1
|
Lennartz S, Weber CJ, Siemens J, Mulder I. Legacy pollution of floodplain soils with quaternary ammonium compounds - Insights into vertical distribution, historical trends and suspected microplastic carriers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126343. [PMID: 40311733 DOI: 10.1016/j.envpol.2025.126343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/14/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Quaternary ammonium compounds (QACs) are antimicrobials and cationic surfactants used since the early 20th century but increasingly under scrutiny because of their biocidal properties and potential to induce antimicrobial resistance. Although recognized as aquatic contaminants, little is known about the entry, persistence and effects of QACs in floodplain soils. Due to their sorption to suspended particulate matter (SPM), we hypothesized that floodplains may have acted as sinks for QAC contamination in the aquatic-terrestrial interface for decades. Thus, we expected vertical QAC distributions in dated floodplain soil profiles to reflect historical emissions and flood deposits. Moreover, we hypothesized particle-associated entry with SPM and microplastics (MPs) to be a key input pathway. We therefore assessed the depth distribution of 31 QACs in two dated floodplain soils of the German river Lahn by high performance liquid chromatography-mass spectrometry after ultrasonic extraction. Correlation analysis between QAC and MP (>500 μm) concentrations and cluster analysis of QAC homologue patterns in SPM and different German soils were used to identify probable entry routes. QACs were detected down to 90 cm depth, corresponding to the 1920s-1930s, with peak concentrations in soil layers related to a recent hundred-year flood. Highest concentrations up to mg kg-1 for the semi-quantified dimethyldioctadecylammonium tentatively exceeded ecotoxicological effect thresholds by twofold. Concentrations of several QACs correlated positively with MP contents while QAC homologue distributions showed similarity between SPM and floodplain topsoil segments, highlighting the importance of particle-associated entry. These findings confirm QACs as potentially persistent contaminants of ecotoxicological concern in floodplain soils.
Collapse
Affiliation(s)
- S Lennartz
- Institute of Soil Science and Soil Conservation, Justus-Liebig University Gießen, Heinrich-Buff Ring 26, 35392, Gießen, Germany; Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - C J Weber
- Department of Soil Mineralogy and Soil Chemistry, Institute of Applied Geosciences, Technical University Darmstadt, Germany.
| | - J Siemens
- Institute of Soil Science and Soil Conservation, Justus-Liebig University Gießen, Heinrich-Buff Ring 26, 35392, Gießen, Germany
| | - I Mulder
- Institute of Geography, Soil Science and Soil Resources, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
2
|
Lennartz S, Koschorreck J, Göckener B, Weinfurtner K, Frohböse-Körner A, Siemens J, Balachandran S, Glaeser SP, Mulder I. Downstream effects of the pandemic? Spatiotemporal trends of quaternary ammonium compounds in suspended particulate matter of German rivers. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136237. [PMID: 39500184 DOI: 10.1016/j.jhazmat.2024.136237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/19/2024] [Indexed: 12/01/2024]
Abstract
During the SARS-CoV-2 pandemic, the preventive use of antimicrobials such as quaternary ammonium compounds (QACs) surged worldwide. As cationic and surface-active biocides, QACs are only partly removed during wastewater treatment and may cause adverse ecological effects in the downstream environment. To understand the environmental consequences of increased disinfectant use during the pandemic, we investigated spatiotemporal QAC concentration trends in the suspended particulate matter (SPM) of three diverse German rivers. Covering pooled annual SPM samples from 2006-2021 and monthly samples from 2018-2021 collected by the German Environmental Specimen Bank, 31 QACs were quantified by high performance liquid chromatography-mass spectrometry. ∑QAC concentrations in annual samples differed by more than tenfold between rivers in the order Saar (average 6.7 µg/g) > Rhine (0.9 µg/g) > Mulde (0.3 µg/g). The strongest potential pandemic imprint was however observed in the Mulde (+67 %) and Rhine (+22 %). Besides pandemic dynamics, also seasonal variation and mineral content of SPM tentatively affected QAC concentrations. Exceedance of predicted no-effect concentrations for sediment suggest ecotoxicological risks for long-chained QACs already before the pandemic. Our study thus highlights the importance of monitoring the environmental effects of antimicrobial use during pandemics and calls for an urgent minimization of non-essential applications.
Collapse
Affiliation(s)
- Sophie Lennartz
- Institute of Soil Science and Soil Conservation, Justus-Liebig University Gießen, Heinrich-Buff Ring 26, 35392 Gießen, Germany; Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| | - Jan Koschorreck
- German Environment Agency, Colditzstraße 32, 12099 Berlin, Germany.
| | - Bernd Göckener
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany.
| | - Karlheinz Weinfurtner
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany.
| | | | - Jan Siemens
- Institute of Soil Science and Soil Conservation, Justus-Liebig University Gießen, Heinrich-Buff Ring 26, 35392 Gießen, Germany.
| | - Sanjana Balachandran
- Institute of Applied Microbiology, Justus-Liebig University Gießen, Heinrich-Buff Ring 26, 35392 Gießen, Germany.
| | - Stefanie P Glaeser
- Institute of Applied Microbiology, Justus-Liebig University Gießen, Heinrich-Buff Ring 26, 35392 Gießen, Germany.
| | - Ines Mulder
- Institute of Soil Science and Soil Conservation, Justus-Liebig University Gießen, Heinrich-Buff Ring 26, 35392 Gießen, Germany; Institute of Geography, Soil Science and Soil Resources, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
3
|
Peets P, Rian MB, Martin JW, Kruve A. Evaluation of Nontargeted Mass Spectral Data Acquisition Strategies for Water Analysis and Toxicity-Based Feature Prioritization by MS2Tox. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17406-17418. [PMID: 39297340 PMCID: PMC11447898 DOI: 10.1021/acs.est.4c02833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/02/2024]
Abstract
The machine-learning tool MS2Tox can prioritize hazardous nontargeted molecular features in environmental waters, by predicting acute fish lethality of unknown molecules based on their MS2 spectra, prior to structural annotation. It has yet to be investigated how the extent of molecular coverage, MS2 spectra quality, and toxicity prediction confidence depend on sample complexity and MS2 data acquisition strategies. We compared two common nontargeted MS2 acquisition strategies with liquid chromatography high-resolution mass spectrometry for structural annotation accuracy by SIRIUS+CSI:FingerID and MS2Tox toxicity prediction of 191 reference chemicals spiked to LC-MS water, groundwater, surface water, and wastewater. Data-dependent acquisition (DDA) resulted in higher rates (19-62%) of correct structural annotations among reference chemicals in all matrices except wastewaters, compared to data-independent acquisition (DIA, 19-50%). However, DIA resulted in higher MS2 detection rates (59-84% DIA, 37-82% DDA), leading to higher true positive rates for spectral library matching, 40-73% compared to 34-72%. DDA resulted in higher MS2Tox toxicity prediction accuracy than DIA, with root-mean-square errors of 0.62 and 0.71 log-mM, respectively. Given the importance of MS2 spectral quality, we introduce a "CombinedConfidence" score to convey relative confidence in MS2Tox predictions and apply this approach to prioritize potentially ecotoxic nontargeted features in environmental waters.
Collapse
Affiliation(s)
- Pilleriin Peets
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16, SE-106
91, Stockholm, Sweden
- Institute
of Biodiversity, Faculty of Biological Science, Cluster of Excellence
Balance of the Microverse, Friedrich-Schiller-University
Jena, 07743, Jena, Germany
| | - May Britt Rian
- Department
of Environmental Science, Stockholm University, Svante Arrhenius Väg 16, SE-106 91 Stockholm, Sweden
| | - Jonathan W. Martin
- Department
of Environmental Science, Stockholm University, Svante Arrhenius Väg 16, SE-106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Anneli Kruve
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16, SE-106
91, Stockholm, Sweden
- Department
of Environmental Science, Stockholm University, Svante Arrhenius Väg 16, SE-106 91 Stockholm, Sweden
| |
Collapse
|
4
|
Disdier Z, Dagnelie RVH. "P AW" a smart analytical process assessing lipophilicity of solutes in mixtures. Anal Chim Acta 2024; 1316:342871. [PMID: 38969431 DOI: 10.1016/j.aca.2024.342871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND The analysis of mixtures of contaminants remains a challenging task in many fields, including water quality and waste management. For example, the degradation of industrial waste such as plastics, leads to complex mixtures with hundreds of organic contaminants and often non-referenced analytes. In such cases, non-targeted or effects-based analyses provide complementary information to classical targeted-analyses, regarding contaminants nature or properties (molecular mass, lability, toxicity). In this study, a novel analytical method is proposed to characterise mixtures of unknown organic contaminants, with a focus on the lipophilicity of solutes. RESULTS The proposed process, named "PAW" (Partition of Aqueous Waste), aims at the quantification of octanol-water partition coefficients (POW) of mixed organic analytes. The process is based on sequential liquid-liquid partition equilibria. The output result is a lipophilicity histogram of the solutes, screened according to the chosen detection method. The process quantifies the distribution of analytes as a function of their octanol-water partition coefficients, without requiring any identification or prior knowledge. The PAW process is applicable with various detectors (UV-Visible, total carbon, liquid scintillation, etc.) allowing to focus on specific families of contaminants (e.g. organic solutes, colloids, 14C-bearing, etc.). Experimental proofs of concept are proposed, illustrating process implementation and possible fields of application. The first example deals with purity analysis of synthetic radiolabeled compounds. The second example aims the monitoring of cellulose degradation and quantification of the lipophilicity of degradation products. SIGNIFICANCE The PAW analytical process seems especially useful for characterisation of mixtures containing both hydrophilic and lipophilic compounds, e.g. neutral and ionizable organic contaminants, hardly characterisable simultaneously by chromatographic methods. It could be complementary to more detailed targeted or screening analysis of samples and effluents. For example it may help assessing the composition and environmental fate of mixtures of unknown analytes, thus facilitating waste management or mitigation strategies.
Collapse
Affiliation(s)
- Z Disdier
- Université Paris-Saclay, CEA, Service de Physico-Chimie, 91191, Gif-sur-Yvette, France
| | - R V H Dagnelie
- Université Paris-Saclay, CEA, Service de Physico-Chimie, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
5
|
Langa IM, Lado Ribeiro AR, Ratola N, Gonçalves VMF, Tiritan ME, Ribeiro C. Amphetamine-like substances and synthetic cathinones in Portuguese wastewater influents: Enantiomeric profiling and role of suspended particulate matter. Forensic Sci Int 2024; 361:112128. [PMID: 39002412 DOI: 10.1016/j.forsciint.2024.112128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/08/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
Wastewater based epidemiology (WBE) has been used worldwide to estimate drug consumption routinely. Even though WBE provides valuable data to support legal and health interventions associated to drug use, monitoring studies in Portuguese wastewaters are scarce. Hence, this work aimed to estimate the consumption of some conventional abuse and illicit drugs such as amphetamine (AMP), methamphetamine (MAMP), 3,4-methylenedioxymethamphetamine (MDMA), and the synthetic cathinones buphedrone (BPD), butylone (BTL), 3,4-dimethylmethcathinone (3,4-DMMC) and 3-methylmethcathinone (3-MMC), considering not only the liquid phase, but also the suspended particulate matter (SPM). Moreover, the enantiomeric profiling of the samples was studied, exploring for the first time the possible enantioselective sorption of these drugs onto SPM. For that, 24 h composite raw wastewaters were collected from a conventional wastewater treatment plant (WWTP) in Portugal. After extraction, the liquid phase and SPM extracts were derivatized with an enantiomerically pure reagent and then, analysed using a gas chromatography-mass spectrometry (GC-MS) analytical method. The results showed a low and non-enantioselective adsorption to SPM at environmental relevant levels. Only (S)-AMP was detected in two SPM samples, whereas AMP, MAMP, MDMA, BPD, and 3,4-DMMC were detected in the liquid phase. AMP was the most frequently found drug with an estimated load up to 166.0 mg day-1 1000 people-1 and mostly found with enrichment of (S)-AMP. Nevertheless, (R)-AMP was also determined, which may be related to the consumption of either the illicit racemic AMP or the medicine (R)-deprenyl. The use of MDMA, MAMP and synthetic cathinones (BPD and 3,4-DMMC) was also suggested in Portugal. Nevertheless, the levels and the consumption estimate of the target chemicals were lower than in other European countries or worldwide. These findings provide the first step to the implementation of WBE monitoring campaigns to assess the status of drug consumption in Portuguese communities, contributing to the understanding of drug use patterns and trends worldwide and helping enforce preventive measures.
Collapse
Affiliation(s)
- Ivan M Langa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra 4585-116, Portugal
| | - Ana Rita Lado Ribeiro
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal; AliCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Nuno Ratola
- AliCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - Virgínia M F Gonçalves
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra 4585-116, Portugal
| | - Maria Elizabeth Tiritan
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra 4585-116, Portugal; Interdisciplinary Center for marine and Environmental Research (CIIMAR), Port of Leixões Cruise Terminal, Av. General Norton de Matos, s/n, Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, Porto 4050-313, Portugal
| | - Cláudia Ribeiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra 4585-116, Portugal.
| |
Collapse
|
6
|
Handl S, Kutlucinar KG, Allabashi R, Troyer C, Mayr E, Perfler R, Hann S. Assessment of dynamics and variability of organic substances in river bank filtration for prioritisation in analytical workflows. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53410-53423. [PMID: 39192150 PMCID: PMC11379727 DOI: 10.1007/s11356-024-34783-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Bank filtration supports the growing global demand for drinking water amidst concerns over organic micropollutants (OMPs). Efforts to investigate, regulate and manage OMPs have intensified due to their documented impacts on ecosystems and human health. Non-targeted analysis (NTA) is critical for addressing the challenge of numerous OMPs. While identification in NTA typically prioritises compounds based on properties like toxicity, considering substance quantity, occurrence frequency and exposure duration is essential for comprehensive risk management. A prioritisation scheme, drawing from intensive sampling and NTA of bank filtrate, is presented and reveals significant variability in OMP occurrence. Quasi-omnipresent substances, though only 7% of compounds, accounted for 44% of cumulative detections. Moderately common substances, constituting 31% of compounds, accounted for 50% of cumulative detections. Rare compounds, comprising 61%, contributed only 6% to cumulative detections. The application of suspect screening for 31 substances to the dataset yielded results akin to NTA, underscoring NTA's value. Correlation between both methods demonstrates the efficacy of high-resolution mass spectrometry-based NTA in assessing temporal and quantitative OMP dynamics.
Collapse
Affiliation(s)
- Sebastian Handl
- Department of Water, Atmosphere and Environment, Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190, Vienna, Austria.
| | - Kaan Georg Kutlucinar
- Department of Water, Atmosphere and Environment, Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190, Vienna, Austria
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Roza Allabashi
- Department of Water, Atmosphere and Environment, Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Christina Troyer
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Ernest Mayr
- Department of Water, Atmosphere and Environment, Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Reinhard Perfler
- Department of Water, Atmosphere and Environment, Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Stephan Hann
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
7
|
Monteil-Rivera F, Locke S, Ye M, Smyth SA, Sullivan K, Okonski A, Jagla M, Gutzman D. Quantification of quaternary ammonium compounds by liquid chromatography-mass spectrometry: Minimizing losses from the field to the laboratory. J Chromatogr A 2024; 1723:464905. [PMID: 38640882 DOI: 10.1016/j.chroma.2024.464905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Quaternary Ammonium Compounds (QACs) are widely used in household, medical and industrial settings. As a consequence, they are ubiquitously found in the environment. Although significant efforts have been put into the development of sensitive and reproducible analytical methods, much less effort has been dedicated to the monitoring of QACs upon sample storage and sample preparation. Here we studied the effect of storage, concentration, and extraction procedures on the concentrations of QACs in samples. Thirteen QACs selected amongst benzalkonium compounds (BACs), dialkyldimethylammonium compounds (DADMACs) and alkyltrimethylammonium compounds (ATMACs) were quantified in aqueous and solid samples using LC-MS/MS. Most QACs adsorbed on container walls could be recovered using a short washing step with MeOH containing 2 % v/v formic acid. Concentrations of QACs from aqueous solutions using solid phase extraction (SPE) with Strata-X cartridges and elution with acidified MeOH utilized to wash the emptied containers gave highly satisfactory recoveries (101-111 %). Good recoveries (89-116 %) were also obtained when extracting a spiked organic-rich synthetic soil using accelerated solvent extraction (ASE) with acidified MeOH at low solid/solvent ratio (0.4 g/20 mL). Applying the recommended methodologies to real samples collected from a Canadian wastewater treatment plant (WWTP) gave QAC concentrations in the ranges of 0.01-30 µg/L, < 1.2 µg/L, and 0.05-27 mg/kg for the influent, effluent and biosolids samples, respectively.
Collapse
Affiliation(s)
- Fanny Monteil-Rivera
- National Research Council of Canada, Aquatic and Crop Resource Development Research Center, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada.
| | - Steven Locke
- National Research Council of Canada, Aquatic and Crop Resource Development Research Center, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada
| | - Mengwei Ye
- National Research Council of Canada, Aquatic and Crop Resource Development Research Center, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Shirley Anne Smyth
- Environment and Climate Change Canada, Science and Technology Branch, Regulatory Operations, Policy and Emerging Science Division, 867 Lakeshore Rd., Burlington, ON, L7S 1A1, Canada
| | - Katrina Sullivan
- Environment and Climate Change Canada, Science and Technology Branch, Substance Prioritization, Assessment and Coordination Division, 351St. Joseph Blvd., Gatineau, QC, K1A 0H3, Canada
| | - Alexander Okonski
- Environment and Climate Change Canada, Science and Technology Branch, Substance Prioritization, Assessment and Coordination Division, 351St. Joseph Blvd., Gatineau, QC, K1A 0H3, Canada
| | - Magdalena Jagla
- Environment and Climate Change Canada, Science and Technology Branch, Substance Prioritization, Assessment and Coordination Division, 351St. Joseph Blvd., Gatineau, QC, K1A 0H3, Canada
| | - Don Gutzman
- Environment and Climate Change Canada, Science and Technology Branch, Substance Prioritization, Assessment and Coordination Division, 351St. Joseph Blvd., Gatineau, QC, K1A 0H3, Canada
| |
Collapse
|
8
|
Li ZM, Lee C, Kannan K. An exposure assessment of 27 quaternary ammonium compounds in pet dogs and cats from New York State, USA. ENVIRONMENT INTERNATIONAL 2024; 184:108446. [PMID: 38252984 DOI: 10.1016/j.envint.2024.108446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/14/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Benzylalkyldimethylammonium (BACs), dialkyldimethylammonium (DDACs), and alkyltrimethylammonium compounds (ATMACs) are quaternary ammonium compounds (QACs) used widely as biocides, disinfectants, and sanitizers. Owing to their toxicity, human exposure to this class of chemicals is a concern. Pet animals are sentinels of human exposure to several indoor environmental chemicals. For the first time, we measured 7 BACs, 6 DDACs, 6 ATMACs, and 8 metabolites of BACs in urine and feces of pet dogs and cats from New York State, USA. We found widespread occurrence of QACs in feces, with median concentration of ∑All (sum concentration of all 27 QAC analytes) at 9680 and 1260 ng/g dry weight (dw) in dog and cat feces, respectively. BACs were the most abundant compounds among the four types of QACs, accounting for 64 % and 57 % of ∑All in dog and cat feces, respectively, followed by DDACs (33 % and 34 %, respectively), ATMACs (4 % and 9 %, respectively), and BAC metabolites (0.2 % and 0.3 %, respectively). However, in urine, only ω-carboxylic acid metabolites of BACs were found at median concentrations at 2.08 and 0.28 ng/mL in dogs and cats, respectively. Samples collected from animal shelters contained elevated levels of QACs than those from homes of pet owners. A significant positive correlation was found among the four types of QACs analyzed, which suggested usage of these chemicals in combination as mixtures. Based on the concentrations measured in feces, and through a reverse dosimetry approach, the median cumulative daily intakes (CDIs) of QACs were estimated to be 49.4 and 4.75 µg/kg body weight (BW)/day for dogs and cats, respectively. This study provides first evidence that pet dogs and cats are exposed to QACs at significant levels that warrant further attention.
Collapse
Affiliation(s)
- Zhong-Min Li
- Wadsworth Center, New York State Department of Health, Albany, NY 12237, United States
| | - Conner Lee
- Wadsworth Center, New York State Department of Health, Albany, NY 12237, United States
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, NY 12237, United States; Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12237, United States.
| |
Collapse
|
9
|
Motteau S, Deborde M, Gombert B, Karpel Vel Leitner N. Non-target analysis for water characterization: wastewater treatment impact and selection of relevant features. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4154-4173. [PMID: 38097837 DOI: 10.1007/s11356-023-30972-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/05/2023] [Indexed: 01/19/2024]
Abstract
Non-target analyses were conducted to characterize and compare the molecular profiles (UHPLC-HRMS fingerprint) of water samples from a wastewater treatment plant (WWTP). Inlet and outlet samples were collected from three campaigns spaced 6 months apart in order to highlight common trends. A significant impact of the treatment on the sample fingerprints was shown, with a 65-70% abatement of the number of features detected in the effluent, and more polar, smaller and less intense molecules found overall compared to those in WWTP influent waters. Multivariate analysis (PCA) associated with variations of the features between inlets and outlets showed that features appearing or increasing were correlated with effluents while those disappearing or decreasing were correlated with influents. Finally, effluent features considered as relevant to a potentially adverse effect on aqueous media (i.e. those which appeared or increased or slightly varied from the influent) were highlighted. Three hundred seventy-five features common with the 3 campaigns were thus selected and further characterized. For most of them, elementary composition was found to be C, H, N, O (42%) and C, H, N, O, P (18%). Considering the MS2 spectra and several reference MS2 databases, annotations were proposed for 35 of these relevant features. They include synthetic products, pharmaceuticals and metabolites.
Collapse
Affiliation(s)
- Solène Motteau
- University of Poitiers, Institut de Chimie Des Milieux Et Des Matériaux de Poitiers (IC2MP UMR CNRS 7285), Equipe Eaux Biomarqueurs Contaminants Organiques Milieux (E.BICOM), 1 Rue Marcel Doré, Bâtiment B1, TSA 41105 86073, Cedex, Poitiers, France
| | - Marie Deborde
- University of Poitiers, Institut de Chimie Des Milieux Et Des Matériaux de Poitiers (IC2MP UMR CNRS 7285), Equipe Eaux Biomarqueurs Contaminants Organiques Milieux (E.BICOM), 1 Rue Marcel Doré, Bâtiment B1, TSA 41105 86073, Cedex, Poitiers, France.
- University of Poitiers, UFR Médecine Et de Pharmacie, 6 Rue de La Milétrie, Bâtiment D1, TSA 51115, 86073, Cedex 9, Poitiers, France.
| | - Bertrand Gombert
- University of Poitiers, Institut de Chimie Des Milieux Et Des Matériaux de Poitiers (IC2MP UMR CNRS 7285), Equipe Eaux Biomarqueurs Contaminants Organiques Milieux (E.BICOM), 1 Rue Marcel Doré, Bâtiment B1, TSA 41105 86073, Cedex, Poitiers, France
| | - Nathalie Karpel Vel Leitner
- University of Poitiers, Institut de Chimie Des Milieux Et Des Matériaux de Poitiers (IC2MP UMR CNRS 7285), Equipe Eaux Biomarqueurs Contaminants Organiques Milieux (E.BICOM), 1 Rue Marcel Doré, Bâtiment B1, TSA 41105 86073, Cedex, Poitiers, France
| |
Collapse
|
10
|
Houthuijs KJ, Horn M, Vughs D, Martens J, Brunner AM, Oomens J, Berden G. Identification of organic micro-pollutants in surface water using MS-based infrared ion spectroscopy. CHEMOSPHERE 2023; 341:140046. [PMID: 37660788 DOI: 10.1016/j.chemosphere.2023.140046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Comprehensive monitoring of organic micro-pollutants (OMPs) in drinking water sources relies on non-target screening (NTS) using liquid-chromatography and high-resolution mass spectrometry (LC-HRMS). Identification of OMPs is typically based on accurate mass and tandem mass spectrometry (MS/MS) data by matching against entries in compound databases and MS/MS spectral libraries. MS/MS spectra are, however, not always diagnostic for the full molecular structure and, moreover, emerging OMPs or OMP transformation products may not be present in libraries. Here we demonstrate how infrared ion spectroscopy (IRIS), an emerging MS-based method for structural elucidation, can aid in the identification of OMPs. IRIS measures the IR spectrum of an m/z-isolated ion in a mass spectrometer, providing an orthogonal diagnostic for molecular identification. Here, we demonstrate the workflow for identification of OMPs in river water and show how quantum-chemically predicted IR spectra can be used to screen potential candidates and suggest structural assignments. A crucial step herein is to define a set of candidate structures, presumably including the actual OMP, for which we present several strategies based on domain knowledge, the IR spectrum and MS/MS spectrum.
Collapse
Affiliation(s)
- Kas J Houthuijs
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, the Netherlands
| | - Marijke Horn
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, the Netherlands
| | - Dennis Vughs
- KWR Water Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430 BB, Nieuwegein, the Netherlands
| | - Jonathan Martens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, the Netherlands
| | - Andrea M Brunner
- KWR Water Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430 BB, Nieuwegein, the Netherlands; TNO, Environmental Modelling, Sensing and Analysis (EMSA), Princetonlaan 8, 3584 CB, Utrecht, the Netherlands
| | - Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, the Netherlands; van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Giel Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, the Netherlands.
| |
Collapse
|
11
|
Belova L, Poma G, Roggeman M, Jeong Y, Kim DH, Berghmans P, Peters J, Salamova A, van Nuijs ALN, Covaci A. Identification and characterization of quaternary ammonium compounds in Flemish indoor dust by ion-mobility high-resolution mass spectrometry. ENVIRONMENT INTERNATIONAL 2023; 177:108021. [PMID: 37307605 DOI: 10.1016/j.envint.2023.108021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/14/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023]
Abstract
Quaternary ammonium compounds (QACs) are a class of surfactants commonly used in disinfecting and cleaning products. Their use has substantially increased during the COVID-19 pandemic leading to increasing human exposure. QACs have been associated with hypersensitivity reactions and an increased risk of asthma. This study introduces the first identification, characterization and semi-quantification of QACs in European indoor dust using ion-mobility high-resolution mass spectrometry (IM-HRMS), including the acquisition of collision cross section values (DTCCSN2) for targeted and suspect QACs. A total of 46 indoor dust samples collected in Belgium were analyzed using target and suspect screening. Targeted QACs (n = 21) were detected with detection frequencies ranging between 4.2 and 100 %, while 15 QACs showed detection frequencies > 90 %. Semi-quantified concentrations of individual QACs showed a maximum of 32.23 µg/g with a median ∑QAC concentration of 13.05 µg/g and allowed the calculation of Estimated Daily Intakes for adults and toddlers. Most abundant QACs matched the patterns reported in indoor dust collected in the United States. Suspect screening allowed the identification of 17 additional QACs. A dialkyl dimethyl ammonium compound with mixed chain lengths (C16:C18) was characterized as a major QAC homologue with a maximum semi-quantified concentration of 24.90 µg/g. The high detection frequencies and structural variabilities observed call for more European studies on potential human exposure to these compounds. For all targeted QACs, drift tube IM-HRMS derived collision cross section values (DTCCSN2) are reported. Reference DTCCSN2 values allowed the characterization of CCS-m/z trendlines for each of the targeted QAC classes. Experimental CCS-m/z ratios of suspect QACs were compared with the CCS-m/z trendlines. The alignment between the two datasets served as an additional confirmation of the assigned suspect QACs. The use of the 4bit multiplexing acquisition mode with consecutive high-resolution demultiplexing confirmed the presence of isomers for two of the suspect QACs.
Collapse
Affiliation(s)
- Lidia Belova
- Toxicological Centre, University of Antwerp, Antwerp, Belgium.
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | | | - Yunsun Jeong
- Toxicological Centre, University of Antwerp, Antwerp, Belgium; Division for Environmental Health, Korea Environment Institute (KEI), Sicheong-daero 370, Sejong 30147, Republic of Korea
| | - Da-Hye Kim
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | - Patrick Berghmans
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Jan Peters
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Amina Salamova
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|