1
|
Yang H, Yuan D, Zhou Z, Zhao H. Nitrate enrichment exacerbates microbiome and metabolism disturbances of the coral holobiont under heat stress. MARINE ENVIRONMENTAL RESEARCH 2025; 208:107098. [PMID: 40139064 DOI: 10.1016/j.marenvres.2025.107098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Coral reef ecosystems are facing severe deterioration due to escalating global temperatures and human-induced activities. Combined nitrate and heat stress can exacerbate coral bleaching, however, the underlying mechanism is still unclear. In the present study, we assessed the bleaching status of Acropora hyacinthus, a reef-building coral species, under high temperature and nitrate stress conditions using chemostat cultivation. We observed nitrate enrichment (9 μM) induced a significant reduction in photosystem efficiency (Fv/Fm) of Symbiodiniaceae and an increased thermal bleaching of corals under high temperature (30 °C). Nitrate exposure promoted the proliferation of Enterobacteriaceae and Vibrionaceae, which are bacterial families, potentially augmenting the coral's susceptibility to disease while exerting negligible effects on the fungal community. Alterations were observed in the metabolic pathways of both the coral hosts and Symbiodiniaceae, including down-regulated folate biosynthesis and inflammatory mediator regulation of TRP channels. Our findings indicate that nitrate enrichment under heat stress disrupts the metabolism of coral holobionts through altering bacterial communities, ultimately leading to increased coral bleaching.
Collapse
Affiliation(s)
- Huidan Yang
- Hainan International Joint Research Center for Coral Reef Ecology, Hainan University, Haikou, 570228, China; Center for Eco-Environment Restoration of Hainan Province, School of Ecology, Hainan University, Haikou, 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Dongdan Yuan
- Hainan International Joint Research Center for Coral Reef Ecology, Hainan University, Haikou, 570228, China; Center for Eco-Environment Restoration of Hainan Province, School of Ecology, Hainan University, Haikou, 570228, China
| | - Zhuojing Zhou
- Hainan International Joint Research Center for Coral Reef Ecology, Hainan University, Haikou, 570228, China; Center for Eco-Environment Restoration of Hainan Province, School of Ecology, Hainan University, Haikou, 570228, China
| | - Hongwei Zhao
- Hainan International Joint Research Center for Coral Reef Ecology, Hainan University, Haikou, 570228, China; Center for Eco-Environment Restoration of Hainan Province, School of Ecology, Hainan University, Haikou, 570228, China.
| |
Collapse
|
2
|
Zhang J, Jiang H, Li W, Li Y, Zhang W, Pan K. Understanding nitrate dynamics in urbanized and forested river ecosystems: A study integrating natural-abundance and paired isotopes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125073. [PMID: 40120453 DOI: 10.1016/j.jenvman.2025.125073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/28/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Nitrate pollution in river ecosystems poses significant global environmental and public health challenges. However, the underlying drivers behind the elevated nitrate concentrations within river systems remain unclear. This study employed natural abundance isotopes combined with 15N-pairing techniques to elucidate the origins and transformation pathways of nitrate in two contrasting river ecosystems: a heavily urbanized river and a minimally disturbed forested river. Results revealed that domestic sewage was the dominant nitrate source in both rivers, contributing 56.9 % in the urban river and 37.8 % in the forested river. Denitrification was identified as the primary nitrate removal process, although its efficiency was constrained in the urban river due to excessive nitrate inputs and limited in-stream removal capacity. Furthermore, soil denitrification was largely regulated by moisture. The elevated nitrate loadings within urban river were attributed to substantial domestic sewage inputs coupled with limited nitrate removal capabilities. These findings highlight the impact of urbanization on nitrate dynamics and underscore the urgent need for integrated management strategies. Effective measures, such as upgrading wastewater treatment infrastructure, preserving riparian vegetation, and implementing nutrient reduction programs, are critical for mitigating nitrate pollution and enhancing water quality in both urban and natural river systems. This study provides insights applicable to riverine nitrogen management globally, contributing to the sustainable development of aquatic ecosystems.
Collapse
Affiliation(s)
- Jian Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Hao Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Wentao Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China; Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Yanping Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Wenshi Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
3
|
Zhao X, Yu S, Fan M. White lies for coral reefs: Dynamics of two-patch coral reefs model with asymmetric dispersal. J Theor Biol 2025; 601:112046. [PMID: 39880361 DOI: 10.1016/j.jtbi.2025.112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/04/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Coral reef ecosystem is a crucial component of marine ecosystems and is undergoing severe degradation due to the combined dural impact of environmental changes and human activities. Soundscape technology is an innovative coral reef restoration approach that attracts fish to degraded reefs. Inspired by such technique, a five-dimensional mathematical dynamical model incorporating the asymmetric dispersal of parrotfish is formulated to characterize the dynamic interaction among macroalgae, coral, algal turf, and parrotfish in coral reef ecosystem. Theoretical analyses are conducted and the impact of dispersal on the stability of coral reef ecosystems is systematically studied. The global sensitivity analysis is presented by using PRCC method and the impact of dispersal coefficients on the dynamic behavior of the model is explored through numerical simulations, which provide deeper insights into the influence of key parameters on the stability of the model. The main findings indicate that, adopting soundscape technology facilitates the recovery of coral reefs, make it easier to maintain a coral-dominated state, and reduce the possibility of phase shifts, thereby enhance the stability, biodiversity, and recovery of coral reef ecosystem.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Mathematics, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China
| | - Shiyang Yu
- Center for Mathematical Biosciences, School of Mathematics and Statistics, Northeast Normal University, Changchun, 130024, PR China; College of Mathematics Science, Bohai University, Jinzhou, 121013, PR China
| | - Meng Fan
- Center for Mathematical Biosciences, School of Mathematics and Statistics, Northeast Normal University, Changchun, 130024, PR China.
| |
Collapse
|
4
|
Yang S, Deng Y, Shu J, Luo X, Peng X, Pan K, Jiang H. Nitrate budget of a terrestrial-to-marine continuum in South China: Insights from isotopes and a Markov chain Monte Carlo model. MARINE POLLUTION BULLETIN 2024; 199:116000. [PMID: 38171166 DOI: 10.1016/j.marpolbul.2023.116000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Anthropogenic nitrate (NO3-) production has been increasing and is exported to the ocean via river networks, causing eutrophication and ecological damage. While studies have focused on river NO3- pollution, what has been lacking is the quantification of the sources of NO3- in coastal rivers. This study applied the dual isotopes (δ15N/δ18O-NO3-) to quantify the sources and their fluxes of NO3- in two inflow rivers of the Qinzhou Bay. By adding our results to the NO3- source apportionment in Qinzhou Bay, we, for the first time, established the NO3- budgets of the terrestrial-to-marine continuum in both high- and low-flow seasons. We quantitatively showed the direct and indirect roles (e.g., the stimulation of nitrification by sewage ammonium-NH4+) of terrestrial sources in driving the high NO3- loading in the estuary. The results highlighted the necessity to consider coastal rivers and estuary as a whole, which could shed light on the effective reduction of NO3- pollution in coastal environments.
Collapse
Affiliation(s)
- Shaomei Yang
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai 536000, China
| | - Yan Deng
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai 536000, China
| | - Junlin Shu
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai 536000, China
| | - Xin Luo
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai 536000, China
| | - Xiaoyan Peng
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai 536000, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Hao Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, The Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
5
|
Kuznetsova OV. Current trends and challenges in the analysis of marine environmental contaminants by isotope ratio mass spectrometry. Anal Bioanal Chem 2024; 416:71-85. [PMID: 37979060 DOI: 10.1007/s00216-023-05029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
An increasing number of organic and inorganic pollutants are being detected in the marine environment, posing a severe threat to the ecosystem and human health, even in trace concentrations. Isotope ratio mass spectrometry (IRMS) is one of the critical methods for determining the origin and fate of environmental pollutants and characterising their transformation processes. It has been used for a relatively long time for ecological monitoring of some well-studied industrial hydrocarbons at contaminated sites. However, the method still faces many analytical challenges. This review provides a comprehensive overview of recent technical advances concerning IRMS analysis of various contaminants and discusses typical pitfalls encountered in marine environment analysis. Particular attention is given to the study of sampling techniques and sample preparation for examination, often the keys to successful research given the complexity of marine matrices and the diverse and numerous nature of contaminants. Prospects for developing IRMS to monitor pollution sources and pollutant transformation in the marine environment are outlined.
Collapse
Affiliation(s)
- Olga V Kuznetsova
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Kosygin St. 19, 119991, Moscow, Russian Federation.
| |
Collapse
|
6
|
Zhang J, Huang Z, Li Y, Fu D, Li Q, Pei L, Song Y, Chen L, Zhao H, Kao SJ. Synergistic/antagonistic effects of nitrate/ammonium enrichment on fatty acid biosynthesis and translocation in coral under heat stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162834. [PMID: 36924962 DOI: 10.1016/j.scitotenv.2023.162834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Superimposed on ocean warming, nitrogen enrichment caused by human activity puts corals under even greater pressure. Biosynthesis of fatty acids (FA) is crucial for coral holobiont survival. However, the responses of FA biosynthesis pathways to nitrogen enrichment under heat stress in coral hosts and Symbiodiniaceae remain unknown, as do FA translocation mechanisms in corals. Herein, we used the thermosensitive coral species Acropora hyacinthus to investigate changes in FA biosynthesis pathways and polyunsaturated FA translocation of coral hosts and Symbiodiniaceae with respect to nitrate and ammonium enrichment under heat stress. Heat stress promoted pro-inflammatory FA biosynthesis in coral hosts and inhibited FA biosynthesis in Symbiodiniaceae. Nitrate enrichment inhibited anti-inflammatory FA biosynthesis in Symbiodiniaceae, and promoted pro-inflammatory FA biosynthesis in coral hosts and translocation to Symbiodiniaceae, leading to bleaching after 14 days of culture. Intriguingly, ammonium enrichment promoted anti-inflammatory FA biosynthesis in Symbiodiniaceae and translocation to hosts, allowing corals to better endure heat stress. We constructed schematic diagrams of the shift in FA biosynthesis and translocation in and between A. hyacinthus and its Symbiodiniaceae under heat stress, heat and nitrate co-stress, and heat and ammonium co-stress. The findings provide insight into the mechanisms of coral bleaching under environmental stress from a fatty acid perspective.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China; Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration of Hainan Province, College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Zanhui Huang
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Yuanchao Li
- Hainan Academy of Marine and Fishery Sciences, Haikou 571126, China
| | - Dinghui Fu
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Qipei Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration of Hainan Province, College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Lixin Pei
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Yanwei Song
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Liang Chen
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Hongwei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration of Hainan Province, College of Ecology and Environment, Hainan University, Haikou 570228, China.
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China
| |
Collapse
|
7
|
Li S, Jiang H, Guo W, Zhang W, Zhang Q. From Soil to River: Revealing the Mechanisms Underlying the High Riverine Nitrate Levels in a Forest Dominated Catchment. WATER RESEARCH 2023; 241:120155. [PMID: 37270954 DOI: 10.1016/j.watres.2023.120155] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/04/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Elevated riverine nitrate (NO3-) levels have led to increased eutrophication and other ecological implications. While high riverine NO3- levels were generally ascribed to anthropogenic activities, high NO3- levels in some pristine or minimally disturbed rivers were reported. The drivers of these unexpectedly high NO3- levels remain unclear. This study combined natural abundance isotopes, 15N-labeling techniques, and molecular techniques to reveal the processes driving the high NO3- levels in a sparsely populated forest river. The natural abundance isotopes revealed that the NO3- was mainly from soil sources and that NO3- removal processes were insignificant. The 15N-labeling experiments also quantitatively showed that the biological NO3- removal processes, i.e., denitrification, dissimilatory NO3- reduction to ammonium (DNRA), and anaerobic ammonia oxidation (anammox), in the soils and sediments were weak relative to nitrification in summer. While nitrification was minor in winter, the NO3- removal was insignificant relative to the large NO3- stock in the catchment. Stepwise multiple regression analyses and structural equation models revealed that in summer, nitrification in the soils was regulated by the amoA-AOB gene abundances and NH4+-N contents. Low temperature constrained nitrification in winter. Denitrification was largely controlled by moisture content in both seasons, and anammox and DNRA could be explained by the competition with nitrification and denitrification on their substrate (nitrite-NO2-). We also revealed the strong hydrological control on the transport of soil NO3- to the river. This study effectively revealed the mechanisms underlying the high NO3- levels in a nearly pristine river, which has implications for the understanding of riverine NO3- levels worldwide.
Collapse
Affiliation(s)
- Shen Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hao Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, PR China.
| | - Wenjing Guo
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Wenshi Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Quanfa Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, PR China
| |
Collapse
|
8
|
Wang Y, Cao X, Yu H, Xu Y, Peng J, Qu J. Nitrate with enriched heavy oxygen isotope linked to changes in nitrogen source and transformation as groundwater table rises. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131527. [PMID: 37163892 DOI: 10.1016/j.jhazmat.2023.131527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
Nitrate is a significant constituent of the total nitrogen pool in shallow aquifers and poses an escalating threat to groundwater resources, making it crucial to comprehend the source, conversion, and elimination of nitrogen using appropriate techniques. Although dual-isotope dynamics in nitrate have been widely used, uncertainties remain regarding the asynchronously temporal changes in δ18O-NO3- and δ15N-NO3- observed in hypoxic aquifers. This study aimed to investigate changes in nitrogen sources and transformations using temporal changes in field-based NO3- isotopic composition, hydro-chemical variables, and environmental DNA profiling, as the groundwater table varied. The results showed that the larger enrichment in δ18O-NO3- (+13‰) compared with δ15N-NO3- (-2‰) on average during groundwater table rise was due to a combination of factors, including high 18O-based atmospheric N deposition, canopies nitrification, and soil nitrification transported vertically by rainfalls, and 18O-enriched O2 produced through microbial and root respiration within denitrification. The strong association between functional gene abundance and nitrogen-related indicators suggests that anammox was actively processed with nitrification but in small bacterial population during groundwater table rise. Furthermore, bacterial species associated with nitrogen-associated gradients provided insight into subsurface nitrogen transformation, with Burkholderiaceae species and Pseudorhodobacter potentially serving as bioindicators of denitrification, while Candidatus Nitrotogn represents soil nitrification. Fluctuating groundwater tables can cause shifts in hydro-chemical and isotopic composition, which in turn can indicate changes in nitrogen sources and transformations. These changes can be used to improve input sources for mixture models and aid in microbial remediation of nitrate.
Collapse
Affiliation(s)
- Yajun Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaofeng Cao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongwei Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yan Xu
- College of Marine Science and Technology, China University of Geosciences, Wuhan 430074, China
| | - Jianfeng Peng
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
9
|
Guo W, Zhang D, Zhang W, Li S, Pan K, Jiang H, Zhang Q. Anthropogenic impacts on the nitrate pollution in an urban river: Insights from a combination of natural-abundance and paired isotopes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 333:117458. [PMID: 36758410 DOI: 10.1016/j.jenvman.2023.117458] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Urban rivers are often characterized by high nitrate (NO3-) loadings. High NO3- loadings cause water quality and ecological damages, which undermines the sustainable development of cities. To date, the drivers of these high NO3- loadings remain unclear. This study, for the first time, integrated natural-abundance isotopes (δ15 N/δ18O-NO3- and δD/δ18O-H2O) and 15N-pairing techniques to comprehensively reveal the anthropogenic impacts on the NO3- pollution in an urban river. Natural-abundance isotopes suggested that in both the wet and dry seasons, the NO3- was predominantly from the conservative mixing of different sources, and biological NO3- removal was minor. The 15N-pairing experiments supported the natural-abundance isotope data, quantitatively showing that in-soil nitrification was prevailing, while NO3- removal processes (denitrification, anammox, and dissimilatory NO3- reduction to ammonium) were weak. A Bayesian isotope-mixing model showed that soil sources (soil organic nitrogen and chemical fertilizer) dominated the NO3- in the upper reaches, while in the lower reaches, the impermeable riparian zone short-circuited the access of soils to the river. Here, the wastewater treatment plants became a significant source of NO3-. This study quantitatively revealed the drivers of high NO3- loadings in an urban river, and generated important clues for effective NO3- pollution control and remediation in urban rivers.
Collapse
Affiliation(s)
- Wenjing Guo
- School of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000, China; Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Dong Zhang
- School of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Wenshi Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shen Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Hao Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China.
| | - Quanfa Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China
| |
Collapse
|
10
|
Hu W, Zheng X, Li Y, Du J, Lv Y, Su S, Xiao B, Ye X, Jiang Q, Tan H, Liao B, Chen B. High vulnerability and a big conservation gap: Mapping the vulnerability of coastal scleractinian corals in South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157363. [PMID: 35843331 DOI: 10.1016/j.scitotenv.2022.157363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/29/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Scleractinian corals build the most complex and diverse ecosystems in the ocean with various ecosystem services, yet continue to be degraded by natural and anthropogenic stressors. Despite the rapid decline in scleractinian coral habitats in South China, they are among the least concerning in global coral vulnerability maps. This study developed a rapid assessment approach that combines vulnerability components and species distribution models to map coral vulnerability within a large region based on limited data. The approach contained three aspects including, exposure, habitat suitability, and coral-conservation-based adaptive capacity. The exposure assessment was based on seven indicators, and the habitat suitability was mapped using Maximum Entropy and Random Forest models. Vulnerability of scleractinian corals in South China was spatially evaluated using the approach developed here. The results showed that the average exposure of the study region was 0.62, indicating relatively high pressure. The highest exposure occurred from the east coast of the Leizhou Peninsula to the Pearl River Estuary. Aquaculture and shipping were the most common causes of exposure. Highly suitable habitats for scleractinian corals are concentrated between 18°N-22°N. Only 21.6 % of the potential coral habitats are included in marine protected areas, indicating that there may still be large conservation gaps for scleractinian corals in China. In total, 37.7 % of the potential coral habitats were highly vulnerable, with the highest vulnerability appearing in the Guangdong Province. This study presents the first attempt to map the vulnerability of scleractinian corals along the coast of South China. The proposed approach and findings provide an essential tool and information supporting the sustainable management and conservation of coral reef ecosystems, addressing an important gap on the world's coral reef vulnerability map.
Collapse
Affiliation(s)
- Wenjia Hu
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Island and Coastal Ecosystems in the Western Taiwan Strait, Ministry of Natural Resources, Xiamen 361005, China; Fujian Provincial Station for Field Observation and Research of Island and Coastal Zone, Zhangzhou 363216, China
| | - Xinqing Zheng
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Island and Coastal Ecosystems in the Western Taiwan Strait, Ministry of Natural Resources, Xiamen 361005, China; Fujian Provincial Station for Field Observation and Research of Island and Coastal Zone, Zhangzhou 363216, China; Observation and Research Station of wetland Ecosystem in the Beibu Gulf, Ministry of Natural Resources, Xiamen 361005, China.
| | - Yuanchao Li
- Hainan Academy of Ocean and Fisheries Sciences, Haikou 571199, China
| | - Jianguo Du
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Island and Coastal Ecosystems in the Western Taiwan Strait, Ministry of Natural Resources, Xiamen 361005, China; Fujian Provincial Station for Field Observation and Research of Island and Coastal Zone, Zhangzhou 363216, China
| | - Yihua Lv
- South China Sea Environmental Monitoring Center, State Oceanic Administration, Guangzhou 528248, China
| | - Shangke Su
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Baohua Xiao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Xiaomin Ye
- Key Laboratory of Space Ocean Remote Sensing and Application, National Satellite Ocean Application Service, Ministry of Natural Resources, Beijing 100081, China
| | - Qutu Jiang
- Department of Geography, The University of Hong Kong, Hong Kong 999077, China
| | - Hongjian Tan
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Baolin Liao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Bin Chen
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Island and Coastal Ecosystems in the Western Taiwan Strait, Ministry of Natural Resources, Xiamen 361005, China; Fujian Provincial Station for Field Observation and Research of Island and Coastal Zone, Zhangzhou 363216, China; Observation and Research Station of wetland Ecosystem in the Beibu Gulf, Ministry of Natural Resources, Xiamen 361005, China.
| |
Collapse
|
11
|
Sakamaki T, Morita A, Touyama S, Watanabe Y, Suzuki S, Kawai T. Effects of watershed land use on coastal marine environments: A multiscale exploratory analysis with multiple biogeochemical indicators in fringing coral reefs of Okinawa Island. MARINE POLLUTION BULLETIN 2022; 183:114054. [PMID: 36007269 DOI: 10.1016/j.marpolbul.2022.114054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The analytical spatial scale and selection of biogeochemical indicators affect interpretations of land-use impacts on coastal marine environments. In this study, nine biogeochemical indicators were sampled from 36 locations of coral reefs fringing a subtropical island, and their relationships with watershed land use were assessed by spatial autoregressive models with spatial weight matrixes based on distance thresholds of a few to 30 km. POM-relevant indicators were associated with agricultural and urban lands of watersheds within relatively small ranges (6-14 km), while the concentrations of inorganic nutrients were associated with watersheds within 20 km or more. The macroalgal δ15N showed a strong relationship with agricultural lands of watersheds within 7 km and urban/forest lands of watersheds within 24 km. These results demonstrate significant effects of land use on the coral reef ecosystems of the island, and the importance of appropriate combinations of analytical scales and biogeochemical indicators.
Collapse
Affiliation(s)
- Takashi Sakamaki
- Department of Civil and Environmental Engineering, Tohoku University, Sendai 980-8579, Japan; Department of Civil Engineering and Architecture, University of the Ryukyus, Okinawa 903-0213, Japan.
| | - Akiko Morita
- Department of Civil and Environmental Engineering, Tohoku University, Sendai 980-8579, Japan; Department of Civil Engineering and Architecture, University of the Ryukyus, Okinawa 903-0213, Japan; Oriental Consultants Co., Ltd., Tokyo 151-0071, Japan
| | - Shouji Touyama
- Department of Civil Engineering and Architecture, University of the Ryukyus, Okinawa 903-0213, Japan; Stargate Entertainment, Okinawa 905-0005, Japan
| | | | - Shouhei Suzuki
- Department of Civil Engineering and Architecture, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Takashi Kawai
- Department of Civil Engineering and Architecture, University of the Ryukyus, Okinawa 903-0213, Japan; Tokyo Kyuei Co., Ltd., Tokyo 101-0032, Japan
| |
Collapse
|