1
|
Hu J, Zhu G, Ronen A, Jassby D, Li Q, Wang P, Wang W, Zhang W. Interfacial Heating in Membrane Distillation: Advances, Optimization Strategies, and Industrial Applications for Desalination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:10750-10769. [PMID: 40445261 DOI: 10.1021/acs.est.5c01447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Interfacial heating (IH) membrane distillation (MD) is a promising MD variation with significant potential for freshwater production from brine and seawater. Unlike conventional MD, IH-MD heats locally between the hydrophobic membrane and saline water to enhance the vapor flux and minimize heat loss. However, a unified understanding of the performance of various IH-MD systems remains lacking. Stability challenges such as membrane wetting, scaling, fouling, and corrosion caused by the introduction of heating materials pose significant obstacles to industrial application. This review critically examined recent advances in interfacial heating methods, including photothermal, Joule, conduction, and induction heating. Photothermal approaches offer sustainability and improved energy efficiency but are limited by sunlight exposure and adsorption, while electrothermal methods provide stable interfacial heating flux at the cost of higher energy use and potential material degradation. Strategies to enhance energy performance and durability are discussed in detail, such as combining multiple heating methods, refining module and configuration designs, optimizing membrane properties, and adjusting operating conditions. We also assessed the economic viability of IH-MD for industrial applications. While IH-MD faces challenges related to material durability, system complexity, and scale-up, its ability to eliminate thermal polarization, reduce energy consumption, and enable integration with renewable energy sources positions it as a transformative approach for future sustainable desalination and water purification technologies. This review aims to bridge the knowledge gaps between scientific innovation and real-world applications of various IH-MD technologies.
Collapse
Affiliation(s)
- Jiahui Hu
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Guangyu Zhu
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Avner Ronen
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Be'er Sheva84990, Israel
| | - David Jassby
- Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, United States
| | - Qilin Li
- Department of Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Peng Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou City, Guangdong Province 519080, China
| | - Wenbin Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou City, Guangdong Province 519080, China
| | - Wen Zhang
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
2
|
Yin G, Deng D, Huo E, Bai M. Monstera adansonii-inspired lignocellulose-derived bionic solar evaporator for solar steam generation. Int J Biol Macromol 2025; 313:144225. [PMID: 40381771 DOI: 10.1016/j.ijbiomac.2025.144225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 05/02/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
A novel three-dimensional solar evaporator (PPy@CC) inspired by monstera adansonii was developed by the carbonization and polypyrrole decoration of waste lignocellulose (corncob). The original microscopic porous structure was retained by the carbonization of corncob, and the bionic monstera adansonii leaves were formed by loading polypyrrole on its evaporation interface, which enhanced the absorption capacity of sunlight and provided sufficient diffusion channels for water through the porous interconnect structure. The results showed that the PPy@CC has the average evaporation rates of 2.417 kg m-2 h-1 and 2.048 kg m-2 h-1 respectively in pure water and 3.5 wt% seawater, and has better salt resistance and stability. In addition, the PPy@CC evaporator can also be used to efficiently generate water steam in alkaline and acidic wastewater, the pH values of the desalinated water obtained in both scenarios were neutral, showing excellent wastewater treatment effect. Outdoor experiments further confirmed its potential for practical applications, an average evaporation rate of 2.822 kg m-2 h-1 in 3.5 wt% seawater can be obtained, and stable performance over long periods of operation with no salt crystallization observed. Therefore, PPy@CC was a solar evaporator with practical application potential, which was suitable for seawater desalination and industrial wastewater treatment.
Collapse
Affiliation(s)
- Guichuan Yin
- Key Laboratory of Efficient Low-carbon Energy Conversion and Utilization of Jiangsu Provincial Higher Education Institutions, Suzhou University of Science and Technology, Suzhou 215009, China; School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Di Deng
- Key Laboratory of Efficient Low-carbon Energy Conversion and Utilization of Jiangsu Provincial Higher Education Institutions, Suzhou University of Science and Technology, Suzhou 215009, China; School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Erguang Huo
- Key Laboratory of Efficient Low-carbon Energy Conversion and Utilization of Jiangsu Provincial Higher Education Institutions, Suzhou University of Science and Technology, Suzhou 215009, China; School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Mengna Bai
- Key Laboratory of Efficient Low-carbon Energy Conversion and Utilization of Jiangsu Provincial Higher Education Institutions, Suzhou University of Science and Technology, Suzhou 215009, China; School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
3
|
Chang H, Ma Z, Zhao H, Qu D, Liu C, Yan Z, Li R, Qu F, Liang H, Vidic RD. Regulating gypsum scaling-induced wetting in membrane distillation by heterogeneous crystallization: Role of filter media. WATER RESEARCH 2025; 274:123146. [PMID: 39847903 DOI: 10.1016/j.watres.2025.123146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/17/2024] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
Mineral scaling and scaling-induced wetting are critical issues in membrane distillation (MD) during treatment of saline wastewaters. Gypsum scaling and scaling-induced wetting in MD were successfully regulated by heterogeneous crystallization with in-line granular filtration in this study. Stable water recovery increased from 32.5 % to more than 52.5 % in one-cycle operation, depending on filter media properties. Because a large mass of crystals were retained or/and adsorbed in the granular filter, the scaling mass on membrane surface was reduced by 41.2 %, 23.1 %, 54.7 % and 78.1 % by filter charged with activated carbon, sand, fiber and activated alumina, respectively. When activated carbon, sand, fiber and activated alumina were used, the final MD fluxes were 1.58, 1.04, 1.96 and 3.43 times that without filter, and permeate conductivity decreased by 43.0 %, 46.8 %, 83.2 % and 81.3 %, respectively. The multi-cycle tests showed that heterogeneous crystallization gradually occurred in the granular filter, thereby promoting seeding-induced crystallization that reduced gypsum scaling and scaling-induced wetting in MD. Excellent anti-scaling and anti-wetting performance of in-line granular filtration was also confirmed for synthetic and real industrial wastewater. The results of this study provide guidance for mineral scaling control in MD to allow resource utilization for saline wastewater.
Collapse
Affiliation(s)
- Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, China
| | - Zeren Ma
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, China
| | - Huaxin Zhao
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, China
| | - Dan Qu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Caihong Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
| | - Rui Li
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, China
| | - Fangshu Qu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Radisav D Vidic
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
4
|
Dong Y, Violet C, Sun C, Li X, Sun Y, Zheng Q, Tang C, Elimelech M. Ceramic-carbon Janus membrane for robust solar-thermal desalination. Nat Commun 2025; 16:2659. [PMID: 40102428 PMCID: PMC11920389 DOI: 10.1038/s41467-025-57888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
The desalination performance of conventional distillation membranes is limited by insufficient stability and energy efficiency, impeding their application in sustainable water production. Herein, we report a ceramic-carbon Janus membrane with solar-thermal functionality for enhanced desalination performance, energy efficiency, and stability for hypersaline water treatment. The feed and permeate sides of this Janus membrane are designed with different properties such as wettability, conductivity, and solar-thermal conversion to enhance performance. We demonstrate that this membrane exhibits higher solar-thermal efficiency (66.8-68.8%) and water flux (3.3-5.1 L m-2 h-1) than most existing polymeric solar-thermal distillation membranes. Simulation results ascribe enhanced performance to an increased membrane surface temperature, which mitigates temperature polarization and attenuation, thus enhancing the desalination driving force. The nano-carbon membrane surface accelerates water evaporation by inducing a transition from free water to intermediate water with decreased hydrogen bonding and a lower evaporation energy barrier. Water vapor molecules transport through the membrane pores by a combined mechanism of Knudsen diffusion and viscous flow. Even for seawater and hypersaline water, the membrane exhibits stable water flux and salt rejection due to its scaling-resistant surface and stable interfacial temperature. This work provides a strategy for rationally designing next-generation Janus membranes for sustainable water purification.
Collapse
Affiliation(s)
- Yingchao Dong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong Province, China.
| | - Camille Violet
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Chunyi Sun
- School of Water Conservancy and Environment, Jinan University, Jinan, China
| | - Xianhui Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
| | - Yuxuan Sun
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Qingbin Zheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong Province, China.
| | - Chuyang Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Menachem Elimelech
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA.
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.
| |
Collapse
|
5
|
Alipanahrostami M, Coolidge C, Wang Y, Wang W, Tong T. Minimizing the Use of Per- and Polyfluoroalkyl Substances for Textured Wetting-Resistant Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3355-3365. [PMID: 39957599 DOI: 10.1021/acs.est.4c08343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been used as synthetic chemicals to create textured wetting-resistant surfaces, which have a broad range of applications including omniphobic membranes, self-cleaning textiles, and anticorrosion coatings. However, the high persistence, toxicity, and bioaccumulation potential of PFAS have led to rising public concerns and stringent regulations, especially after the U.S. Environmental Protection Agency (USEPA) announced legally enforceable maximum contamination levels for six PFAS species in April 2024. In this paper, we provide our perspective that the use of PFAS can be avoided in the fabrication of textured omniphobic and superomniphobic surfaces, which display high wetting resistance against not only high surface tension liquids but also more importantly low surface tension liquids. We first discuss the role of PFAS in the design of conventional wetting-resistant surfaces. We then discuss the state-of-the-art strategies for creating PFAS-free textured omniphobic and superomniphobic surfaces with high wetting resistance while elucidating the underlying mechanism. Further, we emphasize that PFAS are indeed not always needed for textured surfaces with a sufficiently high wetting resistance in specific environmental applications such as desalination and wastewater treatment. We envision that this paper will motivate the scientific community to rethink and revolutionize the design framework toward more sustainable wetting-resistant surfaces, thereby circumventing the use of PFAS and the consequent health and environmental risks.
Collapse
Affiliation(s)
- Mohammad Alipanahrostami
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Connor Coolidge
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Yuqi Wang
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Wei Wang
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
6
|
Xu B, Ganesan M, Devi RK, Ruan X, Chen W, Lin CC, Chang HT, Lizundia E, An AK, Ravi SK. Hierarchically Promoted Light Harvesting and Management in Photothermal Solar Steam Generation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2406666. [PMID: 39676402 DOI: 10.1002/adma.202406666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/20/2024] [Indexed: 12/17/2024]
Abstract
Solar steam generation (SSG) presents a promising approach to addressing the global water crisis. Central to SSG is solar photothermal conversion that requires efficient light harvesting and management. Hierarchical structures with multi-scale light management are therefore crucial for SSG. At the molecular and sub-nanoscale levels, materials are fine-tuned for broadband light absorption. Advancing to the nano- and microscale, structures are tailored to enhance light harvesting through internal reflections, scattering, and diverse confinement effects. At the macroscopic level, light capture is optimized through rationally designed device geometries, configurations, and arrangements of solar absorber materials. While the performance of SSG relies on various factors including heat transport, physicochemical interactions at the water/air and material/water interfaces, salt dynamics, etc., efficient light capture and utilization holds a predominant role because sunlight is the sole energy source. This review focuses on the critical, yet often underestimated, role of hierarchical light harvesting/management at different dimensional scales in SSG. By correlating light management with the structure-property relationships, the recent advances in SSG are discussed, shedding light on the current challenges and possible future trends and opportunities in this domain.
Collapse
Affiliation(s)
- Bolin Xu
- School of Energy and Environment, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Muthusankar Ganesan
- School of Energy and Environment, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Ramadhass Keerthika Devi
- Institute of Organic and Polymeric Materials, Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei, 106344, Taiwan
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Xiaowen Ruan
- School of Energy and Environment, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Weicheng Chen
- School of Energy and Environment, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chun Che Lin
- Institute of Organic and Polymeric Materials, Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei, 106344, Taiwan
| | - Huan-Tsung Chang
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan
- Division of Breast Surgery, Department of General Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
| | - Erlantz Lizundia
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Sai Kishore Ravi
- School of Energy and Environment, City University of Hong Kong, Kowloon, 999077, Hong Kong
| |
Collapse
|
7
|
Wei X, Zou Z, Yao J, Sun L, Xu Y, Zhang L, Chen S, Liu Y, Chen J. Preparation of sulfur-doped porous carbon from polyphenylene sulfide waste for photothermal conversion materials to achieve solar-driven water evaporation. NANOSCALE 2025; 17:2631-2643. [PMID: 39820200 DOI: 10.1039/d4nr04006f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
In recent years, solar-driven photothermal water evaporation technology for seawater desalination and wastewater treatment has developed rapidly, which is of great significance for addressing the issue of freshwater scarcity. However, due to the high costs associated with the manufacturing, maintenance, and operation of such devices, their application remains challenging in remote and resource-scarce regions. Due to its excellent light absorption capability in the near-infrared region, high hydrophilicity, and stable chemical properties, coupled with the low cost of recycling waste carbonized polyphenylene sulfide, this material is an excellent choice as a photothermal material for solar-driven water evaporation devices. Ordinary wood in nature usually has a highly regenerative porous structure, which is a natural water transport channel that facilitates the transport of water from the bottom to the top, allowing it to be rapidly converted into vapor. Based on this characteristic, this article innovatively proposes to prepare waste polyphenylene sulfide from porous carbonized materials (KCP) as the photothermal conversion material for novel photothermal water evaporation devices, achieving solar-driven water evaporation. This material efficiently facilitates the conversion between solar and thermal energies and exhibits excellent hydrophilicity, thereby enabling the rapid utilization of absorbed solar energy for water evaporation on the surface of the evaporator. In this study, a porous carbonized polyphenylene sulfide photothermal water evaporator (KCP-wood) was fabricated by using freeze-drying and in situ coating to load the photothermal conversion material onto a wood substrate. Under simulated one-sun irradiation, this evaporator achieved a water evaporation rate of 2.41 kg m-2 h-1 and a photothermal conversion efficiency of 91.3%. Additionally, a systematic study was conducted on the photothermal performance of various light-water evaporators, encompassing photothermal conversion efficiency, stability, thermal conductivity, and anti-fouling capabilities. Finally, the practical performance of the light-water evaporator under various environmental conditions was validated, demonstrating its excellent stability and durability. It is capable of effectively applying to high-efficiency water resource utilization and solar energy conversion fields.
Collapse
Affiliation(s)
- Xuejing Wei
- College of Materials Science and Engineering, Hubei Provincial Engineering Research Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei, China.
- Sichuan Silk Engineering Technology Center, Sichuan Academy of Silk Sciences Co., Ltd., Chengdu 610031, Sichuan, China
| | - Zixuan Zou
- College of Materials Science and Engineering, Hubei Provincial Engineering Research Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei, China.
- Sichuan Silk Engineering Technology Center, Sichuan Academy of Silk Sciences Co., Ltd., Chengdu 610031, Sichuan, China
| | - Jiayi Yao
- College of Materials Science and Engineering, Hubei Provincial Engineering Research Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei, China.
- Sichuan Silk Engineering Technology Center, Sichuan Academy of Silk Sciences Co., Ltd., Chengdu 610031, Sichuan, China
| | - Li Sun
- College of Materials Science and Engineering, Hubei Provincial Engineering Research Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei, China.
- Sichuan Silk Engineering Technology Center, Sichuan Academy of Silk Sciences Co., Ltd., Chengdu 610031, Sichuan, China
| | - Yinxing Xu
- College of Materials Science and Engineering, Hubei Provincial Engineering Research Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei, China.
- Sichuan Silk Engineering Technology Center, Sichuan Academy of Silk Sciences Co., Ltd., Chengdu 610031, Sichuan, China
| | - Lufeng Zhang
- College of Materials Science and Engineering, Hubei Provincial Engineering Research Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei, China.
- Sichuan Silk Engineering Technology Center, Sichuan Academy of Silk Sciences Co., Ltd., Chengdu 610031, Sichuan, China
| | - Shaohua Chen
- College of Materials Science and Engineering, Hubei Provincial Engineering Research Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei, China.
- Sichuan Silk Engineering Technology Center, Sichuan Academy of Silk Sciences Co., Ltd., Chengdu 610031, Sichuan, China
| | - Yuhao Liu
- College of Materials Science and Engineering, Hubei Provincial Engineering Research Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei, China.
- Sichuan Silk Engineering Technology Center, Sichuan Academy of Silk Sciences Co., Ltd., Chengdu 610031, Sichuan, China
| | - Jiayue Chen
- College of Materials Science and Engineering, Hubei Provincial Engineering Research Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei, China.
- Sichuan Silk Engineering Technology Center, Sichuan Academy of Silk Sciences Co., Ltd., Chengdu 610031, Sichuan, China
| |
Collapse
|
8
|
Margeson MJ, Atwood M, Lara de Larrea J, Weatherby JA, Daurie H, Near K, Gagnon GA, Dasog M. Refractory plasmonic material based floating solar still for simultaneous desalination and electricity generation. iScience 2024; 27:111225. [PMID: 39569368 PMCID: PMC11576394 DOI: 10.1016/j.isci.2024.111225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/16/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024] Open
Abstract
Floating interfacial solar evaporation offers a land-saving, eco-friendly, and low-infrastructure alternative for freshwater production. However, challenges include maximizing heat localization, preventing salt accumulation, and operating under harsh environmental conditions. This work demonstrates a plasmonic titanium carbide (TiC) nanoparticle (NP)-based floating solar desalination system that produces clean water using sunlight on saline water sources. The components of the floating still were carefully chosen to optimize freshwater output, with TiC produced by upcycling tire waste. Outdoor experiments in Halifax, Canada, where solar insolation reached around 6 kW m-2 day-1, resulted in daily water yields of up to 3.67 L m-2, corresponding to a solar-to-vapor conversion efficiency of 40%. Water can be produced at a cost of $0.0086 L-1, and the still can be modified to generate thermoelectricity, enabling small onboard devices to test water quality without external electricity. This study contributes to the development of scalable floating solar desalination systems, providing potable water for water-stressed communities.
Collapse
Affiliation(s)
- Matthew J Margeson
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS B3H 4R2, Canada
| | - Mark Atwood
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS B3H 4R2, Canada
| | - Jaser Lara de Larrea
- Centre for Water Resources Studies, Department of Civil and Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, NS B3H 4R2, Canada
| | - Joseph A Weatherby
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS B3H 4R2, Canada
| | - Heather Daurie
- Centre for Water Resources Studies, Department of Civil and Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, NS B3H 4R2, Canada
| | - Katlyn Near
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS B3H 4R2, Canada
| | - Graham A Gagnon
- Centre for Water Resources Studies, Department of Civil and Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, NS B3H 4R2, Canada
| | - Mita Dasog
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
9
|
Wei X, Zou Z, Liao M, Deng L, Yao J, Sun L, Chen S, Liu Y, Chen J. Solar-driven water evaporation using a collaborative photothermal conversion material system based on carbonized waste polyphenylene sulfide and copper sulfide. NANOSCALE 2024; 16:14130-14142. [PMID: 39011614 DOI: 10.1039/d4nr01602e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Recently, water resources have become scarce due to the growing global population and human impact on the environment, coupled with the effects of climate change. For solving the problem of global freshwater shortage and increasing the value of discarded polyphenylene sulfide (PPS) filter bags, in this study, balsa wood was used as the base of a photothermal solar evaporator, chitosan solution was used as the binder, and the main photothermal conversion materials used were polyphenylene sulfide (CP) carbide and copper sulfide. In order to create synergistic photothermal conversion materials, freeze-drying and in situ precipitation were used to deposit the photothermal conversion materials on top of the balsa wood. The prepared CP/CuS-wood evaporator has excellent water evaporation performance and light conversion capability, with a water evaporation rate of 2.68 kg m-2 h-1 and a photothermal conversion efficiency of 93.2% under simulated one solar intensity irradiation. In addition, the evaporator can effectively remove organic dyes such as methylene blue and methyl orange. The evaporator's durability and seawater desalination capability have also been confirmed through seawater desalination experiments and outdoor tests. Studies have shown that solar interface photothermal evaporators are a viable solution for desalination and wastewater treatment. This eco-friendly, economically viable and stable photothermal evaporator mentioned in this paper has pioneering features and will be a new paradigm for desalination and wastewater treatment.
Collapse
Affiliation(s)
- Xuejing Wei
- College of Materials Science and Engineering, Hubei Provincial Engineering Research Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei, China.
| | - Zixuan Zou
- College of Materials Science and Engineering, Hubei Provincial Engineering Research Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei, China.
| | - Meng Liao
- College of Materials Science and Engineering, Hubei Provincial Engineering Research Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei, China.
| | - Liumi Deng
- College of Materials Science and Engineering, Hubei Provincial Engineering Research Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei, China.
| | - Jiayi Yao
- College of Materials Science and Engineering, Hubei Provincial Engineering Research Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei, China.
| | - Li Sun
- College of Materials Science and Engineering, Hubei Provincial Engineering Research Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei, China.
| | - Shaohua Chen
- College of Materials Science and Engineering, Hubei Provincial Engineering Research Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei, China.
| | - Yuhao Liu
- College of Materials Science and Engineering, Hubei Provincial Engineering Research Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei, China.
| | - Jiayue Chen
- College of Materials Science and Engineering, Hubei Provincial Engineering Research Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei, China.
| |
Collapse
|
10
|
Regmi C, Kshetri YK, Wickramasinghe SR. Carbon-Based Nanocomposite Membranes for Membrane Distillation: Progress, Problems and Future Prospects. MEMBRANES 2024; 14:160. [PMID: 39057668 PMCID: PMC11278710 DOI: 10.3390/membranes14070160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
The development of an ideal membrane for membrane distillation (MD) is of the utmost importance. Enhancing the efficiency of MD by adding nanoparticles to or onto a membrane's surface has drawn considerable attention from the scientific community. It is crucial to thoroughly examine state-of-the-art nanomaterials-enabled MD membranes with desirable properties, as they greatly enhance the efficiency and reliability of the MD process. This, in turn, opens up opportunities for achieving a sustainable water-energy-environment nexus. By introducing carbon-based nanomaterials into the membrane's structure, the membrane gains excellent separation abilities, resistance to various feed waters, and a longer lifespan. Additionally, the use of carbon-based nanomaterials in MD has led to improved membrane performance characteristics such as increased permeability and a reduced fouling propensity. These nanomaterials have also enabled novel membrane capabilities like in situ foulant degradation and localized heat generation. Therefore, this review offers an overview of how the utilization of different carbon-based nanomaterials in membrane synthesis impacts the membrane characteristics, particularly the liquid entry pressure (LEP), hydrophobicity, porosity, and membrane permeability, as well as reduced fouling, thereby advancing the MD technology for water treatment processes. Furthermore, this review also discusses the development, challenges, and research opportunities that arise from these findings.
Collapse
Affiliation(s)
- Chhabilal Regmi
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Yuwaraj K. Kshetri
- Research Center for Green Advanced Materials, Sun Moon University, Asan 31460, Republic of Korea
- Department of Energy and Chemical Engineering, Sun Moon University, Asan 31460, Republic of Korea
| | - S. Ranil Wickramasinghe
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
11
|
Kim HT, Philip L, McDonagh A, Johir M, Ren J, Shon HK, Tijing LD. Recent Advances in High-Rate Solar-Driven Interfacial Evaporation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401322. [PMID: 38704683 PMCID: PMC11234448 DOI: 10.1002/advs.202401322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Recent advances in solar-driven interfacial evaporation (SDIE) have led to high evaporation rates that open promising avenues for practical utilization in freshwater production and industrial application for pollutant and nutrient concentration, and resource recovery. Breakthroughs in overcoming the theoretical limitation of 2D interfacial evaporation have allowed for developing systems with high evaporation rates. This study presents a comprehensive review of various evaporator designs that have achieved pure evaporation rates beyond 4 kg m-2 h-1, including structural and material designs allowing for rapid evaporation, passive 3D designs, and systems coupled with alternative energy sources of wind and joule heating. The operational mechanisms for each design are outlined together with discussion on the current benefits and areas for improvement. The overarching challenges encountered by SDIE concerning the feasibility of direct integration into contemporary practical settings are assessed, and issues relating to sustaining elevated evaporation rates under diverse environmental conditions are addressed.
Collapse
Affiliation(s)
- Hyeon Tae Kim
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, NSW, 2007, Australia
- ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Ligy Philip
- Environmental Engineering Division, Department of Civil Engineering, IIT Madras, Chennai, 600 036, India
| | - Andrew McDonagh
- School of Mathematical and Physical Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Md Johir
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Jiawei Ren
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, NSW, 2007, Australia
- ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Leonard D Tijing
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, NSW, 2007, Australia
- ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, NSW, 2007, Australia
| |
Collapse
|
12
|
Nthunya LN, Chong KC, Lai SO, Lau WJ, López-Maldonado EA, Camacho LM, Shirazi MMA, Ali A, Mamba BB, Osial M, Pietrzyk-Thel P, Pregowska A, Mahlangu OT. Progress in membrane distillation processes for dye wastewater treatment: A review. CHEMOSPHERE 2024; 360:142347. [PMID: 38759802 DOI: 10.1016/j.chemosphere.2024.142347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Textile and cosmetic industries generate large amounts of dye effluents requiring treatment before discharge. This wastewater contains high levels of reactive dyes, low to none-biodegradable materials and chemical residues. Technically, dye wastewater is characterised by high chemical and biological oxygen demand. Biological, physical and pressure-driven membrane processes have been extensively used in textile wastewater treatment plants. However, these technologies are characterised by process complexity and are often costly. Also, process efficiency is not achieved in cost-effective biochemical and physical treatment processes. Membrane distillation (MD) emerged as a promising technology harnessing challenges faced by pressure-driven membrane processes. To ensure high cost-effectiveness, the MD can be operated by solar energy or low-grade waste heat. Herein, the MD purification of dye wastewater is comprehensively and yet concisely discussed. This involved research advancement in MD processes towards removal of dyes from industrial effluents. Also, challenges faced by this process with a specific focus on fouling are reviewed. Current literature mainly tested MD setups in the laboratory scale suggesting a deep need of further optimization of membrane and module designs in near future, especially for textile wastewater treatment. There is a need to deliver customized high-porosity hydrophobic membrane design with the appropriate thickness and module configuration to reduce concentration and temperature polarization (CP and TP). Also, energy loss should be minimized while increasing dye rejection and permeate flux. Although laboratory experiments remain pivotal in optimizing the MD process for treating dye wastewater, the nature of their time intensity poses a challenge. Given the multitude of parameters involved in MD process optimization, artificial intelligence (AI) methodologies present a promising avenue for assistance. Thus, AI-driven algorithms have the potential to enhance overall process efficiency, cutting down on time, fine-tuning parameters, and driving cost reductions. However, achieving an optimal balance between efficiency enhancements and financial outlays is a complex process. Finally, this paper suggests a research direction for the development of effective synthetic and natural dye removal from industrially discharged wastewater.
Collapse
Affiliation(s)
- Lebea N Nthunya
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, 2050, Johannesburg, South Africa.
| | - Kok Chung Chong
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Kajang 43000, Selangor, Malaysia; Centre of Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kampar 31900, Perak, Malaysia
| | - Soon Onn Lai
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Kajang 43000, Selangor, Malaysia; Centre of Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kampar 31900, Perak, Malaysia
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | | | - Lucy Mar Camacho
- Department of Environmental Engineering, Texas A&M University-Kingsville, MSC 2013, 700 University Blvd., Kingsville, TX 78363, USA
| | - Mohammad Mahdi A Shirazi
- Centre for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Aamer Ali
- Centre for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1709 Roodepoort, South Africa
| | - Magdalena Osial
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Paulina Pietrzyk-Thel
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Agnieszka Pregowska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Oranso T Mahlangu
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1709 Roodepoort, South Africa.
| |
Collapse
|
13
|
Gao Z, Li L, Li F, Miao G, Miao X, Song Y, Xu L, Hou Z, Ren G, Zhu X. Versatile GO/ANFs Aerogel for Highly Efficient Solar-Powered Water Purification in Wide Environments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12504-12511. [PMID: 38836627 DOI: 10.1021/acs.langmuir.4c00929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Solar-driven interfacial evaporation is a very promising choice for producing clean water. Despite the considerable investigation of pure NaCl brine purification, solar-driven complex water purification, such as real-world seawater desalination as well as domestic and industrial wastewater treatment, has rarely been investigated, mainly due to its compositions being much more complicated than NaCl brine. Herein, we developed a graphene oxide/aramid nanofiber (GO/ANFs) aerogel by a freeze-drying process. The GO/ANFs aerogel combined opened porous microchannels, superhydrophilicity, anti-oil-fouling capacity, enhanced broad-spectrum light absorption (more than 92%), and good solar/heat management. These integrated properties enabled the GO/ANFs aerogel to be an advanced solar interfacial evaporator for efficient freshwater production with the characteristics of localized heat conversion, quick water transport, and salt crystallization inhibition, and the rate of steam production rate was as high as 2.25 kg m-2 h-1 upon exposure to 1 solar irradiation. Importantly, the high-water-vapor generation rate was maintained even under complicated conditions, including real-world seawater, dye water, emulsions, and corrosive liquid environments. Considering its promising adaptability to a wide range of environments, this work hopes to inspire the development of brine desalination, wastewater purification, clean water production, and solar energy utilization.
Collapse
Affiliation(s)
- Zhongshuai Gao
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Linfan Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Fangchao Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Gan Miao
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Xiao Miao
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | - Yuanming Song
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Lide Xu
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Zhiqiang Hou
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Guina Ren
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Xiaotao Zhu
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| |
Collapse
|
14
|
Abrofarakh M, Moghadam H, Abdulrahim HK. Investigation of direct contact membrane distillation (DCMD) performance using CFD and machine learning approaches. CHEMOSPHERE 2024; 357:141969. [PMID: 38604515 DOI: 10.1016/j.chemosphere.2024.141969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Direct Contact Membrane Distillation (DCMD) is emerging as an effective method for water desalination, known for its efficiency and adaptability. This study delves into the performance of DCMD by integrating two powerful analytical tools: Computational Fluid Dynamics (CFD) and Artificial Neural Networks (ANN). The research thoroughly examines the impact of various factors, such as inlet temperatures, velocities, channel heights, salt concentration, and membrane characteristics, on the process's efficiency, specifically calculating the water vapor flux. A rigorous validation of the CFD model aligns well with established studies, ensuring reliability. Subsequently, over 1000 data points reflecting variations in input factors are utilized to train and validate the ANN. The training phase demonstrated high accuracy, with near-zero mean squared errors and R2 values close to one, indicating a strong predictive capability. Further analysis post-ANN training shed light on key relationships: higher membrane porosity boosts water vapor flux, whereas thicker membranes reduce it. Additionally, it was detailed how salt concentration, channel dimensions, inlet temperatures, and velocities significantly influence the distillation process. Finally, a mathematical model was proposed for water vapor flux as a function of key input factors. The results highlighted that salt mole fraction and hot water inlet temperature have the most effect on the water vapor flux. This comprehensive investigation contributes to the understanding of DCMD and emphasizes the potential of combining CFD and ANN for optimizing and innovating water desalination technology.
Collapse
Affiliation(s)
- Moslem Abrofarakh
- Department of Chemical Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran
| | - Hamid Moghadam
- Department of Chemical Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran.
| | - Hassan K Abdulrahim
- Water Research Center (WRC), Kuwait Institute for Scientific Research (KISR), P.O. Box 24885, 13109, Safat, Kuwait
| |
Collapse
|
15
|
Xue Q, Xiao P, Gu J, Wang W, Yan L, Chen T. Superhydrophobic sand evaporator with core-shell structure for long-term salt-resistant solar desalination. WATER RESEARCH 2024; 253:121290. [PMID: 38367377 DOI: 10.1016/j.watres.2024.121290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/11/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
Solar-driven water evaporation, as an environmentally benign pathway, provides an opportunity for alleviating global clean water scarcity. However, the rapidly generated interfacial steam and localized heating could cause increased salt concentration and accumulation, deteriorating the evaporation performance and long-term stability. Herein, a novel superhydrophobic sand solar (FPPSD) evaporator with a core-shell structure was proposed through interface functionalization for continuous photothermal desalination. The collective behavior essence of the sand aggregate gave itself micron-scale self-organized pores and configurable shapes, generating desirable capillary force and supplying effective water-pumping channels. More importantly, combining the dopamine, polypyrrole (PPy), and 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTS) through π-π conjugation and multiple hydrogen bonding effects gave the FPPSD evaporator with stable superhydrophobic property and highly efficient photothermal conversion capability. Therefore, the FPPSD evaporator showed a continuous and stable photothermal performance even after 96 h continuous evaporation under 3-sun irradiation for 10 wt% saline solution, among the best values in the reported works of literature, demonstrating its excellent salt-resistance stability. Furthermore, this novel FPPSD evaporator displayed outstanding environmental stability that kept its initial water transport capacity even after being treated under harsh conditions for 30 days. With excellent salt-resistance ability and stable environmental stability, the FPPSD evaporator will provide an attractive platform for sustainable solar-driven water management.
Collapse
Affiliation(s)
- Qingyang Xue
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201, China
| | - Peng Xiao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201, China
| | - Jincui Gu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201, China.
| | - Wenqin Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Luke Yan
- Polymer Materials & Engineering Department, School of Materials Science & Engineering, Chang' an University, Xi'an 710064, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201, China.
| |
Collapse
|
16
|
Farid MU, Kharraz JA, Sun J, Boey MW, Riaz MA, Wong PW, Jia M, Zhang X, Deka BJ, Khanzada NK, Guo J, An AK. Advancements in Nanoenabled Membrane Distillation for a Sustainable Water-Energy-Environment Nexus. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307950. [PMID: 37772325 DOI: 10.1002/adma.202307950] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/10/2023] [Indexed: 09/30/2023]
Abstract
The emergence of nano innovations in membrane distillation (MD) has garnered increasing scientific interest. This enables the exploration of state-of-the-art nano-enabled MD membranes with desirable properties, which significantly improve the efficiency and reliability of the MD process and open up opportunities for achieving a sustainable water-energy-environment (WEE) nexus. This comprehensive review provides broad coverage and in-depth analysis of recent innovations in nano-enabled MD membranes, focusing on their role in achieving desirable properties, such as strong liquid-repellence, high resistance to scaling, fouling, and wetting, as well as efficient self-heating and self-cleaning functionalities. The recent developments in nano-enhanced photothermal-catalytic applications for water-energy co-generation within a single MD system are also discussed. Furthermore, the bottlenecks are identified that impede the scale-up of nanoenhanced MD membranes and a future roadmap is proposed for their sustainable commercialiation. This holistic overview is expected to inspire future research and development efforts to fully harness the potential of nano-enabled MD membranes to achieve sustainable integration of water, energy, and the environment.
Collapse
Affiliation(s)
- Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Jehad A Kharraz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Jiawei Sun
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Min-Wei Boey
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Muhammad Adil Riaz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Pak Wai Wong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Mingyi Jia
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Xinning Zhang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Bhaskar Jyoti Deka
- Department of Hydrology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Noman Khalid Khanzada
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| | - Jiaxin Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| |
Collapse
|
17
|
Jia H, Ren J, Kong Y, Ji Z, Guo S, Li J. Recent Advances in Dopamine-Based Membrane Surface Modification and Its Membrane Distillation Applications. MEMBRANES 2024; 14:81. [PMID: 38668109 PMCID: PMC11052433 DOI: 10.3390/membranes14040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 04/28/2024]
Abstract
Surface modification of membranes is essential for improving flux and resistance to contamination for membranes. This is of great significance for membrane distillation, which relies on the vapor pressure difference across the membrane as the driving force. In recent years, biomimetic mussel-inspired substances have become the research hotspots. Among them, dopamine serves as surface modifiers that would achieve highly desirable and effective membrane applications owing to their unique physicochemical properties, such as universal adhesion, enhanced hydrophilicity, tunable reducibility, and excellent thermal conductivity. The incorporation of a hydrophilic layer, along with the utilization of photothermal properties and post-functionalization capabilities in modified membranes, effectively addresses challenges such as low flux, contamination susceptibility, and temperature polarization during membrane distillation. However, to the best of our knowledge, there is still a lack of comprehensive and in-depth discussions. Therefore, this paper systematically compiles the modification method of dopamine on the membrane surface and summarizes its application and mechanism in membrane distillation for the first time. It is believed that this paper would provide a reference for dopamine-assisted membrane separation during production, and further promote its practical application.
Collapse
Affiliation(s)
| | - Jing Ren
- Shanxi Laboratory for Yellow River, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China; (H.J.); (Y.K.); (Z.J.); (S.G.)
| | | | | | | | - Jianfeng Li
- Shanxi Laboratory for Yellow River, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China; (H.J.); (Y.K.); (Z.J.); (S.G.)
| |
Collapse
|
18
|
Zhang N, Zhang J, Zhu X, Yuan S, Wang D, Xu H, Wang Z. Synergistic Effect of Ti 3C 2T x MXene Nanosheets and Tannic Acid-Fe 3+ Network in Constructing High-Performance Hydrogel Composite Membrane for Photothermal Membrane Distillation. NANO LETTERS 2024; 24:724-732. [PMID: 38166126 DOI: 10.1021/acs.nanolett.3c04159] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Photothermal membrane distillation (PMD) has emerged as a promising and sustainable approach for seawater desalination and wastewater purification. However, the wide application of the technique is severely impeded by low freshwater production and membrane fouling/wetting issues. Herein, we developed an advanced hydrogel-engineered membrane with simultaneously enhanced photothermal conversion capacity and desired fouling and wetting resistance for PMD. By the synergies of photothermal Ti3C2Tx MXene nanosheets and the tannic acid-Fe3+ network in the hydrogel, the membrane was endowed with excellent surface self-heating ability, yielding the highest freshwater production rate (1.71 kg m-2 h-1) and photothermal efficiency among the fabricated hydrogel composite membranes under 1 sun irradiation. Meanwhile, the PMD membrane could robustly resist oil-induced fouling and surfactant-induced wetting, significantly extending the membrane lifespan in treating contaminated saline water. Furthermore, when desalinating real seawater, the membrane exhibited superior durability with a stable vapor flux and excellent ion rejection (e.g., 99.24% for boron) for 100 h.
Collapse
Affiliation(s)
- Na Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Jiaojiao Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Xiaohui Zhu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Shideng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Dong Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Haoran Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| |
Collapse
|
19
|
Liao X, Lim YJ, Khayet M, Liao Y, Yao L, Zhao Y, Razaqpur AG. Applications of electrically conductive membranes in water treatment via membrane distillation: Joule heating, membrane fouling/scaling/wetting mitigation and monitoring. WATER RESEARCH 2023; 244:120511. [PMID: 37651868 DOI: 10.1016/j.watres.2023.120511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
Membrane distillation (MD) is a thermally driven separation process that is driven by phase change. The core of this technology is the hydrophobic microporous membrane that prevents mass transfer of the liquid while allowing the vapor phase to pass through the membrane's pores. Currently, MD is challenged by its high energy consumption and membrane degradation due to fouling, scaling and wetting. The use of electrically conductive membranes (ECMs) is a promising alternative method to overcome these challenges by inducing localized Joule heating, as well as mitigating and monitoring membrane fouling/scaling/wetting. The objective of this review is to consolidate recent advances in ECMs from the standpoint of conductive materials, membrane fabrication methodologies, and applications in MD processes. First, the mechanisms of ECMs-based MD processes are reviewed. Then the current trends in conductive materials and membrane fabrication methods are discussed. Thereafter, a comprehensive review of ECMs in MD applications is presented in terms of the different processes using Joule heating and various works related to membrane fouling, scaling, and wetting control and monitoring. Key insights in terms of energy consumption, economic viability and scalability are furnished to provide readers with a holistic perspective of the ECMs potential to achieve better performances and higher efficiencies in MD. Finally, we illustrate our perspectives on the innovative methods to address current challenges and provide insights for advancing new ECMs designs. Overall, this review sums up the current status of ECMs, looking at the wide range of conductive materials and array of fabrication methods used thus far, and putting into perspective strategies to deliver a more competitive ECMs-based MD process in water treatment.
Collapse
Affiliation(s)
- Xiangjun Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety/Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Nankai University & Cangzhou Bohai New Area Institute of Green Chemical Engineering, No. 2 Sun Simiao Road, Cangzhou 061108, PR China
| | - Yu Jie Lim
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Mohamed Khayet
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040, Madrid, Spain
| | - Yuan Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety/Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Nankai University & Cangzhou Bohai New Area Institute of Green Chemical Engineering, No. 2 Sun Simiao Road, Cangzhou 061108, PR China.
| | - Lei Yao
- School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yali Zhao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety/Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Abdul Ghani Razaqpur
- Sino-Canadian Joint R&D Center for Water and Environmental Safety/Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
20
|
Eljaddi T, Cabassud C. Wetting-Based Comparison of Ag, Carbon Black, and MoS 2 Composite Membranes for Photothermal Membrane Distillation. MEMBRANES 2023; 13:780. [PMID: 37755202 PMCID: PMC10535641 DOI: 10.3390/membranes13090780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
Photothermal membrane distillation is a new-generation desalination process that can take advantage of the ability of specific materials to convert solar energy to heat at the membrane surface and thus to overcome temperature polarization. The development of appropriate photothermal membranes is challenging because many criteria need to be considered, including light to heat conversion, permeability and low wetting, and fouling, as well as cost. Based on our experience with wetting characterization, this study compares photothermal membranes prepared using different well-known or promising materials, i.e., silver nanoparticles (Ag NPs), carbon black, and molybdenum disulfide (MoS2), in terms of their structural properties, permeability, wettability, and wetting. Accordingly, membranes with different proportions of photothermal NPs are prepared and fully characterized in this study. Wetting is investigated using the detection of dissolved tracer intrusion (DDTI) method following membrane distillation operations with saline solutions. The advantages of MoS2 and carbon black-based photothermal membranes in comparison with polyvinylidene difluoride (PVDF) membranes include both a permeability increase and a less severe wetting mechanism, with lower wetting indicators in the short term. These materials are also much cheaper than Ag NPs, having higher permeabilities and presenting less severe wetting mechanisms.
Collapse
Affiliation(s)
| | - Corinne Cabassud
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, CEDEX 04, 31077 Toulouse, France
| |
Collapse
|
21
|
Lou M, Li J, Zhu X, Chen J, Zhang X, Fang X, Li F. Difunctional MOF-wrapped graphene membranes for efficient photothermal membrane distillation and VOCs interception. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
22
|
Alessandro F, Macedonio F, Drioli E. Plasmonic Phenomena in Membrane Distillation. MEMBRANES 2023; 13:254. [PMID: 36984641 PMCID: PMC10058825 DOI: 10.3390/membranes13030254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Water scarcity raises important concerns with respect to human sustainability and the preservation of important ecosystem functions. To satisfy water requirements, seawater desalination represents one of the most sustainable solutions. In recent decades, membrane distillation has emerged as a promising thermal desalination process that may help to overcome the drawbacks of traditional desalination processes. Nevertheless, in membrane distillation, the temperature at the feed membrane interface is significantly lower than that of the bulk feed water, due to the latent heat flux associated with water evaporation. This phenomenon, known as temperature polarization, in membrane distillation is a crucial issue that could be responsible for a decay of about 50% in the initial transmembrane water flux. The use of plasmonic nanostructures, acting as thermal hotspots in the conventional membranes, may improve the performance of membrane distillation units by reducing or eliminating the temperature polarization problem. Furthermore, an efficient conversion of light into heat offers new opportunities for the use of solar energy in membrane distillation. This work summarizes recent developments in the field of plasmonic-enhanced solar evaporation with a particular focus on solar-driven membrane distillation applications and its potential prospects.
Collapse
|
23
|
Ju J, Huang Y, Liu M, Xie N, Shi J, Fan Y, Zhao Y, Kang W. Construction of electrospinning Janus nanofiber membranes for efficient solar-driven membrane distillation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Integration of in situ Fenton-like self-cleaning and photothermal membrane distillation for wastewater treatment via Co-MoS2/CNT catalytic membrane. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Miao S, Xiong Z, Zhang J, Wu Y, Gong X. Polydopamine/SiO 2 Hybrid Structured Superamphiphobic Fabrics with Good Photothermal Behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9431-9440. [PMID: 35875891 DOI: 10.1021/acs.langmuir.2c01629] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, photothermal materials that can convert light into heat energy have attracted extensive attention. In this work, we report a simple and effective approach to construct a self-cleaning photothermal superamphiphobic fabric. Dopamine (DA) can self-polymerize into polydopamine (PDA) and adhere to the surface of cotton fabric as a secondary reaction platform. Then, SiO2 nanoparticles were in situ grown on the PDA@fabric surface by the sol-gel method. The PDA clusters can not only provide good photothermal conversion performance but also be integrated with SiO2 to create micro-nano rough structures. Finally, the surface of SiO2 was modified by the long chain of fluorosilane to decrease the fabric surface energy, resulting in superamphiphobicity. The contact angles of water, ethylene glycol, and pump oil on the modified fabric surface could reach 161.1, 158.1, and 142.2°, respectively, making the fabric resistant to contamination by water, common beverages, and oil. Due to the adhesion of the PDA layer, the strong binding force between the fabric and SiO2 particles enabled the modified fabric to withstand various chemical and mechanical attacks, showing excellent mechanical robustness and harsh environmental stability. More importantly, the surface temperature of the modified fabric could be increased from 19.6 to 37.0 °C, which is close to the human body temperature, under the irradiation of simulated sunlight (I = 15 A, 300 s). The photothermal superamphiphobic fabrics with self-cleaning properties show great promise in the photothermal conversion field.
Collapse
Affiliation(s)
- Shiwei Miao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Zheng Xiong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Jixi Zhang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Yongzhong Wu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
26
|
Feng D, Li X, Wang Z. Comparison of omniphobic membranes and Janus membranes with a dense hydrophilic surface layer for robust membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Abramovich S, Dutta D, Rizza C, Santoro S, Aquino M, Cupolillo A, Occhiuzzi J, Russa MFL, Ghosh B, Farias D, Locatelli A, Boukhvalov DW, Agarwal A, Curcio E, Bar Sadan M, Politano A. NiSe and CoSe Topological Nodal-Line Semimetals: A Sustainable Platform for Efficient Thermoplasmonics and Solar-Driven Photothermal Membrane Distillation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201473. [PMID: 35808958 DOI: 10.1002/smll.202201473] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/26/2022] [Indexed: 06/15/2023]
Abstract
The control of heat at the nanoscale via the excitation of localized surface plasmons in nanoparticles (NPs) irradiated with light holds great potential in several fields (cancer therapy, catalysis, desalination). To date, most thermoplasmonic applications are based on Ag and Au NPs, whose cost of raw materials inevitably limits the scalability for industrial applications requiring large amounts of photothermal NPs, as in the case of desalination plants. On the other hand, alternative nanomaterials proposed so far exhibit severe restrictions associated with the insufficient photothermal efficacy in the visible, the poor chemical stability, and the challenging scalability. Here, it is demonstrated the outstanding potential of NiSe and CoSe topological nodal-line semimetals for thermoplasmonics. The anisotropic dielectric properties of NiSe and CoSe activate additional plasmonic resonances. Specifically, NiSe and CoSe NPs support multiple localized surface plasmons in the optical range, resulting in a broadband matching with sunlight radiation spectrum. Finally, it is validated the proposed NiSe and CoSe-based thermoplasmonic platform by implementing solar-driven membrane distillation by adopting NiSe and CoSe nanofillers embedded in a polymeric membrane for seawater desalination. Remarkably, replacing Ag with NiSe and CoSe for solar membrane distillation increases the transmembrane flux by 330% and 690%, respectively. Correspondingly, costs of raw materials are also reduced by 24 and 11 times, respectively. The results pave the way for the advent of NiSe and CoSe for efficient and sustainable thermoplasmonics and related applications exploiting sunlight within the paradigm of the circular blue economy.
Collapse
Affiliation(s)
- Shir Abramovich
- Department of Chemistry, Ben-Gurion University, Be'er Sheva, 8410501, Israel
| | - Debasis Dutta
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Carlo Rizza
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, 67100, Italy
| | - Sergio Santoro
- Department of Environmental Engineering, University of Calabria, Via Pietro Bucci CUBO 44A, Rende, CS, 87036, Italy
| | - Marco Aquino
- Department of Environmental Engineering, University of Calabria, Via Pietro Bucci CUBO 44A, Rende, CS, 87036, Italy
| | - Anna Cupolillo
- Department of Physics, University of Calabria, Via P. Bucci cubo 31/C, Rende, CS, 87036, Italy
| | - Jessica Occhiuzzi
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, 67100, Italy
| | - Mauro Francesco La Russa
- Department of Biology, Ecology, and Earth Sciences, Università della Calabria, Via Pietro Bucci, cubo 12/B, Arcavacata di, Rende, CS, 87036, Italy
| | - Barun Ghosh
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Daniel Farias
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Instituto "Nicolás Cabrera", Campus de Cantoblanco, Madrid, 28049, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Andrea Locatelli
- Elettra-Sincrotrone S.C.p.A, S.S. 14-km 163.5 in AREA Science Park, Trieste, 34149, Italy
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Danil W Boukhvalov
- Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University, Be'er Sheva, 8410501, Israel
| | - Amit Agarwal
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Efrem Curcio
- Department of Environmental Engineering, University of Calabria, Via Pietro Bucci CUBO 44A, Rende, CS, 87036, Italy
- Seligenda Membrane Technologies s.r.l., c/o University of Calabria, Via P. Bucci Cubo 45A, Rende, CS, 87036, Italy
| | - Maya Bar Sadan
- Department of Chemistry, Ben-Gurion University, Be'er Sheva, 8410501, Israel
| | - Antonio Politano
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, 67100, Italy
| |
Collapse
|
28
|
Yu J, Yue D, Sun D, Li B, Ge Y, Lin Y. Micron flower-like CuO light trapping grown on the copper foam skeleton combined with PVDF membrane for solar-driven vacuum membrane distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
29
|
Santoro S, Avci AH, Politano A, Curcio E. The advent of thermoplasmonic membrane distillation. Chem Soc Rev 2022; 51:6087-6125. [PMID: 35789347 DOI: 10.1039/d0cs00097c] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Freshwater scarcity is a vital societal challenge related to climate change, population pressure, and agricultural and industrial demands. Therefore, sustainable desalination/purification of salty/contaminated water for human uses is particularly relevant. Membrane distillation is an emerging hybrid thermal-membrane technology with the potential to overcome the drawbacks of conventional desalination by a synergic exploitation of the water-energy nexus. Although membrane distillation is considered a green technology, efficient heat management remains a critical concern affecting the cost of the process and hindering its viability at large scale. A multidisciplinary approach that involves materials chemistry, physical chemistry, chemical engineering, and materials and polymer science is required to solve this problem. The combination of solar energy with membrane distillation is considered a potentially feasible low-cost approach for providing high-quality freshwater with a low carbon footprint. In particular, recent discoveries about efficient light-to-heat conversion in nanomaterials have opened unprecedented perspectives for the implementation of sunlight-based renewable energy in membrane distillation. The integration of nanofillers enabling photothermal effects into membranes has been demonstrated to be able to significantly enhance the energy efficiency without impacting on economic costs. Here, we provide a comprehensive overview on the state of the art, the opportunities, open challenges and pitfalls of the emerging field of solar-driven membrane distillation. We also assess the peculiar physicochemical properties and synthesis scalability of photothermal materials, as well as the strategies for their integration into polymeric nanocomposite membranes enabling efficient light-to-heat conversion and freshwater.
Collapse
Affiliation(s)
- Sergio Santoro
- University of Calabria - Department of Environmental and Chemical Engineering, Cubo 44 A, Via Pietro Bucci, 87036 Rende CS, Italy.
| | - Ahmet H Avci
- University of Calabria - Department of Environmental and Chemical Engineering, Cubo 44 A, Via Pietro Bucci, 87036 Rende CS, Italy.
| | - Antonio Politano
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, 67100 L'Aquila (AQ), Italy.
| | - Efrem Curcio
- University of Calabria - Department of Environmental and Chemical Engineering, Cubo 44 A, Via Pietro Bucci, 87036 Rende CS, Italy.
| |
Collapse
|
30
|
Zhang B, Wong PW, Guo J, Zhou Y, Wang Y, Sun J, Jiang M, Wang Z, An AK. Transforming Ti 3C 2T x MXene's intrinsic hydrophilicity into superhydrophobicity for efficient photothermal membrane desalination. Nat Commun 2022; 13:3315. [PMID: 35676294 PMCID: PMC9177613 DOI: 10.1038/s41467-022-31028-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
Owing to its 100% theoretical salt rejection capability, membrane distillation (MD) has emerged as a promising seawater desalination approach to address freshwater scarcity. Ideal MD requires high vapor permeate flux established by cross-membrane temperature gradient (∆T) and excellent membrane durability. However, it’s difficult to maintain constant ∆T owing to inherent heat loss at feedwater side resulting from continuous water-to-vapor transition and prevent wetting transition-induced membrane fouling and scaling. Here, we develop a Ti3C2Tx MXene-engineered membrane that imparts efficient localized photothermal effect and strong water-repellency, achieving significant boost in freshwater production rate and stability. In addition to photothermal effect that circumvents heat loss, high electrically conductive Ti3C2Tx MXene also allows for self-assembly of uniform hierarchical polymeric nanospheres on its surface via electrostatic spraying, transforming intrinsic hydrophilicity into superhydrophobicity. This interfacial engineering renders energy-efficient and hypersaline-stable photothermal membrane distillation with a high water production rate under one sun irradiation. Membrane distillation is susceptible to thermal inefficiency and membrane wetting issues during seawater desalination. Here, authors design a MXene-engineered membrane that imparts efficient localized photothermal effect and strong water repellency, achieving sustainable freshwater production.
Collapse
Affiliation(s)
- Baoping Zhang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong.,Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong
| | - Pak Wai Wong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong
| | - Jiaxin Guo
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong
| | - Yongsen Zhou
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong
| | - Yang Wang
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong
| | - Jiawei Sun
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong
| | - Mengnan Jiang
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong.
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong.
| |
Collapse
|
31
|
Liao X, Dai P, Wang Y, Zhang X, Liao Y, You X, Razaqpur AG. Engineering anti-scaling superhydrophobic membranes for photothermal membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120423] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Wang Z, Zhou J, Zhang Y, Zhu W, Li Y. Accessing Highly Efficient Photothermal Conversion with Stable Open-Shell Aromatic Nitric Acid Radicals. Angew Chem Int Ed Engl 2022; 61:e202113653. [PMID: 34978127 DOI: 10.1002/anie.202113653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 12/12/2022]
Abstract
It is very challenging to prepare stable radicals as they are usually thermodynamically or kinetically unstable in air. Herein, a series of star-shaped aromatic nitric acid radicals were prepared via facile demethylation and consequent oxidation. As phenol radicals without steric hindrance group protection, they exhibit high electrochemical and thermal stability due to their rich resonance structures including closed-shell nitro-like and open-shell nitroxide structure with unpaired electrons delocalized in conjugated backbones. Among them, TPA-TPA-O6 powder exhibited extremely wide absorption from 300 to 2000 nm covering the whole solar spectral irradiance, high photothermal conversion efficiency, and negligible photobleaching effect in seawater desalination. Under the irradiation of one sunlight, the water evaporation efficiency of TPA-TPA-O6 is recorded to be as high as 89.41 % and the water evaporation rate is 1.293 kg m-2 h-1 , which represents the top performance in pure organic small molecule photothermal materials.
Collapse
Affiliation(s)
- Zejun Wang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jiawen Zhou
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yiheng Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Weiya Zhu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yuan Li
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
33
|
Wang Z, Zhou J, Zhang Y, Zhu W, Li Y. Accessing Highly Efficient Photothermal Conversion with Stable Open‐Shell Aromatic Nitric Acid Radicals. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zejun Wang
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Jiawen Zhou
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Yiheng Zhang
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Weiya Zhu
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Yuan Li
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
34
|
Recent Progress in the Membrane Distillation and Impact of Track-Etched Membranes. Polymers (Basel) 2021; 13:polym13152520. [PMID: 34372131 PMCID: PMC8347132 DOI: 10.3390/polym13152520] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 11/19/2022] Open
Abstract
Membrane distillation (MD) is a rapidly developing field of research and finds applications in desalination of water, purification from nonvolatile substances, and concentration of various solutions. This review presents data from recent studies on the MD process, MD configuration, the type of membranes and membrane hydrophobization. Particular importance has been placed on the methods of hydrophobization and the use of track-etched membranes (TeMs) in the MD process. Hydrophobic TeMs based on poly(ethylene terephthalate) (PET), poly(vinylidene fluoride) (PVDF) and polycarbonate (PC) have been applied in the purification of water from salts and pesticides, as well as in the concentration of low-level liquid radioactive waste (LLLRW). Such membranes are characterized by a narrow pore size distribution, precise values of the number of pores per unit area and narrow thickness. These properties of membranes allow them to be used for more accurate water purification and as model membranes used to test theoretical models (for instance LEP prediction).
Collapse
|