1
|
Cheng X, Qu M, Hu Y, Liu X, Mei Y. Differences in microbial communities and phosphorus cycles between rural and urban lakes: Based on glyphosate and AMPA effects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124577. [PMID: 39970668 DOI: 10.1016/j.jenvman.2025.124577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/05/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
The widespread availability of glyphosate in shallow lakes is of significant concern. Glyphosate is an organophosphorus pesticide that can affect the phosphorus cycle and microbial communities in lakes. However, the effects of glyphosate on lakes in different geographical locations remain unclear. This study not only investigated glyphosate and aminomethylphosphonic acid (AMPA) residues in sediments from rural and urban lakes, but also examined differences in the effects of these substances on lake microbial communities and phosphorus cycles. Glyphosate and AMPA were detected in 100% of sediments from the three rural and three urban lakes surveyed. Glyphosate concentrations were not significantly different among all lake sediments; however, AMPA concentrations were significantly higher in rural lake sediments than in urban lake sediments (P < 0.05). The abundance of the glpC gene, encoding an organophosphorus-degrading enzyme, and the abundance of Luteitalea sp. TBR-22, which is enriched for the glpC gene, were significantly different between rural and urban lake sediments (P < 0.05). Notably, the abundance of glpC and Luteitalea sp. TBR-22 was significantly and positively correlated with AMPA concentration (P < 0.05). In addition, the AMPA concentration was significantly and positively correlated with the O-bonded inorganic phosphate (Pi) content (P < 0.05). These results suggest that high AMPA concentrations in rural lake sediments may increase the production of O-bonded Pi in lake sediments by controlling the expression of glpC in Luteitalea sp. TBR-22, leading to higher concentrations of O-bonded Pi in the rural lake sediments than in the urban lake sediments.
Collapse
Affiliation(s)
- Xuan Cheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Mengjie Qu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Yang Hu
- School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xingyu Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yunjun Mei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| |
Collapse
|
2
|
Rachna, Singh MP, Goswami S, Singh UK. Pesticide pollution: toxicity, sources and advanced remediation approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64385-64418. [PMID: 39541023 DOI: 10.1007/s11356-024-35502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The Food and Agricultural Organization of the United Nations (FAO) estimates that food production must rise by 70% to meet the demands of an additional 2.3 billion people by 2050. This forecast underscores the persistent reliance on pesticides, making it essential to assess their toxicity and develop effective remediation strategies. Given the widespread utilisation of pesticides, it requires an urgent need to evaluate their toxicity and explore feasible remediation approaches for their removal. Hence, this review provides an overview of the latest information on the presence, distribution, sources, fate, and trends of pesticides in global environmental matrices, emphasizing the ecological and health risks posed by pesticide pollution. Currently, the dominant remediation techniques encompass physical, chemical, and biological methods, yet studies focusing on advanced remediation techniques remain limited. This review critically evaluates both newer and traditional approaches to pesticide removal, offering a descriptive and analytical comparison of various methods. The selection of the appropriate treatment method depends largely on the nature of the pesticide and the effectiveness of the chosen technique. In many cases, technologies such as membrane bioreactors and the fenton process could be integrated with biological technologies to enhance performance and overcome limitations. The study concludes that a hybrid approach combining various remediation strategies offers the most effective and sustainable solution for pesticide removal. Finally, the review underscores the need for further scientific investigation into the most viable technologies while discussing the challenges and prospects of developing safe, reliable, cost-effective, and eco-friendly methods for removing pesticides from the environment.
Collapse
Affiliation(s)
- Rachna
- Department of Environmental Science, Central University of South Bihar, Gaya, Bihar, India
| | - Mohan Prasad Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj, 211002, Uttar Pradesh, India
| | - Shreerup Goswami
- Department of Geology, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India
| | - Umesh Kumar Singh
- Department of Environmental Science, Central University of South Bihar, Gaya, Bihar, India.
- Centre of Environmental Studies, University of Allahabad, Prayagraj, 211002, Uttar Pradesh, India.
| |
Collapse
|
3
|
Cheng X, Yang J, Zhang C, Tang T, Zhao X, Ye Q. Carbon-14 labeled transformation of atrazine in soils: Comparison of superabsorbent hydrogel coating and technical material. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175584. [PMID: 39155004 DOI: 10.1016/j.scitotenv.2024.175584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Atrazine exhibits adverse effects on diverse organisms in both terrestrial and aquatic environments, even though it effectively targets specific organisms. This study employed superabsorbent hydrogels to coat 14C-atrazine coupled with a four-compartment model to determine the fate of this herbicide in three oxic soils over a 100-day incubation period. Mineralization of atrazine was limited in all soils, with rates remaining below 3.5 %. The encapsulation treatment reduced mineralization of atrazine in soil A and soil B. Bound residues ranged from 26.1 to 43.6 % at 100 d. The encapsulation treatment enhanced the degradation of atrazine and reduced the content of deethylatrazine in soil A, but significantly increased the content of deisopropylatrazine in soil A and hydroxyatrazine in soil C. Using the obtained data, we also constructed a four-compartment model to clarify the relationships among the parent compound, degradation products, bound residues, and mineralization. This model accurately fits the fate of atrazine in the present work. Additionally, the correlation study suggested that both soil parameters and superabsorbent hydrogels played significant roles in influencing atrazine transformation. These findings serve as a reference for evaluating the environmental impact of superabsorbent hydrogels in atrazine pollution reduction and offer a foundational model approach for a comprehensive understanding of organic pollutants.
Collapse
Affiliation(s)
- Xi Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| | - Jingying Yang
- Radiolabeled DMPK & BA Laboratory, Pharmaron (Ningbo) Technology Development Co. Ltd., Ningbo 315336, PR China.
| | - Chunrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
4
|
Cheng X, Yang J, Tang T, Zhang C, Zhao X, Ye Q. Impact of superabsorbent hydrogels on microbial community and atrazine fate in soils by 14C-labeling techniques. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124822. [PMID: 39197643 DOI: 10.1016/j.envpol.2024.124822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/22/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
The accumulation of atrazine in soils can create environmental challenges, potentially posing risks to human health. Superabsorbent hydrogel (SH)-based formulations offer an eco-friendly approach to accelerate herbicide degradation. However, the impact of SHs on soil microbial community structure, and thus on the fate of atrazine, remains uncertain. In this study, a radioactive tracer was employed to investigate the influence of SHs on microbial communities and atrazine transformation in soils. The results revealed that the mineralization of atrazine in active soils was considerably greater than that in sterilized soils. Atrazine degradation proceeded rapidly under SH treatment, indicating the potential of SH to accelerate atrazine degradation. Furthermore, SH addition did not alter the atrazine degradation pathway in soils, which included dealkylation, dechlorination and hydroxylation. The relative abundance of dominant microbial population was influenced by the presence of SHs in the soil. Additionally, SH application led to an increased relative abundance of Lysobacter, suggesting its potential involvement in atrazine degradation. These findings reveal the significance of soil microorganisms and SH in atrazine degradation, offering crucial insights for the development of effective strategies for atrazine remediation and environmental sustainability.
Collapse
Affiliation(s)
- Xi Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China.
| | - Jingying Yang
- Radiolabeled DMPK & BA Laboratory, Pharmaron (Ningbo) Technology Development Co. Ltd., Ningbo, 315336, PR China.
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China.
| | - Chunrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China.
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China.
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
5
|
Justin LD, Olukanni DO. Efficiency evaluation of wastewater treatment by three macrophytes using a pilot-constructed wetland system in Ota, Nigeria. JOURNAL OF WATER AND HEALTH 2024; 22:2040-2053. [PMID: 39611667 DOI: 10.2166/wh.2024.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/12/2024] [Indexed: 11/30/2024]
Abstract
Three aquatic macrophytes were used to treat wastewater using a pilot-constructed wetland (CW) system to determine the most efficient plants for removing contaminants from wastewater. The three macrophytes are water hyacinth (Eichhornia crassipes), water lettuce (Pistia stratiotes), and duckweed (Lemna minor). Three 150 L capacity tanks with sand and gravel as substrates were used as the pilot CW for each plant. Upon initial examination, the raw wastewater was not compliant with standard discharge limits. The wastewater samples were collected every 7 days for 3 weeks for treatment. From the findings, at 14 days hydraulic retention time (HRT), E. crassipes and P. stratiotes achieved the highest total phosphorus (TP) and chemical oxygen deman (COD) reductions of 99.3 and 99.4%, respectively. E. crassipes indicated better biological oxygen demand removal efficiency of 91.3%, COD (85.0%), electrical conductivity (90.4%), total dissolved solids (89.7%), and total coliforms (66.0%). Albeit, P. stratiotes indicated better results for total suspended solids (96.2%), TP (7.55%), and E. coli (94.4%), while L. minor was better with 90.8% total nitrogen removal. The overall analysis showed E. crassipes to be more efficient than the three macrophytes. However, the other two plants are replaceable options and large-scale implementation of this project in the community would be a major contributor to actualizing SDG number 6.
Collapse
Affiliation(s)
- Lazarus D Justin
- Department of Civil Engineering, Covenant University, Ota, Ogun State, Nigeria E-mail:
| | - David O Olukanni
- Department of Civil Engineering, Covenant University, Ota, Ogun State, Nigeria
| |
Collapse
|
6
|
Kiran PS, Mandal P, Jain M, Ghosal PS, Gupta AK. A comprehensive review on the treatment of pesticide-contaminated wastewater with special emphasis on organophosphate pesticides using constructed wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122163. [PMID: 39182378 DOI: 10.1016/j.jenvman.2024.122163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
Pesticides pose a significant threat to aquatic ecosystems due to their persistent nature and adverse effects on biota. The increased detection of pesticides in various water bodies has prompted research into their toxicological impacts and potential remediation strategies. However, addressing this issue requires the establishment of robust regulatory frameworks to determine safe thresholds for pesticide concentrations in water and the development of effective treatment methods. This assessment underscores the complex ecological risks associated with organophosphate pesticides (OPPs) and emphasizes the urgent need for strategic management and regulatory measures. This study presents a detailed examination of the global prevalence of OPPs and their potential adverse effects on aquatic and human life. A comprehensive risk assessment identifies azinphos-methyl, chlorpyrifos, and profenfos as posing considerable ecological hazard to fathead minnow, daphnia magna, and T. pyriformis. Additionally, this review explores the potential efficacy of constructed wetlands (CWs) as a sustainable approach for mitigating wastewater contamination by diverse pesticide compounds. Furthermore, the review assess the effectiveness of CWs for treating wastewater contaminated with pesticides by critically analyzing the removal mechanism and key factors. The study suggests that the optimal pH range for CWs is 6-8, with higher temperatures promoting microbial breakdown and lower temperatures enhancing pollutant removal through adsorption and sedimentation. The importance of wetland vegetation in promoting sorption, absorption, and degradation processes is emphasized. The study emphasizes the importance of hydraulic retention time (HRT) in designing, operating, and maintaining CWs for pesticide-contaminated water treatment. The removal efficiency of CWs ranges from 38% to 100%, depending on factors like pesticide type, substrate materials, reactor setup, and operating conditions.
Collapse
Affiliation(s)
- Pilla Sai Kiran
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Pubali Mandal
- Department of Civil Engineering, Birla Institute of Technology and Science Pilani, Pilani, 333031, Rajasthan, India.
| | - Mahak Jain
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Partha Sarathi Ghosal
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
7
|
Karami F, Sereshti H. Ultrasonic-induced grafted lanthanum sulfide decorated multi-walled carbon nanotube onto bacterial cellulose applied for adsorption of pesticides in environmental waters. J Chromatogr A 2024; 1727:464976. [PMID: 38744186 DOI: 10.1016/j.chroma.2024.464976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
A new biosorbent was fabricated by modification of bacterial cellulose biopolymer grafted with lanthanum sulfide decorated carboxylated multiwall carbon nanotube (La2S3@MWCNT@BC). The sorbent was employed in a green alternative dispersive-solid phase extraction of a variety of 14 pesticides in environmental water samples. The analyses were performed using GC-µECD. The properties and structure of La2S3@MWCNT@BC nanocomposite were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and adsorption-desorption isotherms. The composition of the sorbent was also investigated to evaluate the adsorptive properties of its constituents. The impact of various parameters influencing extraction efficacies such as sorbent dose, adsorption time, sample pH, ionic strength, and desorption conditions was investigated. The method was validated by specificity, matrix effect % (-0.4 to -7.4), enrichment factor (4-10), limits of quantification (0.007-0.31 μg L-1), matrix-matched calibration linearity (0.01-200 µg L-1), determination coefficients (r2=0.9921-0.9998), and precision. The optimized method was applied for the analysis of multiclass pesticides in seven environmental and drinking waters and the recoveries were obtained in the 81-108 % range with RSDs of 2.5-4.7 %. This paper is the first report on the synthesis and use of La2S3@MWCNT@BC nanocomposite to extract pesticides from different water samples. The greenness of the procedure was evaluated by the AGREE protocols.
Collapse
Affiliation(s)
- Faezeh Karami
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Hassan Sereshti
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
8
|
Gan W, Zhang R, Cao Z, Liu H, Fan W, Sun A, Song S, Zhang Z, Shi X. Unveiling the hidden risks: Pesticide residues in aquaculture systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172388. [PMID: 38614356 DOI: 10.1016/j.scitotenv.2024.172388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/16/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
The present study systematically assessed the presence and ecological risks of 79 pesticides in various aquaculture systems, namely pond aquaculture (PA), greenhouse aquaculture (GA), and raceway aquaculture (RA) at different aquaculture stages, along with evaluating the pesticide removal of four tailwater treatment systems. Sixteen herbicides and two fungicides were identified, with the total concentrations ranging from 8.33 ng/L to 3248.45 ng/L. The PA system demonstrated significantly higher concentrations (p < 0.05) and a wider range of pesticide residues compared to the GA and RA systems. Prometryn, simetryn, atrazine, and thifluzamide were found to be the predominant pesticides across all three aquaculture modes, suggesting their significance as pollutants that warrant monitoring. Additionally, the findings indicated that the early aquaculture stage exhibits the highest levels of pesticide concentration, underscoring the importance of heightened monitoring and regulatory interventions during this phase. Furthermore, among the four tailwater treatment systems analyzed, the recirculating tailwater treatment system exhibited the highest efficacy in pesticide removal. A comprehensive risk assessment revealed minimal ecological risks in both the aquaculture and tailwater environments. However, the pesticide mixtures present high risks to algae and low to medium risks to aquatic invertebrates and fish, particularly during the early stages of aquaculture. Simetryn and prometryn were identified as high-risk pesticides. Based on the prioritization index, simetryn, prometryn, diuron, and ametryn are recommended for prioritization in risk assessment. This study offers valuable data for pesticide control and serves as a reference for the establishment of a standardized pesticide monitoring and management system at various stages of aquaculture.
Collapse
Affiliation(s)
- Weijia Gan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Rongrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Zhi Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Hao Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Aili Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Zeming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
9
|
Ruan W, Peng Y, Liao R, Man Y, Tai Y, Tam NFY, Zhang L, Dai Y, Yang Y. Removal, transformation and ecological risk assessment of pesticide in rural wastewater by field-scale horizontal flow constructed wetlands of treated effluent. WATER RESEARCH 2024; 256:121568. [PMID: 38593607 DOI: 10.1016/j.watres.2024.121568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
Constructed wetlands (CWs) are widely used in sewage treatment in rural areas, but there are only a few studies on field-scale CWs in treating wastewater-borne pesticides. In this study, the treatment and metabolic transformation of 29 pesticides in rural domestic sewage by 10 field-scale horizontal flow CWs (HF-CWs), each with a treatment scale of 36‒5000 m3/d and operated for 2‒10 years, in Guangzhou, Southern China was investigated. The risk of pesticides in treated effluent and main factors influencing such risk were evaluated. Results demonstrated that HF-CWs could remove pesticides in sewage and reduce their ecological risk in effluent, but the degree varied among types of pesticides. Herbicides had the highest mean removal rate (67.35 %) followed by insecticides (60.13 %), and the least was fungicides (53.22 %). In terms of single pesticide compounds, the mean removal rate of butachlor was the highest (73.32 %), then acetochlor (69.41 %), atrazine (68.28 %), metolachlor (58.40 %), and oxadixyl (53.28 %). The overall removal rates of targeted pesticides in each HF-CWs ranged from 11 %‒57 %, excluding two HF-CWs showing increases in pesticides in treated effluent. Residues of malathion, phorate, and endosulfan in effluent had high-risks (RQ > 5). The pesticide concentration in effluent was mainly affected by that in influent (P = 0.042), and source control was the key to reducing risk. The main metabolic pathways of pesticide in HF-CWs were oxidation, with hydroxyl group to carbonyl group or to form sulfones, the second pathways by hydrolysis, aerobic condition was conducive to the transformation of pesticides. Sulfones were generally more toxic than the metabolites produced by hydrolytic pathways. The present study provides a reference on pesticides for the purification performance improvement, long-term maintenance, and practical sustainable application of field-scale HF-CWs.
Collapse
Affiliation(s)
- Weifeng Ruan
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Yanqin Peng
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Ruomei Liao
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Ying Man
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yiping Tai
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China.
| | - Nora Fung-Yee Tam
- School of Science and Technology, The Hong Kong Metropolitan University, Ho Man Tin, Kowloon 999077, Hong Kong, China
| | - Longzhen Zhang
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yunv Dai
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Yang Yang
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China.
| |
Collapse
|
10
|
Buscaroli E, Lavrnić S, Blasioli S, Gentile SL, Solimando D, Mancuso G, Anconelli S, Braschi I, Toscano A. Efficient dissipation of acetamiprid, metalaxyl, S-metolachlor and terbuthylazine in a full-scale free water surface constructed wetland in Bologna province, Italy: A kinetic modeling study. ENVIRONMENTAL RESEARCH 2024; 247:118275. [PMID: 38246295 DOI: 10.1016/j.envres.2024.118275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
The study investigated the dissipation ability of a vegetated free water surface (FWS) constructed wetland (CW) in treating pesticides-contaminated agricultural runoff/drainage water in a rural area belonging to Bologna province (Italy). The experiment simulated a 0.1% pesticide agricultural water runoff/drainage event from a 12.5-ha farm by dissolving acetamiprid, metalaxyl, S-metolachlor, and terbuthylazine in 1000 L of water and pumping it into the CW. Water and sediment samples from the CW were collected for 4 months at different time intervals to determine pesticide concentrations by multiresidue extraction and chromatography-mass spectrometry analyses. In parallel, no active compounds were detected in the CW sediments during the experimental period. Pesticides dissipation in the wetland water compartment was modeled according to best data practices by fitting the data to Single First Order (SFO), First Order Multi-Compartment (FOMC) and Double First Order in Parallel (DFOP) kinetic models. SFO (except for metalaxyl), FOMC and DFOP kinetic models adequately predicted the dissipation for the four investigated molecules, with the DFOP kinetic model that better fitted the observed data. The modeled distribution of each pesticide between biomass and water in the CW highly correlated with environmental indexes as Kow and bioconcentration factor. Computed DT50 by DFOP model were 2.169, 8.019, 1.551 and 2.047 days for acetamiprid, metalaxyl, S-metolachlor, and terbuthylazine, respectively. Although the exact degradation mechanisms of each pesticide require further study, the FWS CW was found to be effective in treating pesticides-contaminated agricultural runoff/drainage water within an acceptable time. Therefore, this technology proved to be a valuable tool for mitigating pesticides runoff occurring after intense rain events.
Collapse
Affiliation(s)
- Enrico Buscaroli
- Alma Mater Studiorum - University of Bologna, Department of Agricultural and Food Sciences, Viale G. Fanin 40-50, 40127 Bologna, Italy
| | - Stevo Lavrnić
- Alma Mater Studiorum - University of Bologna, Department of Agricultural and Food Sciences, Viale G. Fanin 40-50, 40127 Bologna, Italy
| | - Sonia Blasioli
- Alma Mater Studiorum - University of Bologna, Department of Agricultural and Food Sciences, Viale G. Fanin 40-50, 40127 Bologna, Italy
| | | | - Domenico Solimando
- Consorzio di Bonifica Canale Emiliano Romagnolo, Via E. Masi 8, 40137 Bologna, Italy
| | - Giuseppe Mancuso
- Alma Mater Studiorum - University of Bologna, Department of Agricultural and Food Sciences, Viale G. Fanin 40-50, 40127 Bologna, Italy
| | - Stefano Anconelli
- Consorzio di Bonifica Canale Emiliano Romagnolo, Via E. Masi 8, 40137 Bologna, Italy
| | - Ilaria Braschi
- Alma Mater Studiorum - University of Bologna, Department of Agricultural and Food Sciences, Viale G. Fanin 40-50, 40127 Bologna, Italy.
| | - Attilio Toscano
- Alma Mater Studiorum - University of Bologna, Department of Agricultural and Food Sciences, Viale G. Fanin 40-50, 40127 Bologna, Italy
| |
Collapse
|
11
|
Aslam S, Nowak KM. Nitrogen-fertilizer addition to an agricultural soil enhances biogenic non-extractable residue formation from 2- 13C, 15N-glyphosate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170643. [PMID: 38320697 DOI: 10.1016/j.scitotenv.2024.170643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Glyphosate and nitrogen (N) or (P) phosphorus fertilizers are often applied in combination to agricultural fields. The additional P or N supply to microorganisms might drive glyphosate degradation towards sarcosine/glycine or aminomethylphosphonic acid (AMPA), and consequently determine the speciation of non-extractable residues (NERs): harmless biogenic NERs (bioNERs) or potentially hazardous xenobiotic NERs (xenoNERs). We therefore investigated the effect of P or N-fertilizers on microbial degradation of glyphosate and bioNER formation in an agricultural soil. Four different treatments were incubated at 20 °C for 75 days as follows; I: no fertilizer (2-13C,15N-glyphosate only, control), II: P-fertilizer (superphosphate + 2-13C,15N-glyphosate, effect of P-supply), III: N-fertilizer (ammonium nitrate + 2-13C,15N-glyphosate, effect of N-supply) and IV: 15N-fertilizer (15N-ammonium nitrate + 2-13C-glyphosate, differentiation between microbial assimilations of 15N: 15N-fertilizer versus 15N-glyphosate). We quantified 13C or 15N in mineralization, extractable residues, NERs and in amino acids (AAs). At the end, mineralization (36-41 % of the 13C), extractable 2-13C,15N-glyphosate/2-13C-glyphosate (0.42-0.49 %) & 15N-AMPA (1.2 %), and 13C/15N-NERs (40-43 % of the 13C, 40-50 % of the 15N) were comparable among treatments. Contrastingly, the 15N-NERs from 15N-fertlizer amounted to only 6.6 % of the 15N. Notably, N-fertilizer promoted an incorporation of 13C/15N from 2-13C,15N-glyphosate into AAs and thus the formation of 13C/15N-bioNERs. The 13C/15N-AAs were as follows: 16-21 % (N-fertilizer) > 11-13 % (control) > 7.2-7.3 % (P-fertilizer) of the initially added isotope. 2-13C,15N-glyphosate was degraded via the sarcosine/glycine and AMPA simultaneously in all treatments, regardless of the treatment type. The percentage share of bioNERs within the NERs in the N-fertilized soil was highest (13C: 80-82 %, 15N: 100 %) compared to 53 % (13C & 15N, control) and to only 30 % (13C & 15N, P-fertilizer). We thus concluded simultaneous N & glyphosate addition to soils could be beneficial for the environment due to the enhanced bioNER formation, while P & glyphosate application disadvantageous since it promoted xenoNER formation.
Collapse
Affiliation(s)
- Sohaib Aslam
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Department of Environmental Sciences, Forman Christian College (A Chartered University), Ferozepur Road, 54600 Lahore, Pakistan
| | - Karolina M Nowak
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany.
| |
Collapse
|
12
|
Shi B, Cheng X, Zhu D, Jiang S, Chen H, Zhou Z, Xie J, Jiang Y, Liu C, Guo H. Impact analysis of hydraulic loading rate and antibiotics on hybrid constructed wetland systems: Insight into the response to decontamination performance and environmental-associated microbiota. CHEMOSPHERE 2024; 347:140678. [PMID: 37951391 DOI: 10.1016/j.chemosphere.2023.140678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Hybrid constructed wetlands (HCWs) are a promising solution for water ecology and environmental treatment, not only for conventional types of water pollution but also for antibiotics. Among the critical parameters for wetlands, the hydraulic loading rate (HLR) is especially important given the challenges of antibiotics treatment and frequent extreme rainfall. To investigate the removal performance of different HLRs on nutrients and antibiotics, as well as the response of antibiotics to nutrient removal, and the impact of HLRs on microbial communities, new HCWs with vertical flow constructed wetlands (VFCWs) and floating constructed wetlands (FCWs) in series were built. The results of the study showed that: (1) HCWs are highly effective in removing chemical oxygen demand (COD), NH4+-N, NO2--N, and total phosphorus (TP) at low HLR (L_HLR), with removal efficiencies as high as 97.8%, 99.6%, 100%, and 80.5%. However, high HLR (H_HLR) reduced their removal efficiencies; (2) The average removal efficiency of fluoroquinolones (FQs) under different HLRs was consistently high, at 99.9%, while the average removal efficiency of macrolides (MLs) was 96.3% (L_HLR) and 88.4% (H_HLR). The removal efficiency of sulfonamides (SAs) was susceptible to HLRs, and the removal of antibiotics occurred mainly in the rhizosphere zone of wetland; (3) High concentrations of antibiotics in HCWs were found to inhibit and poison plant growth and to reduce the removal efficiency of TP by 12%. However, they had a minor effect on the removal efficiency of carbon and nitrogen nutrients; (4) H_HLR altered the diversity and abundance of microbial communities in different compartments of the wetland and also reduced the relative abundance of Bacillus, Hydrogenophaga, Nakamurella, Denitratisoma and Acidovorax genera, which are involved in denitrification and phosphorus removal processes. This alteration in microbial communities was one of the main reasons for the reduced performance of nitrogen and phosphorus removal.
Collapse
Affiliation(s)
- Baoshan Shi
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China; State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510640, China
| | - Xiangju Cheng
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China; State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510640, China
| | - Dantong Zhu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China; State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510640, China.
| | - Shenqiong Jiang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| | - Hongzhan Chen
- Guangzhou Ecological and Environmental Monitoring Center of Guangdong Province, Guangzhou, 510030, China
| | - Zhihong Zhou
- Guangzhou Ecological and Environmental Monitoring Center of Guangdong Province, Guangzhou, 510030, China
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Yuheng Jiang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| | - Chunsheng Liu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| | - Heyi Guo
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
13
|
Singh NK, Sanghvi G, Yadav M, Padhiyar H, Christian J, Singh V. Fate of pesticides in agricultural runoff treatment systems: Occurrence, impacts and technological progress. ENVIRONMENTAL RESEARCH 2023; 237:117100. [PMID: 37689336 DOI: 10.1016/j.envres.2023.117100] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The levels of pesticides in air, water, and soil are gradually increasing due to its inappropriate management. In particular, agricultural runoff inflicts the damages on the ecosystem and human health at massive scale. Present study summarizes 70 studies in which investigations on removal or treatment of pesticides/insecticides/herbicides are reported. A bibliometric analysis was also done to understand the recent research trends through the analysis of 2218 publications. The specific objectives of this study are as follows: i) to inventorize the characteristics details of agriculture runoff and analyzing the occurrence and impacts of pesticides, ii) analyzing the role and interaction of pesticides in different environmental segments, iii) investigating the fate of pesticides in agriculture runoff treatment systems, iv) summarizing the experiences and findings of most commonly technology deployed for pesticides remediation in agriculture runoff including target pesticide(s), specifications, configuration of technological intervention. Among the reported technologies for pesticide treatment in agriculture runoff, constructed wetland was at the top followed by algal or photobioreactor. Among various advanced oxidation processes, photo Fenton method is mainly used for pesticides remediation such as triazine, methyl parathion, fenuron and diuron. Algal bioreactors are extensively used for a wide range of pesticides treatment including 2,4-Dichlorophenoxyacetic acid, 2-methyl-4-chlorophenoxyacetic acid, alachlor, diuron, chlorpyrifos, endosulfan, and imidacloprid; especially at lower hydraulic retention time of 2-6 h. This study highlights that hybrid approaches can offers potential opportunities for effective removal of pesticides in a more viable manner.
Collapse
Affiliation(s)
- Nitin Kumar Singh
- Department of Chemical Engineering, Marwadi University, Rajkot, 360003, Gujarat, India.
| | - Gaurav Sanghvi
- Department of Microbiology, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Manish Yadav
- Central Mine Planning Design and Institute, Bhubaneswar, 751013, Odisha, India
| | | | - Johnson Christian
- Environmental Audit Cell, Dr. R. D. Gardi Education Campus Rajkot, 360110, Gujarat India
| | - Vijai Singh
- Department of Biosciences, School of School of Science, Indrashil University, Rajpur, Mehsana, 382715, Gujarat, India
| |
Collapse
|
14
|
Guo M, Yang G, Meng X, Zhang T, Li C, Bai S, Zhao X. Illuminating plant-microbe interaction: How photoperiod affects rhizosphere and pollutant removal in constructed wetland? ENVIRONMENT INTERNATIONAL 2023; 179:108144. [PMID: 37586276 DOI: 10.1016/j.envint.2023.108144] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/18/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Rhizosphere is a crucial area in comprehending the interaction between plants and microorganisms in constructed wetlands (CWs). However, influence of photoperiod, a key factor that regulates photosynthesis and rhizosphere microbial activity, remains largely unknown. This study investigated the effect of photoperiod (9, 12, 15 h/day) on pollutant removal and underlying mechanisms. Results showed that 15-hour photoperiod treatment exhibited the highest removal efficiencies for COD (87.26%), TN (63.32%), and NO3--N (97.79%). This treatment enhanced photosynthetic pigmentation and root activity, which increased transport of oxygen and soluble organic carbon to rhizosphere, thus promoting microbial nitrification and denitrification. Microbial community analysis revealed a more stable co-occurrence network due to increased complexity and aggregation in the 15-hour photoperiod treatment. Phaselicystis was identified as a key connector, which was responsible for transferring necessary carbon sources, ATP, and electron donors that supported and optimized nitrogen metabolism in the CWs. Structural equation model analysis emphasized the importance of plant-microbe interactions in pollutant removal through increased substance, information, and energy exchange. These findings offer valuable insights for CWs design and operation in various latitudes and rural areas for small-scale decentralized systems.
Collapse
Affiliation(s)
- Mengran Guo
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Genji Yang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiangwei Meng
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Tuoshi Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Chunyan Li
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shunwen Bai
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinyue Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
15
|
McGinley J, Healy MG, Ryan PC, O'Driscoll H, Mellander PE, Morrison L, Siggins A. Impact of historical legacy pesticides on achieving legislative goals in Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162312. [PMID: 36805066 DOI: 10.1016/j.scitotenv.2023.162312] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Pesticides are widely used in agriculture to optimise food production. However, the movement of pesticides into water bodies negatively impacts aquatic environments. The European Union (EU) aims to make food systems fair, healthy and environmentally friendly through its current Farm to Fork strategy. As part of this strategy, the EU plans to reduce the overall use and risk of chemical pesticides by 50 % by 2030. The attainment of this target may be compromised by the prevalence of legacy pesticides arising from historical applications to land, which can persist in the environment for several decades. The current EU Farm to Fork policy overlooks the potential challenges of legacy pesticides and requirements for their remediation. In this review, the current knowledge regarding pesticide use in Europe, as well as pathways of pesticide movement to waterways, are investigated. The issues of legacy pesticides, including exceedances, are examined, and existing and emerging methods of pesticide remediation, particularly of legacy pesticides, are discussed. The fact that some legacy pesticides can be detected in water samples, more than twenty-five years after they were prohibited, highlights the need for improved EU strategies and policies aimed at targeting legacy pesticides in order to meet future targets.
Collapse
Affiliation(s)
- J McGinley
- Civil Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland
| | - M G Healy
- Civil Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland
| | - P C Ryan
- Discipline of Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - Harmon O'Driscoll
- Discipline of Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Ireland
| | - P-E Mellander
- Agricultural Catchments Programme, Teagasc Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - L Morrison
- Ryan Institute, University of Galway, Ireland; Earth and Ocean Sciences, Earth and Life Sciences, School of Natural Sciences, University of Galway, Ireland
| | - A Siggins
- Ryan Institute, University of Galway, Ireland; School of Biological and Chemical Sciences, University of Galway, Ireland.
| |
Collapse
|
16
|
Aslam S, Jing Y, Nowak KM. Fate of glyphosate and its degradation products AMPA, glycine and sarcosine in an agricultural soil: Implications for environmental risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130847. [PMID: 36696778 DOI: 10.1016/j.jhazmat.2023.130847] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Glyphosate can be biodegraded via the aminomethylphosponic acid (AMPA) and the sarcosine/glycine pathway leading to the formation of three intermediate products AMPA, sarcosine or glycine. The fate of the three intermediate compounds of glyphosate biodegradation including nature of non-extractable residues (NERs; harmless biogenic [NERsbiogenic] versus hazardous xenobiotic [NERsxenobiotic]) in soils has not been investigated yet. This information is crucial for an assessment of environmental risks related to the speciation of glyphosate-derived NERs which may stem from glyphosate intermediates. Therefore, we incubated 13C- and 15N-labeled glyphosate (2-13C,15N-glyphosate) and its degradation product AMPA (13C,15N-AMPA), sarcosine (13C3,15N-sarcosine) or glycine (13C2,15N-glycine) in an agricultural soil separately for a period of 75 days. 13C2-glycine and 13C3-sarcosine mineralized rapidly compared to 2-13C-glyphosate and 13C-AMPA. The mineralization of 13C-AMPA was lowest among all four compounds due to its persistent nature. Only 0.5% of the initially added 2-13C,15N-glyphosate and still about 30% of the initially added 13C,15N-AMPA was extracted from soil after 75 days. The NERs formed from 13C,15N-AMPA were mostly NERsxenobiotic as compared to other three compounds for which significant amounts of NERsbiogenic were determined. We noticed 2-13C,15N-glyphosate was biodegraded via two biodegradation pathways simultaneously; however, the sarcosine/glycine pathway with the formation of harmless NERsbiogenic presumably dominated.
Collapse
Affiliation(s)
- Sohaib Aslam
- Department of Environmental Biotechnology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Department of Environmental Sciences, Forman Christian College (A Chartered University), Ferozepur Road, 54600 Lahore, Pakistan
| | - Yuying Jing
- Department of Environmental Biotechnology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Karolina M Nowak
- Department of Environmental Biotechnology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany.
| |
Collapse
|
17
|
Li Y, Wang Y, Jin J, Tian Z, Yang W, Graham NJD, Yang Z. Enhanced removal of trace pesticides and alleviation of membrane fouling using hydrophobic-modified inorganic-organic hybrid flocculants in the flocculation-sedimentation-ultrafiltration process for surface water treatment. WATER RESEARCH 2023; 229:119447. [PMID: 36476382 DOI: 10.1016/j.watres.2022.119447] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Pesticide concentrations in surface water occasionally exceed regulated values due to seasonal events (rainy season in high intensity agricultural areas) or intermittent discharges (leakage, spillage, or other emergency events). The need to remove pesticide compounds in these situations poses a challenge for drinking water treatment plants (DWTPs). In this work, the performance of dosing hydrophobic-modified inorganic-organic hybrid flocculants (HOC-M; lower acute toxicity than corresponding metal salt coagulants; acceptable economic costs when M=Al or Fe; prepared in large-scale quantities), for the removal of four different pesticides (each initial concentration: 0.25 μg/L) from Yangtze River water, and in mitigating membrane fouling, by an integrated flocculation-sedimentation-ultrafiltration (FSUF) process, was evaluated over a period of 40 days; the FSUF is well-established in many DWTPs. The mechanisms underlying the treatment were unveiled by employing a combination of instrumental characterizations, chemical computations, material flow analyses, and statistical analyses. Efficient pesticide removal (80.3%∼94.3%) and membrane fouling reduction (26.6%∼37.3% and 28.3%∼57.6% for reversible and irreversible membrane resistance, respectively) in the FSUF process were achieved by dosing HOC-M, whereas conventional inorganic coagulants were substantially inferior for pesticide removal (< 50%) and displayed more severe fouling development. Hydrophobic association between the pesticides and the hydrophobic organic chain of HOC-M played a predominant role in the improvement in pesticide removal; coexisting particulate/colloid inorganic minerals and natural organic matter with HOC-M adsorbed on the surface, acting as floc building materials, provided sites for the indirect combination of pesticides into flocs. The observed fouling alleviation from dosing HOC-M was ascribed to both the pre-removal of fouling-causing materials in the flocculation-sedimentation prior to UF, and a stable hydrophilization modification effect of residual HOC-M in the UF unit. The latter effect resulted from a hydrophobic association between the PVDF substrate of the membranes and the hydrophobic organic chains of the HOC-M, causing the hydrophilic ends of the HOC-M to be exposed away from the membrane surface, thereby inhibiting foulant accumulation. This work has not only demonstrated the superior performance of dosing HOC-M in the FSUF process for trace pesticide removal in DWTPs, but also clarified the underlying mechanisms.
Collapse
Affiliation(s)
- Yunyun Li
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Yadong Wang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Jin Jin
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Ziqi Tian
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315000, China
| | - Weiben Yang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Zhen Yang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
18
|
Shi BS, Cheng XJ, Chen HZ, Xie J, Zhou ZH, Jiang SQ, Peng XM, Zhang YD, Zhu DT, Lu ZY. Occurrence, source tracking and removal of antibiotics in recirculating aquaculture systems (RAS) in southern China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116311. [PMID: 36162319 DOI: 10.1016/j.jenvman.2022.116311] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/03/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The recirculating aquaculture system (RAS) has attracted much attention in China as a way to rapidly transform and upgrade aquaculture ponds to realize zero-emissions of pollutants in aquaculture tail water. Tail water purification ponds (TWPPs) play an important role in the treatment of aquaculture wastewater. However, until now, there have been few reports on the occurrence of antibiotics in RAS and the removal of antibiotics from the TWPPs of RAS. Therefore, this study focused on the occurrence of antibiotics in a typical ecological RAS. For comparison, the same measurements were simultaneously carried out in nearby open aquaculture ponds and rivers. The pollution level and spatial distribution of antibiotics in the RAS and the removal of antibiotics in the TWPPs were explored. The results showed that (1) eleven and twelve antibiotics were detected in water and sediment samples in the RAS, respectively, but no antibiotics were found in fish muscles and feed. Erythromycin (ERY), lincomycin (LIN), and ciprofloxacin (CFX) were the three main types of antibiotics found in water and sediment samples. (2) The TWPPs of the RAS can effectively remove antibiotics in aquaculture water. The antibiotic concentration in recirculating aquaculture ponds of the RAS was as high as 180 ng/L. After treatments in the TWPPs, the antibiotic concentration of aquaculture water decreased to 81.6 ng/L (3) The antibiotic concentrations in recirculating aquaculture ponds (25.2-180 ng/L) were lower than those in the nearby open aquaculture ponds (126-267.3 ng/L), and the concentration of antibiotics in the sediments of recirculating aquaculture ponds was up to 22.9 ng/g, while that in TWPPs was as high as 56.1 ng/g. In conclusion, the antibiotic residues in the RAS were low after antibiotics were banned in feed in China, and the removal of antibiotics in the TWPPs was more pronounced. Furthermore, cross-contamination was found between the RAS, surrounding open aquaculture ponds and the river, and the water supply of the RAS was likely to be the main contributor of antibiotics in the aquaculture environments. This study can help the government formulate discharge standards for antibiotics in aquaculture and also provide a reference for the transformation and upgrading of aquaculture ponds to achieve a zero-emission aquaculture mode.
Collapse
Affiliation(s)
- Bao-Shan Shi
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China; State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, 510640, China
| | - Xiang-Ju Cheng
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China; State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, 510640, China.
| | - Hong-Zhan Chen
- Guangzhou Ecological and Environmental Monitoring Center of Guangdong Province, Guangzhou, 510030, China
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Zhi-Hong Zhou
- Guangzhou Ecological and Environmental Monitoring Center of Guangdong Province, Guangzhou, 510030, China
| | - Shen-Qiong Jiang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| | - Xiao-Ming Peng
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| | - Yu-da Zhang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| | - Dan-Tong Zhu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China; State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, 510640, China
| | - Zhuo-Yin Lu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
19
|
Yang J, Cheng X, Zhang S, Ye Q. Superabsorbent hydrogel as a formulation to promote mineralization and accelerate degradation of acetochlor in soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129777. [PMID: 36007361 DOI: 10.1016/j.jhazmat.2022.129777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The excessive use of herbicides had caused serious environmental pollution and ecological problems. Therefore, it is imperative to explore an effective method to reduce herbicide residues and pollution. In the present study, we used superabsorbent hydrogels coated 14C-acetochlor (SH-ACE) to investigate its behavior in different soils under oxic conditions. After 100 days, the mineralization by SH-ACE was increased by 2.3%, 2.5% and 3.3% in the red clay soils, fluvio-marine yellow loamy soils and coastal saline soils, respectively, compared to the control group. This result indicated that the SH-ACE treatment resulted in more complete degradation and detoxification of acetochlor. In addition, the dissipation rates of acetochlor were significantly faster in the SH-ACE treatment, which reduced the persistence of acetochlor. The probable degradation pathways of acetochlor involved dechlorination, hydroxylation, deethoxymethylation, and the formation of thioacetic acid derivatives in the two treatments, but the contents of transformation products were completely different. These findings suggest that the SH-ACE treatment has a significant effect to accelerate the degradation of acetochlor. When developing green pesticides, we emphasize that superabsorbent hydrogel coating treatment should be considered as a promising method for ecological safety in the environment.
Collapse
Affiliation(s)
- Jingying Yang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| | - Xi Cheng
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| | - Sufen Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
20
|
Hong AJ, Lee J, Cha Y, Zoh KD. Propiconazole degradation and its toxicity removal during UV/H 2O 2 and UV photolysis processes. CHEMOSPHERE 2022; 302:134876. [PMID: 35551935 DOI: 10.1016/j.chemosphere.2022.134876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Propiconazole (PRO) is a triazole fungicide that is frequently detected in the water. In this study, we investigated the kinetics and degradation mechanism of PRO during the UV photolysis and UV/H2O2 processes. PRO was removed by the pseudo-first-order kinetics in both processes. The removal of PRO was enhanced by increasing H2O2 concentration in the UV/H2O2 process. The highest removal under neutral conditions, and lower removal of PRO were observed in acidic and alkaline pHs in the UV/H2O2 process. The presence of natural water ingredients such as Cl-, NO3-, humic acid acted as radical scavengers, but HCO3- ion acted as both radical promoter and scavenger in the UV/H2O2 process. The transformation products (TPs) of PRO during both processes were identified using LC-QTOF/MS. Four TPs ([M+H]+ = 238, 256, 306, and 324) were identified during UV photolysis, and six TPs ([M+H]+ = 238, 256, 306, 324, 356, and 358) were identified in the UV/H2O2 process. Among the identified TPs, TP with [M+H]+ values of 356 and 358 were newly identified in the UV/H2O2 process. In addition, ionic byproducts, such as Cl-, NO3-, formate (HCOO-), and acetate (CH3COO-), were newly identified, indicating that significant mineralization was achieved in the UV/H2O2 process. Based on the identified TPs and ionic byproducts, the degradation mechanisms of PRO during two processes were proposed. The major reactions in both processes were ring cleavage and cyclization, and hydroxylation by OH radicals. The Microtox test with Vibrio fischeri showed that, while the toxicity of the reaction solution increased first, then gradually decreased during UV photolysis, the UV/H2O2 process initially increased toxicity at 10 min due to the production of TPs, but toxicity was completely removed as the reaction progressed. The results obtained in this study imply that the UV/H2O2 process is an effective treatment for eliminating PRO, its TPs, and the resulting toxicity in water.
Collapse
Affiliation(s)
- Ae-Jung Hong
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, South Korea
| | - Jaewon Lee
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, South Korea
| | - Youngho Cha
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, South Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
21
|
Xia Y, Lu D, Qi Y, Chen H, Zhao Y, Bai Y, Zhu L, Geng N, Xu C, Hua E. Removal of nitrate from agricultural runoff in biochar electrode based biofilm reactor: Performance and enhancement mechanisms. CHEMOSPHERE 2022; 301:134744. [PMID: 35489461 DOI: 10.1016/j.chemosphere.2022.134744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
A biochar electrode based biofilm reactor was developed for advanced removal of nitrate from agricultural runoff. The corn-straw (Zea mays L.) biochar formed at 500 °C has an adsorption capacity of NO3--N up to 2.659 mg g-1. After 45-day start-up phase, the removal efficiency of nitrate reached 93.4% when impressed current was 20 mA, hydraulic retention time was 12 h and chemical oxygen demand/total nitrogen (C/N) ratio was 0.56 without additional carbon source. In comparison, neither electrochemical reduction alone nor microbial denitrification alone could obtain the ideal nitrate removal efficiency. The results implied that bio-electrochemical reduction was the main way of nitrate removal in the biofilm electrode reactor (BER). The denitrification efficiency of 88.9% could still be obtained when C/N = 0. It is because biochar can significantly promote the utilization efficiency of cathode electrons by microorganisms. Thus, biochar is a promising electrode material, which provides a new idea for the optimization of BER.
Collapse
Affiliation(s)
- Yinfeng Xia
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China; College of Water Conservancy and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China
| | - Debao Lu
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China; College of Water Conservancy and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China
| | - Yiting Qi
- College of Water Conservancy and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China
| | - Han Chen
- College of Water Conservancy and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China
| | - Yufeng Zhao
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China; College of Water Conservancy and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China
| | - Yu Bai
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China; College of Water Conservancy and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China
| | - Lifang Zhu
- College of Water Conservancy and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China
| | - Nan Geng
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China; College of Water Conservancy and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China.
| | - Cundong Xu
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China; College of Water Conservancy and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China
| | - Ertian Hua
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China
| |
Collapse
|
22
|
Knowledge Atlas on the Relationship between Water Management and Constructed Wetlands—A Bibliometric Analysis Based on CiteSpace. SUSTAINABILITY 2022. [DOI: 10.3390/su14148288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Water management is a crucial resource conservation challenge that mankind faces, and encouraging the creation of manmade wetlands with the goal of achieving long-term water management is the key to long-term urban development. To summarise and analyse the status of the research on the relationship between water management and constructed wetlands, this paper makes use of the advantages of the bibliometric visualization of CiteSpace to generate country/region maps and author-collaboration maps, and to analyse research hotspots and research dynamics by using keywords and literature co-citations based on 1248 pieces of related literature in the core collection in the Web of Science (WoS) database. The existing research shows that the research content and methods in the field of constructed-wetland and water-management research are constantly being enriched and deepened, including the research methods frequently used in constructed wetlands in water management and in the research content under concern, the functions and roles of constructed wetlands, the relevant measurement indicators of the purification impact of constructed wetlands on water bodies, and the types of water bodies treated by constructed wetlands in water management. We summarise the impact pathways of constructed wetlands on water management, as well as the impact factors of constructed wetlands under water-management objectives, by analysing the future concerns in the research field to provide references for research.
Collapse
|
23
|
Valdés C, Valdés O, Bustos D, Abril D, Cabrera-Barjas G, Pereira A, Villaseñor J, Polo-Cuadrado E, Carreño G, Durán-Lara EF, Marican A. Use of Poly(vinyl alcohol)-Malic Acid (CLHPMA) Hydrogels and Chitosan Coated Calcium Alginate (CCCA) Microparticles as Potential Sorbent Phases for the Extraction and Quantitative Determination of Pesticides from Aqueous Solutions. Polymers (Basel) 2021; 13:3993. [PMID: 34833292 PMCID: PMC8619381 DOI: 10.3390/polym13223993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 11/16/2022] Open
Abstract
Pesticides are used worldwide to increase crop yields in agriculture. However, their toxicity and accumulation capacity can make them toxic to the environment, animals and humans. In the case of workers chronically exposed to these substances, they must be sampled continuously, so urine is an excellent option. In this sense, this study proposes to use poly(vinyl alcohol)-malic acid hydrogels, and chitosan-coated calcium alginate as new sorbent phases to be used in pesticide determination processes in urine. To better understand the behavior of these materials in the capture and desorption process, molecular dynamics simulations (MDS) were used, and desorption experiments were performed, using mechanical agitation, ultrasound, and pH variation in the desorption process, in order to optimize the parameters to obtain better recoveries. Under the optimal experimental conditions, the maximum recoveries were of the order of 11% (CFN), 3% (KCF), 53% (DMT), 18% (MTD) and 35% (MTL). Although the recoveries were not exhaustive, they are a first approximation for the use of these new sorbent phases in the determination of this type of compound in aqueous solutions and urine.
Collapse
Affiliation(s)
- Cristian Valdés
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoria de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile; (C.V.); (O.V.); (D.B.)
| | - Oscar Valdés
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoria de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile; (C.V.); (O.V.); (D.B.)
| | - Daniel Bustos
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoria de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile; (C.V.); (O.V.); (D.B.)
- Laboratorio de Bioinformática y Química Computacional (LBQC), Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile
- Escuela de Bioingeniería Médica, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile
| | - Diana Abril
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca 3460000, Chile;
| | - Gustavo Cabrera-Barjas
- Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Parque Industrial Coronel, Coronel 3349001, Chile;
| | - Alfredo Pereira
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Maule, Chile; (A.P.); (J.V.); (E.P.-C.); (G.C.)
| | - Jorge Villaseñor
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Maule, Chile; (A.P.); (J.V.); (E.P.-C.); (G.C.)
| | - Efraín Polo-Cuadrado
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Maule, Chile; (A.P.); (J.V.); (E.P.-C.); (G.C.)
| | - Gustavo Carreño
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Maule, Chile; (A.P.); (J.V.); (E.P.-C.); (G.C.)
- Bio and NanoMaterials Lab, Drug Delivery and Controlled Release, Universidad de Talca, Talca 3460000, Maule, Chile
| | - Esteban F. Durán-Lara
- Bio and NanoMaterials Lab, Drug Delivery and Controlled Release, Universidad de Talca, Talca 3460000, Maule, Chile
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Maule, Chile
| | - Adolfo Marican
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Maule, Chile; (A.P.); (J.V.); (E.P.-C.); (G.C.)
- Bio and NanoMaterials Lab, Drug Delivery and Controlled Release, Universidad de Talca, Talca 3460000, Maule, Chile
| |
Collapse
|