1
|
Feng X, Liu Z, Vo Duy S, Parent L, Barbeau B, Sauvé S. Temporal trends of 46 pesticides and 8 transformation products in surface and drinking water in Québec, Canada (2021-2023): Potential higher health risks of transformation products than parent pesticides. WATER RESEARCH 2025; 277:123339. [PMID: 40010126 DOI: 10.1016/j.watres.2025.123339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
The objective of the present study was to investigate the temporal trends of 46 pesticides and 8 transformation products (TPs) in the surface water of Québec and assess their associated health risks posed through drinking water consumption. Surface and drinking water were sampled twice per week at a drinking water treatment plant (DWTP) from 2021 to 2023 (838 days). Pesticide and TPs concentrations were analysed using ultra-high-performance liquid chromatography coupled with mass spectrometry. The data were used to evaluate temporal variations of pesticides and TPs at the source, their removal in DWTPs, their human exposure via drinking water, and the associated health risks. The results showed that peak concentrations of most pesticides and their TPs in surface water occurred in June and July, and some TPs (such as metolachlor ethanesulfonic acid, metolachlor oxanilic acid, and desethylatrazine) exhibited higher concentrations than their parent compounds in surface water. Post conventional treatment analysis revealed no significant decrease in the total concentrations of target pesticides and TPs in drinking water. Notably, 11 pesticides (such as atrazine, mecoprop) and 1 TP (desisopropylatrazine) showed higher concentration in drinking water than in surface water. The hazard index (HI) was up to 18 times higher in summer peak periods than the annual average. Finally, TPs exhibited HI 1.4 to 144 times higher than corresponding parent compounds. This study was the first to assess health risks of TPs versus parent pesticides in drinking water through long-term sampling, highlighting the urgent need for further TPs regulation in drinking water.
Collapse
Affiliation(s)
- Xiameng Feng
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Zhen Liu
- Industrial Chair on Drinking Water, Department of Civil, Mining and Geological Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Lise Parent
- Department of Science and Technology, Université TÉLUQ, Montréal, QC H2S 3L5, Canada
| | - Benoit Barbeau
- Industrial Chair on Drinking Water, Department of Civil, Mining and Geological Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada.
| |
Collapse
|
2
|
Xiang J, Fu CZ, Xu RQ, Lu QY, Tang B, Xing Q, Wang LC, Hao QW, Mo L, Zheng J. Occurrence and risk assessment of current-use pesticides in a tropical drinking water source reservoir in Hainan Province, China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:1063-1073. [PMID: 40125713 DOI: 10.1039/d4em00676c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The agricultural sector plays a pivotal role in Hainan Province, China; therefore, the utilization of pesticides is indispensable. The current ban on traditional pesticides and ongoing replacement of current-use pesticides (CUPs) have not been accompanied by extensive research on the presence of CUPs in reservoirs, which are vital centralized sources of drinking water. In this study, 26 CUPs was investigated in a drinking water source reservoir, the surrounding watershed, and the surrounding agricultural and domestic discharge water in Hainan Province. The predominant detected CUPs in the study area were clothianidin (CLO), thiamethoxam (THM), acetamiprid (ACE), imidacloprid (IMI), and dichlorvos (DCH). Neonicotinoids (NNIs) were the primary type of pesticide contamination in the study area, with a concentration ranging from not detected (n.d.) to 755 ng L-1 (median of 71.0 ng L-1). The upstream watersheds of the reservoir were primarily contaminated due to agricultural activities, and the highest concentration of individual CUPs, ranging from 102 to 821 ng L-1 (median of 468 ng L-1), was found in agricultural source water. Source identification analysis revealed that the presence of CUPs in the reservoir primarily stemmed from three types of activities: the cultivation of fruit trees around the reservoir, the daily activities of residents, and the agricultural practices in the upstream watershed basin. Risk assessment indicated that DCH, IMI, and THM posed moderate or high risks to aquatic organisms, with an emphasis on the effects of NNIs. The chronic cumulative risk assessment of NNIs was conducted by the relative potency factor approach, and it indicated that infants and young children were the most vulnerable groups and exhibited heightened susceptibility. The potential exposure to NNIs through drinking water was below the recommended relative chronic reference dose, thereby posing no discernible health risks. The results of this study will support the regulation of CUPs in drinking water sources.
Collapse
Affiliation(s)
- Jun Xiang
- Hainan Research Academy of Environmental Sciences, Haikou 571126, China.
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Cheng-Zhong Fu
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Rong-Qin Xu
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Qi-Yuan Lu
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Bin Tang
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Qiao Xing
- Hainan Research Academy of Environmental Sciences, Haikou 571126, China.
| | - Li-Cheng Wang
- Hainan Research Academy of Environmental Sciences, Haikou 571126, China.
| | - Qin-Wei Hao
- Hainan Research Academy of Environmental Sciences, Haikou 571126, China.
| | - Ling Mo
- Hainan Research Academy of Environmental Sciences, Haikou 571126, China.
| | - Jing Zheng
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
3
|
Ma XK, Zhang QQ, Peng FJ, Dong LL, Zhang JG, Ying GG. Estimation and evaluation of usage, loss and ecological risk of neonicotinoid pesticides in a large catchment. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137186. [PMID: 39823874 DOI: 10.1016/j.jhazmat.2025.137186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/01/2025] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
Neonicotinoid pesticides (NNs) are increasingly used in agriculture, which may pose significant threats to aquatic organisms in receiving rivers. However, no studies have explored their entire process from application and transport to receptors within river basins. Here, we estimated the usage and loss of NNs in the Dongting Lake Basin in China using modeling approaches, and assessed NNs-associated aquatic ecological risks. Our research data showed that the annual usage of the nine NNs reached 1895 tonnes in the basin, with the peri-urban areas being the major users. We further calibrated and validated a SWAT model using various 13-years hydrological data and field measured NNs concentration data. The simulated total annual loss of NNs was 121 tonnes in the entire basin, 94 tonnes of which were discharged into the Dongting Lake. An obvious monthly variation was observed in the lake basin, with relatively higher NNs concentrations being found in summer. Results from the ecological risk assessment showed that NNs posed significant risks to aquatic organisms in approximately 11.2 % of river sections in the whole basin. The present study underscores the significant issue of NNs loss in the Dongting Lake Basin and warrants great attention to their potential risks to aquatic organisms.
Collapse
Affiliation(s)
- Xian-Kun Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Qian-Qian Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Feng-Jiao Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liang-Li Dong
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
4
|
Wang J, Hou J, Wang L, Zhu Z, Han B, Chen L, Liu W. Pollution characteristics, environmental issues, and green development of neonicotinoid insecticides in China: Insights from Imidacloprid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125394. [PMID: 39586452 DOI: 10.1016/j.envpol.2024.125394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Imidacloprid (IMI), a leading neonicotinoid insecticide, is widely used in China. Nevertheless, owing to its high toxicity to pollinators, regulatory scrutiny of its usage has increased in recent years. Despite this, no relevant issues have been announced in China, and its usage continues to rise. In this study, we systematically reviewed the development history, pollution characteristics, and environmental problems associated with IMI in China, which is imperative to promote its green development. The results show that most IMI products (97.1%) in China are registered for agricultural use. Owing to its extensive use and strong migration ability in different environmental matrices, IMI has been broadly detected in multiple environmental media. The average detection rate (DR) of IMI in soils, ambient water, and sediments were 90.7%, 81.3% and 84.5%, respectively, and the corresponding concentrations were 54.6 ± 83.8 ng/g dry weight (dw), 32.8 ± 103 ng/L, and 1.7 ± 2.9 ng/g dw, respectively, indicating high IMI abundance in multiple environmental media in China. The spatiotemporal distribution of IMI was generally determined by its application modes, transport, and degradation rates. IMI is commonly overused in China, leading to the development of high IMI resistance in many pests, and a high DR of IMI in food, drinking water, and human bodies. To alleviate IMI pollution in China, the joint efforts of the government, farmers, and scientists are necessary, including but not limited to formulating laws and regulations, strengthening governmental supervision, improving farmers' knowledge of IMI use, and promoting technological innovation in IMI and application methods.
Collapse
Affiliation(s)
- JinZe Wang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jie Hou
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - LiXi Wang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - ZiYang Zhu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - BingJun Han
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - LiYuan Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - WenXin Liu
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
5
|
Goedjen GJ, Capel PD, Barry JD, Arnold WA. Occurrence and distribution of neonicotinoids and fiproles within groundwater in Minnesota: Effects of lithology, land use and geography. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176411. [PMID: 39317252 DOI: 10.1016/j.scitotenv.2024.176411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Due to the widespread use of insecticides in agriculture and for urban pest control, there is the potential for contamination of groundwater systems. Five neonicotinoids, fipronil, and nine transformation products (desnitro-imidacloprid, imidacloprid olefin, imidacloprid urea, acetamiprid-n-desmethyl, thiacloprid amide, 6-chloronicotinic acid, fipronil desulfinyl, fipronil sulfide, and fipronil sulfone) were studied in samples from 15 springs and 75 unique wells from 13 counties over four years (2019-2022) in Minnesota. Up to 13 neonicotinoids and fiproles were identified in groundwater samples from springs and 10 from wells. Springs were particularly susceptible to contamination, with clothianidin found in 41 % of springs (maximum concentration: 200 ng/L) followed by thiamethoxam (31 %), imidacloprid (22 %), thiacloprid (19 %), and acetamiprid (12 %). Clothianidin was the most common analyte in well samples (13 %), followed by thiamethoxam (12 %), acetamiprid (14 %), imidacloprid (10 %), and thiacloprid (2 %). Hydrostratigraphy was an important factor in neonicotinoid detection with frequencies of detection highest in sandy or karst aquifers. Regional land use, especially the fraction of agricultural land, and imperviousness influenced observed concentrations within springsheds and well catchment areas. There were several significant correlations between neonicotinoid detections with geochemistry indicators including tritium/groundwater age, dissolved oxygen (DO), and total nitrate plus nitrite (total oxidized nitrogen).
Collapse
Affiliation(s)
- Grant J Goedjen
- Department of Civil, Environmental, and Geo-Engineering, 500 Pillsbury Dr. SE, Minneapolis, MN 55455, USA
| | - Paul D Capel
- Department of Civil, Environmental, and Geo-Engineering, 500 Pillsbury Dr. SE, Minneapolis, MN 55455, USA
| | - John D Barry
- Division of Ecological and Water Resources, Minnesota Department of Natural Resources, 500 Lafayette Rd, St. Paul, MN 55155, USA
| | - William A Arnold
- Department of Civil, Environmental, and Geo-Engineering, 500 Pillsbury Dr. SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
6
|
Zhang Y, Zhu W, Wang Y, Li X, Lv J, Luo J, Yang M. Insight of neonicotinoid insecticides: Exploring exposure, mechanisms in non-target organisms, and removal technologies. Pharmacol Res 2024; 209:107415. [PMID: 39306021 DOI: 10.1016/j.phrs.2024.107415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/18/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024]
Abstract
Neonicotinoid insecticides (NEOs) have garnered global attention due to their selective toxicity to insects and minimal impact on mammals. However, growing concerns about their extensive use and potential adverse effects on the ecological environment and non-target organisms necessitate further investigation. This study utilized bibliometric tools to analyze Web of Science data from 2003 to 2024, elucidating the current research landscape, identifying key research areas, and forecasting future trends related to NEOs. This paper provides an in-depth analysis of NEO exposure in non-target organisms, including risk assessments for various samples and maximum residue limits established by different countries. Additionally, it examines the impacts and mechanisms of NEOs on non-target organisms. Finally, it reviews the current methods for NEO removal and degradation. This comprehensive analysis provides valuable insights for regulating NEO usage and addressing associated exposure challenges.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wanxuan Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ying Wang
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing 102629, China
| | - Xueli Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianxin Lv
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiaoyang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Meihua Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China.
| |
Collapse
|
7
|
Liao L, Sun T, Gao Z, Lin J, Gao M, Li A, Gao T, Gao Z. Neonicotinoids as emerging contaminants in China's environment: a review of current data. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51098-51113. [PMID: 39110283 DOI: 10.1007/s11356-024-34571-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/24/2024] [Indexed: 09/06/2024]
Abstract
Neonicotinoids (NEOs), the most widely used class of insecticides, are pervasive in the environment, eliciting concerns due to their hydrophilicity, persistence, and potential ecological risks. As the leading pesticide consumer, China shows significant regional disparities in NEO contamination. This review explores NEO distribution, sources, and toxic risks across China. The primary NEO pollutants identified in environmental samples include imidacloprid, thiamethoxam, and acetamiprid. In the north, corn cultivation represents the principal source of NEOs during wet seasons, while rice dominates in the south year-round. The high concentration levels of NEOs have been detected in the aquatic environment in the southern regions (130.25 ng/L), the urban river Sects. (157.66 ng/L), and the downstream sections of the Yangtze River (58.9 ng/L), indicating that climate conditions and urban pollution emissions are important drivers of water pollution. Neonicotinoids were detected at higher levels in agricultural soils compared to other soil types, with southern agricultural areas showing higher concentrations (average 27.21 ng/g) than northern regions (average 12.77 ng/g). Atmospheric NEO levels were lower, with the highest concentration at 1560 pg/m3. The levels of total neonicotinoid pesticides in aquatic environments across China predominantly exceed the chronic toxicity ecological threshold of 35 ng/L, particularly in the regions of Beijing and the Qilu Lake Basin, where they likely exceed the acute toxicity ecological threshold of 200 ng/L. In the future, efforts should focus on neonicotinoid distribution in agriculturally developed regions of Southwest China, while also emphasizing their usage in urban greening and household settings.
Collapse
Affiliation(s)
- Lingzhi Liao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, PR China
| | - Ting Sun
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Zhenhui Gao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Jianing Lin
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China.
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Meng Gao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Ao Li
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Teng Gao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Ziqin Gao
- Fuxin Experimental Middle School, Fuxin, 123099, PR China
| |
Collapse
|
8
|
Qin R, Zhang B, Huang Y, Song S, Zhang Z, Wen X, Zhong Z, Zhang F, Zhang T. The fate and transport of neonicotinoid insecticides and their metabolites through municipal wastewater treatment plants in South China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123968. [PMID: 38631448 DOI: 10.1016/j.envpol.2024.123968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Neonicotinoid insecticides (NEOs) have gained widespread usage as the most prevalent class of insecticides globally and are frequently detected in the environment, posing potential risks to biodiversity and human health. Wastewater discharged from wastewater treatment plants (WWTPs) is a substantial source of environmental NEOs. However, research tracking NEO variations in different treatment units at the WWTPs after being treated by the treatment processes remains limited. Therefore, this study aimed to comprehensively investigate the fate of nine parent NEOs (p-NEOs) and five metabolites in two municipal WWTPs using distinct treatment processes. The mean concentrations of ∑NEOs in influent (effluent) for the UNITANK, anaerobic-anoxic-oxic (A2/O), and cyclic activated sludge system (CASS) processes were 189 ng/L (195 ng/L), 173 ng/L (177 ng/L), and 123 ng/L (138 ng/L), respectively. Dinotefuran, imidacloprid, thiamethoxam, acetamiprid, and clothianidin were the most abundant p-NEOs in the WWTPs. Conventional wastewater treatment processes were ineffective in removing NEOs from wastewater (-4.91% to -12.1%), particularly major p-NEOs. Moreover, the behavior of the NEOs in various treatment units was investigated. The results showed that biodegradation and sludge adsorption were the primary mechanisms responsible for eliminating NEO. An anoxic or anaerobic treatment unit can improve the removal efficiency of NEOs during biological treatment. However, the terminal treatment unit (chlorination disinfection tank) did not facilitate the removal of most of the NEOs. The estimated total amount of NEOs released from WWTPs to receiving waters in the Pearl River of South China totaled approximately 6.90-42.6 g/d. These findings provide new insights into the efficiency of different treatment processes for removing NEOs in current wastewater treatment systems.
Collapse
Affiliation(s)
- Ronghua Qin
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Bo Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China; School of Chemistry and Environment, Jiaying University, Mei Zhou, 514015, China.
| | - Yingyan Huang
- Guangzhou Hexin Instrument Co., Ltd., Guangzhou, 510530, China.
| | - Shiming Song
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China; School of Chemistry and Environment, Jiaying University, Mei Zhou, 514015, China.
| | - Ziqi Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Xiaoyu Wen
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Zhiqing Zhong
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Fengru Zhang
- School of Chemistry and Environment, Jiaying University, Mei Zhou, 514015, China.
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
9
|
Zhang Y, Hu Y, Li X, Gao L, Wang S, Jia S, Shi P, Li A. Prevalence of antibiotics, antibiotic resistance genes, and their associations in municipal wastewater treatment plants along the Yangtze River basin, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123800. [PMID: 38518970 DOI: 10.1016/j.envpol.2024.123800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
The overuse and misuse of antibiotics have resulted in the pollution of antibiotics and antibiotic resistance genes (ARGs) in municipal wastewater treatment plants (WWTPs), posing threats to ecological security and human health. Thus, a comprehensive investigation was conducted to assess the occurrence, removal efficiency, and ecological risk of antibiotics, along with the diversity, abundance, and co-occurrence of ARGs, and their correlations in 13 WWTPs along the Yangtze River Basin. Among 35 target antibiotics, 23 antibiotics within 6 categories were detected in all the samples. Amoxicillin (AMO), ofloxacin (OFL), and pefloxacin (PEF) were predominant in influents, while AMO exhibited dominance with the highest concentration of 1409 ng/L in effluents. Although antibiotic removal performance varied among different WWTPs, a significant decrease in each antibiotic category and overall antibiotics was observed in effluents compared with that in influents (p < 0.05). Remarkably, ecological risk assessment revealed high risks associated with AMO and ciprofloxacin (CIP) and medium risks linked to several antibiotics, notably including OFL, roxithromycin (ROX), clarithromycin (CLA), and tetracycline (TC). Furthermore, 96 ARG subtypes within 12 resistance types were detected in this study, and the total absolute abundance and diversity of ARGs were significantly decreased from influents to effluents (p < 0.05). Enrichment of 38 ARGs (e.g., blaNDM, ermA, vatA, mexA, and dfrA25) in effluents indicated potential health risks. Various mobile genetic elements (MGEs), exhibited significant correlations with a majority of ARGs in both influents and effluents, such as intⅠ1, tnpA1, tnpA5, and tp614, underscoring the important role of MGEs in contributing to the ARG dissemination. Many antibiotics displayed lower correlations with corresponding ARGs, but exhibited higher correlations with other ARGs, suggesting complex selective pressures influencing ARG propagation. Overall, the incomplete elimination of antibiotics and ARGs in WWTPs is likely to pose adverse impacts on aquatic ecosystems in the Yangtze River Basin.
Collapse
Affiliation(s)
- Yangyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yifan Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xiuwen Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Linjun Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuya Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuyu Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
10
|
Wu M, Miao J, Zhang W, Wang Q, Sun C, Wang L, Pan L. Occurrence, distribution, and health risk assessment of pyrethroid and neonicotinoid insecticides in aquatic products of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170880. [PMID: 38364586 DOI: 10.1016/j.scitotenv.2024.170880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/02/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
Synthetic pyrethroid insecticides (SPIs) and neonicotinoid insecticides (NEOs), now dominant in the insecticide market, are increasingly found in aquatic environments. This study focused on six SPIs and five NEOs in aquatic products from four Chinese provinces (Shandong, Hubei, Shanxi and Zhejiang) and the risk assessment of the safety for the residents was conducted. It revealed significantly higher residues of Σ6SPIs (6.27-117.19 μg/kg) compared to Σ5NEOs (0.30-14.05 μg/kg), with SPIs more prevalent in fish and NEOs in shellfish. Carnivorous fish showed higher pesticide levels. Residues of these two types of pesticides were higher in carnivorous fish than in fish with other feeding habits. In the four regions investigated, the hazard quotient and hazard index of SPIs and NEOs were all <1, indicating no immediate health risk to human from single and compound contamination of the two types of pesticides in aquatic products. The present study provides valuable information for aquaculture management, pollution control and safeguarding human health.
Collapse
Affiliation(s)
- Manni Wu
- Key Laboratory of Maricultural, Ministry of Education, Ocean University of China, Qingdao, PR China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jingjing Miao
- Key Laboratory of Maricultural, Ministry of Education, Ocean University of China, Qingdao, PR China.
| | | | - Qiaoqiao Wang
- Key Laboratory of Maricultural, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Ce Sun
- Key Laboratory of Maricultural, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Lu Wang
- Key Laboratory of Maricultural, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Luqing Pan
- Key Laboratory of Maricultural, Ministry of Education, Ocean University of China, Qingdao, PR China
| |
Collapse
|
11
|
Peng S, Ma H, Hao X, Han R, Ji X, Wang L, Fang Y, Pang K, Il-Ho K, Chen X. Constructing green superhydrophilic and superoleophobic COFs-MOFs hybrid-based membrane for efficiently emulsion separation and synchronous removal of microplastics, dyes, and pesticides. ENVIRONMENTAL RESEARCH 2024; 243:117777. [PMID: 38036208 DOI: 10.1016/j.envres.2023.117777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Oil spills and micropollutants have become thorny environmental issues, posing serious threat to ecosystem and human health. To settle such dilemma, this study successfully constructed a robust and environmentally-friendly MOFs-COFs hybrid-based membrane (FS-50/COF(MATPA)-MOF(Zr)/PDA@PVDF) for the first time through solution synthesis and solvothermal method, combined with surface modification of FS-50 molecule. Importantly, we employed a simple two-step strategy to obtain the high-aspect-ratio MOFs fibers: (1) solvent regulation to generate smaller needle-like whiskers during the in-situ growth of MOFs on COFs; (2) high pressure induced directional crystallization in filtration process. The introduction of polydopamine (PDA) greatly improved the adhesion between coating and PVDF membrane. The in-situ growth of high length-diameter ratio MOFs fibers on blocky COFs greatly enhanced the specific surface area of MOFs-COFs hybrid, thus provided sufficient absorption sites. The functional groups of FS-50 endowed the hybrid membrane with superhydrophilicity and superoleophobicity, which facilitated to selectively penetrate water molecules and repel non-polar pollutants. The separation efficiency and decontamination mechanism of hybrid membrane to the simulated oily wastewater (containing various MPs, dyes, and pesticides) were investigated through experiments and theoretical calculations. The hybrid membrane could selectively and synchronously adsorb various dyes (20 mg/L-120 mg/L, almost 100% removal) and pesticides (10 mg/L for DIF and TET, adsorption rates 93.2% and 90.9%, respectively) from oil-water emulsion (50 mL). The large-scale coated sponge (6 cm × 4.5 cm × 3 cm) could quickly achieve separation of oil-water mixture (almost 100%) with a water permeability of more than 162 L m-2·h-1·bar-1, and simultaneously remove various MPs (PP-2000, PP-100, PE-2000, PS-100, 0.2 g/300 mL for each), Sudan Ⅲ (C0 = 200 mg/L), and DIF (C0 = 10 mg/L) from a simulant oily wastewater (300 mL), with the removal rates of almost 100% for MPs, 99.7% for Sudan Ⅲ, and 95.8% for DIF. Furthermore, we elucidated the removal mechanism of pesticide and dyes through simulating the theoretical adsorption energy and potential adsorption sites. The hybrid membrane not only provides a promising candidate for the removal of multiple pollutants from oil-water emulsion, but also opens a new strategy for achieving efficient and clean aquatic environment restoration.
Collapse
Affiliation(s)
- Shan Peng
- College of Chemistry and Materials Science, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province, 071002, PR China; Engineering Technology Research Center for Flame Retardant Materials and Processing Technology of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province, 071002, PR China.
| | - Haobo Ma
- Department of Eco-Environment, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province, 071002, PR China.
| | - Xiaoyan Hao
- Baotou Steel Hefa Rare Earth Company Limited of Inner Mongolia, PR China.
| | - Ruimeng Han
- Department of Eco-Environment, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province, 071002, PR China.
| | - Xiaoyu Ji
- College of Chemistry and Materials Science, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province, 071002, PR China; Engineering Technology Research Center for Flame Retardant Materials and Processing Technology of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province, 071002, PR China.
| | - Lei Wang
- Hebei Key Laboratory of Mineral Resources and Ecological Environment Monitoring, Hebei Research Center for Geoanalysis, Baoding, 071002, Hebei Province, PR China.
| | - Yanyan Fang
- Department of Eco-Environment, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province, 071002, PR China.
| | - Kyongjin Pang
- Department of Organic Chemistry, Hamhung University of Chemical Engineering, Hoisang 1 Dong, Hoisang District, Hamhung City, South Hamgyong Province, 999092, Democratic People's Republic of Korea.
| | - Kwon Il-Ho
- Department of Organic Chemistry, Hamhung University of Chemical Engineering, Hoisang 1 Dong, Hoisang District, Hamhung City, South Hamgyong Province, 999092, Democratic People's Republic of Korea.
| | - Xiaoxin Chen
- Department of Eco-Environment, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province, 071002, PR China; Hebei Key Laboratory of Mineral Resources and Ecological Environment Monitoring, Hebei Research Center for Geoanalysis, Baoding, 071002, Hebei Province, PR China.
| |
Collapse
|
12
|
Tian X, Wang H, Liang D, Zeng Y, Shen Y, Yan Y, Li S. Water quality's responses to water energy variability of the Yangtze River. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:635-652. [PMID: 38358494 PMCID: wst_2024_008 DOI: 10.2166/wst.2024.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
River energy serves as an indicator of pollutant-carrying capacity (PCC), influencing regional water quality dynamics. In this study, MIKE21 hydrodynamics-water quality models were developed for two scenarios, and grid-by-grid numerical integration of energy was conducted for the Yangtze River's mainstream. Comparison of predicted and measured values at monitoring points revealed a close fit, with average relative errors ranging from 5.17 to 8.37%. The concept of PCC was introduced to assess water flow's ability to transport pollutants during its course, elucidating the relationship between river energy and water quality. A relationship model between Unit Area Energy (UAE) and PCC was fitted (R2 = 0.8184). Temporally, reservoir construction enhanced the smoothness of UAE distribution by 74.47%, attributable to peak shaving and flow regulation. While this flood-drought season energy transfer reduced PCC differences, it concurrently amplified pollutant retention by 40.95%. Spatially, energy distribution fine-tuned PCC values, showcasing binary variation with energy changes and a critical threshold. Peak PCC values for TP, NH3-N, and COD were 2.46, 2.26, and 54.09 t/(km·a), respectively. These insights support local utility regulators and decision-makers in navigating low-carrying capacity, sensitive areas, enhancing targeted water protection measures for increased effectiveness and specificity.
Collapse
Affiliation(s)
- XueQi Tian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China E-mail:
| | - Hua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Dongfang Liang
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Yichuan Zeng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yuhan Shen
- MSc Environmental Systems Engineering Dept. of Civil, Environmental and Geomatic Engineering University College London, WC1E 6BT, UK
| | - Yuting Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Siqiong Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
13
|
Lee S, Choi Y, Kang D, Jeon J. Proposal for priority emerging pollutants in the Nakdong river, Korea: Application of EU watch list mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122838. [PMID: 37918771 DOI: 10.1016/j.envpol.2023.122838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/14/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
The Nakdong River, the longest in Korea, has received numerous pollutants from heavily industrialized and densely populated areas while being used as a drinking water source. A number of research have reported occurrences of emerging pollutants (EPs) in the river. The results requested efficient monitoring and systematic management strategies such as EU watch list under Water Framework Directive. The aim of this study is to propose a watch list through preliminary monitoring of the river and risk-based prioritization approach. As candidates for monitoring target, 632 substances were selected based on literature and database searches. Among them, 175 substances were subjected to target screening method whereas 457 were evaluated via suspect screening. A risk-based prioritization was applied to substances quantified through target screening based on concentrations, and a scoring-based prioritization was applied to substances tentatively identified through suspect screening. Sampling campaigns (n = 12) were conducted from October 2020 to September 2021, at 8 sampling sites along the river. As a result, 130 target substances were quantified above the LOQ. Among the 21 substances whose priority score was assigned through risk-based prioritization, telmisartan and iprobenfos were identified with very high environmental risk while candesartan, TBEP, imidacloprid, azithromycin and clotrimazole were classified with high or intermediate risk. As result of the scoring system for 39 tentatively identified substances, 6 substances (benzophenone, caprolactam, metolachlor oxanilic acid, heptaethylene glycol, octaethylene glycol and pentaethylene glycol), which were then confirmed with reference standards, showed a potential environmental risk. Those substances prioritized through target and suspect screening followed by scoring systems can be a subset for the watch list and potential targets for nationwide water quality monitoring program in the future.
Collapse
Affiliation(s)
- Sangyoon Lee
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea
| | - Younghun Choi
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea; Water Environmental Safety Management Dept., Korea Water Resources Corporation (K-water), 200 Sintanjin-ro, Daedeok-gu, Daejeon, 34350, South Korea
| | - Daeho Kang
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea.
| |
Collapse
|
14
|
Chen Y, Ling J, Yu W, Zhang L, Wu R, Yang D, Qu J, Jin H, Tao Z, Shen Y, Meng R, Yu J, Zheng Q, Shen G, Du W, Sun H, Zhao M. Identification of point and nonpoint emission sources of neonicotinoid pollution in regional surface water. WATER RESEARCH 2024; 248:120863. [PMID: 37976945 DOI: 10.1016/j.watres.2023.120863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/07/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Neonicotinoid insecticides are widely applied in farmland, with high detection rates in soils and surface waters, posing potential risks to biodiversity and human health. As a nonpoint emission, surface runoff is widely regarded as the major source of neonicotinoid pollution in surface waters, but few studies have determined the point source contribution to rivers that may be primarily from wastewater treatment plants (WWTPs). Here, we collected the surface water from eight river basins in Zhejiang Province of China and quantified residual concentrations of eight widely commercialized neonicotinoids. Four of these were detected in all samples, with concentrations of dinotefuran and nitenpyram of 119 ± 166 and 87.6 ± 25.3 ng/L, respectively, representing more than 90 % of the total (282 ± 174 ng/L). Neonicotinoid residues were higher in tributaries due to nearby farmland and more dilution effects in the mainstream, and the residues were higher in lower reaches which can be explained by the water flow direction. Significant spatial differences in neonicotinoid distribution between surface water and agricultural soils result from environmental factors (e.g., water turbidity, precipitation, temperature) impacting migration and transport processes. Neonicotinoid residues in surface water showed a significant positive correlation with total WWTP emissions after adjusting for environmental factors. Conversely, no significant association was observed with cropland density (a nonpoint emission source), indicating that point emission source (contributing 20.6 %) predominantly influenced neonicotinoid residue spatial variation in river basin-scale surface water.
Collapse
Affiliation(s)
- Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China; Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute ZJUT, Quzhou, Zhejiang 324400, China.
| | - Jun Ling
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Wenfei Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Li Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Ruxin Wu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Dan Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Jiajia Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China; Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute ZJUT, Quzhou, Zhejiang 324400, China.
| | - Zhen Tao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Yuexin Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Ruirui Meng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Jingtong Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Qingyi Zheng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Guofeng Shen
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming, Yunnan 650500, China
| | - Haitong Sun
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom; Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, United Kingdom
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| |
Collapse
|
15
|
Yuan T, Ding S, Xue F, Du Z, Yang X, Han Q, Ma M, Chen X. Reactivity and reaction pathways of peroxymonosulfate and peroxydisulfate with neonicotinoid insecticides. WATER RESEARCH 2024; 248:120852. [PMID: 37976950 DOI: 10.1016/j.watres.2023.120852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Neonicotinoid insecticides (NNIs), which have been detected across diverse aquatic environments, have sparked substantial concerns regarding their potential adverse ecological and health risks. In this study, the removal of NNIs by unactivated peroxymonosulfate (PMS) and peroxydisulfate (PDS) was systematically investigated. Results showed that PMS/PDS direct oxidation is mainly responsible for the degradation of imidacloprid (IMD), and the degradation kinetics can be well described by a second-order kinetics model, first-order in both IMD and PMS/PDS concentration. The species-specific reaction rate constants of HSO5- and SO52- with IMD were calculated to be 429.36 ± 15.41 M-1h-1 and 9.72 ± 35.48 M-1h-1, while the corresponding rate constant between S2O82- and IMD is 25.04 ± 3.04 M-1h-1. Over 100 transformation products in the degradation of IMD by PMS/PDS were identified by HPLC/Q-Orbitrap HRMS, and five major reaction pathways were proposed thereafter: hydroxylation on imidazolidine ring, olefin reaction on imidazolidine ring, desnitro reaction on nitroguanidine moiety, and two chain-breaking reactions between imidazolidine ring and chloro-pyridyl moiety. Toxicity evaluation on the transformation products found that their ecotoxicity is various at a wide range with an overall indeterminacy, while their bioconcentration factors show a definite decrease. The reactivity of six NNIs with PMS/PDS was found varied by structures but generally low, indicating that in-situ oxidation with unactivated PMS/PDS is safe but inefficiency for the mitigation of NNIs. It is thus suggested that further investigations into activated PMS/PDS systems involving radicals promise enhanced remediation of NNIs, and fundamental data in this study has laid the groundwork.
Collapse
Affiliation(s)
- Taoyue Yuan
- College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Shunke Ding
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fei Xue
- College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Zhenqi Du
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xinyu Yang
- College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Qingzhi Han
- College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Mengtao Ma
- College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Xiaoyan Chen
- College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
16
|
Xiao Q, Li X, Xu S, Chen X, Xu Y, Lu Y, Liu L, Lin L, Ma H, Lu S. Neonicotinoids in tea leaves and infusions from China: Implications for human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166114. [PMID: 37567284 DOI: 10.1016/j.scitotenv.2023.166114] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/30/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
The ingestion of contaminated tea involves the risk of human exposure to residues of neonicotinoids (NEOs). Nevertheless, there is little empirical research about this topic; to bridge the current knowledge gap, we collected 220 samples of various tea products from four geographical areas in China, including unfermented green tea, semi-fermented white tea and oolong tea, completely fermented black tea, and post-fermented dark tea. A total of six NEOs were detected from the tea leaves and infusions, namely, dinotefuran (DIN), thiamethoxam (THM), clothianidin (CLO), imidacloprid (IMI), acetamiprid (ACE), and thiacloprid (THI). The detection frequencies (DFs) and concentrations of all target NEOs were relatively high across the investigated tea samples, and the DIN, IMI and ACE residues measured in some samples exceeded the maximum residue level (MRL) standards for the European Union. Samples representing the Jiangnan area exhibited greater levels of total target NEOs (∑6NEOs) than samples representing the Jiangbei area (p < 0.001). Moreover, dark tea samples were found to have far higher levels of NEO residues than green (p < 0.001), white (p < 0.05), or oolong (p < 0.001) samples. The health risks associated with exposure to NEO residues via tea were small for both children and adults in terms of acute, chronic, and cumulative dietary exposure risk assessments. The transfer rates (TRs) of NEOs observed in white, black, and dark tea infusions gradually decreased after the third brewing time. As such, it is recommended to only consume tea that has been brewed at least three times. The presented results not only describe the extent of NEO contamination in Chinese tea leaves and infusions, but also provide tea drinking guidelines for consumers.
Collapse
Affiliation(s)
- Qinru Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiangyu Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Shuyang Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Ying Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yu Lu
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR 999077, China
| | - Langyan Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Liyun Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521000, China.
| | - Huimin Ma
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
17
|
He X, Song S, Huang Y, Huang X, Huang H, Zhang T, Sun H. Contamination of neonicotinoid insecticides in source water and their fate during drinking water treatment in the Dongguan section of the Pearl River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165935. [PMID: 37532038 DOI: 10.1016/j.scitotenv.2023.165935] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Neonicotinoid insecticides (NEOs) as well as their metabolites are highly mobile on the subsurface and can potentially contaminate drinking water sources; however, their pollution status and fate in the drinking water system remains ambiguous. In this study, six parent NEOs and two characteristic metabolites were measured in drinking water source protection area (source water, n = 52) and two related drinking water treatment plants (DWTPs) (n = 88) located in the Dongguan section of the Pearl River. The ubiquitous of NEOs was observed in source water with the mean concentration of total NEOs (ΣNEOs) at 240 ng/L. Although advanced DWTP (A-DWTP; range: 26 % to 100 %) showed better removals of ΣNEOs and all individual NEOs rather than those in conventional DWTP (C-DWTP; range: -53 % to 28 %), the removals were still low for acetamiprid (ACE, 26 %), thiacloprid (THD, 59 %), thiamethoxam (THM, 56 %) and N-desmethyl-acetamiprid (N-dm-ACE, 45 %) in A-DWTP. Removal rates were positive in chlorination (48 %), final stage of sedimentation (F-Sed, 24 %), and granular activated carbon (GAC) filter effluent (19 %) in A-DWTP. It worthy to note that ΣNEOs has high negative removal rates at the start stage of sedimentation (S-Sed, -83 %), middle stage of sedimentation (M-Sed, -47 %), and sand filter effluent (-42 %) water in C-DWTP, which resulted in negative removals of ΣNEOs (-9.6 %), imidacloprid (IMI, -22 %), clothianidin (CLO, -37 %), flupyradifurone (FLU, -76 %), and N-dm-ACE (-29 %) in C-DWTP. Residual levels of NEOs were high in source water, and their low or negative removals in DWTPs should be highly concerning. Results would fill the existing knowledge gap of NEOs in aquatic environment and provide a scientific dataset for policy-making on pollution control and environmental protection.
Collapse
Affiliation(s)
- Xiaoxin He
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shiming Song
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; School of Chemistry and Environment, Jiaying University, Mei Zhou 514015, China
| | - Yingyan Huang
- Guangzhou Hexin Instrument Co., Ltd., Guangzhou 510530, China
| | - Xiongfei Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
18
|
Wu G, Zhu F, Zhang X, Ren H, Wang Y, Geng J, Liu H. PBT assessment of chemicals detected in effluent of wastewater treatment plants by suspected screening analysis. ENVIRONMENTAL RESEARCH 2023; 237:116892. [PMID: 37598848 DOI: 10.1016/j.envres.2023.116892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
Wastewater treatment plants (WWTPs) are the major sources of contaminants discharged into downstream water bodies. Profiling the contaminants in effluent of WWTPs is crucial to assess the potential eco-risks toward downstream organisms. To this end, this study investigated the contaminants in effluent of 10 WWTPs locating in 10 cities of Yangtze River delta region of China by suspected screening analysis. Further, the persistence, bioaccumulation, toxicity (PBT) and the characteristics sub-structures of PBT-like chemicals were analyzed. Totally, 704 chemicals including 155 chemical products, 31 food additives, 52 natural substances, 112 personal care products, 123 pesticides, 192 pharmaceuticals, 17 hormones and 22 others were found. The results of PBT analysis suggested that 42 chemicals (5.97% among the detected chemicals in WWTPs) were with PBT property. Among them, 31 contaminants were not reported previously. 9 characteristics sub-structures (N-methyleneisobutylamine, 1-naphthaldehyde, 2,3,3-trimethylcyclohexene, cyclohexanol, N-sec-butyl-n-propylamine, (5E)-2,6-dimethylocta-1,5-diene, 2-ethylphenol, pentadecane and 6-methoxyhexane) were found for PBT-like chemicals. The sub-structures of highly linear alkyl partially explained the significantly higher PBT score for personal care products. Present study provides fundamental information on PBT properties of contaminants in effluent of WWTPs, which will benefit to prioritize contaminants with high concerns in effluent of WWTPs.
Collapse
Affiliation(s)
- Gang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Feng Zhu
- Jiangsu Province Center for Disease Control and Prevention, Nanjing, Jiangsu, 210009, PR China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yanru Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400044, PR China.
| | - Hualiang Liu
- Jiangsu Province Center for Disease Control and Prevention, Nanjing, Jiangsu, 210009, PR China.
| |
Collapse
|
19
|
Li W, Xin S, Deng W, Wang B, Liu X, Yuan Y, Wang S. Occurrence, spatiotemporal distribution patterns,partitioning and risk assessments of multiple pesticide residues in typical estuarine water environments in eastern China. WATER RESEARCH 2023; 245:120570. [PMID: 37703754 DOI: 10.1016/j.watres.2023.120570] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
The low terrain and the prosperous agriculture in the east of China, have caused the accumulation of pesticide residues in the estuaries. Therefore, this study analyzed the spatiotemporal distribution and partition tendency of 106 pesticides based on their abundance, frequencies, and concentrations in the aquatic environment of 16 river estuaries in 7 major basins in the eastern China by using solid-phase extraction (SPE) with high-performance liquid chromatography tandem mass spectrometry (HPLC‒MS/MS) and gas chromatography tandem mass spectrometry (GC‒MS/MS). In addition, potential risk of multiple pesticides was also evaluated. The results showed that herbicides were the dominant pesticide type, while triazines were the predominate substance group of pesticide. In addition, triadimenol, vinclozolin, diethylatrazine, prometryn, thiamethoxam, atrazine, and metalachlor were the major pesticides in the water, while prometryn, metalachlor, and atrazine were the main pesticides in the sediment. The average total concentration of pesticide was 751.15 ng/L in the dry season, 651.17 ng/L in the wet season, and 617.37 ng/L in the normal season, respectively. The estuaries of the Huai River Basin, the Yangtze River Basin, the Hai River Basin, and the Yellow River Basin have been affected by the low pollution treatment efficiency, weak infrastructure, and agricultural/non-agricultural activities in eastern China, resulting in relatively serious pesticide pollution. The estuaries of Huaihe River, Yangtze River, Xiaoqing River, and Luanhe River had large pesticide abundance and comparatively severe pesticide pollution, while the estuaries of Tuhai River and Haihe River had heavy pesticide contamination in the sediment, which might be induced by historical sedimentary factors. The log KOC values showed that except for thioketone, other pesticides were relatively stable due to the adsorption by sediment. The ecological risk assessment results indicated that insecticides had a high risk. Teenagers were the most severely affected by the noncarcinogenic risk of pesticides, while adults were mostly affected by the carcinogenic risk of pesticides. Therefore, pesticide hazards in the water environment of estuaries in eastern China needs to be further close supervision.
Collapse
Affiliation(s)
- Wanting Li
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Shuhan Xin
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Wenjing Deng
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong, China
| | - Bingbing Wang
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Xinxin Liu
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Yin Yuan
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Shiliang Wang
- School of Life Science, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
20
|
Wang Y, Wan Y, Li S, He Z, Xu S, Xia W. Occurrence, spatial variation, seasonal difference, and risk assessment of neonicotinoid insecticides, selected agriculture fungicides, and their transformation products in the Yangtze River, China: From the upper to lower reaches. WATER RESEARCH 2023; 247:120724. [PMID: 39492000 DOI: 10.1016/j.watres.2023.120724] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/05/2024]
Abstract
Neonicotinoid insecticides (NNIs) and agricultural fungicides (including strobilurin, azole, and morpholine fungicides) are widely used, while data on their contamination in the Yangtze River of China and the risks posed by them are limited. The occurrence and distribution of ten NNIs, twenty-one transformation products (TPs) of them, seventeen agricultural fungicides, and six TPs of them were investigated in the main stream of the Yangtze River. Surface water samples (n = 144) were obtained from 72 sampling points in dry season and wet season. Among the NNIs, the detection frequencies (DFs) of acetamiprid (ACE), clothianidin, dinotefuran, flonicamid, imidacloprid (IMI), thiacloprid (THCP), and thiamethoxam (THM) were higher than 85%, with the median concentrations ranged from 0.06 ng/L (THCP) to 3.63 ng/L (IMI). The DFs of the TPs descyano-acetamiprid, desmethyl-acetamiprid (DM-ACE), N-[(6-Chloropyridin-3-yl) methyl] methylamine, desnitro-clothianidin, desnitro-imidacloprid, desnitro-thiamethoxam, imidacloprid-urea, and thiamethoxam-urea (THM-urea) were higher than 80%, with the median concentrations ranged from 0.25 ng/L for DM-ACE to 2.41 ng/L for THM-urea. Some agricultural parent fungicides, including azoxystrobin (AZS), carbendazim (CBDZ), difenoconazole, dimethomorph, propiconazole, pyraclostrobin, and tebuconazole (TBCZ), were detected in all the samples; others were also detected in more than 80% of the samples except for fluoxastrobin (12.5%). The median concentrations of the frequently detected fungicides ranged from 0.02 ng/L (trifloxystrobin) to 26.8 ng/L (CBDZ). The DFs of the fungicide TPs azoxystrobin acid (AZS acid), difenoconazole-alcohol, tebuconazole-tert-butylhydroxy (TBCZ-OH), and 5-hydroxymethyl-tricyclazole were higher than 75%, with the median concentrations ranged from 0.09 ng/L (TBCZ-OH) to 1.80 ng/L (AZS acid). The summed concentrations of the NNIs and their TPs at the sampling points varied between 0.23 and 418 ng/L, and the summed concentrations of the selected fungicides and their TPs varied from 0.29 to 1160 ng/L. The spatial distribution of most target analytes revealed an increasing trend in their concentrations from the upstream to downstream Yangtze River (250 times increase in their cumulative concentration). Most target pesticides in this study had significantly higher concentrations during wet season than those during dry season. Furthermore, ecological risk assessment suggested that ACE, IMI, THM, CBDZ, TBCZ, and thifluzamide in some samples (n = 1, 11, 1, 1, 1, and 6, respectively) posed high risks to the ecosystem (risk quotient > 1). Priority attention should be paid to the ecological risk posed by these pesticides. Thirty-seven samples had concentrations of individual target analytes over 100 ng/L and four samples had cumulative concentrations of the target analytes over 500 ng/L, exceeding the European Commission guideline values. Taken together, our findings demonstrate a widespread occurrence of the NNIs, agricultural fungicides, and their TPs in the mainstream of the Yangtze River and potential ecological risks posed by some of them.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei 430024, PR China.
| | - Shulan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenyu He
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei 430024, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|