1
|
An L, Liu H, Zhang L, Sun Y, Wang X, Gu J. Simultaneous and separate removal of antibiotics, antibiotic resistant bacteria, and genes by dual-doping metallic biochar activated peroxymonosulfate system: Differences in performance and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125390. [PMID: 40250175 DOI: 10.1016/j.jenvman.2025.125390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/06/2025] [Accepted: 04/13/2025] [Indexed: 04/20/2025]
Abstract
In this study, a bimetallic (Co and Fe) co-doping biochar activated peroxymonosulfate (PMS) system with excellent catalytic activity and synergistic effect was selected to investigate the simultaneous and separate removal mechanisms against ampicillin (AMP), antibiotic resistant bacteria, and genes (ARB/ARGs). Results showed that the presence of AMP exerted a negative effect on ARB inactivation with extended bactericidal time from 1.5 to 20 min, and similar results were obtained for AMP degradation (40-60 min). It was noteworthy that the removal mechanisms of AMP and ARB in the co-contamination condition were significantly changed compared with the separate removal. In the single contaminant elimination system, the eliminations of AMP and ARB/ARGs were both dominated by SO4•-. However, in the co-contamination system, the degradation mechanism of AMP was mainly realized by SO4•- and electron transfer, while the reduction of ARB/ARGs mainly depended on the destruction of phospholipids and cytosine in ARB by free 1O2. Density functional theory calculations implied that the synergistic interaction between iron and cobalt atoms reduced the energy barrier of O-O bond breakage in CoFe/PBC-PMS∗, facilitating the production of ROSs. The reduction efficiencies of AMP and ARB in this system were further verified in different environmental water matrices (tap water, river water, sewage, and farm wastewater). This study provides a new idea for the simultaneous removal of antibiotics, ARB, and ARGs in co-contaminated water by CoFe/PBC/PMS system.
Collapse
Affiliation(s)
- Lu An
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hengrui Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Li Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yifan Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
2
|
Wang H, Yu P, Guo X, Wang W, Wang L, Zhang H, Deng L, Yang H, He T, Wu P, Zhang Y. Mechanistic insights for efficient removal of intracellular and extracellular antibiotic resistance genes by iron-based nanocopper: Intracellular oxidative stress and internalization of nanocopper. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136745. [PMID: 39637796 DOI: 10.1016/j.jhazmat.2024.136745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
The widespread use of antibiotics has led to a severe pollution issue with antibiotic resistance genes (ARGs), which poses a significant threat to both ecological environments and human health. In this study, we developed an iron-based nanocopper bimetallic material (Fe-nCu) for the efficient removal of ARGs. Our results indicate that nCu can attach to the surface of iron, forming aggregated copper nanoclusters resembling wheat ears. The composition of Fe-nCu particles consists of 75.90 % iron and 20.95 % copper. Fe-nCu demonstrates a unique capability in eliminating ARGs, achieving removal efficiencies of 3.75 and 4.36 logs for intracellular and extracellular ARGs, respectively. Furthermore, Fe-nCu remains stable in complex water environments and is unaffected by organic substances in the water. This material induces oxidative stress in cells within a short period, leading to an imbalance in intracellular redox levels and resulting in cell membrane damage. nCu causes severe membrane damage to E. coli, penetrating the cell due to its size advantage, which leads to the encapsulation and internalization of E. coli by the copper nanoparticles. Once inside, the nCu particles cleave DNA and disrupt the function of ARGs. This study not only provides a cost-effective material for the removal of ARGs but also offers an in-depth understanding of the action mechanism of Fe-nCu, presenting a novel pathway for inhibiting the propagation of ARGs.
Collapse
Affiliation(s)
- Hao Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; College of Resources and Environment, Chengdu University of Information Technology, No. 24 Block 1, Xuefu Road, Chengdu 610225, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Ping Yu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; College of Resources and Environment, Chengdu University of Information Technology, No. 24 Block 1, Xuefu Road, Chengdu 610225, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Xujing Guo
- College of Resources and Environment, Chengdu University of Information Technology, No. 24 Block 1, Xuefu Road, Chengdu 610225, PR China
| | - Wenguo Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Lan Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Hongwei Zhang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Liangwei Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Hongnan Yang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Ting He
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Peike Wu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Yunhong Zhang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.
| |
Collapse
|
3
|
Zhao J, Zhi S, Li Y, Cao K, Ding Z, Song Y, Jiang K, Wang S, Wu D. Efficient degradation of sulfadiazine via facilitated electron transfer by iron-carbon catalyst with highly exposed active sites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125439. [PMID: 39631656 DOI: 10.1016/j.envpol.2024.125439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
The inaccessible active sites, excessive metal leaching and radical mediated degradation pathway greatly hinder the performances of Fe-C composite catalyst oxidation process in the advanced oxidation water treatment. Herein, a facile method was developed to in situ growth of MIL-53 (Fe) on the powder active carbon (PAC) surface by a mild condition, which finally yields PAC supported Fe3O4@C particles (PAC@MOFs-2T) after heat treatment. The detailed characterizations indicate that the fine Fe3O4 particles encapsulated with carbon layers were evenly anchored on the PAC as active sites, which made the catalytic centers highly accessible for the peroxydisulfate activation and sulfadiazine degradation. In addition, the carbon layers, coated on the active sites could prevent the metal leaching during the catalytic process resulting in the high stability in a wide pH range. More attractively, the density functional theory (DFT) simulations and emperimental evidences further proved that the oxidation was dominated by a electron transfer process (ETP), during which, the peroxydisulfate (PDS) was adsorbed on Fe3O4 to form PDS∗ with high oxidation potential to initiate the ETP. Meanwhile, it was also demonstrated that the optimized sample PAC@MOFs-2T enriched with electron donating groups could selectively degrade the sulfadiazine, which avoid the negative impacts from the co-existed foreign ions and organic matters during the oxidation process. In addition, the toxicity analysis of intermediate products revealed that the sulfadiazine can be degradated into low-toxic or non-toxic products, which further permits viability of this ETP mediated advanced oxidation processes.
Collapse
Affiliation(s)
- Jinglin Zhao
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Songsong Zhi
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Yangju Li
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Kun Cao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Zerui Ding
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Yadan Song
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Kai Jiang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, PR China.
| | - Shasha Wang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Dapeng Wu
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, PR China.
| |
Collapse
|
4
|
Hou X, Zhang Y, Wang M, Lu J, Ma D, Li Q, Li L, Wang Z, Gao B, Wang Y. Synergistic singlet oxygen and UV irradiation for efficient intracellular ARGs removal via peroxymonosulfate/catalytic membrane-UV system. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136385. [PMID: 39488981 DOI: 10.1016/j.jhazmat.2024.136385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The eliminate of antibiotic resistance genes (ARGs) is pivotal in mitigating the proliferation of antibiotic resistance. In this study, a PMS/CM-UV system was engineered, combining a Co3O4-modified carbon nanotubes catalytic membrane with LED-UV lamps, to effectively eliminate intracellular ARGs (iARGs). Leveraging the synergistic effect of singlet oxygen (1O2) and UV irradiation, this process requires only a brief hydraulic retention time of a few minutes and standard UV disinfection irradiation intensity. The cellular physiological function and transcriptomic analysis indicated that reactive oxygen species (ROS) and UV irradiation compromised the cell membrane integrity of E. coli MG1655-SD, as indicated by the down-regulation of the feoB gene, leading to an increased concentration of 1O2 within the intracellular environment. The synergistic effect of 1O2 and UV irradiation resulted in the down-regulation of btuE, thereby curtailing the SOS and oxidative stress responses. Additionally, UV irradiation down-regulated ftsK, uvrB, and uvrA genes, involved in DNA replication, damage site recognition, and self-repair. These processes collectively contribute to the oxidative damage of iARGs by 1O2 before their release into the extracellular environment. This work provided a strategy to develop advanced oxidation disinfection technology aimed at ARGs removal.
Collapse
Affiliation(s)
- Xuan Hou
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Yunxin Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Min Wang
- Binzhou Energy Development Service Center, Binzhou 256603, PR China
| | - Jiajun Lu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Defang Ma
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Ling Li
- State Key Lab of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266200, PR China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Yan Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China.
| |
Collapse
|
5
|
Yan C, Sun Z, Liu Y, Wang X, Zhang Y, Xia S, Zhao J. Enhanced removal of antibiotic-resistant bacteria and resistance genes by three-dimensional electrochemical process using MgFe 2O 4-loaded biochar as both particle electrode and catalyst for peroxymonosulfate activation. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135668. [PMID: 39197284 DOI: 10.1016/j.jhazmat.2024.135668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
In this study, MgFe2O4-loaded biochar (MFBC) was used as a three-dimensional particle electrode to active peroxymonosulfate (EC/MFBC/PMS) for the removal of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). The results demonstrated that, under the conditions of 1.0 mM PMS concentration, 0.4 g/L material dosage, 5 V voltage intensity, and MFBC preparation temperature of 600 °C, the EC/MFBC600/PMS system achieved complete inactivation of E. coli DH5α within 5 min and the intracellular sul1 was reduced by 81.5 % after 30 min of the treatment. Compared to EC and PMS alone treatments, the conjugation transfer frequency of sul1 rapidly declined by 92.9 % within 2 min. The cell membrane, proteins, lipids, as well as intracellular and extracellular ARGs in E. coli DH5α were severely damaged by free radicals in solution and intracellular reactive oxygen species (ROS). Furthermore, up-regulation was observed in genes associated with oxidative stress, SOS response and cell membrane permeability in E. coli DH5α, however, no significant changes were observed in functional genes related to gene conjugation and transfer mechanisms. This study would contribute to the underlying of PMS activation by three-dimensional particle electrode, and provide novel insights into the mechanism of ARB inactivation and ARGs degradation under PMS advanced oxidation treatment.
Collapse
Affiliation(s)
- Changchun Yan
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhenhua Sun
- Laboratory of Solid Waste Environmental Risk Control, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Yiyang Liu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Xuejiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Yanan Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
6
|
Bai C, Cai Y, Sun T, Li G, Wang W, Wong PK, An T. Mechanism of antibiotic resistance spread during sub-lethal ozonation of antibiotic-resistant bacteria with different resistance targets. WATER RESEARCH 2024; 259:121837. [PMID: 38810347 DOI: 10.1016/j.watres.2024.121837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
The increase and spread of antibiotic-resistant bacteria (ARB) in aquatic environments and the dissemination of antibiotic resistance genes (ARGs) greatly impact environmental and human health. It is necessary to understand the mechanism of action of ARB and ARGs to formulate measures to solve this problem. This study aimed to determine the mechanism of antibiotic resistance spread during sub-lethal ozonation of ARB with different antibiotic resistance targets, including proteins, cell walls, and cell membranes. ARB conjugation and transformation frequencies increased after exposure to 0-1.0 mg/L ozone for 10 min. During sub-lethal ozonation, compared with control groups not stimulated by ozone, the conjugative transfer frequencies of E. coli DH5α (CTX), E. coli DH5α (MCR), and E. coli DH5α (GEN) increased by 1.35-2.02, 1.13-1.58, and 1.32-2.12 times, respectively; the transformation frequencies of E. coli DH5α (MCR) and E. coli DH5α (GEN) increased by 1.49-3.02 and 1.45-1.92 times, respectively. When target inhibitors were added, the conjugative transfer frequencies of antibiotics targeting cell wall and membrane synthesis decreased 0.59-0.75 and 0.43-0.76 times, respectively, while that for those targeting protein synthesis increased by 1-1.38 times. After inhibitor addition, the transformation frequencies of bacteria resistant to antibiotics targeting the cell membrane and proteins decreased by 0.76-0.89 and 0.69-0.78 times, respectively. Cell morphology, cell membrane permeability, reactive oxygen species, and antioxidant enzymes changed with different ozone concentrations. Expression of most genes related to regulating different antibiotic resistance targets was up-regulated when bacteria were exposed to sub-lethal ozonation, further confirming the target genes playing a crucial role in the inactivation of different target bacteria. These results will help guide the careful utilization of ozonation for bacterial inactivation, providing more detailed reference information for ozonation oxidation treatment of ARB and ARGs in aquatic environments.
Collapse
Affiliation(s)
- Conglin Bai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiwei Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Tong Sun
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanjun Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Po Keung Wong
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
7
|
Li Y, Zhao Z, Zhang D, Li B, Yin P. Contamination status, source analysis and exposure assessments of quinolone antibiotics in the south of Yancheng Coastal Wetland, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:310. [PMID: 39001928 DOI: 10.1007/s10653-024-02095-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Yancheng coastal wetland, the largest coastal wetland in the west coast of the Pacific Ocean and the margin of the Asian continent, has significant environmental, economic and social effects on local human beings. The extensive contamination and potential risk of quinolone antibiotics (QNs) on local aquaculture and human health are still not clear until now. In this study, 52 surface sediment samples were collected to investigate the contamination status and polluted sources, and evaluate ecological risks of QNs in the south of Yancheng coastal wetland. The total contents of QNs ranged from 0.33 to 21.60 ng/g dw (mean value of 4.51 ng/g dw), following the detection frequencies of QNs ranging from 19.23 to 94.23%. The highest content of QNs occurred around an aquaculture pond dominated by flumequine. The total organic carbon contents of sediment were positively correlated with sarafloxacin and lomefloxacin (p < 0.05), indicating the enhanced absorption of these QNs onto sediments. Partial QNs, such as lomefloxacin, enrofloxacin, sarafloxacin and flumequine, presented the homology features originating from the emission of medical treatment and aquaculture. There was no potential risk of QNs to human beings but a potential risk to aquatic organisms (algae > plant > invertebrate). Totally, the management and protection of Yancheng coastal wetland should be of concern with aquaculture as the important industry.
Collapse
Affiliation(s)
- Yaru Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zongshan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Daolai Zhang
- Qingdao Institute of Marine Geology, Qingdao, 266071, China.
| | - Biying Li
- Qingdao Institute of Marine Geology, Qingdao, 266071, China
| | - Ping Yin
- Qingdao Institute of Marine Geology, Qingdao, 266071, China
| |
Collapse
|
8
|
Zhou J, Kang J, Lin C, Xu Q, Yang W, Fan K, Li J. Antibiotics in Surface Sediments from the Anning River in Sichuan Province, China: Occurrence, Distribution, and Risk Assessment. TOXICS 2024; 12:411. [PMID: 38922091 PMCID: PMC11209513 DOI: 10.3390/toxics12060411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024]
Abstract
The occurrence, distribution, and ecological risk assessment of 36 antibiotics from five groups, including macrolides (MLs), fluoroquinolones (FQs), tetracyclines (TCs), amphenicols (APs), and sulfonamides (SAs), were investigated for the first time in the Anning River, Sichuan Province, China. The results show that antibiotics were widely present in the sediments of the Anning River, with a total of 22 antibiotics detected. FQs were among the most abundant antibiotics, followed by TCs, MLs, APs, and SAs. The total concentrations of antibiotics in surface sediments varied from 0.05 to 53.35 ng/g, with an average of 8.09 ng/g. Among these groups, MLs, FQs, and TCs emerged as the predominant classes of antibiotics. The midstream sediments showed the highest residual levels of antibiotics, with lower levels observed in the downstream and upstream sediments. Anthropogenic activities, such as human clinical practices and animal breeding, might be sources of antibiotics released into the river. An ecological risk assessment revealed that trimethoprim from the SA group exhibited high risks, and MLs showed medium risks in the Anning River, whereas most antibiotics presented minimal to low risks. This study provides valuable information on antibiotic pollution in the upstream region of the Yangtze River, and future management measures are needed for the Anning River.
Collapse
Affiliation(s)
- Junlie Zhou
- School of Environment & Resource, Xichang University, Xichang 615000, China
| | - Jianglin Kang
- School of Environment & Resource, Xichang University, Xichang 615000, China
| | - Chunyan Lin
- School of Environment & Resource, Xichang University, Xichang 615000, China
| | - Qi Xu
- School of Environment & Resource, Xichang University, Xichang 615000, China
| | - Wanrong Yang
- School of Environment & Resource, Xichang University, Xichang 615000, China
| | - Ke Fan
- School of Environment & Resource, Xichang University, Xichang 615000, China
| | - Jinrong Li
- School of Sciences, Xichang University, Xichang 615000, China
| |
Collapse
|
9
|
Liu Y, Gao J, Wang Q, Chen H, Zhang Y, Fu X. Efficient peroxymonosulfate activation by nanoscale zerovalent iron for removal of sulfadiazine and sulfadiazine resistance bacteria: Sulfidated modification or not. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133869. [PMID: 38422733 DOI: 10.1016/j.jhazmat.2024.133869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Whether it's necessary to extra chemical synthesis steps to modify nZVI in peroxymonosulfate (PMS) activation process are worth to further investigation. The 56 mg/L nZVI/153.65 mg/L PMS and 56 mg/L sulfidated nZVI (S-nZVI) (S/Fe molar ratio = 1:5)/153.65 mg/L PMS) processes could effectively attain 97.7% (with kobs of 3.7817 min-1) and 97.0% (with kobs of 3.4966 min-1) of the degradation of 20 mg/L sulfadiazine (SDZ) in 1 min, respectively. The nZVI/PMS system could quickly achieve 85.5% degradation of 20 mg/L SDZ in 1 min and effectively inactivate 99.99% of coexisting Pseudomonas. HLS-6 (5.81-log) in 30 min. Electron paramagnetic resonance tests and radical quenching experiments determined SO4•-, HO•, 1O2 and O2•- were responsible for SDZ degradation. The nZVI/PMS system could still achieve the satisfactory degradation efficiency of SDZ under the influence of humic acid (exceeded 96.1%), common anions (exceeded 67.3%), synthetic wastewater effluent (exceeded 90.7%) and real wastewater effluent (exceeded 78.7%). The high degradation efficiency of tetracycline (exceeded 98.9%) and five common disinfectants (exceeded 96.3%) confirmed the applicability of the two systems for pollutants removal. It's no necessary to extra chemical synthesis steps to modify nZVI for PMS activation to remove both chemical and biological pollutants.
Collapse
Affiliation(s)
- Ying Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Qian Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hao Chen
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yi Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiaoyu Fu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
10
|
Meng F, Tong H, Feng C, Huang Z, Wu P, Zhou J, Hua J, Wu F, Liu C. Structural Fe(II)-induced generation of reactive oxygen species on magnetite surface for aqueous As(III) oxidation during oxygen activation. WATER RESEARCH 2024; 252:121232. [PMID: 38309068 DOI: 10.1016/j.watres.2024.121232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/06/2023] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Magnetite is a reductive Fe(II)-bearing mineral, and its reduction property is considered important for degradation of contaminants in groundwater and anaerobic subsurface environments. However, the redox condition of subsurface environments frequently changes from anaerobic to aerobic owing to natural and anthropogenic disturbances, generating reactive oxygen species (ROS) from the interaction between Fe(II)-bearing minerals and O2. Despite this, the mechanism of ROS generation induced by magnetite under aerobic conditions is poorly understood, which may play a crucial role in As(III) oxidation. Herein, we found that magnetite could activate O2 and induce the oxidative transformation of As(III) under aerobic conditions. As(III) oxidation was attributed to the ROS generated via structural Fe(II) within the magnetite octahedra oxygenation. The electron paramagnetic resonance and quenching tests confirmed that O2•-, H2O2, and •OH were produced by magnetite. Moreover, density function theory calculations combined with experiments demonstrated that O2•- was initially formed via single electron transfer from the structural Fe(II) to the adsorbed O2; O2•- was then converted to •OH and H2O2 via a series of free radical reactions. Among them, O2•-and H2O2 were the primary ROS responsible for As(III) oxidation, accounting for approximately 52 % and 19 % of As(III) oxidation. Notably, As(III) oxidation mainly occurred on the magnetite surface, and As was immobilized further within the magnetite structure. This study provides solid evidence regarding the role of magnetite in determining the fate and transformation of As in redox-fluctuating subsurface environments.
Collapse
Affiliation(s)
- Fangyuan Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Tong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ziyuan Huang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Pan Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Jimei Zhou
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jian Hua
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fei Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
11
|
Chen Y, Wang X, Zeng Z, Lv M, Wang K, Wang H, Tang X. Towards molecular understanding of surface and interface catalytic engineering in TiO 2/TiOF 2 nanosheets photocatalytic antibacterial under visible light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133429. [PMID: 38232545 DOI: 10.1016/j.jhazmat.2024.133429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/20/2023] [Accepted: 01/01/2024] [Indexed: 01/19/2024]
Abstract
TiO2/TiOF2 Z-scheme nanosheets have been successfully synthesized for photocatalytic antibacterial. The antibacterial efficiency of TiO2/TiOF2 against E. coli and S. aureus were 99.90 % and 81.89 % at low material concentration (110 μg/mL), respectively, which are higher than those of pure TiO2, TiOF2, and Degussa P25. In situ molecular spectroscopy results demonstrate that the microstructure of the synthesized material can be reconstructed and optimized to enhance the exposure of the active sites·H2O and O2 are effectively adsorbed on the catalyst surface and activated to form OH…Ti and O…Ti surface active species. Furthermore, the dense interface formed in TiO2/TiOF2 acts as an efficient transport path for photoexcited electrons from TiO2 to TiOF2, and thus accelerates the formation of reactive oxygen species. Finally, the mechanism of bacterial inactivation is systematically discussed considering the main active substances, cell morphological changes, and activity of antioxidant enzymes.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China
| | - Xilun Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, Guangdong, PR China
| | - Ziruo Zeng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China
| | - Meiru Lv
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China
| | - Kangfu Wang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China
| | - Hao Wang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China.
| | - Xiaoning Tang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China.
| |
Collapse
|
12
|
Fang Y, Lin G, Liu Y, Zhang J. Advanced treatment of antibiotic-polluted wastewater by a consortium composed of bacteria and mixed cyanobacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123293. [PMID: 38184153 DOI: 10.1016/j.envpol.2024.123293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
This study constructed a cyanobacteria-bacteria consortium using a mixture of non-toxic cyanobacteria (Synechococcus sp. and Chroococcus sp.) immobilized in calcium alginate and native bacteria in wastewater. The consortium was used for the advanced treatment of sulfamethoxazole-polluted wastewater and the production of cyanobacterial lipid. Mixed cyanobacteria increased the abundances of denitrifying bacteria and phosphorus-accumulating bacteria as well as stimulated various functional enzymes in the wastewater bacterial community, which efficiently removed 70.01-71.86% of TN, 91.45-97.04% of TP and 70.72-76.85% of COD from the wastewater. The removal efficiency of 55.29-69.90% for sulfamethoxazole was mainly attributed to the upregulation of genes encoding oxidases, reductases, oxidoreductases and transferases in two cyanobacterial species as well as the increased abundances of Stenotrophomonas, Sediminibacterium, Arenimonas, Novosphingobium, Flavobacterium and Hydrogenophaga in wastewater bacterial community. Transcriptomic responses proved that mixed cyanobacteria presented an elevated lipid productivity of 33.90 mg/L/day as an adaptive stress response to sulfamethoxazole. Sediminibacterium, Flavobacterium and Exiguobacterium in the wastewater bacterial community may also promote cyanobacterial lipid synthesis through symbiosis. Results of this study proved that the mixed cyanobacteria-bacteria consortium was a promising approach for advanced wastewater treatment coupled to cyanobacterial lipid production.
Collapse
Affiliation(s)
- Youshuai Fang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Guannan Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Ying Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Jian Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
13
|
Yao J, Mei Y, Yuan B, Zheng F, Wang Z, Chen J. Microbial co-culture mediated by intercellular nanotubes during DMAC degradation: Microbial interaction, communication mode, and degradation mechanism. ENVIRONMENTAL RESEARCH 2024; 241:117613. [PMID: 37980980 DOI: 10.1016/j.envres.2023.117613] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/19/2023] [Accepted: 11/04/2023] [Indexed: 11/21/2023]
Abstract
Microbial co-culture has been proven as an effective technique for environmental remediation. In this study, co-culture mechanism of Rhodococcus ruber HJM-8 and Paracoccus communis YBH-X during N,N-dimethylacetamide (DMAC) degradation was studied. The comparison of degradation performance in monoculture and co-culture was presented; due to the efficient cooperation between the two strains via parallel and cascaded degradation, the removal efficiency of total nitrogen (TN) in co-culture could reach 90.1%, which was 1.35 and 1.21 times higher than that of HJM-8 and YBH-X, respectively. Then the communication mode of co-culture during DMAC degradation was determined as contact-independent and contact-dependent interactions between microorganisms. Meanwhile, intercellular nanotube between HJM-8 and YBH-X was found as a unique contact-dependent interaction. The cell staining experiments and RNA sequencing analyses revealed that the nanotube could be used as a bridge to exchange cytoplasmic molecules, and thus improved material transfer and enhanced cell connection in co-culture. The results of KEGG pathway showed that differentially expressed genes in co-culture have an association with cell metabolism, nanotube generation, and genetic material transfer. Furthermore, a mechanism diagram of DMAC biodegradation was proposed for co-culture, indicating that bidirectional cooperation was established between HJM-8 and YBH-X which was mediated by the conversions of acetate and nitrogen. Finally, the co-culture system was validated for treatment of an actual wastewater; results indicated that removal efficiencies of 100% and 68.2% were achieved for DMAC and TN, respectively, suggesting that co-culture had the potential for application.
Collapse
Affiliation(s)
- Jiachao Yao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yu Mei
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Bohan Yuan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Fengzhen Zheng
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jun Chen
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
14
|
Li Z, Jin Y, Wang X, Xu L, Teng L, Fu K, Li B, Li Y, Huang Y, Ma N, Cui F, Chai T. Health Risk Assessment of Antibiotic Pollutants in Large Yellow Croakers from Zhejiang Aquaculture Sites. Foods 2023; 13:31. [PMID: 38201059 PMCID: PMC10778301 DOI: 10.3390/foods13010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Intensive aquaculture combatting the decline of large yellow croaker populations can trigger bacterial outbreaks, resulting in extensive antibiotic use. In this study, we screened 5 aquaculture sites in the coastal areas of Zhejiang and identified 17 antibiotics in large yellow croakers using UPLC-MS/MS. The distribution and occurrence of antibiotic pollutants were different in the different tissues of large yellow croakers, being primarily dominated by quinolones. Relatively higher average residue levels of enrofloxacin and ciprofloxacin were detected in the inedible parts, specifically the gills (37.29 μg/kg). Meanwhile, relatively high average residue levels of enrofloxacin and ciprofloxacin were also found in the edible parts, particularly in the muscle (23.18 μg/kg). We observed that the residue levels detected in the swim bladder exceeded the prescribed limit for fish muscle, but there is currently no specific regulatory limit established for this particular tissue. Despite the HI values of enrofloxacin and ciprofloxacin being below 0.01, the health risks should not be disregarded. The findings of this research provide significant practical implications for assessing antibiotic contamination and enhancing the risk management of coastal regions.
Collapse
Affiliation(s)
- Zongjie Li
- College of Food and Health, Zhejiang A & F University, Hangzhou 311300, China; (Z.L.); (Y.J.); (X.W.); (L.X.); (L.T.)
| | - Yinyin Jin
- College of Food and Health, Zhejiang A & F University, Hangzhou 311300, China; (Z.L.); (Y.J.); (X.W.); (L.X.); (L.T.)
| | - Xingyu Wang
- College of Food and Health, Zhejiang A & F University, Hangzhou 311300, China; (Z.L.); (Y.J.); (X.W.); (L.X.); (L.T.)
| | - Liudong Xu
- College of Food and Health, Zhejiang A & F University, Hangzhou 311300, China; (Z.L.); (Y.J.); (X.W.); (L.X.); (L.T.)
| | - Liyan Teng
- College of Food and Health, Zhejiang A & F University, Hangzhou 311300, China; (Z.L.); (Y.J.); (X.W.); (L.X.); (L.T.)
| | - Kang Fu
- Collaborative Innovation Center of Green Pesticide, Zhejiang A & F University, Hangzhou 311300, China; (K.F.); (B.L.); (Y.L.); (F.C.)
| | - Baoling Li
- Collaborative Innovation Center of Green Pesticide, Zhejiang A & F University, Hangzhou 311300, China; (K.F.); (B.L.); (Y.L.); (F.C.)
| | - Yulu Li
- Collaborative Innovation Center of Green Pesticide, Zhejiang A & F University, Hangzhou 311300, China; (K.F.); (B.L.); (Y.L.); (F.C.)
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing 100141, China; (Y.H.); (N.M.)
| | - Ning Ma
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing 100141, China; (Y.H.); (N.M.)
| | - Feng Cui
- Collaborative Innovation Center of Green Pesticide, Zhejiang A & F University, Hangzhou 311300, China; (K.F.); (B.L.); (Y.L.); (F.C.)
| | - Tingting Chai
- College of Food and Health, Zhejiang A & F University, Hangzhou 311300, China; (Z.L.); (Y.J.); (X.W.); (L.X.); (L.T.)
| |
Collapse
|
15
|
Wang Y, Chen T, Zhao Z, Zhang J, Jiang S, Li H, Tu S, Yan B. Water flow promoted charge separation in piezoelectric Bi 4Ti 3O 12 for the enhanced photocatalytic degradation of antibiotic. CHEMOSPHERE 2023; 343:140306. [PMID: 37769925 DOI: 10.1016/j.chemosphere.2023.140306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Addressing the issue of antibiotic residues in the environment is key to improving the quality of aquatic environments and reducing human health risks. In this study, piezoelectric bismuth titanate (Bi4Ti3O12) nanosheets are synthesized and employed to conduct antibiotic degradation. The piezoelectric potential induced by the water flow shear force is utilized to facilitate charge separation and migration in the photocatalytic process and enhance the catalytic degradation of antibiotic wastewater. As a result, 85% of tetracycline hydrochloride (TC) is degraded within 90 min. The piezo-photocatalytic process exhibits a 2.4 times faster reaction rate and a 15% higher mineralization rate than photocatalysis. Different environmental factors are investigated for their effects on the catalytic activity in piezo-photocatalysis. In situ electrochemical measurement and photoluminescence (PL) spectroscopy under stress demonstrated that the piezoelectric potential shifted the energy band of Bi4Ti3O12 and promoted the charge migration and separation, which produce more active species that favor the efficient catalytic degradation. Finally, the intermediate products of the tetracycline hydrochloride degradation process are analyzed and possible degradation pathways are suggested. This study elucidates the degradation mechanism of Bi4Ti3O12 as a piezo-photocatalyst for antibiotic pollutants, and meticulously investigates the charge transfer mechanism of the catalyst material in response to micro-stress. Hence, it provides an efficient solution for organic wastewater treatment and can potentially provide theoretical support for the development and performance optimization of catalyst materials applied in natural environments.
Collapse
Affiliation(s)
- Yaqing Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Zongxi Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Junhao Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Shaojun Jiang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Hao Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Shuchen Tu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China.
| | - Bo Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
16
|
Liu X, Zhou Y, Sun S, Bao S. Study on the behavior and mechanism of NiFe-LDHs used for the degradation of tetracycline in the photo-Fenton process. RSC Adv 2023; 13:31528-31540. [PMID: 37908668 PMCID: PMC10614753 DOI: 10.1039/d3ra05475f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/14/2023] [Indexed: 11/02/2023] Open
Abstract
An environment-friendly 3D NiFe-LDHs photocatalyst was fabricated via a simple hydrothermal method and characterized by means of SEM, XRD, BET, XPS and FT-IR. It is a highly efficient heterogeneous photo-Fenton catalyst for the degradation of TC-HCl under visible light irradiation. After exploring the effects of catalyst dosage, initial concentration of TC-HCl, solution pH and H2O2 concentrations, the optimal reaction conditions were determined. The experiment results showed that the degradation efficiency can reach 99.11% through adding H2O2 to constitute a photo-Fenton system after adsorption for 30 min and visible light for 60 min. After four cycles, the degradation rate decay is controlled within 21.2%, indicating that NiFe-LDHs have excellent reusable performance. The experimental results of environmental factors indicate that Fe2+ and Ca2+ promoted the degradation of TC-HCl, both Cl- and CO32- inhibited the degradation of TC-HCl. Two other antibiotics (OTC and FT) were selected for research and found to be effectively removed in this system, achieving effective degradation of a variety of typical new pollutants. The radical trapping tests and ESR detection showed that ·OH and ·O2- were the main active substances for TC degradation in the photo-Fenton system. By further measuring the intermediate products of photodegradation, the degradation pathway of TC-HCl was inferred. The toxicity analysis demonstrated that the overall toxicity of the identified intermediates was reduced in this system. This study provides a theoretical and practical basis for the removal of TC in aquatic environments.
Collapse
Affiliation(s)
- Xia Liu
- Changchun Univ. Sci. & Technol., Sch Chem. & Environm. Engn. Changchun 130022 P. R. China
| | - Yuting Zhou
- Changchun Univ. Sci. & Technol., Sch Chem. & Environm. Engn. Changchun 130022 P. R. China
| | - Shuanghui Sun
- Changchun Univ. Sci. & Technol., Sch Chem. & Environm. Engn. Changchun 130022 P. R. China
| | - Siqi Bao
- Changchun Univ. Sci. & Technol., Sch Chem. & Environm. Engn. Changchun 130022 P. R. China
| |
Collapse
|
17
|
He Q, Lin Z, Qin M, Huang Y, Lu Z, Zheng M, Cui C, Li C, Zhang X, Liao X, Liu Y, Ren H, Sun J. TET-Yeasate: An engineered yeast whole-cell lysate-based approach for high performance tetracycline degradation. ENVIRONMENT INTERNATIONAL 2023; 179:108158. [PMID: 37634298 DOI: 10.1016/j.envint.2023.108158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
The widespread of tetracycline (TC) residues in anthropogenic and natural environments pose an immediate threat to public health. Herein, we established the TET-Yeasate, an approach based on whole-cell lysate of engineered yeast, to mitigate the TC contamination in environment. The TET-Yeasate is defined as the biological matrix of whole cell lysate from engineered yeast that containing TC-degradative components (Tet(X), NADPH, Mg2+) and protective macromolecules. The TET-Yeasate was able to efficiently eliminate TC residues in tap water (98.8%), lake water (77.6%), livestock sewage (87.3%) and pharmaceutical wastewater (35.3%) without necessity for exogenous addition of expensive cofactors. The TET-Yeasate was further developed into lyophilized form for ease of storage and delivery. The TET-Yeasate in lyophilized form efficiently removed up to 74.6% TC residue within 0.25 h. In addition, the lyophilization confers promising resilience to TET-Yeasate against adverse temperatures and pH by maintaining degradation efficacy of 85.69%-97.83%. The stability test demonstrated that the biomacromolecules in lysate served as natural protectants that exerted extensive protection on TET-Yeasate during the 14-day storage at various conditions. In addition, 5 potential degradation pathways were elaborated based on the intermediate products. Finally, the analysis indicated that TET-Yeasate enjoyed desirable bio- and eco-safety without introduction of hazardous intermediates and spread of resistance genes. To summary, the TET-Yeasate based on whole cell lysate of engineered yeast provides a cost-effective and safe alternative to efficiently remove TC residues in environment, highlighting the great potential of such whole-cell based methods in environmental decontamination.
Collapse
Affiliation(s)
- Qian He
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhuoyu Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Meilin Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Yu Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhaoxiang Lu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Mei Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Chaoyue Cui
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Cang Li
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiaojing Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiaoping Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Yahong Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Hao Ren
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China.
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
18
|
Zhang C, Wang C, Zhao X, Hakizimana I. Effect of resistance difference on distribution of antibiotics in bacterial cell and conjugative gene transfer risks during electrochemical flow through reaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163142. [PMID: 36996977 DOI: 10.1016/j.scitotenv.2023.163142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 05/13/2023]
Abstract
The occurrences and spread of antibiotic resistance (AR) mediated by horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs) in aquatic environment have been aggravated because of the abuse of antibiotics. While the pressure of different antibiotics is known to induce the spread of AR in bacteria, whether distribution of different antibiotics in cell structure could affect HGT risks is not clear. Here, a significant difference between the distribution of tetracycline hydrochloride (Tet) and sulfamethoxazole (Sul) in cell structure during electrochemical flow through reaction (EFTR) process was firstly reported. Meanwhile, EFTR treatment possessed excellent disinfection performance and consequently controlled the HGT risks. The intracellular Tet (iTet) was discharged through efflux pumps to increase the content of extracellular Tet (eTet) due to the resistance of donor E. coli DH5α under the selective pressure of Tet, declining the damage of donor and plasmid RP4. The HGT frequency was 8.18-fold increase compared with that by EFTR treatment alone. While the secretion of intracellular Sul (iSul) was inhibited by blocking the formation of efflux pumps to inactivate the donor under the Sul pressure, and the total content of iSul and adsorbed Sul (aSul) to be 1.36-fold higher than that of eSul. Therefore, the reactive oxygen species (ROS) generation and cell membrane permeability were improved to release ARGs, and •OH attacked plasmid RP4 in the EFTR process, inhibiting the HGT risks. This study advances the awareness of the interaction between distribution of different antibiotics in cell structure and the HGT risks in the EFTR process.
Collapse
Affiliation(s)
- Cong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Xin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Israel Hakizimana
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
19
|
Huang Z, Ma H, Liu C, Meng F, Lee JF, Lin YJ, Yi X, Dang Z, Feng C. A coupled electrochemical process for schwertmannite recovery from acid mine drainage: Important roles of anodic reactive oxygen species and cathodic alkaline. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131075. [PMID: 36870128 DOI: 10.1016/j.jhazmat.2023.131075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The increasing need for sustainable acid mine drainage (AMD) treatment has spurred much attention to strategic development of resource recovery. Along this line, we envisage that a coupled electrochemical system involving anodic Fe(II) oxidation and cathodic alkaline production will facilitate in situ synthesis of schwertmannite from AMD. Multiple physicochemical studies showed the successful formation of electrochemistry-induced schwertmannite, with its surface structure and chemical composition closely related to the applied current. A low current (e.g., 50 mA) led to the formation of schwertmannite having a small specific surface area (SSA) of 122.8 m2 g-1 and containing small amounts of -OH groups (formula Fe8O8(OH)4.49(SO4)1.76), whereas a large current (e.g., 200 mA) led to schwertmannite high in SSA (169.5 m2 g-1) and amounts of -OH groups (formula Fe8O8(OH)5.16(SO4)1.42). Mechanistic studies revealed that the reactive oxygen species (ROS)-mediated pathway, rather than the direct oxidation pathway, plays a dominant role in accelerating Fe(II) oxidation, especially at high currents. The abundance of •OH in the bulk solution, along with the cathodic production of OH-, were the key to obtaining schwertmannite with desirable properties. It was also found to function as a powerful sorbent in removal of arsenic species from the aqueous phase.
Collapse
Affiliation(s)
- Ziyuan Huang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Huanxin Ma
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Fangyuan Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Jyh-Fu Lee
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, ROC
| | - Yu-Jung Lin
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, ROC
| | - Xiaoyun Yi
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zhi Dang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
20
|
Marutescu LG. Current and Future Flow Cytometry Applications Contributing to Antimicrobial Resistance Control. Microorganisms 2023; 11:1300. [PMID: 37317273 DOI: 10.3390/microorganisms11051300] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023] Open
Abstract
Antimicrobial resistance is a global threat to human health and welfare, food safety, and environmental health. The rapid detection and quantification of antimicrobial resistance are important for both infectious disease control and public health threat assessment. Technologies such as flow cytometry can provide clinicians with the early information, they need for appropriate antibiotic treatment. At the same time, cytometry platforms facilitate the measurement of antibiotic-resistant bacteria in environments impacted by human activities, enabling assessment of their impact on watersheds and soils. This review focuses on the latest applications of flow cytometry for the detection of pathogens and antibiotic-resistant bacteria in both clinical and environmental samples. Novel antimicrobial susceptibility testing frameworks embedding flow cytometry assays can contribute to the implementation of global antimicrobial resistance surveillance systems that are needed for science-based decisions and actions.
Collapse
Affiliation(s)
- Luminita Gabriela Marutescu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
21
|
Ma Z, Guo W, Zhang K, Wang N, Li Z, Li J. Liquid exfoliation of bulk g-C 3N 5 to nanosheets for improved photocatalytic antibacterial activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69486-69498. [PMID: 37140858 DOI: 10.1007/s11356-023-27330-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
Liquid exfoliation of bulk g-C3N5 was applied to synthesize g-C3N5 nanosheets. In order to characterize the samples, X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectra (XPS), UV-Vis absorption spectra (UV-Vis), and photoluminescence spectra (PL) were examined. g-C3N5 nanosheets exhibited enhanced performance in the inactivation of Escherichia coli (E. coli) with visible light irradiation relative to bulk g-C3N5 and promoted complete inactivation of E. coli within 120 min. h+ and •O2- were the principal reactive species in the antibacterial process. In the early stages, SOD and CAT played a defensive role in resisting oxidative damage of active species. With the prolonged light exposure time, the antioxidant protection system was overwhelmed leading to the destruction of the cell membrane. The leakage of cell contents such as K+, protein, and DNA caused bacterial apoptosis ultimately. The enhanced photocatalytic antibacterial performance of g-C3N5 nanosheets is ascribed to the stronger redox property by the upward shift of CB and downward shift of VB compared with bulk g-C3N5. On the other hand, larger specific surface area and better separation efficiency of photoinduced carriers are helpful to the improved photocatalytic performance. This study systematically revealed the inactivation process toward E. coli and expanded the application range of g-C3N5-based materials with abundant solar energy.
Collapse
Affiliation(s)
- Zhanqiang Ma
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, People's Republic of China
| | - Wei Guo
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, People's Republic of China
| | - Kaiyue Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, People's Republic of China
| | - Nan Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, People's Republic of China
| | - Ziyue Li
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, People's Republic of China
| | - Juan Li
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, 471023, People's Republic of China.
| |
Collapse
|
22
|
Nie C, Hou Y, Liu F, Dong Q, Li Z, Han P, Tong M. Efficient peroxymonosulfate activation by magnetic MoS 2@Fe 3O 4 for rapid degradation of free DNA bases and antibiotic resistance genes. WATER RESEARCH 2023; 239:120026. [PMID: 37182307 DOI: 10.1016/j.watres.2023.120026] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/16/2023]
Abstract
Antibiotic resistance genes (ARGs) have become as emerging contaminant with great concerns worldwide due to their threats to human health. It is thus urgent to develop techniques to degrade ARGs in water. In this study, MoS2@Fe3O4 (MF) particles were fabricated and used to activate peroxymonosulfate (PMS) for the degradation of four types of free DNA bases (T, A, C, and G, major components of ARGs) and ARGs. We found that MF/PMS system could effectively degrade all four DNA bases (T within 10 min, A within 30 min, C within 5 min, and G within 5 min) in very short time. During the reaction process, MF could activate PMS to form the reactive radicals such as ·OH, SO4·-, O2·-, and 1O2, contributing to the degradation of DNA bases. Due to the low adsorption energy, high charge transfer, and great capability for PMS cleavage, MF exhibited excellent PMS adsorption and activation performances. MoS2 in MF could enhance the cycle of Fe(III)/Fe(II), improving the catalytic performance. Excellent catalytic performances of MF/PMS system were achieved in complex water matrix (including different solution pH, coexisting of anions and natural organic matter) as well as in real water samples (including tap water, river water, sea water, and sewage) especially under high salinity conditions due to the generation of Cl· radicals and HClO species. MF/PMS system could also efficiently degrade ARGs (chromosomal kanR and plasmid gmrA) and DNA extracted from antibiotic resistant bacteria (ARB) in super-short time. Moreover, complete disinfection of two types of model ARB (E. coli K-12 MG 1655 and E. coli S17-1) could also be achieved in MF/PMS system. The high degradation performances of MF/PMS system achieved in the reused experiments and the 14-day continuous flow reactor experiments indicated the stability of MF particles. Due to the magnetic property, it would be convenient to separate MF particles from water after use via using magnet, facilitating their reuse of MF and avoiding potential water contamination by catalysts. Overall, this study not only provided a deep insight on Fe/Mo-triggered PMS activation process, but also provided an effective and reliable approach for the treatment of DNA bases, ARGs, DNA, and ARB in water.
Collapse
Affiliation(s)
- Chenyi Nie
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Yanghui Hou
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Qiqi Dong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Zhengmao Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Peng Han
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
23
|
Huo ZY, Yang Y, Jeong JM, Wang X, Zhang H, Wei M, Dai K, Xiong P, Kim SW. Self-Powered Disinfection Using Triboelectric, Conductive Wires of Metal-Organic Frameworks. NANO LETTERS 2023; 23:3090-3097. [PMID: 36802718 DOI: 10.1021/acs.nanolett.2c04391] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Efficient water disinfection is vitally needed in rural and disaster-stricken areas lacking power supplies. However, conventional water disinfection methods strongly rely on external chemical input and reliable electricity. Herein, we present a self-powered water disinfection system using synergistic hydrogen peroxide (H2O2) assisted electroporation mechanisms driven by triboelectric nanogenerators (TENGs) that harvest electricity from the flow of water. The flow-driven TENG, assisted by power management systems, generates a controlled output with aimed voltages to drive a conductive metal-organic framework nanowire array for effective H2O2 generation and electroporation. The injured bacteria caused by electroporation can be further damaged by facile diffused H2O2 molecules at high throughput. A self-powered disinfection prototype enables complete disinfection (>99.9999% removal) over a wide range of flows up to 3.0 × 104 L/(m2 h) with low water flow thresholds (200 mL/min; ∼20 rpm). This rapid, self-powered water disinfection method is promising for pathogen control.
Collapse
Affiliation(s)
- Zheng-Yang Huo
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, People's Republic of China
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU) Suwon 16419, Republic of Korea
| | - Yuxin Yang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Jang-Mook Jeong
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU) Suwon 16419, Republic of Korea
| | - Xiaoxiong Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - He Zhang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Mingdeng Wei
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou 350002, People's Republic of China
| | - Keren Dai
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU) Suwon 16419, Republic of Korea
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Peixun Xiong
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou 350002, People's Republic of China
| | - Sang-Woo Kim
- Department of Materials Science and Engineering, Center for Human-oriented Triboelectric Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
24
|
Zheng Q, Zhang Y, Wang Y, Yu G. Removal of antibiotic resistant bacteria and plasmid-encoded antibiotic resistance genes in water by ozonation and electro-peroxone process. CHEMOSPHERE 2023; 319:138039. [PMID: 36738938 DOI: 10.1016/j.chemosphere.2023.138039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The electro-peroxone (EP) process is an electricity-based oxidation process enabled by electrochemically generating hydrogen peroxide (H2O2) from cathodic oxygen (O2) reduction during ozonation. In this study, the removal of antibiotic resistant bacteria (ARB) and plasmid-encoded antibiotic resistance genes (ARGs) during groundwater treatment by ozonation alone and the EP process was compared. Owing to the H2O2-promoted ozone (O3) conversion to hydroxyl radicals (•OH), higher •OH exposures, but lower O3 exposures were obtained during the EP process than ozonation alone. This opposite change of O3 and •OH exposures decreases the efficiency of ARB inactivation and ARG degradation moderately during the EP process compared with ozonation alone. These results suggest that regarding ARB inactivation and ARG degradation, the reduction of O3 exposures may not be fully counterbalanced by the rise of •OH exposures when changing ozonation to the EP process. However, due to the rise of •OH exposure, plasmid DNA was more effectively cleaved to shorter fragments during the EP process than ozonation alone, which may decrease the risks of natural transformation of ARGs. These findings highlight that the influence of the EP process on ARB and ARG inactivation needs to be considered when implementing this process in water treatment.
Collapse
Affiliation(s)
- Quan Zheng
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Yinqiao Zhang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Yujue Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
25
|
Ma Z, Guo W, Zhang K, Wang N, Li Z, Li J. Construction of S-Scheme CuS/Bi5O7I Heterojunction for Boosted Photocatalytic Disinfection with Visible Light Exposure. Molecules 2023; 28:molecules28073084. [PMID: 37049847 PMCID: PMC10096083 DOI: 10.3390/molecules28073084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
In this paper, a novel S-scheme CuS/Bi5O7I heterojunction was successfully constructed using a two-step approach comprising the alkaline hydrothermal method and the adsorption–deposition method, and it consisted of Bi5O7I microrods with CuS particles covering the surface. The photocatalytic antibacterial effects on Escherichia coli (E. coli) were systematically examined with visible light exposure. The results suggested that the 3%-CuS/Bi5O7I composite showed the optimal antibacterial activity, completely inactivating E. coli (5 × 108 cfu/mL) in 180 min of irradiation. Moreover, the bacterial inactivation process was scientifically described. •O2− and h+ were the major active species for the inactivation of the bacteria. In the early stages, SOD and CAT initiated the protection system to avoid the oxidative destruction of the active species. Unfortunately, the antioxidant protection system was overwhelmed thereafter, which led to the destruction of the cell membrane, as evidenced by the microstructure changes in E. coli cells. Subsequently, the leakage of intracellular components including K+, proteins, and DNA resulted in the unavoidable death of E. coli. Due to the construction of the S-scheme heterojunction, the CuS/Bi5O7I composite displayed the boosted visible light harvesting, the high-efficiency separation of photogenerated electrons and holes, and a great redox capacity, contributing to an outstanding photocatalytic disinfection performance. This work offers a new opportunity for S-scheme Bi5O7I-based heterojunctions with potential application in water disinfection.
Collapse
Affiliation(s)
- Zhanqiang Ma
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
- Correspondence: (Z.M.); (J.L.)
| | - Wei Guo
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Kaiyue Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Nan Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Ziyue Li
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Juan Li
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
- Correspondence: (Z.M.); (J.L.)
| |
Collapse
|
26
|
Yang YY, Niu CG, Huang DW, Guo H, Feng HP, Li L, Liu HY, Fan QQ, Qin MZ. Appropriate oxygen vacancies and Mo-N bond synergistically modulate charge transfer dynamics of MoO 3-x/S-CN for superior photocatalytic disinfection: Unveiling synergistic effects and disinfection mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130481. [PMID: 36493653 DOI: 10.1016/j.jhazmat.2022.130481] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/05/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Highly efficient charge transfer is a critical factor to modulate the photocatalytic activity. However, the conscious modulation of charge transfer efficiency is still a great challenge. Herein, a novel interfacial Mo-N bond and appropriate oxygen vacancies (OVs) modulated S-scheme MoO3-x/S-CN heterojunction was rationally fabricated for efficient photocatalytic disinfection. The results of characterizations and density functional theory (DFT) calculations suggested that the enhanced charge transfer dynamics is ascribed to the optimizing oxygen vacancies density and forming interfacial Mo-N bond. It can improve charge transfer efficiency from 36.4% (MoO3-x) to 52.5% (MoO3-x/S-CN) and produce more reactive oxygen species (ROS), achieving entirely inactivate of 7.60-log E. coli and S. aureus within 50 min and 75 min. Besides, MoO3-x/S-CN can well resist the disturbance from the coexisting substances, and can be applied in a wide pH range, and even authentic water bodies. Monitoring of bacterial antioxidant systems and membrane integrity revealed that bacterial inactivation begins with the oxidation of cell membrane and dies from leakage of intracellular substances and destruction of cell structure. This work provides an inspiration on consciously modulating S-scheme charge transfer efficiency by optimizing oxygen vacancies density and atomic-level interface control for promoting the photocatalytic antibacterial activity.
Collapse
Affiliation(s)
- Ya-Ya Yang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Cheng-Gang Niu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China.
| | - Da-Wei Huang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China.
| | - Hai Guo
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, China
| | - Hao-Peng Feng
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Lu Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Hui-Yun Liu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Qian-Qian Fan
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Meng-Zhu Qin
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
27
|
Cui Y, Ye Q, Wang H, Duo X, Peng L, Dong W, Cui X, Lu Y, Li Y. Photocatalytic and oxidation mechanisms of Fe-Ag@AgCl: Effect on co-existing arsenic (III) and Escherichia coli. ENVIRONMENTAL RESEARCH 2023; 217:114913. [PMID: 36427633 DOI: 10.1016/j.envres.2022.114913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
To address the drinking safety problems associated with high arsenic(III) (As(III)) and bacteria in underground water, core-shell Fe-Ag@AgCl nanowires were synthesized and exhibited excellent photocatalytic oxidation effects on co-existing As(III) and Escherichia coli (E. coli). With the introduction of Fe, the nanowires that were used 5 times could be easily magnetically collected, and the As(III) oxidation effect of these re-chlorinated nanowires increased from 39% to 60%. E. coli was completely inactivated within 60 min without photoreactivation after 20 min. Extracellular polymeric substances have play a protective role in the disinfection process. Quenching testing results confirmed that, except for the superoxide radical (•O2-), the subdominant active species were different for different objects: hole (hVB+) to As(III) and hydroxyl radical (•OH) to E. coli. Therefore the system with co-existing As(III) and E. coli, the inactivation effect of Fe-Ag@AgCl on E. coli decreased remarkably with an increase in As(III) concentration, while the oxidation process of As(III) was not significantly affected by E. coli until E. coli was increased to 108 cfu/mL. The photocatalytic process of co-existing As(III) and E. coli is displayed in a schematic diagram and was tested using desired results obtained from field groundwater in Xiantao City, Hubei Province. The function of Fe in band structures and density of states was analyzed using plane-wave density functional theory. These magnetic nanowires presented excellent photocatalytic ability on co-existing As(III) and E. coli, and provided new insights into drinking water safety in high-arsenic areas.
Collapse
Affiliation(s)
- Yanping Cui
- School of Environmental Studies, Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, China University of Geosciences (Wuhan), Wuhan, 430078, PR China.
| | - Qian Ye
- School of Environmental Studies, Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, China University of Geosciences (Wuhan), Wuhan, 430078, PR China
| | - Haili Wang
- School of Environmental Studies, Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, China University of Geosciences (Wuhan), Wuhan, 430078, PR China
| | - Xuewen Duo
- School of Environmental Studies, Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, China University of Geosciences (Wuhan), Wuhan, 430078, PR China
| | - Liang Peng
- School of Environmental Studies, Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, China University of Geosciences (Wuhan), Wuhan, 430078, PR China
| | - Wei Dong
- School of Environmental Studies, Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, China University of Geosciences (Wuhan), Wuhan, 430078, PR China
| | - Xiaoxiao Cui
- School of Environmental Studies, Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, China University of Geosciences (Wuhan), Wuhan, 430078, PR China
| | - Yue Lu
- School of Environmental Studies, Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, China University of Geosciences (Wuhan), Wuhan, 430078, PR China
| | - Yajie Li
- School of Environmental Science and Engineering, Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China
| |
Collapse
|
28
|
Zhang K, Ye C, Lou Y, Yu X, Feng M. Promoting selective water decontamination via boosting activation of periodate by nanostructured Ru-supported Co 3O 4 catalysts. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130058. [PMID: 36179619 DOI: 10.1016/j.jhazmat.2022.130058] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The superior catalytic efficiency of ruthenium (Ru)-based nanocomposites in advanced oxidation processes for water decontamination has attracted accumulating attention worldwide. However, rather limited knowledge is currently available regarding their roles in activating periodate (PI), an emerging oxidant with versatile environmental applications. This study firstly delineated that Ru-supported Co3O4 (Ru/Co3O4), a typical Ru-based nanomaterial, can efficiently accomplish PI activation to eliminate multiple organic micropollutants and inactivate different pathogenic bacteria. Almost all eight micropollutants can be completely removed within 2 min of Ru/Co3O4-PI oxidation except sulfamethoxazole (SMX), which was degraded ∼70 % at 2 min with 100 % mineralization after 10 min. The excellent catalytic performance was independent of PI dosages, initial pH, and coexisting water constituents, demonstrating its prominent capability as a selective oxidation strategy. Diverse lines of evidence indicated the dominant role of single oxygen in the Ru/Co3O4-PI system, which triggered the generation of five transformation products of SMX with reduced environmental risks. Concurrently, PI was stoichiometrically converted to the eco-friendly IO3-. Additionally, Ru/Co3O4-PI system achieved 6-log inactivation of different pathogenic bacteria within 1 min, implying the feasibility of rapid water disinfection. Overall, this work demonstrated the excellent promise of Ru-based composites in PI activation for highly efficient and selective water decontamination.
Collapse
Affiliation(s)
- Kaiting Zhang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Chengsong Ye
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Yaoyin Lou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Xin Yu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Mingbao Feng
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China.
| |
Collapse
|
29
|
Peng X, Ma J, Zhou Z, Yang H, Chen J, Chen R, Wu K, Xi G, Liu S, Shen Y, Zhang Y. Molecular assembly of carbon nitride-based composite membranes for photocatalytic sterilization and wound healing. Chem Sci 2023; 14:4319-4327. [PMID: 37123183 PMCID: PMC10132134 DOI: 10.1039/d3sc00642e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
A multifactorial mechanism for successful dissolution of polymeric carbon nitrides (pCN) was disclosed, enabling pCN to compound more advanced nanocomposites at the molecular level, beyond the traditional solar fuel applications in powders.
Collapse
Affiliation(s)
- Xiaoxiao Peng
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Jin Ma
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Zhixin Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Hong Yang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Jingjing Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Ran Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Kaiqing Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Guangcheng Xi
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine Beijing 100176 China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Yanfei Shen
- Medical School, Southeast University Nanjing 210009 China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| |
Collapse
|
30
|
Zheng Z, Man JHK, Lo IMC. Integrating Reactive Chlorine Species Generation with H 2 Evolution in a Multifunctional Photoelectrochemical System for Low Operational Carbon Emissions Saline Sewage Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16156-16166. [PMID: 36326170 DOI: 10.1021/acs.est.2c04139] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conventional wastewater treatment plants (WWTPs) suffer from high carbon emissions and are inefficient in removing emerging organic pollutants (EOPs). Consequently, we have developed a low operational carbon emissions multifunctional photoelectrochemical (PEC) system for saline sewage treatment to simultaneously remove organic pollutants, ammonia, and bacteria, coupled with H2 evolution. A reduced BiVO4 (r-BiVO4) photoanode with enhanced PEC properties, ascribed to constructing sufficient oxygen vacancies and V4+ species, was synthesized for the aforementioned technique. The PEC/r-BiVO4 process could treat saline sewage to meet local WWTPs' discharge standard in 40 min at 2.0 V vs Ag/AgCl and completely degrade carbamazepine (one of EOPs), coupled with 633 μmol of H2 production; 93.29% reduction in operational carbon emissions and 77.82% decrease in direct emissions were achieved by the PEC/r-BiVO4 process compared with large-scale WWTPs, attributed to the restrained generation of CH4 and N2O. The PEC system activated chloride ions in sewage to generate numerous reactive chlorine species and facilitate •OH production, promoting contaminants removal. The PEC system exhibited operational feasibility at varying pH and total suspended solids concentrations and has outstanding reusability and stability, confirming its promising practical potential. This study proposed a novel PEC reaction for reducing operational carbon emissions from saline sewage treatment.
Collapse
Affiliation(s)
- Zexiao Zheng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong999077, China
| | - Justin H K Man
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong999077, China
| | - Irene M C Lo
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong999077, China
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong999077, China
| |
Collapse
|
31
|
Chen Y, Jiang C, Wang Y, Song R, Tan Y, Yang Y, Zhang Z. Sources, Environmental Fate, and Ecological Risks of Antibiotics in Sediments of Asia's Longest River: A Whole-Basin Investigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14439-14451. [PMID: 36169941 DOI: 10.1021/acs.est.2c03413] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This study conducted the first extensive and comprehensive investigation of the whole-scale sedimentary antibiotic concentration, possible drivers, environmental fate, and potential ecological risks in the Yangtze River. Totally, 20 antibiotics were detected in the sediments. Results revealed that the order of antibiotic abundance in sediment was fluoroquinolones > tetracyclines > macrolides > sulfonamides > amphenicols. The total antibiotic concentrations were 0.10-134.4 ng/g (mean: 11.88 ng/g). Of these, fluoroquinolones and tetracyclines were the two dominant antibiotic categories. The dominant occurrence of fluoroquinolones and tetracyclines in sediments suggested that the distribution coefficient (Kd) was one of the important factors to determine their fate. Correlation analysis demonstrated that antibiotic contamination was largely influenced by the local scale of animal husbandry, and the positive correlation between antibiotics and heavy metals was likely driven by their common source of contamination and the complexation. Environmental risk assessment showed that tetracycline and chlortetracycline exhibited potential risks from medium to high in the Yangtze River, although most of the compounds posed minimal and low risks. This work provided a valuable large-scale data set across the whole Yangtze River and revealed the contamination profile of antibiotics. Mitigation and management measures to reduce antibiotic inputs are needed for the Yangtze River basin.
Collapse
Affiliation(s)
- Yulin Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Chunxia Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yile Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Ranran Song
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yang Tan
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, U.K
| |
Collapse
|
32
|
Wang W, Liu Y, Li G, Liu Z, Wong PK, An T. Mechanism insights into bacterial sporulation at natural sphalerite interface with and without light irradiation: The suppressing role in bacterial sporulation by photocatalysis. ENVIRONMENT INTERNATIONAL 2022; 168:107460. [PMID: 35981477 DOI: 10.1016/j.envint.2022.107460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/22/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Unveiling the mechanisms of bacterial sporulation at natural mineral interfaces is crucial to fully understand the interactions of mineral with microorganism in aquatic environment. In this study, the bacterial sporulation mechanisms of Bacillus subtilis (B. subtilis) at natural sphalerite (NS) interface with and without light irradiation were systematically investigated for the first time. Under dark condition, NS was found to inactivate vegetative cells of B. subtilis and promote their sporulation simultaneously. The released Zn2+ from NS was mainly responsible for the bacterial inactivation and sporulation. With light irradiation, the photocatalytic effect from NS could increase the bacterial inactivation efficiency, while the bacterial sporulation efficiency was decreased from 8.1 % to 4.5 %. The photo-generated H2O2 and O2- played the major roles in enhancing bacterial inactivation and suppressing bacterial sporulation process. The intracellular synthesis of dipicolinic acid (DPA) as biomarker for sporulation was promoted by NS in dark, which was suppressed by the photocatalytic effect of NS with light irradiation. The transformation process from vegetative cells to spores was monitored by both 3D-fluerecence EEM and SEM observations. Compared with the NS alone system, the NS/light combined system induced higher level of intracellular ROSs, up-regulated antioxidant enzyme activity and decreased cell metabolism activity, which eventually led to enhanced inactivation of vegetative cells and suppressed bacterial sporulation. These results not only provide in-depth understanding about bacterial sporulation as a new mode of sub-lethal stress response at NS interface, but also shed lights on putting forward suitable strategies for controlling spore-producing bacteria by suppressing their sporulation during water disinfection.
Collapse
Affiliation(s)
- Wanjun Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenni Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Po Keung Wong
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
33
|
Lei Z, Huang Z, Lin Y, Liu Y, Yan Z, Zheng W, Ma H, Dang Z, Feng C. Boosting the oxidative capacity of the Fe(0)/O 2 system via an air-breathing cathode. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129552. [PMID: 35999726 DOI: 10.1016/j.jhazmat.2022.129552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
The corrosion of Fe(0) in the presence of O2 in nature can lead to the oxidation of organic compounds, but the efficiency is very limited. Herein, attempts were made to establish a galvanic system that separates the anodic Fe(0) oxidation reaction and the cathodic O2 reduction reaction using an air-breathing cathode. Compared with the chemical Fe(0)/O2 system, it exhibited a substantially higher capability of destroying a variety of pollutants, such as organic dyes (12 types), phenol, nitrobenzene, acetaminophen, phenol, and ethylenediaminetetraacetic acid. The degradation rate constant of a model dye (i.e., Rhodamine B) increased from 0.047 min-1 (chemical) to 1.412 min-1 (galvanic) under the passive air-breathing condition. The electric circuit design promoted Fe(0) dissolution to Fe(II) and triggered electron transfer that drives O2 reduction to H2O2, two important species responsible for the generation of HO• at high abundance. In addition, the galvanic Fe(0)/O2 system produces electricity while destroying pollutants. Tests with real Ni plating wastewater further demonstrated the capability of the system to oxidize complexed organics and phosphite. This study provides a new strategy for boosting the oxidative capacity of the Fe(0)/O2 system, which shows promise for acid wastewater treatment.
Collapse
Affiliation(s)
- Zhenchao Lei
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Ziyuan Huang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yimin Lin
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yuwei Liu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zhang Yan
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Wenxiao Zheng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Huanxin Ma
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zhi Dang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
34
|
Wang J, Liu C, Sun H, Wang S, Liao X, Zhang L. Membrane disruption boosts iron overload and endogenous oxidative stress to inactivate Escherichia coli by nanoscale zero-valent iron. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128951. [PMID: 35472538 DOI: 10.1016/j.jhazmat.2022.128951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
The inactivation of microorganisms by nanoscale zero-valent iron (nZVI) was extensively reported, but what happens inside the cells is rarely explored. Herein, we revealed that nZVI caused the drastic increase of intracellular iron concentrations, which subsequently catalyzed the Haber-Weiss reaction to produce high levels of endogenous reactive oxygen species (ROSs) and inactivated E. coli cells by oxidative damage of DNA, evidenced by the significantly higher inactivation efficiencies of E. coli mutant strains deficient in iron uptake regulation and DNA repair than the parental strain. The intracellular iron levels, endogenous ROSs levels and the inactivation efficiencies of E. coli were positively correlated. The permeabilized cytomembrane due to the close contact between nZVI and E. coli was responsible for the iron overload. This work demonstrates experimentally for the first time that nZVI causes iron overload and endogenous oxidative stress to inactivate E. coli, thus deepening our knowledge of the nZVI antimicrobial mechanism.
Collapse
Affiliation(s)
- Jian Wang
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Congcong Liu
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Hongwei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Shaohui Wang
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Xiaomei Liao
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China.
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|