1
|
Chen L, Zhao B, Zhang M, Yan Y, Nie C, Yu K, Tu Z, Xia Y. Micron-scale heterogeneity reduction leads to increased interspecies competition in thermophilic digestion microbiome. WATER RESEARCH 2025; 279:123419. [PMID: 40048904 DOI: 10.1016/j.watres.2025.123419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 05/06/2025]
Abstract
Microbial spatial heterogeneity is an important determinant of larger-scale community properties, whereas most studies neglect it and therefore only provide average information, potentially obscuring the signal of microbial interactions. Our study takes a step toward addressing this problem by characterizing the spatial heterogeneity of a microbiome with micron-scale resolution. Micron-scale single clusters (40-70 μm) were randomly collected from lab-scale anaerobic digestion (AD) biosystems, and a comparative analysis was performed to evaluate differences between mesophilic and thermophilic systems. Here we reveal a cascading effect from high-temperature selection to global microbial interactions. We observed that thermophilic communities exhibited less spatial heterogeneity than mesophilic communities, which we attribute to the considerable extinction of low-abundant species by high-temperature selection. Then, the low spatial heterogeneity and the high-temperature selection acting in conjunction resulted in a high proportion of competitive interactions in thermophilic communities. Unexpectedly, however, the thermophilic AD, characterized by lower micron-scale spatial heterogeneity, showed more efficient synergistic and syntrophic cooperations involving around Clostridiales, which significantly enhanced hydrolysis performance under thermophilic conditions. In addition, the fact that high temperatures favor slower growers, along with functional redundancy-related competitive advantage, led to the selection of more proficient methanogens in more competitive environments, which are also potentially associated with enhanced methanogenic performance. In summary, our findings underscore the significance of micron-scale resolution for revealing the microbial ecology in spatially structured environments.
Collapse
Affiliation(s)
- Liming Chen
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bixi Zhao
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Miao Zhang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuxi Yan
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cailong Nie
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kaiqiang Yu
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhihao Tu
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Xia
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Fan Y, Wang D, Yang JX, Ning D, He Z, Zhang P, Rocha AM, Xiao N, Michael JP, Walker KF, Joyner DC, Pan C, Adams MWW, Fields MW, Alm EJ, Stahl DA, Hazen TC, Adams PD, Arkin AP, Zhou J. Modest functional diversity decline and pronounced composition shifts of microbial communities in a mixed waste-contaminated aquifer. MICROBIOME 2025; 13:106. [PMID: 40296156 PMCID: PMC12036129 DOI: 10.1186/s40168-025-02105-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 04/02/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Microbial taxonomic diversity declines with increased environmental stress. Yet, few studies have explored whether phylogenetic and functional diversities track taxonomic diversity along the stress gradient. Here, we investigated microbial communities within an aquifer in Oak Ridge, Tennessee, USA, which is characterized by a broad spectrum of stressors, including extremely high levels of nitrate, heavy metals like cadmium and chromium, radionuclides such as uranium, and extremely low pH (< 3). RESULTS Both taxonomic and phylogenetic α-diversities were reduced in the most impacted wells, while the decline in functional α-diversity was modest and statistically insignificant, indicating a more robust buffering capacity to environmental stress. Differences in functional gene composition (i.e., functional β-diversity) were pronounced in highly contaminated wells, while convergent functional gene composition was observed in uncontaminated wells. The relative abundances of most carbon degradation genes were decreased in contaminated wells, but genes associated with denitrification, adenylylsulfate reduction, and sulfite reduction were increased. Compared to taxonomic and phylogenetic compositions, environmental variables played a more significant role in shaping functional gene composition, suggesting that niche selection could be more closely related to microbial functionality than taxonomy. CONCLUSIONS Overall, we demonstrated that despite a reduced taxonomic α-diversity, microbial communities under stress maintained functionality underpinned by environmental selection. Video Abstract.
Collapse
Affiliation(s)
- Yupeng Fan
- Institute for Environmental Genomics, University of Oklahoma, 101 David L Boren Blvd, Norman, OK, 73019, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Dongyu Wang
- School of Biological Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Joy X Yang
- Institute for Environmental Genomics, University of Oklahoma, 101 David L Boren Blvd, Norman, OK, 73019, USA
| | - Daliang Ning
- Institute for Environmental Genomics, University of Oklahoma, 101 David L Boren Blvd, Norman, OK, 73019, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Zhili He
- Institute for Environmental Genomics, University of Oklahoma, 101 David L Boren Blvd, Norman, OK, 73019, USA
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong, 519080, China
| | - Ping Zhang
- Institute for Environmental Genomics, University of Oklahoma, 101 David L Boren Blvd, Norman, OK, 73019, USA
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrea M Rocha
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Naijia Xiao
- Institute for Environmental Genomics, University of Oklahoma, 101 David L Boren Blvd, Norman, OK, 73019, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Jonathan P Michael
- Institute for Environmental Genomics, University of Oklahoma, 101 David L Boren Blvd, Norman, OK, 73019, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Katie F Walker
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Dominique C Joyner
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Chongle Pan
- School of Biological Sciences, University of Oklahoma, Norman, OK, 73019, USA
- School of Computer Science, University of Oklahoma, Norman, OK, 73019, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Matthew W Fields
- Center for Biofilm Engineering and Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Eric J Alm
- Department of Biological Engineering, Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Terry C Hazen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Paul D Adams
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Adam P Arkin
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, 101 David L Boren Blvd, Norman, OK, 73019, USA.
- School of Biological Sciences, University of Oklahoma, Norman, OK, 73019, USA.
- School of Computer Science, University of Oklahoma, Norman, OK, 73019, USA.
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
3
|
Trinh HP, Lee SH, Nguyen TV, Park HD. Contribution of the microbial community to operational stability in an anammox reactor: Neutral theory and functional redundancy perspectives. BIORESOURCE TECHNOLOGY 2025; 419:132029. [PMID: 39740752 DOI: 10.1016/j.biortech.2024.132029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/17/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
A comprehensive understanding of microbial assembly is essential for achieving stable performance in biological wastewater treatment. Nevertheless, few studies have quantified these phenomena in detail, particularly in anammox-based processes. This study integrated mathematical and microbial approaches to analyze a 330-day anammox reactor with stable nitrogen removal efficiency (97 - 99%) despite changes in the high nitrogen loading rate, nitrogen concentration, and hydraulic retention time. A high value of functional redundancy (0.82) was obtained, with 84.6% of the microbial species following the neutral community model in stochastic processes, thus maintaining the stability of the dominant species and function in the microbial community. This study represents an initial attempt to quantify and evaluate the importance of functional redundancy in an anammox reactor. Based on these findings, engineering strategies have also been proposed to preserve high functional redundancy in stabilizing system performance under varying operating conditions.
Collapse
Affiliation(s)
- Hoang Phuc Trinh
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Sang-Hoon Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Thi Vinh Nguyen
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
4
|
Zhang C, Zhou M, Du H, Li D, Lv D, Hou N. Influence of microbial agents-loaded biochar on bacterial community assembly and heavy metals morphology in sewage sludge compost: Insights from community stability and complexity. BIORESOURCE TECHNOLOGY 2025; 419:132070. [PMID: 39809388 DOI: 10.1016/j.biortech.2025.132070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/25/2024] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
Enhancing the passivation of heavy metals and increasing organic matter content during the composting of sewage sludge poses significant challenges for maximizing its utilization value. Results indicated that in the control, biochar, microbial agents and microbial agents-loaded biochar (BCLMA) groups, BCLMA addition led to a higher composting temperature, with increases of 17-62% in humic acid, 25-73% in germination index, and 30-35% in organic matter consumption. And the residual fraction of Cu, Zn, Cr and Cd were increased by 30%, 12%, 22% and 17%, respectively. Furthermore, BCLMA promotes community cohesion, robustness, and microbial nutrient cycling, and increases the relative abundance of heavy metals-degrading bacteria (Acinetobacter and Corynebacterium) and resistance genes. Structural equation model analysis revealed that heavy metal passivation is attributed to improved community cohesion and robustness, which facilitates the proliferation of heavy metal-resistant microorganisms. These results indicate that community robustness and cohesion are critical for mitigating the heavy metals bioavailability.
Collapse
Affiliation(s)
- Chi Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030 Heilongjiang, China
| | - Mingwei Zhou
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030 Heilongjiang, China
| | - Hang Du
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030 Heilongjiang, China
| | - Dapeng Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030 Heilongjiang, China.
| | - Dongshu Lv
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030 Heilongjiang, China
| | - Ning Hou
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030 Heilongjiang, China.
| |
Collapse
|
5
|
Chen X, Yan A, Lu S, Zhang H, Li D, Jiang X. Accelerated stochastic processes of plankton community assembly due to tidal restriction by seawall construction in the Yangtze River Estuary. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106941. [PMID: 39753010 DOI: 10.1016/j.marenvres.2024.106941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/04/2024] [Accepted: 12/29/2024] [Indexed: 02/09/2025]
Abstract
Seawall construction has complex ecological impacts. However, the ecological mechanisms within plankton communities under tidal restriction resulting from seawall construction remain unexplored. Using environmental DNA (eDNA) metabarcoding, this study examined the impact of seawall construction on the assembly process of planktonic eukaryote and bacteria communities from the unrestricted area and the tide-restricted area in the Chongming Dongtan Nature Reserve of Yangtze River Estuary. While environmental heterogeneity did not exert a significant influence on alpha diversity of plankton, it had a significant impact on community structure. Variation partitioning analysis (VPA) and neutral community model indicated that neither environmental nor spatial factors were predominant drivers of plankton community composition and structure, instead, they were influenced by stochastic processes. Moreover, it was observed that the relative significance of stochastic processes in the tide-restricted area exceeded that in the unrestricted area. High habitat uniformity and water connectivity resulting from seawall construction may facilitate homogenization and spread among high-abundance groups. The results have significant implications for understanding the mechanisms underlying succession and composition, and for improving ecological assessment and remediation efforts in areas impacted by tidal restriction.
Collapse
Affiliation(s)
- Xingyu Chen
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Ailing Yan
- Shanghai Engineering Research Center of Water Environment Simulation and Ecological Restoration, Shanghai Academy of Environmental Science, Shanghai, China
| | - Shiqiang Lu
- Shanghai Engineering Research Center of Water Environment Simulation and Ecological Restoration, Shanghai Academy of Environmental Science, Shanghai, China.
| | - Haoran Zhang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Da Li
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaodong Jiang
- School of Life Sciences, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education and Shanghai Science and Technology Committee, Shanghai, China.
| |
Collapse
|
6
|
Feng C, Lu J, Liu T, Shi X, Zhao S, Lv C, Shi Y, Zhang Z, Jin Y, Pang J, Sun A. Microbial community dynamics in shallow-water grass-type lakes: Habitat succession of microbial ecological assembly and coexistence mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117819. [PMID: 39908866 DOI: 10.1016/j.ecoenv.2025.117819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/05/2025] [Accepted: 01/25/2025] [Indexed: 02/07/2025]
Abstract
Aggregation and co-occurrence patterns of microbial communities are the key scientific issues in lake ecology. To explore the mechanisms of microbial ecological assembly and community succession in this unique habitat, 16 samples were collected from eight sites in Wuliangsuhai Lake. Second-generation DNA sequencing was applied to reveal the spatial dynamics of the bacterial community structure and distribution across two environmental media in this nutrient-rich shallow grassland lake and to elucidate the characteristics of the co-occurrence network. This study also examined the effects of environmental filtering and biological interactions on the formation and maintenance of the community composition and diversity. The results highlight habitat heterogeneity in microbial community composition, with no discernible latitudinal diversity patterns. The causal analysis identified electrical conductivity, pH, total nitrogen, and phosphorus as the primary factors driving changes in the bacterial community structure in the water and sediment of grass-type lakes, with TN being the key environmental driver. CL500-3 was identified as a pollution-tolerant species in aquatic environments. g__norank_f_Verrucomicrobiaceae was identified as a pollution-tolerant species in sediment environments. The bacterial communities exhibited a significant distance decay pattern, with a higher spatial turnover rate in water than in sediment. Co-occurrence network analysis revealed greater complexity and stability in the sediment bacterial communities, with three potential keystone species, than in water. The neutral and null model results indicated that the water bacterial communities were more susceptible to dispersal limitation, whereas more complex interactions in sediment increased the role of deterministic processes in community construction. This study proposed the division of aquatic plant regions in freshwater lakes and demonstrated the community characteristics of different habitat types, contributing to a comprehensive understanding of shallow-water bacterial diversity and community structure.
Collapse
Affiliation(s)
- Chen Feng
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Junping Lu
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot 010018, China.
| | - Tingxi Liu
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot 010018, China.
| | - Xiaohong Shi
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Shengnan Zhao
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Chunjian Lv
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Yujiao Shi
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Zixuan Zhang
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Yuqi Jin
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Jiaqi Pang
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Aojie Sun
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| |
Collapse
|
7
|
Liu Z, Jiang C, Yin Z, Ibrahim IA, Zhang T, Wen J, Zhou L, Jiang G, Li L, Yang Z, Huang Y, Yang Z, Gu Y, Meng D, Yin H. Ecological features of microbial community linked to stochastic and deterministic assembly processes in acid mine drainage. Appl Environ Microbiol 2025; 91:e0102824. [PMID: 39679708 PMCID: PMC11784436 DOI: 10.1128/aem.01028-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/09/2024] [Indexed: 12/17/2024] Open
Abstract
Ecological processes greatly shape microbial community assembly, but the driving factors remain unclear. Here, we compiled a metagenomic data set of microbial communities from global acid mine drainage (AMD) and explored the ecological features of microbial community linked to stochastic and deterministic processes from the perspective of species niche position, interaction patterns, gene functions, and viral infection. Our results showed that dispersal limitation (DL) (48.5%~93.5%) dominated the assembly of phylogenetic bin in AMD microbial community, followed by homogeneous selection (HoS) (3.1%~39.2%), heterogeneous selection (HeS) (1.4%~22.2%), and drift (DR) (0.2%~2.7%). The dominant process of dispersal limitation was significantly influenced by niche position in temperature (r = -0.518, P = 0.007) and dissolved oxygen (r = 0.471, P = 0.015). Network stability had a significantly negative correlation with the relative importance of dispersal limitation, while it had a positive correlation with selection processes, implying changes in network properties could be mediated by ecological processes. Furthermore, we found that ecological processes were mostly related to the gene functions of energy production and conversion (C), and amino acid transport and metabolism (E). Meanwhile, our results showed that the number of proviruses and viral genes involved in arsenic (As) resistance is negatively associated with the relative importance of ecological drift in phylogenetic bin assembly, implying viral infection might weaken ecological drift. Taken together, these results highlight that ecological processes are associated with ecological features at multiple levels, providing a novel insight into microbial community assembly in extremely acidic environments. IMPORTANCE Unraveling the forces driving community assemblage is a core issue in microbial ecology, but how ecological constraints impose stochasticity and determinism remains unknown. This study presents a comprehensive investigation to uncover the association of ecological processes with species niche position, interaction patterns, microbial metabolisms, and viral infections, which provides novel insights into community assembly in extreme environments.
Collapse
Affiliation(s)
- Zhenghua Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, China
| | - Zhuzhong Yin
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | | | - Teng Zhang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Jing Wen
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Lei Zhou
- Hebei Key Laboratory of Highly Efficient Exploitation and Utilization of Radioactive Mineral Resources, Ganchan, China
| | - Guoping Jiang
- Hebei Key Laboratory of Highly Efficient Exploitation and Utilization of Radioactive Mineral Resources, Ganchan, China
| | - Liangzhi Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Zhendong Yang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ye Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, China
| | - Zhaoyue Yang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Yabing Gu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
8
|
Yang G, Chen Y, Ren Q, Liu Q, Ren M, Zheng J, Zhang R, Xia Z, Zhang L, Wan C, Luo X. Remote sensing ecological index (RSEI) affects microbial community diversity in ecosystems of different qualities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176489. [PMID: 39322083 DOI: 10.1016/j.scitotenv.2024.176489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Soil microorganisms are key to ecological environment stability, but climate change and human activities exacerbate ecological environment changes. Therefore, assessment of ecological environment quality impacts on microbial diversity is needed. The Tarim River is the largest inland river in China and plays a crucial role in supporting regional biodiversity, maintaining ecological balance, and preventing desertification. In this study, we used the Remote Sensing-based Ecological Index (RSEI) to assess the ecological quality of habitats in the Tarim River Basin and explore the effects of habitat quality (extreme, semi-extreme, and general) on the structural diversity of microbial (bacterial and fungal) communities, biogeographic patterns, co-occurrence networks, and community assembly processes. Study results show that soil physicochemical characteristics varied significantly with habitat quality; highly resilient microorganisms are more abundant in habitats with low ecological quality. RSEI affects changes in microbial communities, and the positive correlation ratio of the network is inversely proportional to RSEI. The interspecific relationships of microbial communities in the Tarim River Basin are dominated by positive correlations, and community assembly is strongly influenced by stochastic processes. RSEI directly affects soil microbial diversity, with its contribution to both bacterial and fungal diversity being 0.27. Total nitrogen (TN) also directly affects microbial diversity, with effects of 0.11 on bacteria and 0.07 on fungi, respectively. This study provides scientific evidence and technical support for understanding microbial diversity in environments and for the development of regional sustainable development policies.
Collapse
Affiliation(s)
- Guo Yang
- Key Laboratory of Conservation and Utilization of Biological Resources in the Tarim Basin, Alar, Xinjiang 843300, China; College of Life Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Yihuang Chen
- Key Laboratory of Conservation and Utilization of Biological Resources in the Tarim Basin, Alar, Xinjiang 843300, China; College of Life Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Qiang Ren
- Key Laboratory of Conservation and Utilization of Biological Resources in the Tarim Basin, Alar, Xinjiang 843300, China; College of Life Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Qin Liu
- Key Laboratory of Conservation and Utilization of Biological Resources in the Tarim Basin, Alar, Xinjiang 843300, China; College of Life Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Min Ren
- Key Laboratory of Conservation and Utilization of Biological Resources in the Tarim Basin, Alar, Xinjiang 843300, China; College of Life Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Jinshui Zheng
- School of Computer Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ruili Zhang
- College of Food Science and Engineering, Tarim University, Alar, Xinjiang 843300, China
| | - Zhanfeng Xia
- Key Laboratory of Conservation and Utilization of Biological Resources in the Tarim Basin, Alar, Xinjiang 843300, China; College of Life Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Lili Zhang
- Key Laboratory of Conservation and Utilization of Biological Resources in the Tarim Basin, Alar, Xinjiang 843300, China; College of Life Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Chuanxing Wan
- Key Laboratory of Conservation and Utilization of Biological Resources in the Tarim Basin, Alar, Xinjiang 843300, China; College of Life Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Xiaoxia Luo
- Key Laboratory of Conservation and Utilization of Biological Resources in the Tarim Basin, Alar, Xinjiang 843300, China; College of Life Science and Technology, Tarim University, Alar, Xinjiang 843300, China.
| |
Collapse
|
9
|
Xu L, Chen H, Sun J, Wu Z, Zhou X, Cheng H, Chen Z, Zhou H, Wang Y. Enrichment of marine microbes to remove nitrogen of urea wastewater under salinity stress. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122940. [PMID: 39423622 DOI: 10.1016/j.jenvman.2024.122940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/04/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Salinity (NaCl) and urea concentration significantly affect the diversity, structural and physiological function of microbial communities in the biological treatment of wastewater. However, the responses of microbial in high salt and urea wastewater remain elusive. Here, we investigated microbial community function and assembly of four regions using gradient domestication experiment combined with 16S rRNA gene sequencing and statistical methods. The results showed that with the increase of salinity and urea concentration, the consortium Xiamen could still remove most urea, while the other three consortia could not. The alpha diversity of microbial community initially decreased and then increased, showing a recovery trend. After domestication, the consortium Xiamen exhibited high physiological activity and complex network structure, and the community assembly process changed from stochastic to deterministic during the domestication. Furthermore, the keystones with low abundance were associated with urea removal and important for maintain the complexity of the networks, while Arenibacter and Oceanimonas were found to be keystones in maintaining efficient urea removal in harsh environments. To sum up, environmental effects dominated by salinity and urea concentration stress drove the community assembly and species coexistence that underpinned the microbial differentiation pattern at a geographic scale. These results provided new sights for elucidate how microbial response to salinity and urea during wastewater treatment.
Collapse
Affiliation(s)
- Longqi Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Hui Chen
- Institute of Zhejiang University-Quzhou, Quzhou, 32400, China
| | - Jianxing Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Zhiqiang Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Xiangdan Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China.
| |
Collapse
|
10
|
Qin Z, Ke X, Wei C, Zhang H, Pang Z, Chen A, Wei C, Luo P, Qiu G. Energy-Saving Mechanism of Wastewater Treatment Process Adaptation on Natural Temperature Variation: The Case from Coking Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16399-16409. [PMID: 39235209 DOI: 10.1021/acs.est.4c04155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The cyclical variations in environmental temperature generated by natural rhythms constantly impact the wastewater treatment process through the aeration system. Engineering data show that fluctuations in environmental temperature cause the reactor temperature to drop at night, resulting in increased dissolved oxygen concentration and improved effluent wastewater quality. However, the impact of natural temperature variation on wastewater treatment systems and the energy-saving potential has yet to be fully recognized. Here, we conducted a comprehensive study, using a full-scale oxic-hydrolytic and denitrification-oxic (OHO) coking wastewater treatment process as a case and developed a dynamic aeration model integrating thermodynamics and kinetics to elucidate the energy-saving mechanisms of wastewater treatment systems in response to diurnal temperature variations. Our case study results indicate that natural diurnal temperature variations can cut the energy consumption of 660,980 kWh annually (up to 30%) for the aeration unit in the OHO system. Wastewater treatment facilities located in regions with significant environmental temperature variation stand to benefit more from this energy-saving mechanism. Methods such as flow dynamic control, load shifting, and process unit editing can be fitted into the new or retrofitted wastewater treatment engineering.
Collapse
Affiliation(s)
- Zhi Qin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Xiong Ke
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Heng Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Zijun Pang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Acong Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Cong Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 510006, P. R. China
| | - Pei Luo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
- Shenzhen Research Academy of Environmental Sciences, Shenzhen 518000, P. R. China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
11
|
Zhu A, Liang Z, Gao L, Xie Z. Dispersal limitation determines the ecological processes that regulate the seasonal assembly of bacterial communities in a subtropical river. Front Microbiol 2024; 15:1430073. [PMID: 39252829 PMCID: PMC11381306 DOI: 10.3389/fmicb.2024.1430073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Bacteria play a crucial role in pollutant degradation, biogeochemical cycling, and energy flow within river ecosystems. However, the underlying mechanisms governing bacterial community assembly and their response to environmental factors at seasonal scales in subtropical rivers remain poorly understood. In this study, we conducted 16S rRNA gene amplicon sequencing on water samples from the Liuxi River to investigate the composition, assembly processes, and co-occurrence relationships of bacterial communities during the wet season and dry season. The results demonstrated that seasonal differences in hydrochemistry significantly influenced the composition of bacterial communities. A more heterogeneous community structure and increased alpha diversity were observed during the dry season. Water temperature emerged as the primary driver for seasonal changes in bacterial communities. Dispersal limitation predominantly governed community assembly, however, during the dry season, its contribution increased due to decreased immigration rates. Co-occurrence network analysis reveals that mutualism played a prevailing role in shaping bacterial community structure. Compared to the wet season, the network of bacterial communities exhibited higher modularity, competition, and keystone species during the dry season, resulting in a more stable community structure. Although keystone species displayed distinct seasonal variations, Proteobacteria and Actinobacteria were consistently abundant keystone species maintaining network structure in both seasons. Our findings provide insights into how bacterial communities respond to seasonal environmental changes, uncovering underlying mechanisms governing community assembly in subtropical rivers, which are crucial for the effective management and conservation of riverine ecosystems.
Collapse
Affiliation(s)
- Aiping Zhu
- School of Geography and Tourism, Anhui Normal University, Wuhu, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Chinese Academy of Sciences, Guangzhou, China
| | - Zuobing Liang
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Lei Gao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Chinese Academy of Sciences, Guangzhou, China
| | - Zhenglan Xie
- School of Geomatics and Municipal Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, China
| |
Collapse
|
12
|
Sun J, Zhou H, Cheng H, Chen Z, Wang Y. Distinct strategies of the habitat generalists and specialists in the Arctic sediments: Assembly processes, co-occurrence patterns, and environmental implications. MARINE POLLUTION BULLETIN 2024; 205:116603. [PMID: 38885575 DOI: 10.1016/j.marpolbul.2024.116603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 12/25/2023] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Microorganisms could be classified as habitat generalists and specialists according to their niche breadth, uncovering their survival strategy is a crucial topic in ecology. Here, differences in environmental adaptation, community assemblies, co-occurrence patterns, and ecological functions between generalists and specialists were explored in the Arctic marine sediments. Compared to specialists, generalists showed lower alpha diversity but stronger environmental adaption, and dispersal limitation contributed more to the community assembly of specialists (74 %) than generalists (46 %). Furthermore, the neutral theory model demonstrated that generalists (m = 0.20) had a higher immigration rate than specialists (m = 0.02), but specialists exhibited more complex co-occurrence patterns than generalists. Our results also found that generalists may play more important roles in C, N, S metabolism but are weaker in carbon fixation and xenobiotic biodegradation and metabolism. This study would broaden our understanding of bacterial generalists' and specialists' survival strategies, and further reveal their ecological functions in marine sediments.
Collapse
Affiliation(s)
- Jianxing Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China
| | - Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China.
| |
Collapse
|
13
|
He Q, Zhang Q, Su J, Li M, Lin B, Wu N, Shen H, Chen J. Unraveling the mechanisms and responses of aniline-degrading biosystem to salinity stress in high temperature condition: Pollutants removal performance and microbial community. CHEMOSPHERE 2024; 362:142688. [PMID: 38942243 DOI: 10.1016/j.chemosphere.2024.142688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
To explore the intrinsic influence of different salinity content on aniline biodegradation system in high temperature condition of 35 ± 1 °C, six groups at various salinity concentration (0.0%-5.0%) were applied. The results showed that the salinity exerted insignificant impact on aniline removal performance. The low-level salinity (0.5%-1.5%) stimulated the nitrogen metabolism performance. The G5-2.5% had excellent adaptability to salinity while the nitrogen removal capacity of G6-5.0% was almost lost. Moreover, high throughput sequencing analysis revealed that the g__norank_f__NS9_marine_group, g__Thauera and g__unclassified_f__Rhodobacteraceae proliferated wildly and established positive correlation each other in low salinity systems. The g__SM1A02 occupying the dominant position in G5 ensured the nitrification performance. In contrast, the Rhodococcus possessing great survival advantage in tremendous osmotic pressure competed with most functional genus, triggering the collapse of nitrogen metabolism capacity in G6. This work provided valuable guidance for the aniline wastewater treatment under salinity stress in high temperature condition.
Collapse
Affiliation(s)
- Qi He
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan, 572024, PR China.
| | - Junhao Su
- China Energy Engineering Group Guangdong Electric Power Design Institute Co., Ltd., Guangzhou, 510663, Guangdong, PR China
| | - Meng Li
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan, 572024, PR China
| | - Bing Lin
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Nanping Wu
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Haonan Shen
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jiajing Chen
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan, 572024, PR China
| |
Collapse
|
14
|
Xu Q, Jiang Y, Wang J, Deng R, Yue Z. Temperature-Driven Activated Sludge Bacterial Community Assembly and Carbon Transformation Potential: A Case Study of Industrial Plants in the Yangtze River Delta. Microorganisms 2024; 12:1454. [PMID: 39065222 PMCID: PMC11278906 DOI: 10.3390/microorganisms12071454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Temperature plays a critical role in the efficiency and stability of industrial wastewater treatment plants (WWTPs). This study focuses on the effects of temperature on activated sludge (AS) communities within the A2O process of 19 industrial WWTPs in the Yangtze River Delta, a key industrial region in China. The investigation aims to understand how temperature influences AS community composition, functional assembly, and carbon transformation processes, including CO2 emission potential. Our findings reveal that increased operating temperatures lead to a decrease in alpha diversity, simplifying community structure and increasing modularity. Dominant species become more prevalent, with significant decreases in the relative abundance of Chloroflexi and Actinobacteria, and increases in Bacteroidetes and Firmicutes. Moreover, higher temperatures enhance the overall carbon conversion potential of AS, particularly boosting CO2 absorption in anaerobic conditions as the potential for CO2 emission during glycolysis and TCA cycles grows and diminishes, respectively. The study highlights that temperature is a major factor affecting microbial community characteristics and CO2 fluxes, with more pronounced effects observed in anaerobic sludge. This study provides valuable insights for maintaining stable A2O system operations, understanding carbon footprints, and improving COD removal efficiency in industrial WWTPs.
Collapse
Affiliation(s)
- Qingsheng Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (Q.X.); (Y.J.); (J.W.); (R.D.)
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Yifan Jiang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (Q.X.); (Y.J.); (J.W.); (R.D.)
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (Q.X.); (Y.J.); (J.W.); (R.D.)
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Rui Deng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (Q.X.); (Y.J.); (J.W.); (R.D.)
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (Q.X.); (Y.J.); (J.W.); (R.D.)
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
15
|
Zhong L, Sun HJ, Pang JW, Ding J, Zhao L, Xu W, Yuan F, Zhang LY, Ren NQ, Yang SS. Ciprofloxacin affects nutrient removal in manganese ore-based constructed wetlands: Adaptive responses of macrophytes and microbes. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134579. [PMID: 38761761 DOI: 10.1016/j.jhazmat.2024.134579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/28/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
Ciprofloxacin (CIP) has received considerable attention in recent decades due to its high ecological risk. However, little is known about the potential response of macrophytes and microbes to varying levels of CIP exposure in constructed wetlands. Therefore, lab-scale manganese ore-based tidal flow constructed wetlands (MO-TFCWs) were operated to evaluate the responses of macrophytes and microbes to CIP over the long term. The results indicated that total nitrogen removal improved from 79.93% to 87.06% as CIP rose from 0 to 4 mg L-1. The chlorophyll content and antioxidant enzyme activities in macrophytes were enhanced under CIP exposure, but plant growth was not inhibited. Importantly, CIP exposure caused a marked evolution of the substrate microbial community, with increased microbial diversity, expanded niche breadth and enhanced cooperation among the top 50 genera, compared to the control (no CIP). Co-occurrence network also indicated that microorganisms may be more inclined to co-operate than compete. The abundance of the keystone bacterium (involved in nitrogen transformation) norank_f__A0839 increased from 0.746% to 3.405%. The null model revealed drift processes (83.33%) dominated the community assembly with no CIP and 4 mg L-1 CIP. Functional predictions indicated that microbial carbon metabolism, electron transfer and ATP metabolism activities were enhanced under prolonged CIP exposure, which may contribute to nitrogen removal. This study provides valuable insights that will help achieve stable nitrogen removal from wastewater containing antibiotic in MO-TFCWs.
Collapse
Affiliation(s)
- Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Han-Jun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Digital Technology Co., Ltd., Beijing 100096, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Xu
- General Water of China Co., Ltd., Beijing 100022, China
| | - Fang Yuan
- General Water of China Co., Ltd., Beijing 100022, China
| | - Lu-Yan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
16
|
Yu Y, Guo Q, Zhang S, Guan Y, Jiang N, Zhang Y, Mao R, Bai K, Buriyev S, Samatov N, Zhang X, Yang W. Maize residue retention shapes soil microbial communities and co-occurrence networks upon freeze-thawing cycles. PeerJ 2024; 12:e17543. [PMID: 38887621 PMCID: PMC11182024 DOI: 10.7717/peerj.17543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/19/2024] [Indexed: 06/20/2024] Open
Abstract
Maize residue retention is an effective agricultural practice for improving soil fertility in black soil region, where suffered from long freezing-thawing periods and intense freeze-thawing (FT) cycles. However, very few studies have examined the influence of maize residue retention on soil microbial communities under FT cycles. We investigated the response of soil microbial communities and co-occurrence networks to maize residue retention at different FT intensities over 12 cycles using a microcosm experiment conditioned in a temperature incubator. Our results indicated that maize residue retention induced dramatic shifts in soil archaeal, bacterial and fungal communities towards copiotroph-dominated communities. Maize residue retention consistently reduced soil fungal richness across all cycles, but this effect was weaker for archaea and bacteria. Normalized stochastic ratio analysis revealed that maize residue retention significantly enhanced the deterministic process of archaeal, bacterial and fungal communities. Although FT intensity significantly impacted soil respiration, it did not induce profound changes in soil microbial diversity and community composition. Co-occurrence network analysis revealed that maize residue retention simplified prokaryotic network, while did not impact fungal network complexity. The network robustness index suggested that maize residue retention enhanced the fungal network stability, but reduced prokaryotic network stability. Moreover, the fungal network in severe FT treatment harbored the most abundant keystone taxa, mainly being cold-adapted fungi. By identifying modules in networks, we observed that prokaryotic Module #1 and fungal Module #3 were enhanced by maize residue retention and contributed greatly to soil quality. Together, our results showed that maize residue retention exerted stronger influence on soil microbial communities and co-occurrence network patterns than FT intensity and highlighted the potential of microbial interactions in improving soil functionality.
Collapse
Affiliation(s)
- Yang Yu
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Quankuan Guo
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Shuhan Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yupeng Guan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nana Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Yang Zhang
- College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Rong Mao
- College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Keyu Bai
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Salimjan Buriyev
- Institute of Environment and Nature Conservation Technologies of the Ministry of Ecology, Environmental Protection, and Climate Change of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Nuriddin Samatov
- Institute of Environment and Nature Conservation Technologies of the Ministry of Ecology, Environmental Protection, and Climate Change of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Ximei Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Xue J, Ma H, Dong X, Shi K, Zhou X, Qiao Y, Gao Y, Liu Y, Feng Y, Jiang Q. Insights into the response of electroactive biofilm with petroleum hydrocarbons degradation ability to quorum sensing signals. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134407. [PMID: 38677122 DOI: 10.1016/j.jhazmat.2024.134407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/01/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Bioelectrochemical technologies based on electroactive biofilms (EAB) are promising for petroleum hydrocarbons (PHs) remediation as anode can serve as inexhaustible electron acceptor. However, the toxicity of PHs might inhibit the formation and function of EABs. Quorum sensing (QS) is ideal for boosting the performance of EABs, but its potential effects on reshaping microbial composition of EABs in treating PHs are poorly understood. Herein, two AHL signals, C4-HSL and C12-HSL, were employed to promote EABs for PHs degradation. The start-times of AHL-mediated EABs decreased by 18-26%, and maximum current densities increased by 28-63%. Meanwhile, the removal of total PHs increased to over 90%. AHLs facilitate thicker and more compact biofilm as well as higher viability. AHLs enhanced the electroactivity and direct electron transfer capability. The total abundance of PH-degrading bacteria increased from 52.05% to 75.33% and 72.02%, and the proportion of electroactive bacteria increased from 26.14% to 62.72% and 63.30% for MFC-C4 and MFC-C12. Microbial networks became more complex, aggregated, and stable with addition of AHLs. Furthermore, AHL-stimulated EABs showed higher abundance of genes related to PHs degradation. This work advanced our understanding of AHL-mediated QS in maintaining the stable function of microbial communities in the biodegradation process of petroleum hydrocarbons.
Collapse
Affiliation(s)
- Jianliang Xue
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, China; Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, Shandong 256600, China
| | - Han Ma
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Xing Dong
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Ke Shi
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Xiaoyu Zhou
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yanlu Qiao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, China
| | - Yu Gao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, China
| | - Yang Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yujie Feng
- School of Environment, Harbin Institute of Technology, Harbin 256600, China
| | - Qing Jiang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, China; Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, Shandong 256600, China.
| |
Collapse
|
18
|
Fu Y, Wu J, Wu Y, Yang B, Wang X, Xu R, Meng F. Development of a novel membrane-based quorum-quenching microbial isolator for biofouling control: Process performance and microbial mechanism. BIORESOURCE TECHNOLOGY 2024; 402:130817. [PMID: 38723725 DOI: 10.1016/j.biortech.2024.130817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Quorum quenching (QQ) can mitigate biofouling in membrane bioreactors (MBRs) by inhibiting cell-to-cell communication. However, it is difficult to maintain long-term QQ activity. Here, a novel microbial isolator composed of tubular microfiltration membranes was developed to separate QQ bacteria (Rhodococcus sp. BH4) from sludge. The time to reach a transmembrane pressure of 50 kPa was delayed by 69.55 % (p = 0.002, Student's t test) in MBR with QQ microbial isolator (MBR-Q), compared to that in the control MBR (MBR-C) during stable operation. The concentration of proteins in the extracellular polymeric substances of sludge was reduced by 20.61 % in MBR-Q relative to MBR-C. The results of the bacterial community analyses indicated less enrichment of fouling-associated bacteria (e.g., Acinetobacter) but a higher abundance of QQ enzymes in MBR-Q than in MBR-C. This environmentally friendly technique can decrease the cleaning frequency and increase the membrane lifespan, thus improving the sustainability of MBR technology.
Collapse
Affiliation(s)
- Yue Fu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Jiajie Wu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Yingxin Wu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Boyi Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Xiaolong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China.
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| |
Collapse
|
19
|
Zhong L, Yang SS, Sun HJ, Cui CH, Wu T, Pang JW, Zhang LY, Ren NQ, Ding J. New insights into substrates shaped nutrients removal, species interactions and community assembly mechanisms in tidal flow constructed wetlands treating low carbon-to-nitrogen rural wastewater. WATER RESEARCH 2024; 256:121600. [PMID: 38640563 DOI: 10.1016/j.watres.2024.121600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/28/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
A limited understanding of microbial interactions and community assembly mechanisms in constructed wetlands (CWs), particularly with different substrates, has hampered the establishment of ecological connections between micro-level interactions and macro-level wetland performance. In this study, CWs with distinct substrates (zeolite, CW_A; manganese ore, CW_B) were constructed to investigate the nutrient removal efficiency, microbial interactions, metabolic mechanisms, and ecological assembly for treating rural sewage with a low carbon-to-nitrogen ratio. CW_B showed higher removal of ammonia nitrogen and total nitrogen by about 1.75-6.75 % and 3.42-5.18 %, respectively, compared to CW_A. Candidatus_Competibacter (denitrifying glycogen-accumulating bacteria) was the dominant microbial genus in CW_A, whereas unclassified_f_Blastocatellaceae (involved in carbon and nitrogen transformation) dominated in CW_B. The null model revealed that stochastic processes (drift) dominated community assembly in both CWs; however, deterministic selection accounted for a higher proportion in CW_B. Compared to those in CW_A, the interactions between microbes in CW_B were more complex, with more key microbes involved in carbon, nitrogen, and phosphorus conversion; the synergistic cooperation of functional bacteria facilitated simultaneous nitrification-denitrification. Manganese ores favour biofilm formation, increase the activity of the electron transport system, and enhance ammonia oxidation and nitrate reduction. These results elucidated the ecological patterns exhibited by microbes under different substrate conditions thereby contributing to our understanding of how substrates shape distinct microcosms in CW systems. This study provides valuable insights for guiding the future construction and management of CWs.
Collapse
Affiliation(s)
- Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Han-Jun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chen-Hao Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group Co., Ltd., Beijing 100096, China; China Energy Conservation and Environmental Protection Group, CECEP Digital Technology Co., Ltd., Beijing 100096, China
| | - Lu-Yan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
20
|
Xu C, Zhang Y, Hu C, Shen C, Li F, Xu Y, Liu W, Shi D. From disinfection to pathogenicity: Occurrence, resistome risks and assembly mechanism of biocide and metal resistance genes in hospital wastewaters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123910. [PMID: 38570158 DOI: 10.1016/j.envpol.2024.123910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/20/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
Hospital wastewaters (HWWs) represent critical reservoir for the accumulation and propagation of resistance genes. However, studies on biocide and metal resistance genes (BMRGs) and their associated resistome risks and driving mechanisms in HWWs are still in their infancy. Here, metagenomic assembly was firstly used to investigate host pathogenicity and transferability profiles of BMGRs in a typical HWWs system. As a result, genes conferring resistance to Ethidium Bromide, Benzylkonium Chloride, and Cetylpyridinium Chloride dominated biocide resistance genes (BRGs), whereas Cu resistance gene was the largest contributor of metal resistance genes (MRGs). Most BMRGs experienced significant reduction from anoxic-aerobic treatment to sedimentation stages but exhibited enrichment after chlorine disinfection. Network analysis indicated intense interactions between BMRGs and virulence factors (VFs). Polar_flagella, belonging to the adherence was identified to play important role in the network. Contig-based analysis further revealed noteworthy shifts in host associations along the treatment processes, with Pseudomonadota emerging as the primary carrier, hosting 91.1% and 85.3% of the BRGs and MRGs. A total of 199 opportunistic pathogens were identified to carry 285 BMRG subtypes, which mainly included Pseudomonas alcaligenes, Pseudomonas lundensis, and Escherichia coli. Notably, ruvB conferring resistance to Cr, Cetylpyridinium Chloride, and Dodine were characterized with the highest frequency carried by pathogens. Diverse co-occurrence patterns between BMRGs and mobile genetic elements (MGEs) were found from the raw influent to final effluent. Overall, 10.5% BRGs and 8.84% MRGs were mobile and among the 4 MGEs, transposase exhibited the greatest potential for the BMRGs dissemination. Furthermore, deterministic processes played a dominant role in bacterial communities and BMRGs assembly in HWWs. Bacterial communities contributed more than MGEs in shaping the resistome. Taken together, this work demonstrated widespread BMRGs pollution throughout the HWWs treatment system, emphasizing the potential for informing resistome risk and ecological mechanism in medical practice.
Collapse
Affiliation(s)
- Chenye Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yibo Zhang
- Department of Infection Control, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chun Hu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Chensi Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Fang Li
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yumin Xu
- Department of Infection Control, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Dake Shi
- Department of Infection Control, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
21
|
Tian W, Li Q, Luo Z, Wu C, Sun B, Zhao D, Chi S, Cui Z, Xu A, Song Z. Microbial community structure in a constructed wetland based on a recirculating aquaculture system: Exploring spatio-temporal variations and assembly mechanisms. MARINE ENVIRONMENTAL RESEARCH 2024; 197:106413. [PMID: 38507984 DOI: 10.1016/j.marenvres.2024.106413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/10/2024] [Accepted: 02/17/2024] [Indexed: 03/22/2024]
Abstract
The diversity, composition and performance of microbial communities within constructed wetlands (CW) were markedly influenced by spatio-temporal variations. A pilot-scale integrated vertical-flow constructed wetland (IVCW) as the biological purification unit within a recirculating aquaculture system (RAS) was established and monitored in this study. The investigation aimed to elucidate the responses of community structure, co-occurrence networks, and assembly mechanisms of the microbial community to spatial and temporal changes. Spatially, all a-diversity indices and microbial networks complexity were significantly higher in the upstream pool of the IVCW than in the downstream pool. Temporally, the richness increased over time, while the evenness showed a decreasing trend. The number of nodes and edges of microbial networks increased over time. Notably, the stable pollutant removal efficiencies were observed during IVCW operations, despite a-diversity and bacterial community networks exhibited significant variations across time. Functional redundancy emerged as a likely mechanism contributing to the stability of microbial ecosystem functions. Null model and neutral model analyses revealed the dominance of deterministic processes shaping microbial communities over time, with deterministic influences being more pronounced at lower a-diversity levels. DO and inorganic nitrogen emerged as the principal environmental factor influencing microbial community dynamics. This study provides a theoretical foundation for the regulation of microbial communities and environmental factors within the context of IVCW.
Collapse
Affiliation(s)
- Wenjie Tian
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Qiufen Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| | - Zijun Luo
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Chao Wu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Bo Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Danting Zhao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Saisai Chi
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Zhengguo Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Ailing Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Zhiwen Song
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| |
Collapse
|
22
|
Li W, Xia Y, Li N, Chang J, Liu J, Wang P, He X. Temporal assembly patterns of microbial communities in three parallel bioreactors treating low-concentration coking wastewater with differing carbon source concentrations. J Environ Sci (China) 2024; 137:455-468. [PMID: 37980030 DOI: 10.1016/j.jes.2023.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 11/20/2023]
Abstract
Carbon source is an important factor of biological treatment systems, the effects of which on their temporal community assembly patterns are not sufficiently understood currently. In this study, the temporal dynamics and driving mechanisms of the communities in three parallel bioreactors for low-concentration coking wastewater (CWW) treatment with differing carbon source concentrations (S0 with no glucose addition, S1 with 200 mg/L glucose addition and S2 with 400 mg/L glucose addition) were comprehensively studied. High-throughput sequencing and bioinformatics analyses including network analysis and Infer Community Assembly Mechanisms by Phylogenetic bin-based null model (iCAMP) were used. The communities of three systems showed turnover rates of 0.0029∼0.0034 every 15 days. Network analysis results showed that the S0 network showed higher positive correlation proportion (71.43%) and clustering coefficient (0.33), suggesting that carbon source shortage in S0 promoted interactions and cooperation of microbes. The neutral community model analysis showed that the immigration rate increased from 0.5247 in S0 to 0.6478 in S2. The iCAMP analysis results showed that drift (45.89%) and homogeneous selection (31.68%) dominated in driving the assembly of all the investigated microbial communities. The contribution of homogeneous selection increased with the increase of carbon source concentrations, from 27.92% in S0 to 36.08% in S2. The OTUs participating in aerobic respiration and tricarboxylic acid (TCA) cycle were abundant among the bins mainly affected by deterministic processes, while those related to the metabolism of refractory organic pollutants in CWW such as alkanes, benzenes and phenols were abundant in the bins dominated by stochastic processes.
Collapse
Affiliation(s)
- Weijia Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Yu Xia
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China.
| | - Na Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Jie Chang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Jing Liu
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Pei Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Xuwen He
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| |
Collapse
|
23
|
Niu X, Wang H, Wang T, Zhang P, Zhang H, Wang H, Kong X, Xie S, Xu J. The combination of multiple environmental stressors strongly alters microbial community assembly in aquatic ecosystems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119594. [PMID: 37995485 DOI: 10.1016/j.jenvman.2023.119594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/14/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Microorganisms play a critical role in maintaining the delicate balance of ecosystem services. However, the assembly processes that shape microbial communities are vulnerable to a range of environmental stressors, such as climate change, eutrophication, and the use of herbicides. Despite the importance of these stressors, little is known about their cumulative impacts on microbial community assembly in aquatic ecosystems. To address this knowledge gap, we established 48 mesocosm experiments that simulated shallow lake ecosystems and subjected them to warming (including continuous warming (W) and heat waves (H)), glyphosate-based herbicides (G), and nutrient loading (E). Our study revealed that in the control group, both deterministic and stochastic processes codominated the assembly of microbial communities in water, whereas in sediment, the processes were primarily stochastic. Interestingly, the effects of multiple stress factors on assembly in these two habitats were completely opposite. Specifically, stressors promoted the dominance of stochastic processes in water but increased the importance of deterministic processes in sediment. Furthermore, warming amplified the effects of herbicides but exerted an opposite and stronger influence on assembly compared to nutrients, emphasizing the complexity of these mechanisms and the significance of considering multiple stressors. The interaction of some factors significantly affected assembly (p < 0.05), with the effects of WEG being most pronounced in water. Both water and sediment exhibited homogeneous assembly of microbial communities (mean NTI >0), but the phylogenetic clustering of microbial communities in water was more closely related (NTI >2). Our research revealed the response model of microbial community assembly in aquatic ecosystems to multiple environmental stresses, such as agricultural pollution, climate change, and eutrophication, and indicated that microbial community changes in sediment may be an important predictor of lake ecosystem development. This provides scientific evidence that better environmental management can reduce impacts on aquatic ecosystems under the threat of future warming.
Collapse
Affiliation(s)
- Xiaofeng Niu
- School of Marine Biology and Fisheries, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, PR China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Huan Wang
- School of Marine Biology and Fisheries, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, PR China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Tao Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Peiyu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Huan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Hongxia Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Xianghong Kong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Songguang Xie
- School of Marine Biology and Fisheries, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, PR China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Jun Xu
- School of Marine Biology and Fisheries, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, PR China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| |
Collapse
|
24
|
Chen C, Li P, Yin M, Wang J, Sun Y, Ju W, Liu L, Li ZH. Deciphering characterization of seasonal variations in microbial communities of marine ranching: Diversity, co-occurrence network patterns, and assembly processes. MARINE POLLUTION BULLETIN 2023; 197:115739. [PMID: 37925991 DOI: 10.1016/j.marpolbul.2023.115739] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/25/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Offshore coastal marine ranching ecosystems are one of the most productive ecosystems. The results showed that the composition and structure of the microbial communities varied considerably with the season. Co-occurrence network analysis demonstrated that the microbial network was more complex in summer and positively correlated links (cooperative or symbiotic) were dominated in autumn and winter. Null model indicated that the ecological processes of the bacterial communities were mainly governed by deterministic processes (mainly homogeneous selection) in summer. For microeukaryotic communities, assembly processes were more regulated by stochastic processes in all seasons. For rare taxa, assembly processes were regulated by stochastic processes and were not affected by seasonality. Changes in water temperature due to seasonal variations were the main, but not the only, environmental factor driving changes in microbial communities. This study will improve the understanding of offshore coastal ecosystems through the perspective of microbial ecology.
Collapse
Affiliation(s)
- Chengzhuang Chen
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Minghao Yin
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jinxin Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Yongjun Sun
- Homey Group Co. Ltd, Rongcheng, Shandong 264306, China
| | - Wenming Ju
- Homey Group Co. Ltd, Rongcheng, Shandong 264306, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
25
|
Chen J, Xiao Q, Xu D, Li Z, Chao L, Li X, Liu H, Wang P, Zheng Y, Liu X, Qu H, Bao Y. Soil microbial community composition and co-occurrence network responses to mild and severe disturbances in volcanic areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165889. [PMID: 37524180 DOI: 10.1016/j.scitotenv.2023.165889] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
Soil physicochemical properties and vegetation types are the main factors affecting soil microorganisms, but there are few studies on the effects of the disturbance following volcanic eruption. To make up for this lack of knowledge, we used Illumina Miseq high-throughput sequencing to study the characteristics of soil microorganisms on both shores of a volcanically disturbed lake. Soil microorganisms in the two sites were subjected to different degrees of volcanic disturbance and showed significant heterogeneity. Mild volcanic disturbance area had higher enrichment of prokaryotic community. Co-occurrence network analysis showed that a total of 12 keystone taxa (9 prokaryotes and 3 fungi) were identified, suggesting that soil prokaryote may play a more significant role than fungi in overall community structure and function. Compared with severe volcanic disturbance area, the soil microbial community in mild volcanic disturbance area had the higher modular network (0.327 vs 0.291). The competition was stronger (positive/negative link ratio, P/N: 1.422 vs 1.159). Random forest analysis showed that soil superoxide dismutase was the most significant variable associated with soil microbial community. Structural equation model (SEM) results showed that keystone had a directly positive effect on prokaryotic (λ = 0.867, P < 0.001) and fungal (λ = 0.990, P < 0.001) multifunctionality while had also a directly positive effect on fungal diversity (λ = 0.553, P < 0.001), suggesting that keystone taxa played a key role in maintaining ecosystem stability. These results were important for understanding the effects of different levels of volcanic disturbance on soil ecosystems.
Collapse
Affiliation(s)
- Jin Chen
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Qingchen Xiao
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Daolong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Zishan Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Lumeng Chao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Haijing Liu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Pengfei Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Yaxin Zheng
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Xinyan Liu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Hanting Qu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Yuying Bao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China.
| |
Collapse
|
26
|
Sun J, Zhou H, Cheng H, Chen Z, Yang J, Wang Y, Jing C. Depth-Dependent Distribution of Prokaryotes in Sediments of the Manganese Crust on Nazimov Guyots of the Magellan Seamounts. MICROBIAL ECOLOGY 2023; 86:3027-3042. [PMID: 37792089 DOI: 10.1007/s00248-023-02305-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023]
Abstract
Deep ocean polymetallic nodules, rich in cobalt, nickel, and titanium which are commonly used in high-technology and biotechnology applications, are being eyed for green energy transition through deep-sea mining operations. Prokaryotic communities underneath polymetallic nodules could participate in deep-sea biogeochemical cycling, however, are not fully described. To address this gap, we collected sediment cores from Nazimov guyots, where polymetallic nodules exist, to explore the diversity and vertical distribution of prokaryotic communities. Our 16S rRNA amplicon sequencing data, quantitative PCR results, and phylogenetic beta diversity indices showed that prokaryotic diversity in the surficial layers (0-8 cm) was > 4-fold higher compared to deeper horizons (8-26 cm), while heterotrophs dominated in all sediment horizons. Proteobacteria was the most abundant taxon (32-82%) across all sediment depths, followed by Thaumarchaeota (4-37%), Firmicutes (2-18%), and Planctomycetes (1-6%). Depth was the key factor controlling prokaryotic distribution, while heavy metals (e.g., iron, copper, nickel, cobalt, zinc) can also influence significantly the downcore distribution of prokaryotic communities. Analyses of phylogenetic diversity showed that deterministic processes governing prokaryotic assembly in surficial layers, contrasting with stochastic influences in deep layers. This was further supported from the detection of a more complex prokaryotic co-occurrence network in the surficial layer which suggested more diverse prokaryotic communities existed in the surface vs. deeper sediments. This study expands current knowledge on the vertical distribution of benthic prokaryotic diversity in deep sea settings underneath polymetallic nodules, and the results reported might set a baseline for future mining decisions.
Collapse
Affiliation(s)
- Jianxing Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
- Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, People's Republic of China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
- Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, People's Republic of China
| | - Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
- Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, People's Republic of China
| | - Jichao Yang
- College of Marine Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, People's Republic of China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, People's Republic of China.
- Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, People's Republic of China.
| | - Chunlei Jing
- National Deepsea Center, Ministry of Natural Resources, Qingdao, 266237, Shandong, People's Republic of China.
| |
Collapse
|
27
|
Sun J, Zhang A, Zhang Z, Liu Y, Zhou H, Cheng H, Chen Z, Li H, Zhang R, Wang Y. Distinct assembly processes and environmental adaptation of abundant and rare archaea in Arctic marine sediments. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106082. [PMID: 37429213 DOI: 10.1016/j.marenvres.2023.106082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Revealing the ecological processes and environmental adaptation of abundant and rare archaea is a central, but poorly understood, topic in ecology. Here, abundant and rare archaeal diversity, community assembly processes and co-occurrence patterns were comparatively analyzed in Arctic marine sediments. Our findings revealed that the rare taxa exhibited significantly higher diversity compared to the abundant taxa. Additionally, the abundant taxa displayed stronger environmental adaptation than the rare taxa. The co-occurrence network analysis demonstrated that the rare taxa developed more interspecies interactions and modules in response to environmental disturbance. Furthermore, the community assembly of abundant and rare taxa in sediments was primarily controlled by stochastic and deterministic processes, respectively. These findings provide valuable insights into the archaeal community assembly processes and significantly contribute to a deeper understanding of the environmental adaptability of abundant and rare taxa in Arctic marine sediments.
Collapse
Affiliation(s)
- Jianxing Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China
| | - Aoqi Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China
| | - Zhongxian Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China
| | - Yang Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China
| | - Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China
| | - Hai Li
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Hunan, PR China
| | - Ran Zhang
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Hunan, PR China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China.
| |
Collapse
|
28
|
Kong B, Jin L, Zhao Y, Huang H, Wang Y, Ren H. Adaptive Evolution Laws of Biofilm under Emerging Pollutant-Induced Stress: Community Assembly-Driven Structure Response. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10721-10732. [PMID: 37433138 DOI: 10.1021/acs.est.3c01899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The widely used biofilm process in advanced wastewater treatment is currently challenged by numerous exotic emerging pollutants (EPs), and the underlying principle of the challenge is the adaptive evolution laws of biofilm under EP stress. However, there is still a knowledge gap in exploration of the biofilm adaptive evolution theory. Herein, we comprehensively analyzed the morphological variation, community succession, and assembly mechanism of biofilms to report the mechanism underlying their adaptive evolution under sulfamethoxazole and carbamazepine stress for the first time. The ecological role of the dominant species was driven as a pioneer and assembly hub by EP stress, and the deterministic processes indicated the functional basis of the transformation. In addition, the characteristic responses of dispersal limitation and homogenizing dispersal adequately revealed the assembly pathways in adaptive evolution and the resulting structural variation. Therefore, the "interfacial exposure-structural variation-mass transfer feedback" mechanism was inferred to underly the adaptive evolution process of biofilms. Overall, this study highlighted the internal drivers of the adaptive evolution of the biofilm at the phylogenetic level and deepened our understanding of the mechanism of biofilm development under EP stress in advanced wastewater purification.
Collapse
Affiliation(s)
- Boning Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Lili Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ying Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yanru Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| |
Collapse
|
29
|
Yang Q, Zhang P, Li X, Yang S, Chao X, Liu H, Ba S. Distribution patterns and community assembly processes of eukaryotic microorganisms along an altitudinal gradient in the middle reaches of the Yarlung Zangbo River. WATER RESEARCH 2023; 239:120047. [PMID: 37167854 DOI: 10.1016/j.watres.2023.120047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/10/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Eukaryotic microorganisms play an important role in the biogeochemical cycles of rivers. Dynamic hydrological processes in rivers are thought to influence the assembly processes of eukaryotic microbes, as well as affecting local geomorphology. These processes have not been extensively studied for eukaryotic river microbes in extreme environments on the Tibetan Plateau. This study used 18S rDNA gene amplification sequencing, a neutral community model, and a null model to analyze the spatial and temporal dynamics and assembly processes of eukaryotic microbial communities in the middle reaches of the Yarlung Zangbo River. We conducted analyses across wet and dry seasons, as well as varying altitudinal gradients. Our results showed that the diversity, structure, and taxonomic composition of eukaryotic microbial communities varied more with altitude than season, and the diversity of the communities first increased, then decreased, with increasing elevation. Distance-decay analysis showed that the correlation between eukaryotic microbial communities and environmental distance was stronger than the correlation between the microbial communities and geographical distance. Deterministic processes (homogeneous selection) dominated the construction of eukaryotic microbial communities, and water temperature, pH, and total phosphorus were the primary environmental factors that influenced the construction of eukaryotic microbial communities. These results expand our understanding of the characteristics of eukaryotic microbial communities in rivers on the Tibetan Plateau and provide clues to understanding the mechanisms that maintain eukaryotic microbial diversity in extreme environments.
Collapse
Affiliation(s)
- Qing Yang
- Laboratory of Wetland and Watershed Ecosystems of Tibetan Plateau, School of Ecology and Environment, Tibet University, Lhasa 850000, China; Center for Carbon Neutrality in the Third Pole of the Earth, Tibet University, Lhasa 850000, China
| | - Peng Zhang
- Laboratory of Wetland and Watershed Ecosystems of Tibetan Plateau, School of Ecology and Environment, Tibet University, Lhasa 850000, China; Center for Carbon Neutrality in the Third Pole of the Earth, Tibet University, Lhasa 850000, China
| | - Xiaodong Li
- Laboratory of Wetland and Watershed Ecosystems of Tibetan Plateau, School of Ecology and Environment, Tibet University, Lhasa 850000, China; Center for Carbon Neutrality in the Third Pole of the Earth, Tibet University, Lhasa 850000, China
| | - Shengxian Yang
- Laboratory of Wetland and Watershed Ecosystems of Tibetan Plateau, School of Ecology and Environment, Tibet University, Lhasa 850000, China; Center for Carbon Neutrality in the Third Pole of the Earth, Tibet University, Lhasa 850000, China
| | - Xin Chao
- Laboratory of Wetland and Watershed Ecosystems of Tibetan Plateau, School of Ecology and Environment, Tibet University, Lhasa 850000, China; Center for Carbon Neutrality in the Third Pole of the Earth, Tibet University, Lhasa 850000, China
| | - Huiqiu Liu
- Laboratory of Wetland and Watershed Ecosystems of Tibetan Plateau, School of Ecology and Environment, Tibet University, Lhasa 850000, China; Center for Carbon Neutrality in the Third Pole of the Earth, Tibet University, Lhasa 850000, China
| | - Sang Ba
- Laboratory of Wetland and Watershed Ecosystems of Tibetan Plateau, School of Ecology and Environment, Tibet University, Lhasa 850000, China; Center for Carbon Neutrality in the Third Pole of the Earth, Tibet University, Lhasa 850000, China.
| |
Collapse
|
30
|
Han B, Yu Q, Wang X, Feng T, Long M, Li H. Copper and temperature shaped abundant and rare community assembly respectively in the Yellow River. Appl Microbiol Biotechnol 2023; 107:3847-3858. [PMID: 37133799 DOI: 10.1007/s00253-023-12538-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/14/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023]
Abstract
Untangling assembly and microbial interaction of abundant and rare microbiota in aquatic ecosystem is pivotal for understanding how community assembly respond to environmental variables and co-occurrence patterns. Here, we explored the assembly mechanisms, their drivers, and species co-occurrence of abundant and rare microbiomes in the Yellow River using 16S rRNA gene sequencing in Lanzhou, China. Here, abundant community was ubiquitous across all sites, whereas rare community was uneven distributed. The richness and community dissimilarity of rare taxa were significantly greater than those of abundant ones. Stochastic processes structured the rare community assembly in spring and winter, while deterministic processes shaped the abundant and rare community assembly in other seasons and all sites. Copper and water temperature mediated the balance between deterministic and stochastic processes of abundant and rare community, respectively. A few abundant taxa with closer relationships frequently occupied central positions and had a great effect on other co-occurrences in the network, while the majority of keystone microbiota were rare microbiome and played a considerable part in maintaining the network structure. Our study provides some ecological proposals for water quality management and ecological stability of the Yellow River. KEY POINTS: • Deterministic process dominated abundant and rare community assembly. • Cu and TW mediated the balance of abundant and rare community assembly respectively. • Abundant taxa had a greater effect on other co-occurrences in the network.
Collapse
Affiliation(s)
- Binghua Han
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland microbiome, Lanzhou University, Lanzhou, 730000, China
| | - Xiaochen Wang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Tianshu Feng
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Meng Long
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China.
| | - Huan Li
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China.
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China.
| |
Collapse
|
31
|
Kang J, Song G, Wang X, Qiu W, Pei F, Ling H, Ping W, Ge J. Aerobic composting with sauerkraut fermentation waste water: Increasing the stability and complexity of bacterial community and changing bacterial community assembly processes. BIORESOURCE TECHNOLOGY 2023; 376:128883. [PMID: 36921638 DOI: 10.1016/j.biortech.2023.128883] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Aerobic composting renders the sauerkraut fermentation waste water harmless while adding soluble nutrients. Unravelling the bacterial community assembly processes, changes in community robustness and community cohesion and the relationship between them under composting treatment of sauerkraut fermentation waste water is an interesting topic. Sauerkraut fermentation waste water was used for composting, which increased bacterial linkages, community robustness, competitive behaviour during warming periods and cooperative behaviour during cooling periods, and the control of community assembly processes shifts from deterministic processes (variable selection) to stochastic processes (decentralised limitation). At the same time, the influence of community robustness and community cohesion on community assembly processes was increased. Community cohesion and robustness were significantly correlated with community function. These results indicate that community robustness and community cohesion are critical for the biological handling of hazardous substances.
Collapse
Affiliation(s)
- Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Gang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Xu Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Wei Qiu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Fangyi Pei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Hongzhi Ling
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
32
|
Li S, Müller S. Ecological forces dictate microbial community assembly processes in bioreactor systems. Curr Opin Biotechnol 2023; 81:102917. [PMID: 36931023 DOI: 10.1016/j.copbio.2023.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 03/17/2023]
Abstract
Microbial communities are indispensable for future biotechnology to produce valuable platform chemicals and reduce the exploitation of fossil resources. Yet, the stability of microbial communities in classical continuous reactor setups is best brief or non-existent. This is due to ecological forces such as stochastic and deterministic properties of communities that contribute to rapid changes in structure and function to varying degrees. The review highlights the differences between these two properties, provides tools for their estimation, and gives an outlook on overcoming instabilities of microbial communities in biotechnological reactor systems.
Collapse
Affiliation(s)
- Shuang Li
- Helmholtz Centre for Environmental Research - UFZ, Department Environmental Microbiology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Susann Müller
- Helmholtz Centre for Environmental Research - UFZ, Department Environmental Microbiology, Permoserstr. 15, 04318 Leipzig, Germany.
| |
Collapse
|
33
|
Lv L, Qiu K, Ge S, Jiao Z, Gao C, Fu H, Su R, Liu Z, Wang Y, Wang Y. Neutralization and Improvement of Bauxite Residue by Saline-Alkali Tolerant Bacteria. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11590. [PMID: 36141868 PMCID: PMC9517105 DOI: 10.3390/ijerph191811590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The high salt-alkalinity of bauxite residue (BR) hinders plant growth and revegetation of bauxite residue disposal areas (BRDA), which cause serious potential environmental and ecological risks. Bioneutralization is a promising method for improving the properties of BR and plant colonization. In the present study, a strong saline-alkali tolerant bacteria (ZH-1) was isolated from aged BR and identified as Bacillus sp. The medium of ZH-1 was optimized by orthogonal tests, and ZH-1 could decrease the medium pH from 11.8 to 6.01 (agitated culture) and 6.48 (static culture) by secretion of citric acid, oxalic acid and tartaric acid. With the inoculation of ZH-1, the pH of BR decreased from 11.6 to 8.76, and the water-soluble salt in BR increased by 68.11%. ZH-1 also changed the aggregate size distribution of BR, the mechanical-stable aggregates and water-stable aggregates increased by 18.76% and 10.83%, respectively. At the same time, the stability of the aggregates obviously increased and the destruction rate decreased from 94.37% to 73.46%. In addition, the microbial biomass carbon increased from 425 to 2794 mg/kg with the inoculation of ZH-1. Bacterial community analysis revealed that Clostridia, Bacilli, Gammaproteobacteria, Betaproteobacteria and Alphaproteobacteria were the main classes in the naturalized BR, and the inoculation of ZH-1 increased the diversity of bacteria in the BR. Overall, ZH-1 has great potential for neutralization and improvement the properties of BR and may be greatly beneficial for the revegetation of BRDA.
Collapse
Affiliation(s)
- Lv Lv
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng 475004, China
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Kunyan Qiu
- Henan Key Laboratory for Monitoring and Remediation in Heavy Metal Polluted Soil, Jiyuan 459000, China
| | - Shiji Ge
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Zhiqiang Jiao
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Chenyang Gao
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Haiguang Fu
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Rongkui Su
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhongkai Liu
- Zhengzhou Non-Ferrous Metals Research Institute Co., Ltd. of CHALCO, Zhengzhou 450041, China
| | - Yulong Wang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng 475004, China
| | - Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| |
Collapse
|
34
|
Zhang P, Yuan L, Zeng J, Zou K, Liu B, Qing T, Feng B. Alginate production of Pseudomonas strains and its application in preparation of alginate-biomass hydrogel for heavy metal adsorption. Int J Biol Macromol 2022; 222:1511-1521. [DOI: 10.1016/j.ijbiomac.2022.09.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022]
|