1
|
Yu L, Liu X, Hua Z, Xing X, Xue H. Fate variations of Per- and polyfluoroalkyl substances in diverse aquatic environments: An overlooked influence of hydrodynamics. WATER RESEARCH 2025; 282:123628. [PMID: 40233499 DOI: 10.1016/j.watres.2025.123628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/26/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have become a significant global issue; nevertheless, information regarding the hydrodynamic effect on their catchment-scale fate remains lacking. Thus, this study investigated PFASs in water and paired sediment samples from diverse aquatic habitats within the Qinhuai River Basin (QRB), where high concentrations of PFASs are ubiquitous. Rarity score analysis reveals that PFASs were diffusely distributed across the QRB, yet specific sites were identified as emission hotspots. The sediment-water and suspended particulate matter-water partitioning coefficients of PFASs both exhibited significant correlations with chemical structures, ambient variables, land use, and flow velocity (p < 0.05). Flow velocity can promote the liberation of PFASs from particles into water, reducing their accumulation capacity; hence, the higher partitioning coefficients of PFASs were observed in relatively low-velocity aquatic systems, such as lakes, reservoirs, and ponds. A partial least-squares structural equation model was employed to further elucidate their effect pathways and magnitudes on partitioning coefficients. In addition, the primary sources of PFASs were identified, emphasizing their complexity. The ecological risks of PFASs were assessed, indicating priority PFAS species (long-chain PFCAs and HFPO-TA) for management and suggesting water as the preferable environmental medium for regulation. This is the first field investigation to quantify the significance of hydrodynamic influences on the catchment-scale fate of PFASs, improving our understanding of their distribution and behaviors from the perspective of environmental hydraulics.
Collapse
Affiliation(s)
- Liang Yu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiaodong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Zulin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China.
| | - Xiaolei Xing
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Hongqin Xue
- School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Liang Y, Wang A, Liang S, Sun K, Xie R, Zheng C, Zhang S, Tang C, Cheng D, Wang J, Huang Q, Lin H. Durable Ti 4O 7 Heterojunction Composite Membrane Encapsulating N-Doped Graphene Nanosheets for Efficient Electro-Oxidation of GenX and Other PFAS in Fluorochemical Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4745-4755. [PMID: 40008448 DOI: 10.1021/acs.est.4c09423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Rational interfacial engineering design of an electrocatalyst, such as a heterojunction structure, can effectively enhance its catalytic activity. This study aims to address a critical challenge associated with the use of carbon material@Ti4O7 heterojunction composite electrodes for wastewater treatment─electrode stability over long-term operation. Herein, we report a highly stabilized interfacial engineering strategy, i.e., the use of conductive inorganic CeO2 as a "cement" to firmly encapsulate N-doped graphene oxide nanosheets (N-GS) on the Ti4O7 surface. The defect-rich N-GS encapsulated on the Ti4O7 surface significantly enhances interfacial charge transfer. This enhancement results in the N-GS/CeO2@Ti4O7 heterojunction composite electrode exhibiting excellent efficiency in the electro-oxidation of hexafluoropropylene oxide dimer acid (HFPO-DA or GenX). Furthermore, a flow-through N-GS/CeO2@Ti4O7 reactive electrochemical membrane system effectively mineralizes other 35 PFASs in a real fluorochemical wastewater sample, achieving a high defluorination rate of 70-90% and exhibiting better performance in PFAS destruction and energy efficiency compared to the UV/KI-SO32- process. Results of this study enhance our understanding of the electrochemical oxidation of PFAS and offer valuable insight into the design of stabilized Ti4O7 heterojunction composites. These findings are instrumental in advancing the development of effective treatments for PFAS-contaminated environments.
Collapse
Affiliation(s)
- Yiyang Liang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Anqi Wang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Shangtao Liang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, Georgia 30223, United States
| | - Kai Sun
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China
| | - Ruzhen Xie
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Chuanen Zheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Sihan Zhang
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Caiming Tang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Jinxia Wang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, Georgia 30223, United States
| | - Hui Lin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| |
Collapse
|
3
|
Wang Z, You X, Lan L, Huang G, Zhu T, Tian S, Yang B, Zhuo Q. Electrocatalytic oxidation of hexafluoropropylene oxide homologues in water using a boron-doped diamond electrode. ENVIRONMENTAL TECHNOLOGY 2025; 46:1280-1291. [PMID: 39128835 DOI: 10.1080/09593330.2024.2382937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/03/2024] [Indexed: 08/13/2024]
Abstract
Hexafluoropropylene oxide (GenX) is a kind of substitute to PFOA, which has been listed in the Stockholm Convention. In this study, GenX was attempted to be degraded using a boron-doped diamond anode in the electrochemical oxidation system. The effects of operating parameters, including current density (0.5-10 mA/cm2), initial pH (3.0-11.49), initial concentration of GenX (20-150 mg/L), electrode distances (0.5-2 cm), electrolyte types (Na2SO4, NaCl, NaNO3 and NaHCO3) and Na2SO4 electrolyte concentration (40-80 mm), on GenX were studied. GenX can almost completely be degraded under the optimal operating parameters after 180 min of electrolysis. Free radical quenching experiments were carried out to investigate the effects of hydroxyl radicals and sulphate radicals on the degradation of GenX. The degradation intermediates were identified based on the ultra-high performance liquid chromatography equipped with a tandem mass spectrometer, and the degradation mechanisms were also proposed. Finally, the toxicities of GenX and its degradation products were evaluated using the QSAR models. The novelty is that the degradation mechanisms of the high concentration GenX (100 mg/L) were elucidated based on the free radical quenching experiments and the intermediates detected, when the degradation ratio reached 100%.
Collapse
Affiliation(s)
- Zihao Wang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan Key Laboratory of Emerging Contaminants, Dongguan, People's Republic of China
| | - Xiaolin You
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, People's Republic of China
| | - Liying Lan
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan Key Laboratory of Emerging Contaminants, Dongguan, People's Republic of China
| | - Gang Huang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan Key Laboratory of Emerging Contaminants, Dongguan, People's Republic of China
| | - Tongyin Zhu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan Key Laboratory of Emerging Contaminants, Dongguan, People's Republic of China
| | - Shengpeng Tian
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan Key Laboratory of Emerging Contaminants, Dongguan, People's Republic of China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, People's Republic of China
| | - Qiongfang Zhuo
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan Key Laboratory of Emerging Contaminants, Dongguan, People's Republic of China
| |
Collapse
|
4
|
Wang D, Gao P, Jiang K, Kong D, Zhang J, Guo Y, Shang F, Zhang J. Comparative study on the enhancement of the stability of siloxane-based Gemini/sodium alpha-alkenyl sulfonate mixed dispersions using xanthan gum, carboxymethyl cellulose, and gelatin. Int J Biol Macromol 2025; 292:139378. [PMID: 39743092 DOI: 10.1016/j.ijbiomac.2024.139378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Polymers are promising as stabilizers for developing eco-friendly foam extinguishing agents to solve the imminent pollution problem of fluorinated ones. Present work aims to elucidate the mechanisms by which polymers influence the performance of non-fluorinated foams. Specifically, it investigates the effects of three polymers-xanthan gum (XG), sodium carboxymethyl cellulose (CMCNa), and gelatin (GEL) on surface tension, conductivity, viscosity, foamability, foam stability, and rheology of the siloxane-based Gemini/sodium alpha-alkenyl sulfonate mixture. Further, drainage and liquid film experiments are conducted at various temperatures to assess drainage time and film lifetime. Results showed that the addition of three polymers increased viscosity and conductivity of the dispersions while inhibiting foamability, where GEL also enhanced the surface activity. The polymers delayed coarsening by forming the macromolecular gel network between bubbles, with the dimensionless bubble diameter growth exponent of about 1/2. Additionally, polymer-containing dispersions exhibited longer drainage times and film lifetimes at both room and elevated temperatures. Dispersions with XG and CMC-Na showed a viscoelastic solid rheological response at low oscillatory strains under room temperature, but lost elastic behavior at high temperatures. Conversely, dispersions with GEL maintained consistent rheological behavior across temperatures, displaying viscoelasticity at low strains and transitioning to flowing liquid state at higher strains.
Collapse
Affiliation(s)
- Dongsheng Wang
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Pengran Gao
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Kai Jiang
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Depeng Kong
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China; State Key Laboratory of Chemical Safety, China University of Petroleum (East China), 266580 Qingdao, China.
| | - Jiaqing Zhang
- State Grid Anhui Electric Power Research Institute, Anhui Province Key Laboratory of Electric Fire and Safety Protection, Hefei 230601, China
| | - Yi Guo
- State Grid Anhui Electric Power Research Institute, Anhui Province Key Laboratory of Electric Fire and Safety Protection, Hefei 230601, China
| | - Fengju Shang
- State Grid Anhui Electric Power Research Institute, Anhui Province Key Laboratory of Electric Fire and Safety Protection, Hefei 230601, China
| | - Jun Zhang
- Qingdao Sunefire Science & Technology Shares Co., Ltd, Qingdao 266423, China
| |
Collapse
|
5
|
Meng P, Sheppard N, Joseph S, Duckworth OW, Higgins CP, Knappe DRU. Residential Garden Produce Harvested Near a Fluorochemical Manufacturer in North Carolina Can Be An Important Fluoroether Exposure Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26874-26883. [PMID: 39564989 PMCID: PMC11622232 DOI: 10.1021/acs.jafc.4c06177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 11/21/2024]
Abstract
Dietary intake can be an important exposure route to per- and polyfluoroalkyl substances (PFASs). Little is known about the bioaccumulation of emerging per- and polyfluoroalkyl ether acids (PFEAs) in garden produce from PFAS-impacted communities and the associated dietary exposure risk. In this study, 53 produce samples were collected from five residential gardens near a fluorochemical manufacturer. Summed PFAS concentrations ranged from 0.0026 to 38 ng/g wet weight of produce, and water-rich produce exhibited the highest PFAS levels. The PFAS signature was dominated by PFEAs, and hexafluoropropylene oxide-dimer acid (commonly known as GenX) was detected in 72% of samples. Based on average measured GenX concentrations, chronic-exposure daily limits were as low as 289 g produce/day for children (3-6 yr). This analysis does not consider other PFEAs that were present at higher concentrations, but for which reference doses were not available. This study revealed that consuming residential garden produce grown in PFAS-impacted communities can be an important exposure pathway.
Collapse
Affiliation(s)
- Pingping Meng
- Department
of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
- Department
of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Center
for Human Health and the Environment, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nadia Sheppard
- Department
of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Sarangi Joseph
- Department
of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Owen W. Duckworth
- Department
of Crop and Soil Sciences, North Carolina
State University, Raleigh, North Carolina 27695, United States
- Center
for Human Health and the Environment, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Christopher P. Higgins
- Department
of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Detlef R. U. Knappe
- Department
of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Center
for Human Health and the Environment, North
Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
6
|
Wang X, Huang X, Zhi Y, Liu X, Wang Q, Yue D, Wang X. Leaching of per- and polyfluoroalkyl substances (PFAS) from food contact materials with implications for waste disposal. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135658. [PMID: 39226686 DOI: 10.1016/j.jhazmat.2024.135658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
Leaching of per- and polyfluoroalkyl substances (PFAS) during the post-consumer disposal of food contact materials (FCMs) poses a potential environmental threat but has seldom been evaluated. This study characterized the leaching behavior of PFAS and unidentified precursors from six common FCMs and assessed the impact of environmental conditions on PFAS release during disposal. The total concentration of 21 PFAS ranged from 3.2 to 377 ng/g in FCMs, with PFAS leachability into water varying between 1.1-42.8 %. Increasing temperature promoted PFAS leaching, with leached nine primary PFAS (∑9PFAS) reaching 46.3, 70.4, and 102 ng/L at 35, 45, and 55 ℃, respectively. Thermodynamic analysis (∆G>0, ∆H>0, and ∆S<0) indicated hydrophobic interactions control PFAS leaching. The presence of dissolved organic matter in synthetic leachate increased the leached ∑9PFAS from 47.1 to 103 ng/L but decreased PFBS, PFOS, and 6:2 FTS leaching. The total release of seven perfluorocarboxylic acids (∑7PFCAs) from takeaway food packaging waste was estimated to be 0.3-8.2 kg/y to landfill leachate and 0.6-15.4 kg/y to incineration plant leachate, contributing 0.2-4.8 % and 0.1-3.2 % of total ∑7PFCAs in each leachate type. While the study presents a refined methodology for estimating PFAS release during disposal, future research is needed on the indirect contribution from precursors.
Collapse
Affiliation(s)
- Xinyue Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Xingyao Huang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yue Zhi
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Xuemei Liu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Qian Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Dongbei Yue
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoming Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
7
|
Usman M, Chaudhary A, Hanna K. Efficient PFAS removal from contaminated soils through combined washing and adsorption in soil effluents. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135118. [PMID: 38981229 DOI: 10.1016/j.jhazmat.2024.135118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/01/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
This study investigates soil washing as a viable strategy to remove poly- and perfluoroalkyl substances (PFAS) from contaminated soils using various washing agents including water, methanol, ethanol, and cyclodextrin ((2-Hydroxypropyl)-β-cyclodextrin HPCD)). Water was less effective (removing only 30 % of PFAS), especially for long-chain hydrophobic PFAS. Methanol (50 % v/v) or HPCD (10 mg g-1 soil) achieved > 95 % PFAS removal regardless of PFAS type, soil size fraction (0-400 µm or 400-800 µm), or experimental setups (batch or column, at liquid/solid (L/S) = 1). Column optimization studies revealed improved efficiency at L/S = 10 with diluted washing solutions, where HPCD exhibited rapid PFAS mobilization even at lower concentrations (1 mg mL-1). We then applied a first-order decay model to effectively predict PFAS breakthrough curves and mobilization within soil columns. Subsequent treatment of wash effluents by activated carbon and biochar effectively reduced PFAS concentrations below detection limits. The performance of both soil washing and subsequent adsorption was found to depend strongly on the specific characteristics of PFAS compounds. These findings highlight the significant potential of methanol and HPCD in soil washing and the effectiveness of integrated soil washing and adsorption for optimizing PFAS removal.
Collapse
Affiliation(s)
- Muhammad Usman
- Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Aaifa Chaudhary
- Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France; Environmental Mineralogy & Chemistry, Center for Applied Geosciences, University of Tübingen, 72074 Tübingen, Germany
| | - Khalil Hanna
- Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
8
|
Van Thang V, Tran Duy Nguyen N, Nadagouda MN, Aminabhavi TM, Vasseghian Y, Joo SW. Effective removal of perfluorooctanoic acid from water using PVA@UiO-66-NH 2/GO composite materials via adsorption. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122248. [PMID: 39180825 DOI: 10.1016/j.jenvman.2024.122248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
This study introduces an innovative approach using highly efficient nanocomposite materials to effectively remove PFAS from water, demonstrating remarkable adsorption capabilities. The nanocomposite was synthesized by integrating a zirconium-based metal-organic framework (MOF) called UiO-66 with graphene oxide (GO) within a polyvinyl alcohol (PVA) matrix. The resulting PVA@UiO-66/GO material features flower-like UiO-66 MOF crystals embedded in the PVA and GO matrix. Various kinetic models were applied to determine the rate constants and adsorption capacities, with the Langmuir isotherm indicating an adsorption capacity of 9.904 mg/g. Thermodynamic analysis confirmed the process's spontaneity and exothermic nature. The UiO-66-NH2/GO/PVA composite also demonstrated high reusability, maintaining substantial PFOA removal efficiency across multiple cycles, with optimal reduction occurring at approximately pH 5. Overall, the PVA@UiO-66/GO composites offer an effective, sustainable, and environmentally friendly solution for PFAS removal in water purification.
Collapse
Affiliation(s)
- Vu Van Thang
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea
| | | | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45435, United States
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India; Korea University, Seoul, South Korea.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India.
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| |
Collapse
|
9
|
Islam MT, Cheng J, Sadmani AHMA, Reinhart D, Chang NB. Investigating removal mechanisms of long- and short-chain per- and polyfluoroalkyl substances using specialty adsorbents in a field-scale surface water filtration system. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134646. [PMID: 38838519 DOI: 10.1016/j.jhazmat.2024.134646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
This study assessed the application of two specialty adsorbents, also known as green sorption media (GSM), including clay-perlite and sand sorption media (CPS) and zero-valent iron and perlite green environmental media (ZIPGEM) to remove long- and short-chain per- and polyfluoroalkyl substances (PFAS) at field scale. The field-scale demonstration employed four GSM filter cells installed near the C-23 Canal (St. Lucie County, FL), which discharges water to the ecologically sensitive St. Lucie River estuary and to the Atlantic Ocean finally. Although prior lab-scale experiments had demonstrated the effectiveness of CPS and ZIPGEM in treating long-chain PFAS, their performance in field-scale application warranted further investigation. The study reveals the critical roles of divalent cations such as Ca2+ and monovalent cations such as ammonium and hydronium ions, as well as other water quality parameters, on PFAS removal efficacy. Ammonia, most likely resulting from photo- and bacterial ammonification, gives rise to elevated ammonium ion formation in the wet season due to the decrease in pH, which ultimately worsens PFAS adsorption. Moreover, there is a strong negative correlation between pH and PFAS removal efficiency in the presence of ammonia, as evidenced by the reduced removal of PFAS during events associated with low pH.
Collapse
Affiliation(s)
- Md Touhidul Islam
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, USA
| | - Jinxiang Cheng
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, USA
| | - A H M Anwar Sadmani
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, USA
| | - Debra Reinhart
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, USA
| | - Ni-Bin Chang
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
10
|
Guo H, Hu T, Yang X, Liu Z, Cui Q, Qu C, Guo F, Liu S, Sweetman AJ, Hou J, Tan W. Roles of varying carbon chains and functional groups of legacy and emerging per-/polyfluoroalkyl substances in adsorption on metal-organic framework: Insights into mechanism and adsorption prediction. ENVIRONMENTAL RESEARCH 2024; 251:118679. [PMID: 38518904 DOI: 10.1016/j.envres.2024.118679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/21/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
Metal-organic frameworks (MOFs) are promising adsorbents for legacy per-/polyfluoroalkyl substances (PFASs), but they are being replaced by emerging PFASs. The effects of varying carbon chains and functional groups of emerging PFASs on their adsorption behavior on MOFs require attention. This study systematically revealed the structure-adsorption relationships and interaction mechanisms of legacy and emerging PFASs on a typical MOF MIL-101(Cr). It also presented an approach reflecting the average electronegativity of PFAS moieties for adsorption prediction. We demonstrated that short-chain or sulfonate PFASs showed higher adsorption capacities (μmol/g) on MIL-101(Cr) than their long-chain or carboxylate counterparts, respectively. Compared with linear PFASs, their branched isomers were found to exhibit a higher adsorption potential on MIL-101(Cr). In addition, the introduction of ether bond into PFAS molecule (e.g., hexafluoropropylene oxide dimeric acid, GenX) increased the adsorption capacity, while the replacement of CF2 moieties in PFAS molecule with CH2 moieties (e.g., 6:2 fluorotelomer sulfonate, 6:2 FTS) caused a decrease in adsorption. Divalent ions (such as Ca2+ and SO42-) and solution pH have a greater effect on the adsorption of PFASs containing ether bonds or more CF2 moieties. PFAS adsorption on MIL-101(Cr) was governed by electrostatic interaction, complexation, hydrogen bonding, π-CF interaction, and π-anion interaction as well as steric effects, which were associated with the molecular electronegativity and chain length of each PFAS. The average electronegativity of individual moieties (named Me) for each PFAS was estimated and found to show a significantly positive correlation with the corresponding adsorption capacity on MIL-101(Cr). The removal rates of major PFASs in contaminated groundwater by MIL-101(Cr) were also correlated with the corresponding Me values. These findings will assist with the adsorption prediction for a wide range of PFASs and contribute to tailoring efficient MOF materials.
Collapse
Affiliation(s)
- Hao Guo
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Tongyu Hu
- Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100101, China
| | - Xiaoman Yang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoyang Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | | | - Chenchen Qu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Fayang Guo
- Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shun Liu
- The Seventh Geological Brigade of Hubei Geological Bureau, Yichang 443100, China
| | - Andrew J Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
11
|
Bucaletti E, Barola C, Galarini R. Chloroperfluoropolyether carboxylate compounds: A review. CHEMOSPHERE 2024; 357:142045. [PMID: 38641293 DOI: 10.1016/j.chemosphere.2024.142045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024]
Abstract
Several new per- and polyfluoroalkyl substances (PFASs) have been synthesized to replace traditional (legacy) PFASs frequently without clear information on their structure, use and potential toxicity. Among them, chloroperfluoropolyether carboxylates (ClPFPECAs) are an emerging group used as processing aids in the production of fluoropolymers to replace the ammonium salt of perfluorononanoic acid (PFNA). The Solvay Company has produced ClPFPECAs as a mixture of six congeners (oligomers) since the mid-1990s, but other possible manufacturers and annual quantities synthesized and used worldwide are unknown. Initial studies to monitor their presence were conducted because of public authority concerns about suspect environmental contamination near fluoropolymer plants. As of 2015, these chemicals have been found in soil, water, vegetative tissues and wildlife, as well as in biological fluids of exposed workers and people, in research carried out mainly in the United States (New Jersey) and Italy. Analysis of wildlife collected even in non-industrialized areas demonstrated widespread occurrence of ClPFPECAs. From the analytical point of view, the (presumptive) evidence of their presence was obtained through the application of non-targeted approaches performed by liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS). Available toxicological data show that ClPFPECAs have similar adverse effects than the compounds which they have replaced, whereas their carcinogenic potential and reproductive damage are currently unknown. All these observations once again cast doubt on whether many alternatives to traditional PFAS are actually safer for the environment and health.
Collapse
Affiliation(s)
- Elisabetta Bucaletti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via G. Salvemini, 1, 06126, Perugia, Italy
| | - Carolina Barola
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via G. Salvemini, 1, 06126, Perugia, Italy
| | - Roberta Galarini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via G. Salvemini, 1, 06126, Perugia, Italy.
| |
Collapse
|
12
|
Hamid H, Nicomel NR, Mohamed BA, Abida O, Li LY. Adsorption and leaching of fluorotelomer compounds and perfluoroalkyl acids in aqueous media by activated carbon prepared from municipal biosolids. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120839. [PMID: 38599091 DOI: 10.1016/j.jenvman.2024.120839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Perfluoroalkyl acids (PFAAs) are ubiquitous in nature and pose serious health risks to humans and animals. Limiting PFAA exposure requires novel technology for their effective removal from water. We investigated the efficacy of biosolid-based activated carbon (Bio-SBAC) in removing frequently detected PFAAs and their precursor fluorotelomer compounds at environmentally relevant concentrations (∼50 μg/L). Batch experiments were performed to investigate adsorption kinetics, isotherms, and leachability. Bio-SBAC achieved >95% removal of fluorotelomeric compounds, indicating that the need for PFAA removal from the environment could be minimised if the precursors were targeted. Kinetic data modelling suggested that chemisorption is the dominant PFAA adsorption mechanism. As evidenced by the isotherm modelling results, Freundlich adsorption intensity, n-1, values of <1 (0.707-0.938) indicate chemisorption. Bio-SBAC showed maximum capacities for the adsorption of perfluorooctanoic acid (1429 μg/g) and perfluorononanoic acid (1111 μg/g). Batch desorption tests with 100 mg/L humic acid and 10 g/L NaCl showed that Bio-SBAC effectively retained the adsorbed PFAA with little or no leaching, except perfluorobutanoic acid. Overall, this study revealed that Bio-SBAC is a value-added material with promising characteristics for PFAA adsorption and no leachability. Additionally, it can be incorporated into biofilters to remove PFAAs from stormwater, presenting a sustainable approach to minimise biosolid disposal and improve the quality of wastewater before discharge into receiving waters.
Collapse
Affiliation(s)
- Hanna Hamid
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
| | - Nina Ricci Nicomel
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
| | - Badr A Mohamed
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada; Department of Agricultural Engineering, Cairo University, El-Gamma Street, Giza, 12613, Egypt
| | - Otman Abida
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
| | - Loretta Y Li
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
13
|
Wang J, Shen C, Zhang J, Lou G, Shan S, Zhao Y, Man YB, Li Y. Per- and polyfluoroalkyl substances (PFASs) in Chinese surface water: Temporal trends and geographical distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170127. [PMID: 38242487 DOI: 10.1016/j.scitotenv.2024.170127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
PFAS, recognized as persistent organic pollutants, present risks to both the ecological environment and human health. Studying PFASs in surface water yields insights into pollution dynamics. However, existing research on PFASs surface water pollution in China often focuses on specific regions, lacking comprehensive nationwide analyses. This study examined 48 research papers covering PFAS pollution in Chinese surface water, involving 49 regions and 1338 sampling sites. The results indicate widespread PFAS contamination, even in regions like Tibet. Predominant PFAS types include PFOA and PFOS, and pollution is associated with the relocation of industries from developed to developing countries post-2010. The shift from long-chain to short-chain PFASs aligns with recent environmental policy proposals. Geographic concentration of PFAS pollution correlates with industry distribution and economic development levels. Addressing point source pollution, especially from wastewater plant tailwater, is crucial for combating PFAS contamination. Greater emphasis should be placed on addressing short-chain PFASs.
Collapse
Affiliation(s)
- Jie Wang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Cheng Shen
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China; Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Jin Zhang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Guangyu Lou
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Shengdao Shan
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| | - Yuliang Li
- Department of Chemical Engineering, School of Water and Environment, Chang'an University, Xi'an 710064, PR China.
| |
Collapse
|
14
|
Lv D, Liu H, An Q, Lei C, Wang Y, Sun J, Li C, Lin Y, Dong Q, Yang Z, Che K, Liu W, Han W. Association of adverse fetal outcomes with placental inflammation after oral gestational exposure to hexafluoropropylene oxide dimer acid (GenX) in Sprague-Dawley rats. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132536. [PMID: 37717439 DOI: 10.1016/j.jhazmat.2023.132536] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/26/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
Hexafluoropropylene oxide dimer acid (HFPO-DA), known as "GenX" for its trade name, is gradually taking the place of Perfluorooctanoic acid (PFOA). However, there is a poor understanding of the developmental effects of GenX. This study aims to explore whether GenX produces adverse effects on offspring development in Sprague-Dawley (SD) rats and the underlying mechanisms. Pregnant rats were orally administered with GenX (0, 1, 10 and 100 mg/kg/day) from gestational 0.5-19.5 days. Experimental data showed that the exposure to GenX resulted in increased rats' gestational weight gain, whereas both body weight and body length of their fetuses born naturally were significantly reduced. This could contribute to the developmental delays of fetal body weight, body length and tail length from postnatal 1-21 days. Histopathological evaluation of placenta indicated that GenX exposure led to neutrophil infiltration in decidual zone and congestion in labyrinth zone. Moreover, placental proteomics showed changes at the expression levels of the inflammation-related proteins in the Rap1 signaling pathway. In conclusion, gestational exposure to GenX induced fetal intrauterine and extrauterine development retardation in SD rats. Placental inflammation may play a key role in this process through the Rap1 signaling pathway.
Collapse
Affiliation(s)
- Di Lv
- Pediatrics Department, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266071, China; Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Hongyun Liu
- Pathology Department, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266071, China
| | - Qi An
- Child Healthcare Department, Qingdao Women and Children's Hospital, Qingdao 266071, China
| | - Chengwei Lei
- Pediatrics Department, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266071, China; Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Yanxuan Wang
- Pediatrics Department, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266071, China; Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Jin Sun
- Department of Developmental Pediatrics and Child Health Care, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yongfeng Lin
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Qing Dong
- Pediatrics Department, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Kui Che
- Key Laboratory of Thyroid Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Wendong Liu
- Pediatrics Department, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266071, China.
| | - Wenchao Han
- Pediatrics Department, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266071, China.
| |
Collapse
|
15
|
Sellaoui L, Dhaouadi F, Abdulaziz F, Alsehli AH, M Alsowayigh M, Dotto GL, da Boit Martinello K, Silva LFO, Rtimi S, Bonilla-Petriciolet A. Adsorption of perfluorooctanoic carboxylic and heptadecafluorooctane sulfonic acids via magnetic chitosan: isotherms and modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118410-118417. [PMID: 37910375 DOI: 10.1007/s11356-023-30600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
This paper evaluates the adsorption mechanism of perfluorooctanoic carboxylic acid (PFCA) and heptadecafluorooctane sulfonic acid (HFOSA) on magnetic chitosan for the first time via a statistical physics modeling. Magnetic chitosan (MC-CoFe2O4) was produced from shrimp wastes and used in standard batch adsorption systems to remove PFCA and HFOSA. The experimental isotherms indicated that the maximum adsorption capacities ranged from 14 to 27.12 mg/g and from 19.16 to 45.12 mg/g for PFCA and HFOSA, respectively, where an exothermic behavior was observed for both compounds. The adsorption data were studied via an advanced model hypothesizing that a multilayer process occurred for these adsorption systems. This theoretical approach indicated that the total number of formed layers of PFCA and HFOSA adsorbates is about 3 (Nt = 2.83) at high temperatures (328 K) where a molecular aggregation process was noted during the adsorption. The maximum saturation-multilayer adsorption of PFCA and HFOSA on magnetic chitosan was 30.77 and 50.26 mg/g, respectively, and the corresponding adsorption mechanisms were successfully investigated. Two energies were responsible for the formed adsorbate layer directly on the surface and the vertical layers were computed and interpreted, reflecting that physical interactions were involved to bind these molecules on the adsorbent surface at different temperatures where the calculated adsorption energies ranged from 14 to 31 kJ/mol. Overall, this work provides theoretical insights to understand the adsorption mechanism of PFCA and HFOSA using the statistical physics modeling and its results can be used to improve the adsorbent performance for engineering applications.
Collapse
Affiliation(s)
- Lotfi Sellaoui
- CRMN, Centre for Research on Microelectronics and Nanotechnology of Sousse, NANOMISENE, LR16CRMN01, Code Postal 4054, Sousse, Tunisia.
- Laboratory of Quantum and Statistical Physics, Faculty of Sciences of Monastir, Monastir University, LR18ES18, Monastir, Tunisia.
| | - Fatma Dhaouadi
- Laboratory of Quantum and Statistical Physics, Faculty of Sciences of Monastir, Monastir University, LR18ES18, Monastir, Tunisia
| | - Fahad Abdulaziz
- Department of Chemistry, College of Science, University of Ha'il, 81451, Ha'il, Saudi Arabia
| | - Amal H Alsehli
- Chemistry Department, College of Science, Taibah University, 42353, Madinah, Saudi Arabia
| | - Marwah M Alsowayigh
- Chemistry Department, College of Science, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
| | - Guilherme Luiz Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Kátia da Boit Martinello
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Luis F O Silva
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Sami Rtimi
- Global Institute for Water, Environment, And Health (GIWEH), 1210, Geneva, Switzerland
| | | |
Collapse
|
16
|
Liu G, Usman M, Luo T, Biard PF, Lin K, Greenwell HC, Hanna K. Retention and transport of PFOA and its fluorinated substitute, GenX, through water-saturated soil columns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122530. [PMID: 37690470 DOI: 10.1016/j.envpol.2023.122530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023]
Abstract
Perfluoro-2-propoxypropanoic acid (GenX) has emerged as a substitute for perfluorooctanoic acid (PFOA) especially since PFOA was listed among the persistent organic pollutants (POPs) by the Stockholm Convention in 2019. However, limited knowledge exists regarding the behavior and mobility of GenX in natural soils hindering the prediction of its environmental fate. This study investigated the mobility and retention of GenX and PFOA in soils under batch and water-saturated flow-through conditions. Batch experiments revealed that GenX has a lower binding affinity to soil than longer-chained PFOA, potentially threatening groundwater resources. Unlike metal-oxides/minerals (ferrihydrite, gibbsite and manganese dioxide), biochar (BC) and activated carbon (AC) amendments significantly enhanced the sorption of both GenX and PFOA in soil. Sorption data on minerals and carbonaceous materials implied that for shorter-chained GenX, the predominant mode of sorption was through electrostatic (ionic) interactions, while for longer-chained PFOA, hydrophobic interactions became progressively more important with increasing chain length. The dynamic flow experiments demonstrated that these soil amendments enhanced the retention of both compounds, thereby decreasing their mobility. Simultaneous injection of both compounds into columns pre-loaded with either PFOA or GenX increased their retardation. GenX sorption was more affected by pre-sorbed PFOA compared to the minimal impact of pre-loaded GenX on PFOA sorption. A newly developed reactive transport model, which incorporates a two-site sorption model and accounts for kinetic-limited processes, accurately predicted the sorption and transport of both compounds in single and binary contamination systems. These findings have important implications for predicting and assessing the fate and mobility of per- and polyfluoroalkyl substances (PFAS) in soils and groundwaters.
Collapse
Affiliation(s)
- Guanhong Liu
- Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Muhammad Usman
- Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Tao Luo
- Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Pierre-François Biard
- Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - H Chris Greenwell
- Department of Chemistry, Durham University, Mountjoy Site, South Road, Durham, DH1 3LE, UK
| | - Khalil Hanna
- Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France; Department of Chemistry, Durham University, Mountjoy Site, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
17
|
Chen F, Chen J, Liu X, Zhi Y, Qian S, Li W, Wang X. Removal of per- and polyfluoroalkyl substances by activated hydrochar derived from food waste: Sorption performance and desorption hysteresis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 340:122820. [PMID: 39491159 DOI: 10.1016/j.envpol.2023.122820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
Carbonaceous materials, derived from waste biomass, have proven to be a viable and appealing alternative for removing emerging micro-pollutants, such as per- and polyfluoroalkyl substances (PFAS). To assess the feasibility and efficacy of using material derived from food waste to alleviate PFAS pollution, this study prepared activated hydrochar (AHC) for sorbing ten PFAS, including five perfluoroalkyl carboxylic acids (PFCA; C4-C8), three perfluoroalkyl sulfonic acids (PFSA; C4, C6, C8), and two emerging PFAS, namely hexafluoropropylene oxide dimer acid (commercial name GenX, an alternative to perfluorooctanoic acid (PFOA)) and 6:2 fluorotelomer sulfonic acid (6:2 FTS). The results demonstrated that AHC possessed a relatively high specific surface area (207 m2/g) and hydrophobic surface properties. At environmentally relevant concentrations (40 μg/L), the sorption partition coefficients (log Kd) of PFAS on AHC ranged from 2.33 to 6.49 L/kg. Notably, GenX exhibited a lower log Kd value (2.33 L/kg) than PFOA (3.88 L/kg). The AHC showed favorable sorption performance for all tested PFAS, with log Kd values surpassing other reported sorbents (e.g., 0.83 for GenX on pyrochar, and 2.83 for PFOA on commercial biochar). Additionally, desorption hysteresis was observed for all PFAS, except for PFOA, and was particularly pronounced in PFBA, GenX, and 6:2 FTS at high initial concentrations, with Hysteresis Index (HI) values varying from 0.31 to 1.45, 0.68 to 1.88, and 0.51 to 1.85, respectively. Given its robust sorption capacity and desorption hysteresis toward PFAS, AHC is expected to be a favorable candidate for remediating PFAS-contaminated water. This study underscores, for the first time, the potential of food waste-derived hydrochar as an efficient sorbent for alleviating PFAS contamination, and further study is needed to investigate the sorption and desorption behaviors of PFAS on AHC at various environmental conditions.
Collapse
Affiliation(s)
- Fan Chen
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Jiangliang Chen
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Xuemei Liu
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Yue Zhi
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Shenhua Qian
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Wei Li
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Xiaoming Wang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
18
|
Zhang C, Xu Y, Liu W, Zhou H, Zhang N, Fang Z, Gao J, Sun X, Feng D, Sun X. New insights into the degradation mechanism and risk assessment of HFPO-DA by advanced oxidation processes based on activated persulfate in aqueous solutions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115298. [PMID: 37499385 DOI: 10.1016/j.ecoenv.2023.115298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/09/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Hexafluoropropylene oxide dimer acid (HFPO-DA) is widely used as a substitute for perfluorooctanoic acid (PFOA). HFPO-DA exhibits high water solubility and low adsorption potential, conferring significant fluidity in aquatic environments. Given that the toxicity of HFPO-DA is similar to PFOA, it is necessary to control its content in aquatic environments. Electrochemical and thermally-activated persulfates have been successfully used to degrade HFPO-DA, but UV-activated persulfates cannot degrade the compound. Given that research on degradation mechanisms is still incomplete and lacks kinetic research, the mechanism and kinetic calculations of oxidative degradation were studied in detail using DFT calculations. And the toxicity of HFPO-DA degradation intermediates and products was evaluated to reveal the feasibility of using advanced oxidation process (AOP) technology based on persulfate to degrade HFPO-DA in wastewater. The results showed that the committed step of HFPO-DA degradation was initiated by the electron transfer reaction of SO4•- radicals. This reaction is not spontaneous at room temperature and requires sufficient electrical or thermal energy to be absorbed from the external environment. The perfluoroalcohol produced during this reaction can subsequently undergo four possible reactions: H atom abstraction from alcohol groups by an OH radical; H atom abstraction by SO4•-; direct HF removal; and HF removal with water as the catalyst. The final degradation products of HFPO-DA mainly include CO2, CF3CF2COOH, CF3COOH, FCOOH and HF, which has been identified through previous experimental analysis. Ecotoxicity assessment indicates that degradation does not produce highly toxic intermediates, and that the final products are non-toxic, supporting the feasibility of persulfate-based AOP technologies.
Collapse
Affiliation(s)
- Chenxi Zhang
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China; Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Youxin Xu
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China; Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Wenyan Liu
- School of agriculture, Ludong University, Yantai 264025, China
| | - Huaiyu Zhou
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China
| | - Ningning Zhang
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China
| | - Zhihao Fang
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China
| | - Junping Gao
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China
| | - Xiaoan Sun
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China
| | - Di Feng
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China.
| | - Xiaomin Sun
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
19
|
Ateia M, Buren JV, Barrett W, Martin T, Back GG. Sunrise of PFAS Replacements: A Perspective on Fluorine-Free Foams. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:7986-7996. [PMID: 37476647 PMCID: PMC10354943 DOI: 10.1021/acssuschemeng.3c01124] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
One type of firefighting foam, referred to as aqueous filmforming foams (AFFF), is known to contain per- and polyfluoroalkyl substances (PFAS). The concerns raised with PFAS, and their potential environmental and health impacts, have led to a surge in research on fluorine-free alternatives both in the United States and globally. Particularly, in January 2023, a new military specification (MIL-PRF-32725) for fluorine-free foam was released in accordance with Congressional requirements for the U.S. Department of Defense. This paper provides a critical analysis of the present state of the various fluorine-free options that have been developed to date. A nuanced perspective of the challenges and opportunities of more sustainable replacements is explored by examining the performance, cost, and regulatory considerations associated with these fluorine-free alternatives. Ultimately, this evaluation shows that the transition to fluorine-free replacements is likely to be complex and multifaceted, requiring careful consideration of the trade-offs involved. Yet, the ongoing work will provide valuable insights for future research on alternatives to AFFF and enhancing the safety and sustainability of fire suppression systems.
Collapse
Affiliation(s)
- Mohamed Ateia
- Center for Environmental Solutions & Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45204, United States; Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Jean Van Buren
- Center for Environmental Solutions & Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45204, United States
| | - William Barrett
- Center for Environmental Solutions & Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45204, United States
| | - Todd Martin
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Cincinnati, Ohio 45204, United States
| | - Gerard G Back
- Jensen Hughes, Inc., Halethorpe, Maryland 21227, United States
| |
Collapse
|
20
|
Sahu O. Remediation of perfluorooctanoic acid (PFOA) with nano ceramic clay: Synthesis, characterization, scale-up and regenerations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121241. [PMID: 36764378 DOI: 10.1016/j.envpol.2023.121241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/21/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Perfluorooctanoic acid (PFOA) in the ecosystem, resulting from industrial effluent and water bodies, has attracted greater concern. An economical treatment is in demand to optimize the current issue. In this research work, Perfluorooctanoic Acid was treated from drinking water sources with nano-ceramic clay. The ceramic clay was synthesized and characterized with Fourier infrared transformation, scanning electron micrograph, transmission electron micrograph, x-ray diffraction, and thermal analysis. An adsorption process was performed in batch and continuous modes for the effective conditions for maximum removal. In batch mode 82 ± 12 nm ceramic clay particle size; 3.0 initial pH; 210 rpm agitation 1.2 mg/L PFOA concentration; 100 mg/L clay dosage; 27 °C temperature, and 20hrs experimental time shows maximum 99.15% adsorption. The experimental data is well fitted with kinetics, isotherms, and thermodynamics calculated data. In fixed bed, continuous column study 10 h treatment time, 10 cm of bed height, and 2 ml/min were adsorbed 99.99% of PFOA. The experimental data from the fixed bed adsorption equipment was correlated using a number of different mathematical models, including the Thomas, Adams-Bohart, Yoon-Nelson, and Clark models. Overall nano ceramic clay was found to potential adsorbent for Perfluorooctanoic acid removal.
Collapse
Affiliation(s)
- Omprakash Sahu
- Department of Chemical Engineering, UIE, Chandigarh University, Mohali, India.
| |
Collapse
|
21
|
Li Z, Luo ZM, Huang Y, Wang JW, Ouyang G. Recent trends in degradation strategies of PFOA/PFOS substitutes. CHEMOSPHERE 2023; 315:137653. [PMID: 36581124 DOI: 10.1016/j.chemosphere.2022.137653] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The global elimination and restriction of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), respectively, have urged manufacturers to shift production to their substitutes which still pose threat to the environment with their bioaccumulation, toxicity and migration issues. In this context, efficient technologies and systematic mechanistic studies on the degradation of PFOA/PFOS substitutes are highly desirable. In this review, we summarize the progress in degrading PFOA/PFOS substitutes, including four kinds of mainstream methods. The pros and cons of the present technologies are analyzed, which renders the discussion of future prospects on rational optimizations. Additional discussion is made on the differences in the degradation of various kinds of substitutes, which is compared to the PFOA/PFOS and derives designing principles for more degradable F-containing compounds.
Collapse
Affiliation(s)
- Zizi Li
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhi-Mei Luo
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanjun Huang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jia-Wei Wang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
22
|
Huang J, Shi Y, Huang G, Huang S, Zheng J, Xu J, Zhu F, Ouyang G. Facile Synthesis of a Fluorinated‐Squaramide Covalent Organic Framework for the Highly Efficient and Broad‐Spectrum Removal of Per‐ and Polyfluoroalkyl Pollutants. Angew Chem Int Ed Engl 2022; 61:e202206749. [DOI: 10.1002/anie.202206749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Junlong Huang
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Yueru Shi
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Guo‐zhang Huang
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Shuyao Huang
- Instrumental Analysis and Research Center (IARC) Sun Yat-Sen University Guangzhou 510275 China
| | - Juan Zheng
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Jianqiao Xu
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Fang Zhu
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Gangfeng Ouyang
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
- Institute of Analysis Guangdong Academy of Sciences (China National Analytical Center Guangzhou) Guangzhou 510070 China
- Chemistry College Center of Advanced Analysis and Gene Sequencing Zhengzhou University Kexue Avenue 100 Zhengzhou 450001 China
| |
Collapse
|
23
|
Robarts DR, Venneman KK, Gunewardena S, Apte U. GenX induces fibroinflammatory gene expression in primary human hepatocytes. Toxicology 2022; 477:153259. [PMID: 35850385 PMCID: PMC9741548 DOI: 10.1016/j.tox.2022.153259] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 01/09/2023]
Abstract
The toxicity induced by the persistent organic pollutants per- and polyfluoroalkyl substances (PFAS) is dependent on the length of their polyfluorinated tail. Long-chain PFASs have significantly longer half-lives and profound toxic effects compared to their short-chain counterparts. Recently, production of a short-chain PFAS substitute called ammonium 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy) propanoate, also known as GenX, has significantly increased. However, the adverse health effects of GenX are not completely known. In this study, we investigated the dose-dependent effects of GenX on primary human hepatocytes (PHH). Freshly isolated PHH were treated with either 0.1, 10, or 100 μM of GenX for 48 and 96 h; then, global transcriptomic changes were determined using Human Clariom™ D arrays. GenX-induced transcriptional changes were similar at 0.1 and 10 μM doses but were significantly different at the 100 μM dose. Genes involved in lipid, monocarboxylic acid, and ketone metabolism were significantly altered following exposure of PHH at all doses. However, at the 100 μM dose, GenX caused changes in genes involved in cell proliferation, inflammation and fibrosis. A correlation analysis of concentration and differential gene expression revealed that 576 genes positively (R > 0.99) and 375 genes negatively (R < -0.99) correlated with GenX concentration. The upstream regulator analysis indicated HIF1α was inhibited at the lower doses but were activated at the higher dose. Additionally, VEGF, PPARα, STAT3, and SMAD4 signaling was induced at the 100 µM dose. These data indicate that at lower doses GenX can interfere with metabolic pathways and at higher doses can induce fibroinflammatory changes in human hepatocytes.
Collapse
Affiliation(s)
- Dakota R Robarts
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Kaitlyn K Venneman
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
24
|
Huang J, Shi Y, Huang G, Huang S, Zheng J, Xu J, Zhu F, Ouyang G. Facile Synthesis of a Fluorinated‐Squaramide Covalent Organic Framework for the Highly Efficient and Board‐Spectrum Removal of Per‐ and Polyfluoroalkyl Pollutants. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Junlong Huang
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Yueru Shi
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Guo‐zhang Huang
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Shuyao Huang
- Instrumental Analysis and Research Center (IARC) Sun Yat-Sen University Guangzhou 510275 China
| | - Juan Zheng
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Jianqiao Xu
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Fang Zhu
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Gangfeng Ouyang
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
- Institute of Analysis Guangdong Academy of Sciences (China National Analytical Center Guangzhou) Guangzhou 510070 China
- Chemistry College Center of Advanced Analysis and Gene Sequencing Zhengzhou University Kexue Avenue 100 Zhengzhou 450001 China
| |
Collapse
|
25
|
Xie R, Zhou L, Smith AE, Almquist CB, Berberich JA, Danielson ND. A dual grafted fluorinated hydrocarbon amine weak anion exchange resin polymer for adsorption of perfluorooctanoic acid from water. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128521. [PMID: 35231815 DOI: 10.1016/j.jhazmat.2022.128521] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent and recalcitrant organic contaminant of exceptional environmental concern, and its removal from water has increasingly attracted global attention due to its wide distribution and strong bioaccumulation. Adsorption is considered an effective technique for PFOA removal and more efficient PFOA sorbents are still of interest. This study developed a dual grafted fluorinated hydrocarbon amine weak anion exchange (WAX) polymeric resin (Sepra-WAX-KelF-PEI) for PFOA removal from water. This polymer was synthesized by a two-step amine grafting reaction procedure involving first the reaction of the Sepra-WAX hydrocarbon polymer with poly(vinylidinefluoride-chlorotrifluoroethylene) (Kel-F 800) and then a second reaction with polyethyleneimine (PEI). Characterization of the synthesized polymers was performed using scanning electron microscopy and elemental analysis (F and Cl) by energy dispersive X-ray spectroscopy. The PFOA adsorption performance evaluations were conducted by packed column flow analyses with on-line detection. The results show the breakthrough of the Sepra-WAX-KelF-PEI synthesized with optimum stoichiometry was two times better than the starting anion exchange polymer Sepra-WAX, and six times better than powdered activated carbon, when using the same column size. The adsorption mechanisms of this novel adsorbent including hydrophobic interaction and electrostatic interaction were also clarified in this study. The adsorption kinetic parameters of the two optimum synthesized sorbents were determined using the Thomas model, the Yoon-Nelson model, and batch isotherm studies, and compared with those found with activated carbon and the starting WAX resin. Good agreement of the batch isotherm and column studies with respect to adsorption capacities trends between all three polymers (Sepra-WAX, Sepra-WAX-KelF, and Sepra-WAX-KelF-PEI) were noted.
Collapse
Affiliation(s)
- Ruichao Xie
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Ling Zhou
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Abigail E Smith
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | | - Jason A Berberich
- Department of Chemical Engineering, Miami University, Oxford, OH 45056, USA
| | - Neil D Danielson
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|