1
|
Xing Y, Li W, Liao X, Wang L, Wang B, Peng Y. Enhanced nitrogen removal from low C/N municipal wastewater in a step-feed integrated fixed-film activated sludge system: Synergizing anammox and partial denitrification with sludge fermentation liquid supplementation. WATER RESEARCH 2025; 275:123211. [PMID: 39919405 DOI: 10.1016/j.watres.2025.123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/07/2025] [Accepted: 01/26/2025] [Indexed: 02/09/2025]
Abstract
The scarcity of rapidly biodegradable organics, which serve as essential electron donors for the partial denitrification (PD) process, significantly hinders the combined application of PD coupled with anammox (PDA) in municipal wastewater treatment plants. This study innovatively applied, for the first time, a step-feed strategy combined with the use of sludge fermentation liquid (SFL) as an external carbon source in an integrated fixed-film activated sludge (IFAS) system, successfully driving full nitrification and PDA to achieve advanced nitrogen removal from low C/N real municipal wastewater. Moreover, the associated nitrogen removal mechanism of this system was systematically analyzed. By employing second-step SFL feed as a supplementary carbon source, the nitrogen removal efficiency reached 92.26 ± 2.77 % and the effluent total inorganic nitrogen was 6.43 ± 2.23 mg/L, with anammox contributing approximately 70 % to total inorganic nitrogen removal. 16S rRNA gene sequencing and fluorescence in situ hybridization analysis unveiled the extensive cooperation and synergistic interactions among anammox bacteria, denitrifying bacteria, and nitrifying bacteria, with Candidatus Brocadia being highly enriched in biofilms with a relative abundance of 2.21 %. Metagenomic sequencing confirmed that the relative abundance of the narGHI gene was greater than that of the nirS gene, providing stable nitrite accumulation conditions for the anammox process. Overall, this study proposes an innovative synergistic treatment scheme that utilizes a step-feed full nitrification-PDA process driven by SFL to achieve advanced nitrogen removal in municipal wastewater treatment plants. This approach is characterized by low energy consumption, low operational costs and a high nitrogen removal efficiency.
Collapse
Affiliation(s)
- Yiyuan Xing
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Wenjie Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiaojian Liao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Lu Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Bo Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
2
|
Yan W, Gu L, Li H, Li J, Zheng S, Feng M, Yu X. Exploring the role of carbon source types in trace-level sulfamethoxazole removal and greenhouse gas emissions in AnMBRs. ENVIRONMENTAL RESEARCH 2025; 277:121556. [PMID: 40199436 DOI: 10.1016/j.envres.2025.121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/29/2025] [Accepted: 04/05/2025] [Indexed: 04/10/2025]
Abstract
The efficient removal of trace-level sulfamethoxazole (SMX) from wastewater remains a significant challenge. Different carbon sources can enrich distinct microbiomes, leading to variations in the functional capacity of the community. This makes it possible to select appropriate carbon sources that are conducive to enhancing SMX removal, thereby improving the overall SMX removal efficiency in WWTPs. In this study, acetate, citrate, and glucose were tested as carbon sources in anaerobic membrane bioreactors (AnMBRs) to investigate their effects on trace-level SMX removal. Glucose, as a carbon source, achieved the highest SMX removal efficiency, reduced the risk of resistance gene transmission, and maintained stable nutrient removal performance. The higher abundance of SMX-degrading bacteria and the higher content of extracellular polymeric substances in glucose-fed cultures are the reasons for the higher SMX removal rate. Additionally, GHG emissions, primarily methane, increase with the increase of SMX concentration within the range of 10-250 μg L-1. Methane production is predominantly driven by the acetate-to-methane pathway (M00357 KEGG). Higher SMX concentrations led to an increase in the abundance of SMX-resistant bacteria, causing a large amount of CH4 emissions. These findings provide valuable insights into optimizing carbon source selection and deepen our understanding of the relationship between trace-level SMX removal and GHG emissions in wastewater treatment processes.
Collapse
Affiliation(s)
- Wanli Yan
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361005, China
| | - Lide Gu
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Haoran Li
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361005, China
| | - Jianguo Li
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361005, China
| | - Shikan Zheng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361005, China
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361005, China
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
3
|
Zhang B, Zhou J, Wu J, Wang Y, Ye F, Shen X, Hong Y. Unlocking N 2O respiratory pathways in Stutzerimonas stutzeri PRE-2: Implications for reducing N 2O emissions from estuaries. MARINE ENVIRONMENTAL RESEARCH 2025; 206:107044. [PMID: 40043466 DOI: 10.1016/j.marenvres.2025.107044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
Although nitrogen cycling in nitrogen-enriched estuaries is highly active, the reported nitrous oxide (N2O) emission factor (EF5e) values for N2O emissions in estuarine environments are usually low. Therefore, biological or abiotic mechanisms control the emission of N2O from estuarine ecosystems. In this study, a pure culture of N2O-reducing bacteria was isolated from Pearl River Estuary surface sediment and identified as Stutzerimonas stutzeri PRE-2. This strain displayed a high N2O reduction capability, and the average N2O reduction rate was 17.93 ± 0.43 μmol h-1 under anoxic conditions. This reduction of N2O was coupled with the stoichiometric consumption of acetate or lactate as electron donors, suggesting that microbial N2O reduction involves electron transport. Furthermore, N2O reduction can yield energy that supports microbial growth. Genomic analysis demonstrated that the strain Stutzerimonas stutzeri PRE-2 contains a complete pathway for the reduction of N2O to N2. Typical respiratory chain inhibitors did not significantly inhibit N2O reduction activity, demonstrating that the electron transfer pathway involved in N2O reduction is unique compared to the classic respiratory chain. The integrated evidence suggests that microbial N2O reduction by Stutzerimonas stutzeri PRE-2 involves N2O respiration and may play an important role in reducing N2O emissions in estuarine ecosystems.
Collapse
Affiliation(s)
- Baoshan Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Jiaxian Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yu Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Fei Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Xiaomei Shen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Li S, Zhao R, Wang S, Yang Y, Diao M, Ji G. Influences of fluctuating nutrient loadings on nitrate-reducing microorganisms in rivers. ISME COMMUNICATIONS 2025; 5:ycae168. [PMID: 39839890 PMCID: PMC11748280 DOI: 10.1093/ismeco/ycae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/07/2024] [Accepted: 12/21/2024] [Indexed: 01/23/2025]
Abstract
Rivers serve important functions for human society and are significantly impacted by anthropogenic nutrient inputs (e.g. organic and sulfur compounds). Reduced organic and sulfur compounds influence the nitrogen cycle as they are electron donors of microbial nitrate reduction. Water pollution caused by individual nutrients and the mechanisms have been studied, but how the variation in multiple nutrient loadings influences nitrate-reducing microorganisms is less understood. Two sets of microcosms were established and exposed to nitrate, along with either acetate or thiosulfate, at different times. Nutrient concentrations responded to the loading pollutant. The nutrient loading order was more important in shaping microbial community structure and microbial interactions through the exchange of growth-required substances. This indicated that upstream or historical nutrient inflows impacted current nitrate reduction by changing the seeding microbial community, highlighting the importance of river connectivity. Based on metatranscriptome analysis, although the order and type of nutrient loadings were equally important in regulating global transcriptomes, transcripts of enzymes for key metabolisms (nitrate reduction, sulfur oxidation, etc.) more actively responded to the nutrient type. The regulation of a small set of genes was sufficient to make the transition, while most transcripts were not degraded and regenerated. These insights are important for understanding the varying pollution status of rivers and for developing effective solutions, such as remediation.
Collapse
Affiliation(s)
- Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
- Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
| | - Rui Zhao
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Shuo Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Yiwen Yang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Muhe Diao
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Zhang B, Xu H, Zhang H, Chen Z, Shi H, Chen S, Wang X. Dual isotope labelling combined with multi-omics analysis revealing the N 2O source evolution in aerobic biological systems driven by salinity gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177262. [PMID: 39477120 DOI: 10.1016/j.scitotenv.2024.177262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/18/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024]
Abstract
Salinity is considered a major factor influencing nitrous oxide (N2O) emissions from biochemical treatment of high-salinity wastewater, but its mechanism has not been thoroughly investigated. In this study, we investigated the effects of salinity on N2O emissions under aerobic conditions. As salinity rose from 0.66 % to 3.66 %, N2O emission flux first increased and then decreased, while the emission factor (EF) consistently increased, likely due to significant inhibition of nitrification at 3.66 % salinity. Nitrogen‑oxygen dual isotope labeling experiments demonstrated that the dominant N2O production pathway shifted with salinity: from nitrifier nitrification (NN, 36.07 %-40.97 %) at low salinity (0.66 %, 1.66 %), to nitrification-coupled denitrification (NCD, 51.67 %) at 2.66 %, and to nitrifier denitrification (ND, up to 80.81 %) at the salinity of 3.66 %. From the changes in bacterial relative abundances and expressions of 4 key functional genes (amoA, hao, nor, and nosZ) revealed by metatranscriptomic sequencing, Nitrosomonas, unclassified Rhodospirillales, and Nitrospira were identified as key contributors to NN, NCD, and ND pathways, respectively, as salinity increased. We also found that the differential expressed genes and metabolites involved in energy metabolism, oxidative phosphorylation, and metabolism of amino acids, pyrimidines, and nucleotides may affect N-cycling bacteria, thereby influencing nitrogen conversion and salinity tolerance as well. This study sheds light on nitrification process in response to salinity stress and offers insights for mitigating greenhouse gas emissions from high-salinity wastewater treatment.
Collapse
Affiliation(s)
- Bo Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaihao Xu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhou Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Huiqun Shi
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Shaohua Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Xiaojun Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
6
|
Yeerken S, Deng M, Li L, Thi Kinh C, Wang Z, Huang Y, Xiao Y, Song K. Evaluating the role of high N 2O affinity complete denitrifiers and non-denitrifying N 2O reducing bacteria in reducing N 2O emissions in river. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135602. [PMID: 39191010 DOI: 10.1016/j.jhazmat.2024.135602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Freshwater rivers are hotspots of N2O greenhouse gas emissions. Dissolved organic carbon (DOC) is the dominant electron donor for microbial N2O reduction, which can reduce N2O emission through enriching high N2O affinity denitrifiers or enriching non-denitrifying N2O-reducing bacteria (N2ORB), but the primary regulatory pathway remains unclear. Here, field study indicated that high DOC concentration in rivers enhanced denitrification rate but reduced N2O flux by improving nosZ gene abundance. Then, four N2O-fed membrane aeration biofilm reactors inoculated with river sediments from river channel, estuary, adjacent lake, and a mixture were continuously performed for 360 days, including low, high, and mixed DOC stages. During enrichment stages, the (nirS+nirK)/nosZ ratio showed no significant difference, but the community structure of denitrifiers and N2ORB changed significantly (p < 0.05). In addition, N2ORB strains isolated from different enrichment stages positioned in different branches of the phylogenetic tree. N2ORB strains isolated during high DOC stage showed significant higher maximum N2O-reducing capability (Vmax: 0.6 ± 0.4 ×10-4 pmol h-1 cell-1) and N2O affinity (a0: 7.8 ± 7.7 ×10-12 L cell-1 h-1) than strains isolated during low (Vmax: 0.1 ± 0.1 ×10-4 pmol h-1 cell-1, a0: 0.7 ± 0.4 ×10-12 L cell-1 h-1) and mixed DOC stages (Vmax: 0.1 ± 0.1 ×10-4 pmol h-1 cell-1, a0: 0.9 ± 0.9 ×10-12 L cell-1 h-1) (p < 0.05). Hence, under high DOC concentration conditions, the primary factor in reducing N2O emissions in rivers is the enrichment of complete denitrifiers with high N2O affinity, rather than non-denitrifying N2ORB.
Collapse
Affiliation(s)
- Senbati Yeerken
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; University of Chinese Academy of Sciences, Beijing 100049, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
| | - Min Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Co Thi Kinh
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zezheng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongxia Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlin Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Huang ZS, Tan XQ, Yang HB, Zeng Y, Chen SJ, Wei ZS, Huang YQ. Mechanistic insights into tris(2-chloroisopropyl) phosphate biomineralization coupled with lead (II) biostabilization driven by denitrifying bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173927. [PMID: 38901584 DOI: 10.1016/j.scitotenv.2024.173927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/24/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
The ubiquity and persistence of organophosphate esters (OPEs) and heavy metal (HMs) pose global environmental risks. This study explored tris(2-chloroisopropyl)phosphate (TCPP) biomineralization coupled to lead (Pb2+) biostabilization driven by denitrifying bacteria (DNB). The domesticated DNB achieved synergistic bioremoval of TCPP and Pb2+ in the batch bioreactor (efficiency: 98 %).TCPP mineralized into PO43- and Cl-, and Pb2+ precipitated with PO43-. The TCPP-degrading/Pb2+-resistant DNB: Achromobacter, Pseudomonas, Citrobacter, and Stenotrophomonas, dominated the bacterial community, and synergized TCPP biomineralization and Pb2+ biostabilization. Metagenomics and metaproteomics revealed TCPP underwent dechlorination, hydrolysis, the TCA cycle-based dissimilation, and assimilation; Pb2+ was detoxified via bioprecipitation, bacterial membrane biosorption, EPS biocomplexation, and efflux out of cells. TCPP, as an initial donor, along with NO3-, as the terminal acceptor, formed a respiratory redox as the primary energy metabolism. Both TCPP and Pb2+ can stimulate phosphatase expression, which established the mutual enhancements between their bioconversions by catalyzing TCPP dephosphorylation and facilitating Pb2+ bioprecipitation. TCPP may alleviate the Pb2+-induced oxidative stress by aiding protein phosphorylation. 80 % of Pb2+ converted into crystalized pyromorphite. These results provide the mechanistic foundations and help develop greener strategies for synergistic bioremediation of OPEs and HMs.
Collapse
Affiliation(s)
- Zhen-Shan Huang
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Xiu-Qin Tan
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, MEE, Guangzhou 510530, China
| | - Han-Biao Yang
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Yuan Zeng
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - She-Jun Chen
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Zai-Shan Wei
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Yu-Qi Huang
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
8
|
Chen A, Li H, Wu H, Song Z, Chen Y, Zhang H, Pang Z, Qin Z, Wu Y, Guan X, Huang H, Li Z, Qiu G, Wei C. Anaerobic cyanides oxidation with bimetallic modulation of biological toxicity and activity for nitrite reduction. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134540. [PMID: 38733787 DOI: 10.1016/j.jhazmat.2024.134540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Cyanide is a typical toxic reducing agent prevailing in wastewater with a well-defined chemical mechanism, whereas its exploitation as an electron donor by microorganisms is currently understudied. Given that conventional denitrification requires additional electron donors, the cyanide and nitrogen can be eliminated simultaneously if the reducing HCN/CN- and its complexes are used as inorganic electron donors. Hence, this paper proposes anaerobic cyanides oxidation for nitrite reduction, whereby the biological toxicity and activity of cyanides are modulated by bimetallics. Performance tests illustrated that low toxicity equivalents of iron-copper composite cyanides provided higher denitrification loads with the release of cyanide ions and electrons from the complex structure by the bimetal. Both isotopic labeling and Density Functional Theory (DFT) demonstrated that CN--N supplied electrons for nitrite reduction. The superposition of chemical processes reduces the biotoxicity and enhances the biological activity of cyanides in the CN-/Fe3+/Cu2+/NO2- coexistence system, including complex detoxification of CN- by Fe3+, CN- release by Cu2+ from [Fe(CN)6]3-, and NO release by nitrite substitution of -CN groups. Cyanide is the smallest structural unit of C/N-containing compounds and serves as a probe to extend the electron-donating principle of anaerobic cyanides oxidation to more electron-donor microbial utilization.
Collapse
Affiliation(s)
- Acong Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Haoling Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Haizhen Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, PR China.
| | - Zhaohui Song
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Yao Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Heng Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Zijun Pang
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Zhi Qin
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Yulun Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Xianghong Guan
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Hua Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Zemin Li
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China; School of Environment, South China Normal University, Guangzhou, Guangdong 510006, PR China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China; School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China.
| |
Collapse
|
9
|
Deb S, Lewicka-Szczebak D, Rohe L. Microbial nitrogen transformations tracked by natural abundance isotope studies and microbiological methods: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172073. [PMID: 38554959 DOI: 10.1016/j.scitotenv.2024.172073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/07/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Nitrogen is an essential nutrient in the environment that exists in multiple oxidation states in nature. Numerous microbial processes are involved in its transformation. Knowledge about very complex N cycling has been growing rapidly in recent years, with new information about associated isotope effects and about the microbes involved in particular processes. Furthermore, molecular methods that are able to detect and quantify particular processes are being developed, applied and combined with other analytical approaches, which opens up new opportunities to enhance understanding of nitrogen transformation pathways. This review presents a summary of the microbial nitrogen transformation, including the respective isotope effects of nitrogen and oxygen on different nitrogen-bearing compounds (including nitrates, nitrites, ammonia and nitrous oxide), and the microbiological characteristics of these processes. It is supplemented by an overview of molecular methods applied for detecting and quantifying the activity of particular enzymes involved in N transformation pathways. This summary should help in the planning and interpretation of complex research studies applying isotope analyses of different N compounds and combining microbiological and isotopic methods in tracking complex N cycling, and in the integration of these results in modelling approaches.
Collapse
Affiliation(s)
- Sushmita Deb
- Institute of Geological Sciences, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław, Poland
| | | | - Lena Rohe
- Thünen Institute of Climate-Smart Agriculture, Bundesallee 65, 38116 Braunschweig, Germany
| |
Collapse
|
10
|
Chen W, Zhang X, Wu N, Yuan C, Liu Y, Yang Y, Chen Z, Dahlgren RA, Zhang M, Ji X. Sources and transformations of riverine nitrogen across a coastal-plain river network of eastern China: New insights from multiple stable isotopes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171671. [PMID: 38479520 DOI: 10.1016/j.scitotenv.2024.171671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/10/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Riverine nitrogen pollution is ubiquitous and attracts considerable global attention. Nitrate is commonly the dominant total nitrogen (TN) constituent in surface and ground waters; thus, stable isotopes of nitrate (δ15N/δ18O-NO3-) are widely used to differentiate nitrate sources. However, δ15N/δ18O-NO3- approach fails to present a holistic perspective of nitrogen pollution for many coastal-plain river networks because diverse nitrogen species contribute to high TN loads. In this study, multiple isotopes, namely, δ15N/δ18O-NO3-, δ18O-H2O, δ15N-NH4+, δ15N-PN, and δ15Nbulk/δ18O/SP-N2O in the Wen-Rui Tang River, a typical coastal-plain river network of Eastern China, were investigated to identify transformation processes and sources of nitrogen. Then, a stable isotope analysis in R (SIAR) model-TN source apportionment method was developed to quantify the contributions of different nitrogen sources to riverine TN loads. Results showed that nitrogen pollution in the river network was serious with TN concentrations ranging from 1.71 to 8.09 mg/L (mean ± SD: 3.77 ± 1.39 mg/L). Ammonium, nitrate, and suspended particulate nitrogen were the most prominent nitrogen components during the study period, constituting 45.4 %, 28.9 %, and 19.9 % of TN, respectively. Multiple hydrochemical and isotopic analysis identified nitrification as the dominant N cycling process. Biological assimilation and denitrification were minor N cycling processes, whereas ammonia volatilization was deemed negligible. Isotopic evidence and SIAR modeling revealed municipal sewage was the dominant contributor to nitrogen pollution. Based on quantitative estimates from the SIAR model, nitrogen source contributions to the Wen-Rui Tang River watershed followed: municipal sewage (40.6 %) ≈ soil nitrogen (39.5 %) > nitrogen fertilizer (9.7 %) > atmospheric deposition (2.8 %) during wet season; and municipal sewage (59.1 %) > soil nitrogen (30.4 %) > nitrogen fertilizer (4.1 %) > atmospheric deposition (1.0 %) during dry season. This study provides a deeper understanding of nitrogen dynamics in eutrophic coastal-plain river networks, which informs strategies for efficient control and remediation of riverine nitrogen pollution.
Collapse
Affiliation(s)
- Wenli Chen
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaohan Zhang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Nianting Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Can Yuan
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yinli Liu
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Yue Yang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Southern Zhejiang Water Research Institute, Wenzhou 325035, China
| | - Zheng Chen
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, California 95616, USA
| | - Minghua Zhang
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; Southern Zhejiang Water Research Institute, Wenzhou 325035, China; Department of Land, Air and Water Resources, University of California, Davis, California 95616, USA
| | - Xiaoliang Ji
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
11
|
Ji M, Gao H, Zhang J, Hu Z, Liang S. Environmental impacts on algal-bacterial-based aquaponics system by different types of carbon source addition: water quality and greenhouse gas emission. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26665-26674. [PMID: 38451459 DOI: 10.1007/s11356-024-32717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Carbon source addition is an important way improving the carbon and nitrogen transformation in aquaculture system; however, its effectiveness of algal-bacterial-based aquaponics (AA) through carbon source addition is still vague. In this study, the influences of organic carbon (OC-AA system) and inorganic carbon (IC-AA system) addition and without carbon source addition (C-AA system) on the operational performance of AA system were investigated. Results showed that 10.1-19.5% increase of algal-bacterial biomass enhanced the purifying effect of ammonia nitrogen in OC-AA system and IC-AA system relative to C-AA system. Moreover, extra electron donor supply in the OC-AA system obtained the lowest NO3--N concentration. However, that was at the cost of aggravated N2O conversion ratio, which increased by more than 2.0-folds than other systems, attributing to 2.9-folds increase of nirS gene abundance. In addition, carbon source addition increased the pH and then decreased the fish biomass production of AA system. The results of this study would provide theoretical supports of carbon source addition on the performance of nutrient transformation and greenhouse gas effect in AA system.
Collapse
Affiliation(s)
- Mingde Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, People's Republic of China
| | - Hang Gao
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| | - Jian Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, People's Republic of China
| | - Zhen Hu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| | - Shuang Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
12
|
Cui X, You J, Liao K, Ding L, Hu H, Ren H. Carbon Source in Tertiary Denitrification Regulates Dissolved Organic Nitrogen in Wastewater Effluent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4648-4661. [PMID: 38324528 DOI: 10.1021/acs.est.3c06554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
With global eutrophication and increasingly stringent nitrogen discharge restrictions, dissolved organic nitrogen (DON) holds considerable potential to upgrade advanced wastewater denitrification because of its large contribution to low-nitrogen effluents and stronger stimulation effect for algae. Here, we show that DON from the postdenitrification systems dominates effluent eutrophication potential under different carbon sources. Methanol resulted in significantly lower DON concentrations (0.84 ± 0.03 mg/L) compared with the total nitrogen removal-preferred acetate (1.11 ± 0.02 mg/L) (p < 0.05, ANOVA). With our well-developed mathematical model (R2 = 0.867-0.958), produced DON instead of shared (persist in both influent and effluent) and/or removed DON was identified as the key component for effluent DON variation (Pearson r = 0.992, p < 0.01). The partial least-squares path modeling analysis showed that it is the microbial community (r = 0.947, p < 0.01) rather than the predicted metabolic functions (r = 0.040, p > 0.1) that affected produced DON. Carbon sources rebuild the microorganism-DON interaction by affecting the structure of microbial communities with different abilities to generate and recapture produced DON to finally regulate effluent DON. This study revalues the importance of carbon source selection and overturns the current rationality of pursuing only the total nitrogen removal efficiency by emphasizing DON.
Collapse
Affiliation(s)
- Xian Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Jiaqian You
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Kewei Liao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Lili Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| |
Collapse
|
13
|
Zhang J, Xia Z, Wei Q, Luo F, Jiang Z, Ao Z, Chen H, Niu X, Liu GH, Qi L, Wang H. Exploratory study on the metabolic similarity of denitrifying carbon sources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19961-19973. [PMID: 38368299 DOI: 10.1007/s11356-024-32487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Mixed carbon sources have been developed for denitrification to eliminate the "carbon dependency" problem of single carbon. The metabolic correlation between different carbon sources is significant as guidance for the development of novel mixed carbon sources. In this study, to explore the metabolic similarity of denitrifying carbon sources, we selected alcohols (methanol, ethanol, and glycerol) and saccharide carbon sources (glucose, sucrose, and starch). Batch denitrification experiments revealed that methanol-acclimated sludge improved the denitrification rate of both methanol (14.42 mg-N/gMLVSS*h) and ethanol (9.65 mg-N/gMLVSS*h), whereas ethanol-acclimated sludge improved the denitrification rate of both methanol (7.80 mg-N/gMLVSS*h) and ethanol (22.23 mg-N/gMLVSS*h). In addition, the glucose-acclimated sludge and sucrose-acclimated sludge possibly improved the denitrification rate of glucose and sucrose, and the glycerol-acclimated sludge improved the denitrification rate of volatile fatty acids (VFAs), alcohols, and saccharide carbon sources. Functional gene analysis revealed that methanol, ethanol, and glycerol exhibited active alcohol oxidation and glyoxylate metabolism, and glycerol, glucose, and sucrose exhibited active glycolysis metabolism. This indicated that the similarity in the denitrification metabolism of these carbon sources was based on functional gene similarity, and glycerol-acclimated sludge exhibited the most diverse metabolism, which ensured its good denitrification effect with other carbon sources.
Collapse
Affiliation(s)
- Jinsen Zhang
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| | - Zhiheng Xia
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| | - Qi Wei
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| | - Fangzhou Luo
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| | - Zhao Jiang
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| | - Ziding Ao
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| | - Huiling Chen
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| | - Xiaoxu Niu
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| | - Guo-Hua Liu
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| | - Lu Qi
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| | - Hongchen Wang
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China.
| |
Collapse
|
14
|
Ma WJ, Zhang HM, Tian Y. Rapid start-up sulfur-driven autotrophic denitrification granular process: Extracellular electron transfer pathways and microbial community evolution. BIORESOURCE TECHNOLOGY 2024; 395:130331. [PMID: 38224786 DOI: 10.1016/j.biortech.2024.130331] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Sulfur-driven autotrophic denitrification (SAD) granular process has significant advantages in treating low-carbon/nitrogen wastewater; however, the slow growth rate of sulfur-oxidizing bacteria (SOB) results in a prolonged start-up duration. In this study, the thiosulfate-driven autotrophic denitrification (TAD) was successfully initiated by inoculating anaerobic granular sludge on Day 7. Additionally, the electron donor was successfully transferred to the cheaper elemental sulfur from Day 32 to Day 54 at the nitrogen loading rate of 176.2 g N m-3 d-1. During long term experiment, the granules maintained compact structures with the α-helix/(β-sheet + random coil) of 29.5-40.1 %. Extracellular electron transfer (EET) pathway shifted from indirect to direct when electron donors were switched thiosulfate to elemental sulfur. Microbial analysis suggested that thiosulfate improved EET involving enzymes activity. Thiobacillus and Sulfurimonas were dominant in TAD, whereas Longilinea was enriched in elemental sulfur-driven autotrophic denitrification. Overall, this strategy achieved in-situ enrichment of SOB in granules, thereby shortening start-up process.
Collapse
Affiliation(s)
- Wen-Jie Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, PR China
| | - Han-Min Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, PR China.
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
15
|
Su F, Li Y, Li T, Qian J, Liu D. How does microorganism in different zones cooperatively promote N 2O emissions from SWIS during freeze-thaw? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168747. [PMID: 38007127 DOI: 10.1016/j.scitotenv.2023.168747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/29/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Subsurface wastewater infiltration systems (SWIS) are environmentally-friendly technologies for domestic wastewater treatment, where pollutants are removed by physical, chemical and biological reactions. However, SWIS also produce nitrous oxide (N2O), a potent greenhouse gas. Distribution of dissolved oxygen and nitrogen in SWIS determines denitrification process, which affects microbial activity and N2O release degree in different layers of system. Top layer of SWIS substrate is exposed to environmental factors such as freeze-thaw (FT), which changes microbial community structure in different substrates. Exact mechanisms of microbial-mediated N2O emissions in SWIS are still unclear despite extensive research. Therefore, this study simulated FT process using in-situ SWIS, to investigate how FT disturbance affects microbial community structure and N2O release in SWIS profiles. Results showed that after the ninth freeze-thaw cycle, FT stimulated anaerobic bacteria activities such as Euryarchaeota, accounting for 78.4 % of total Euryarchaeota population in middle (60 cm) and 33.97 % in the lower layer. Under low oxygen conditions, NO2--N accumulation in middle and lower layers provided a sufficient nitrogen source for Euryarchaeota. Canonical correlation analysis (CCA) showed Euryarchaeota was significantly correlated with N2O emissions in middle and lower layers during FT, contributing 31.68 %-32.01 % and 61.78 %-65.15 %, respectively. These results suggested that FT disturbance enhanced denitrification by anaerobic bacteria in middle and lower layers of SWIS, significantly increasing N2O emissions. However, specific pathways and mechanisms of N2O production by Euryarchaeota remain to be elucidated in future studies.
Collapse
Affiliation(s)
- Fei Su
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, China
| | - Yinghua Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, China.
| | - Tianming Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, China
| | - Jie Qian
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, China
| | - Deze Liu
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, China
| |
Collapse
|
16
|
Li S, Luo Z, Wang S, Nan Q, Ji G. Denitrification fractionates N and O isotopes of nitrate following a ratio independent of carbon sources in freshwaters. Environ Microbiol 2023; 25:2404-2415. [PMID: 37503781 DOI: 10.1111/1462-2920.16468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
The stable isotope technique has been used in tracking nitrogen cycling processes, but the isotopic characteristics are influenced by environmental conditions. To better understand the variability of nitrate isotopes in nature, we investigated the influence of organic carbon sources on isotope fractionation characteristics during microbial denitrification. Denitrifying cultures were inoculated with freshwater samples and enriched with five forms of organic compounds, that is, acetate, citrate, glucose, cellobiose, and leucine. Though the isotope enrichment factors of nitrogen and oxygen (15 ε and 18 ε) changed with carbon sources, 18 ε/15 ε always followed a proportionality near 1. Genome-centred metagenomics revealed the enrichment of a few populations, such as Pseudomonas, Enterobacter, and Atlantibacter, most of which contained both NapA- and NarG-type nitrate reductases. Metatranscriptome showed that both NapA and NarG were expressed but to different extents in the enrichments. Furthermore, isotopic data collected from a deep reservoir was analysed. The results showed δ18 O- and δ15 N-nitrate did not correlate in the surface water where nitrification was active, but 18 ε/15 ε followed a proportionality of 1.05 ± 011 in deeper waters (≥ 12 m) where denitrification controlled the nitrate isotope. The independence of 18 ε/15 ε from carbon sources provides an opportunity to determine heterotrophic denitrification and helps the interpretation of nitrate isotopes in freshwaters.
Collapse
Affiliation(s)
- Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Zhongxin Luo
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
- China Institute of Water Resources and Hydropower Research, Beijing, China
- National Research Center for Sustainable Hydropower Development, Beijing, China
| | - Shuo Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
| | - Qiong Nan
- Institute of Environment Pollution Control and Treatment, College of Environment and Resource Science, Zhejiang University, Hangzhou, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
| |
Collapse
|
17
|
Wu X, Yu Z, Yuan S, Tawfik A, Meng F. An ecological explanation for carbon source-associated denitrification performance in wastewater treatment plants. WATER RESEARCH 2023; 247:120762. [PMID: 39492355 DOI: 10.1016/j.watres.2023.120762] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/27/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
The underlying mechanism associated with the roles of dosed carbon source in denitrification performance remains largely unknown. In this study, three denitrifying consortia (DNC) were constructed via evolutionary top-down enrichment method with well-defined conditions and specific carbon sources (acetate, glucose and their mixture). The reactor operation shows that nearly complete nitrate removal was achieved; however, the glucose feeding resulted in much higher concentrations of biomass and non-settable flocs. The 16S rRNA sequencing suggests that the bacterial diversity of the acetate-fed DNC was significantly higher than those of acetate/glucose-fed and glucose-fed DNCs. The dentrifying population in the acetate-fed DNC was dominated by Propionivibrio (16.1 %) and Thauera (3.4 %); whereas those of acetate/glucose- and glucose-fed DNCs were dominated by Pleomorphomonas (21.5 % and 26.3 %, respectively). Interestingly, the supernatant of acetate-fed DNC contained a high abundance of genera Thauera (averaged at 85.1 %), indicating the free-living nature of Thauera. Both PICURSt2 analysis of 16S rRNA sequencing and metagenomic analysis indicate that the acetate-fed DNC contained higher abundances of denitrifying genes; the acetate/glucose-fed and glucose-fed DNCs, in comparison, enriched genes related to glucose transportation and metabolism. Additionally, the acetate-fed DNC had better network stability than other two groups. This study adds important knowledge regarding the ecological traits of DNC, providing important clues for rational addition of carbon sources in wastewater treatment plants.
Collapse
Affiliation(s)
- Xueshen Wu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
| | - Zhong Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
| | - Shasha Yuan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
| | - Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, 12622, Dokki, Cairo, Egypt; Department of Environmental Science, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China.
| |
Collapse
|
18
|
Wu W, Niu X, Yan Z, Li S, Comer-Warner SA, Tian H, Li SL, Zou J, Yu G, Liu CQ. Agricultural ditches are hotspots of greenhouse gas emissions controlled by nutrient input. WATER RESEARCH 2023; 242:120271. [PMID: 37399689 DOI: 10.1016/j.watres.2023.120271] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/05/2023] [Accepted: 06/24/2023] [Indexed: 07/05/2023]
Abstract
Agricultural ditches are pervasive in agricultural areas and are potential greenhouse gas (GHG) hotspots, since they directly receive abundant nutrients from neighboring farmlands. However, few studies measure GHG concentrations or fluxes in this particular water course, likely resulting in underestimations of GHG emissions from agricultural regions. Here we conducted a one-year field study to investigate the GHG concentrations and fluxes from typical agricultural ditch systems, which included four different types of ditches in an irrigation district located in the North China Plain. The results showed that almost all the ditches were large GHG sources. The mean fluxes were 333 μmol m-2 h-1 for CH4, 7.1 mmol m-2 h-1 for CO2, and 2.4 μmol m-2 h-1 for N2O, which were approximately 12, 5, and 2 times higher, respectively, than that in the river connecting to the ditch systems. Nutrient input was the primary driver stimulating GHG production and emissions, resulting in GHG concentrations and fluxes increasing from the river to ditches adjacent to farmlands, which potentially received more nutrients. Nevertheless, the ditches directly connected to farmlands showed lower GHG concentrations and fluxes compared to the ditches adjacent to farmlands, possibly due to seasonal dryness and occasional drainage. All the ditches covered approximately 3.3% of the 312 km2 farmland area in the study district, and the total GHG emission from the ditches in this area was estimated to be 26.6 Gg CO2-eq yr-1, with 17.5 Gg CO2, 0.27 Gg CH4, and 0.006 Gg N2O emitted annually. Overall, this study demonstrated that agricultural ditches were hotspots of GHG emissions, and future GHG estimations should incorporate this ubiquitous but underrepresented water course.
Collapse
Affiliation(s)
- Wenxin Wu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xueqi Niu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Zhifeng Yan
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Critical Zone Observatory of Bohai Coastal Region, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China.
| | - Siyue Li
- Institute of Changjiang Water Environment and Ecological Security, School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Sophie A Comer-Warner
- School of Geography, Earth and Environmental Science, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Hanqin Tian
- Department of Earth and Environmental Sciences, Boston College, Schiller Institute for Integrated Science and Society, Chestnut Hill, MA 02467, United States
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Critical Zone Observatory of Bohai Coastal Region, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| | - Jianwen Zou
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Guirui Yu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Critical Zone Observatory of Bohai Coastal Region, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300072, China
| |
Collapse
|
19
|
Zeng B, Jiang Y, Pan Z, Shen L, Lin H. Feasibility and optimization of a novel upflow denitrification reactor using denitrifying granular sludge for nitric acid pickling wastewater treatment. BIORESOURCE TECHNOLOGY 2023:129271. [PMID: 37290711 DOI: 10.1016/j.biortech.2023.129271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Stainless steel is highly valued for its superior resistance to corrosion. However, the pickling process involved in stainless steel production generates abundant NO3--N, causing health and environmental risks. To address this issue, this study proposed a novel solution utilizing an up-flow denitrification reactor and denitrifying granular sludge for treating NO3--N pickling wastewater under high NO3--N loading. It was found that, the denitrifying granular sludge exhibited stable denitrification performance with the highest denitrification rate of 2.79 gN/(gVSS·d) and average removal rates of NO3--N and TN of 99.94% and 99.31%, respectively, under optimal operating conditions of pH 6-9, temperature 35 °C, C/N ratio 3.5, hydraulic retention time (HRT) 11.1 h and ascending flow rate 2.75 m/h. This process reduced carbon source usage by 12.5-41.7% as compared to traditional denitrification methods. These findings demonstrate the efficacy of combining granular sludge and an up-flow denitrification reactor for treating nitric acid pickling wastewater.
Collapse
Affiliation(s)
- Bizhen Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Yanhong Jiang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhenxiang Pan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
20
|
Wang C, Qiao S, Zhou J. Strategy of nitrate removal in anaerobic ammonia oxidation-dependent processes. CHEMOSPHERE 2023; 313:137586. [PMID: 36529177 DOI: 10.1016/j.chemosphere.2022.137586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The anaerobic ammonium oxidation (anammox), a microbial process that is considered as a low-cost and high efficient wastewater treatment, has received extensive attention with an attractive application prospect. The anammox process reduces nitrite (NO2-) to nitrogen gas (N2) with ammonium (NH4+) as the electron donor. However, some nitrate (NO3-) equivalent to 11% of total nitrogen (TN) is generated in this process, which limits the development of anammox. To overcome this problem, many efforts have been made in this regard, mainly combining with other biological treatment methods (denitrification, denitrifying anaerobic methane oxidation, etc.), introducing the substance into anammox process, etc. Herein, we summarized a detailed review of previous researches on the removal of NO3- in the anammox-dependent processes. It is hoped that this review could serve as valuable guidance in future research and practical applications of anammox.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Sen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|