii (Stapf ex Hemsl.) Bor were up to 42.7 μg/g (dry weight basis), which is an order of magnitude higher than the allowable limit in animal feeds. The locally farmed yaks are exposed to the excessive amount of F and As with high exposure risk through water-drinking and grass-feeding.
Collapse
Affiliation(s)
- Yafeng Wang
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China.
| |
Collapse
|
13
|
Li D, Chang F, Zhang Y, Duan L, Liu Q, Li H, Hu G, Zhang X, Gao Y, Zhang H. Arsenic migration at the sediment-water interface of anthropogenically polluted Lake Yangzong, Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163205. [PMID: 37004769 DOI: 10.1016/j.scitotenv.2023.163205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023]
Abstract
The lability and controlling factors of arsenic (As) at the sediment-water interface (SWI) are crucial for understanding As behaviors and fates in As-contaminated areas. In this study, we combined high-resolution (5 mm) sampling using diffusive gradients in thin films (DGT) and equilibrium dialysis sampling (HR-Peeper), sequential extraction (BCR), fluorescence signatures, and fluorescence excitation-emission matrices (EEMs)-parallel factor analysis (PARAFAC) to explore the complex mechanisms of As migration in a typical artificially polluted lake, Lake Yangzong (YZ). The study results showed that a high proportion of the reactive As fractions in sediments can resupply pore water in soluble forms during the change from the dry season (winter, oxidizing period) to the rainy season (summer, reductive period). In dry season, the copresence of Fe oxide-As and organic matter (OM)-As complexes was related to the high dissolved As concentration in pore water and limited exchange between the pore water and overlying water. In the rainy season, with the change in redox conditions, the reduction of Fe-Mn oxides and OM degradation by microorganisms resulted in As deposition and exchange with the overlying water. Partial least squares path modelling (PLS-PM) indicated that OM affected the redox and As migration processes through degradation. Based on comprehensive analyses of the As, Fe, Mn, S and OM levels at the SWI, we suggest that the complexation and desorption of dissolved organic matter and Fe oxides play an important role in As cycling. Our findings shed new light on the cascading drivers of As migration and OM features in seasonal lakes and constitute a valuable reference for scenarios with similar conditions.
Collapse
Affiliation(s)
- Donglin Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| | - Yang Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Lizeng Duan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Qi Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Haoyu Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Xiaonan Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Youhong Gao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China; Southwest United Graduate School, Kunming 650500, Yunnan, China.
| |
Collapse
|
14
|
Liu W, Xie X, Wang Y. Novel insight into arsenic enrichment in aquifer sediments under different paleotemperatures from a molecular-level characterization of sedimentary organic matter. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131115. [PMID: 36871468 DOI: 10.1016/j.jhazmat.2023.131115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/30/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The heterogeneous distribution of As in sediments is governed by the abundance and type of SOM, which is closely associated with the depositional environment. However, few studies have revealed the effect of depositional environment (e.g., paleotemperature) on As sequestration and transport in sediments from the perspective of the molecular characteristics of sedimentary organic matter (SOM). In this study, we characterized the optical and molecular characteristics of SOM coupled with organic geochemical signatures to illustrate in detail the mechanisms of sedimentary As burial under different paleotemperatures. We identified that alternating paleotemperature changes result in the fluctuation of H-rich and H-poor organic matter in sediments. Further, we found aliphatic and saturated compounds with higher nominal oxidation state of carbon (NOSC) values predominate under high-paleotemperature (HT) conditions, while polycyclic aromatics and polyphenols with lower NOSC values accumulate under low-paleotemperature (LT) conditions. Under LT conditions, thermodynamically favorable organic compounds (higher NOSC values) are preferentially degraded by microorganisms to provide sufficient energy to sustain sulfate reduction, favoring sedimentary As sequestration. Under HT conditions, the energy gained from the decomposition of low NOSC value organic compounds approaches the energy required to sustain dissimilatory Fe reduction, leading to sedimentary As release into groundwater. This study provides molecular-scale evidence of SOM that indicates LT depositional environments favor sedimentary As burial and accumulation.
Collapse
Affiliation(s)
- Wenjing Liu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, 430074 Wuhan, China
| | - Xianjun Xie
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, 430074 Wuhan, China.
| | - Yanxin Wang
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, 430074 Wuhan, China
| |
Collapse
|
15
|
Wang Y, Tian X, Song T, Jiang Z, Zhang G, He C, Li P. Linking DOM characteristics to microbial community: The potential role of DOM mineralization for arsenic release in shallow groundwater. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131566. [PMID: 37148792 DOI: 10.1016/j.jhazmat.2023.131566] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/23/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Dissolved organic matter (DOM) play critical roles in arsenic (As) biotransformation in groundwater, but its compositional characteristics and interactions with indigenous microbial communities remain unclear. In this study, DOM signatures coupled with taxonomy and functions of microbial community were characterized in As-enriched groundwater by excitation-emission matrix, Fourier transform ion cyclotron resonance mass spectrometry and metagenomic sequencing. Results showed that As concentrations were significantly positively correlated with DOM humification (r = 0.707, p < 0.01) and the most dominant humic acid-like DOM components (r = 0.789, p < 0.01). Molecular characterization further demonstrated high DOM oxidation degree, with the prevalence of unsaturated oxygen-low aromatics, nitrogen (N1/N2)-containing compounds and unique CHO molecules in high As groundwater. These DOM properties were consistent with microbial composition and functional potentials. Both taxonomy and binning analyses demonstrated the dominance of Pseudomonas stutzeri, Microbacterium and Sphingobium xenophagum in As-enriched groundwater which possessed abundant As-reducing gene, with organic carbon degrading genes capable of labile to recalcitrant compounds degradation and high potentials of organic nitrogen mineralization to generate ammonium. Besides, most assembled bins in high As groundwater presented strong fermentation potentials which could facilitate carbon utilization by heterotrophic microbes. This study provides better insight into the potential role of DOM mineralization for As release in groundwater system.
Collapse
Affiliation(s)
- Yanhong Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430074, PR China
| | - Xuege Tian
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Tenglong Song
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Guanglong Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, PR China
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430074, PR China.
| |
Collapse
|
16
|
Cao X, He W, Fan M, He W, Shi Y, An T, Chen X, Zhang Z, Liu F, Zhao Y, Zhou P, Chen C, He J. Novel insights into source apportionment of dissolved organic matter in aquifer affected by anthropogenic groundwater recharge: Applicability of end-member mixing analysis based optical indices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160885. [PMID: 36526179 DOI: 10.1016/j.scitotenv.2022.160885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The composition and main sources of dissolved organic matter (DOM) in groundwater may change significantly under long-term anthropogenic groundwater recharge (AGR); however, the impact of AGR on quantitative sources of groundwater DOM has seldom been reported. This study evaluated the applicability of optical indices combined with mixing stable isotope analysis in R (MixSIAR) in end-member mixing analysis (EMMA) of groundwater DOM. Fluorescent indices, including C1%, C2%, and C3%, were more sensitive to AGR than other absorbance indices, as indicated by the significant difference between the dominant area of artificial groundwater recharged by surface water and the dominant area of natural groundwater recharged by atmospheric precipitation (NGRP). BIX-C1% was selected as the optimal dual index after the screening protocol of groundwater DOM for EMMA. Our results showed that DOM in the aquifer was mainly subject to autochthonous DOM and the contribution of background groundwater to AGRSW and NGRP groundwater accounted for 36.15% ± 32.41% and 55.46% ± 37.17% (p < 0.05), respectively. Therefore, AGR significantly changed the native DOM in the groundwater. In allochthonous sources of DOM, sewage and surface water contributed 29.54% ± 24.87% and 21.32% ± 28.08%, and 24.79% ± 15.56% and 15.21% ± 14.20% to AGRSW and NGRP groundwater, respectively. The contribution of surface water to AGRSW groundwater was significantly higher than that to NGRP groundwater (p < 0.05), indicating that AGR introduced significantly more DOM from surface water to groundwater. This study provides novel insights into the quantitative source apportionment of DOM in groundwater under long-term AGR, which will facilitate the environmental risk assessment of present AGR measures and the sustainable management of clean water.
Collapse
Affiliation(s)
- Xu Cao
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Wei He
- Beijing Municipal Research Institute of Eco-Environment Protection, Beijing 100037, China
| | - Mengqing Fan
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Wei He
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Yuanyuan Shi
- Beijing Municipal Research Institute of Eco-Environment Protection, Beijing 100037, China
| | - Tongyan An
- Beijing Municipal Research Institute of Eco-Environment Protection, Beijing 100037, China
| | - Xiaorui Chen
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Zhanhao Zhang
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Fei Liu
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yi Zhao
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Pengpeng Zhou
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Cuibai Chen
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jiangtao He
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
17
|
Shahid SU, Abbasi NA, Tahir A, Ahmad S, Ahmad SR. Health risk assessment and geospatial analysis of arsenic contamination in shallow aquifer along Ravi River, Lahore, Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:4866-4880. [PMID: 35976585 DOI: 10.1007/s11356-022-22458-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The exposure variation of arsenic from different ground and surface water sources has remained unpredictable which may cause severe human health problems. The current study is, therefore, designed to analyze the spatial variability of arsenic contamination in shallow aquifer and assess the potential human health risks. For this purpose, a total of 55 groundwater, 10 drain water, 4 river water, and 6 sediment samples were collected along zero to 5 km stretch of the River Ravi, Lahore. All water samples were tested for As, pH, and total dissolved solids (TDS), whereas sediments were only tested for As. Health risk models were used to predict cancer and non-cancer risk in adults and children. Among water samples, highest median (minimum-maximum) concentrations (µg/L) of As were recorded 53.32 (1.98-1555) in groundwater, followed by 53.04 (1.58-351.5) in drain water, and 4.80 (2.13-8.67) in river water, respectively, whereas As concentration (mg/kg) in river sediments was 6.03 (5.56-13.92). Variation of As in groundwater was non-significant (P > 0.05) among every 1-km stretch from the Ravi River. However, maximum median concentrations (µg/L) of 60.18 and 60.08 were recorded between 2-3 and 0-1 km from River Ravi, respectively, reflecting possible mixing of river water with shallow aquifers. A very high cancer and non-cancer risk (HI > 1.0 × 10-4) through groundwater As exposure was predicted for both children and adults. The current study concluded that prevalence of As above WHO prescribed limits in shallow aquifer along the urban stretch of the River Ravi is posing serious health risk to the exposed population.
Collapse
Affiliation(s)
- Syed Umair Shahid
- Centre for Integrated Mountain Research (CIMR), University of the Punjab, Lahore, Pakistan
| | - Naeem Akhtar Abbasi
- College of Earth and Environmental Sciences (CEES), University of the Punjab, Lahore, Pakistan.
| | - Areej Tahir
- College of Earth and Environmental Sciences (CEES), University of the Punjab, Lahore, Pakistan
| | - Sajjad Ahmad
- World Wildlife Fund (WWF), Ferozepur Road, Lahore, Pakistan
| | - Sajid Rashid Ahmad
- College of Earth and Environmental Sciences (CEES), University of the Punjab, Lahore, Pakistan
| |
Collapse
|
18
|
Luo H, Du P, Wang P, Chen J, Li Y, Wang H, Teng Y, Li F. Chemodiversity of dissolved organic matter in cadmium-contaminated paddy soil amended with different materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153985. [PMID: 35189242 DOI: 10.1016/j.scitotenv.2022.153985] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Dissolved organic matter (DOM) in soil is a key factor affecting the bioavailability of heavy metals, but very few studies have focused on the role of DOM in the use of soil amendments to mitigate heavy metal accumulation in crops. Here, eleven materials were added to cadmium (Cd)-contaminated paddy soil in greenhouse pot trials; rice was grown and harvested, the chemodiversity of post-harvest soil DOM was characterized using Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry, and the specific associations between soil DOM traits and water-extractable soil Cd concentration were identified at the molecular level. The results showed that the endogenous release caused by altering soil pH had a greater effect on soil DOM concentration than did the exogenous chemical input due to the application of organic amendments, which in turn contributed to the chemodiversity of DOM. After one season of rice cultivation, soil DOM molecules were mainly dominated by relatively low molecular weight heteroatom-free lignins. C/N, C/H ratios of organic materials influenced DOM molecular fingerprint patterns, and soil pH and redox potential were the main driving forces affecting the chemodiversity of DOM. Furthermore, the low molecular weight, high saturation, low aromaticity, and heteroatom-free DOM molecules are more likely to dissolve Cd from the soil solid phase, thus increasing the potential risk of Cd to the environment. The results provide critical information about amendments-induced changes in DOM chemodiversity and will inform the selection of appropriate soil amendments.
Collapse
Affiliation(s)
- Huilong Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Ping Du
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Panpan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Juan Chen
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Yake Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Hongqi Wang
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Fasheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Science, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
19
|
Zhao C, Zhang X, Fang X, Zhang N, Xu X, Li L, Liu Y, Su X, Xia Y. Characterization of drinking groundwater quality in rural areas of Inner Mongolia and assessment of human health risks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113360. [PMID: 35248927 DOI: 10.1016/j.ecoenv.2022.113360] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Groundwater is an important natural resource of drinking water in rural areas in Inner Mongolia, China. In this study, 4438 drinking groundwater samples were collected from the rural areas of 81 counties in Inner Mongolia, and were analyzed for 16 parameters, including pH, total hardness (TH), chemical oxygen demand (COD), total dissolved solids (TDS), sulfate (SO42-), chloride (Cl-), fluoride (F-), iron (Fe), manganese (Mn), arsenic (As), cadmium (Cd), hexavalent chromium (Cr), lead (Pb), aluminum (Al), cuprum (Cu), zinc (Zn). The groundwater quality was evaluated with water quality index (WQI) and human health risk assessment (HRA). Monte Carlo simulation were applied for the uncertainty and sensitivity analysis in the health risk assessment. The spatial map was employed based on the inverse distance weighted (IDW) interpolation technique. The results reveal that while the hazard quotient (HQ) suggests that the risk of single element contamination is feeble, the hazard index (HI) indicates a potential health risk for the local population. The observed cumulative carcinogenic risk (CCR) indicates a probable risks of carcinogenic health hazards in the study area. The sensitivity analysis revealed that daily ingestion rate (IR), exposure frequency (EF), and the concentrations of As, Mn, F-, and Cr are the most influential parameters for health hazards. The highly polluted areas are mainly distributed in the central and western regions of Inner Mongolia, including Xianghuangqi, New Barag Zuoqi, and Togtoh. It is observed that the groundwater may cause a potential health risk after long-term ingestion. The results of this study will contribute to groundwater management and protection in Inner Mongolia.
Collapse
Affiliation(s)
- Chen Zhao
- School of Public Health, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, China
| | - Xingguang Zhang
- School of Public Health, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, China
| | - Xin Fang
- School of Public Health, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, China
| | - Nan Zhang
- School of Public Health, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, China
| | - Xiaoqian Xu
- School of Public Health, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, China
| | - Lehui Li
- School of Public Health, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, China
| | - Yan Liu
- School of Public Health, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, China
| | - Xiong Su
- School of Public Health, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, China
| | - Yuan Xia
- School of Public Health, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
20
|
Cao W, Gao Z, Guo H, Pan D, Qiao W, Wang S, Ren Y, Li Z. Increases in groundwater arsenic concentrations and risk under decadal groundwater withdrawal in the lower reaches of the Yellow River basin, Henan Province, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118741. [PMID: 34953952 DOI: 10.1016/j.envpol.2021.118741] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The spatiotemporal variability in groundwater arsenic concentrations following extensive groundwater extractions over decades was rarely studied on a large scale. To fill this gap, variations in groundwater arsenic concentrations in the North Henan Plain in China from 2010 to 2020 were investigated. The possibility of high-arsenic groundwater (>10 μg/L) was higher than 40% in aquifers within a distance of 100 m from paleochannels. This may be due to the fact that deposits in paleochannels were rich in organic matter and suitable for arsenic enrichment. Following groundwater withdrawal over ten years from 2010 to 2020, nearly half of groundwater samples (44%) were elevated in groundwater arsenic concentrations, and the proportion of high arsenic groundwater increased from 24% in 2010 to 26% in 2020. These may be related to enhanced Fe(III) oxide reduction under decadal groundwater withdrawal. However, around 56% groundwater samples were decreases in arsenic concentrations because of increased NO3- levels in these samples in 2020. Furthermore, extensive groundwater withdrawal decreased groundwater tables averagely by 4.6 m from 2010 to 2020, which induced the intrusion of high-arsenic groundwater from shallow aquifers into deeper ones. More importantly, the long-term groundwater pumping has perturbed groundwater flow dynamics and redistributed high-arsenic groundwater in the plain, leading to 18% more areas and 33.8% more residents being potentially at risk. This study suggests that the threat of groundwater overexploitation may be much more severe than previously expected.
Collapse
Affiliation(s)
- Wengeng Cao
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, PR China; National Observation and Research Station on Groundwater and Land Subsidence in Beijing-Tianjin-Hebei Plain, Shijiazhuang, 050061, PR China
| | - Zhipeng Gao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China.
| | - Deng Pan
- Institute of Natural Resource Monitoring of Henan Province, Zhengzhou, 450016, PR China
| | - Wen Qiao
- China Institute of Geo-Environment Monitoring, China Geological Survey, Beijing, 100081, PR China; Key Laboratory of Mine Ecological Effects and Systematic Restoration, Ministry of Natural Resources, Beijing, 100081, PR China
| | - Shuai Wang
- Institute of Natural Resource Monitoring of Henan Province, Zhengzhou, 450016, PR China
| | - Yu Ren
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, PR China; National Observation and Research Station on Groundwater and Land Subsidence in Beijing-Tianjin-Hebei Plain, Shijiazhuang, 050061, PR China
| | - Zeyan Li
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, PR China; National Observation and Research Station on Groundwater and Land Subsidence in Beijing-Tianjin-Hebei Plain, Shijiazhuang, 050061, PR China
| |
Collapse
|