1
|
Xiong X, Jiang J, Yu H, Wei Y, Chen J, Liu Z, Ji H, Chen H, Sanjaya EH, Wu L. Achieving rapid granulation and long-term stability of partial nitritation /anammox process by uniquely configured airlift inner-circulation partition bioreactor. BIORESOURCE TECHNOLOGY 2025; 428:132474. [PMID: 40174654 DOI: 10.1016/j.biortech.2025.132474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/30/2025] [Accepted: 03/30/2025] [Indexed: 04/04/2025]
Abstract
To maintain the long-term stability and efficiency of the partial nitritation/anammox (PN/A) process, a novel partition bioreactor featuring a uniquely sieve plate was developed to improve the airlift inner-circulation. The bioreactor achieved startup within 38 days, effectively handling influent containing 150 mg-N/L ammonium nitrogen and 50 mg-N/L nitrite. By reducing hydraulic retention time, nitrogen loading rate was escalated to 0.60 kg-N/m3/d, maintaining over 80 % nitrogen removal. Additionally, fluctuations in nitrite-oxidizing bacteria (NOB) were automatically controlled through dissolved oxygen (DO) partitioning. Moreover, the average granules size expanded from 85 μm to 338 μm by day 127, coinciding with robust anammox activity reaching 1.02 ± 0.05 g-N/g-VSS/d by day 179. The results demonstrate that the bioreactor effectively enhanced the enrichment of functional bacteria, enabled spatial distribution of DO, promoted NOB self-regulation and sludge granulation. This approach provides an efficient solution for rapid granulation while maintaining stable performance in the PN/A process.
Collapse
Affiliation(s)
- Xiaoting Xiong
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Fujian Strait Graphene Industrial Technology Research Institute, Jinjiang 362200, China
| | - Jingyi Jiang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Hanbo Yu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yanxiao Wei
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Jing Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Zhihua Liu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Haoshuai Ji
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Hong Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Fujian Strait Graphene Industrial Technology Research Institute, Jinjiang 362200, China.
| | | | - Lvzhou Wu
- Fujian Strait Graphene Industrial Technology Research Institute, Jinjiang 362200, China
| |
Collapse
|
2
|
Cui S, Ji S, Zhao W, Wan L, Li YY. Stoichiometric analysis and control strategy of partial nitrification for treating dewatering liquid from food-waste methane fermentation. WATER RESEARCH 2025; 276:123255. [PMID: 39955789 DOI: 10.1016/j.watres.2025.123255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/26/2025] [Accepted: 02/07/2025] [Indexed: 02/18/2025]
Abstract
Methane fermentation is critical for food-waste management; however, effective treatment of its high-ammonium dewatering liquid remains a major challenge. Anammox, a promising candidate for liquid treatment, requires effective pretreatment, such as partial nitrification (PN), to reduce ammonium and generate sufficient nitrite to optimize efficiency. In this study, an airlift reactor was employed to process the dewatering liquid from food-waste methane fermentation. Stable operation for over 360 days demonstrated its feasibility under high-load conditions. By implementing precise aeration control strategy to stabilize the ammonium removal efficiency (ARE = 50.2-57.1 %), a detailed summary of the optimal operational parameter ranges (consumed inorganic carbon [ΔIC] 1000-1160 mg C/L, effluent [Eff.] IC 282-378 mg C/L, pH 8.05-8.17, Eff. Alkalinity 1000-1350 mg CaCO3/L, free ammonia 61.9-82.5 mg/L, and free nitrous acid 47.6-71.1 μg/L) were provided under the ideal NO2⁻/NH4⁺ ratio of 1.1-1.3. Additionally, variations in ammonium oxidizing bacteria activity with temperature and pH were analyzed by the Arrhenius, cardinal temperature model with inflection, and Haldane models, with R2 values of 0.998, 0.975, and 0.999, respectively. Results suggest that the optimal conditions for partial nitrification were identified as a temperature range of 20-40 °C and a pH range of 7.5-8.5. Microbial sequencing reveals Nitrosomonas markedly enriched during operation, with its abundance rising from 3.67 % to 9.76 % as the NLR increased. Notably, NOB was nearly undetectable throughout the entire process. Additionally, an advanced aeration-based control mechanism with a positive feedback loop were proposed, which allows the airlift PN reactor to effectively treat high-ammonia dewatering liquid, thereby providing a suitable influent for subsequent anammox and offering crucial theoretical insights for future controlling pilot-scale system operation.
Collapse
Affiliation(s)
- Shen Cui
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Shenghao Ji
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Wenzhao Zhao
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Liguo Wan
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; School of Municipal and Environmental Engineering, Changchun Institute of Technology, Changchun 130012, Jilin, , PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
3
|
Qian Y, Zhang W, Wang Y, Yang X, Guo J, He S. Insights into the influence of organic and salinity on the two-stage partial nitritation/anammox process in treating food waste digestate. ENVIRONMENTAL TECHNOLOGY 2025; 46:2469-2484. [PMID: 39626200 DOI: 10.1080/09593330.2024.2433730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/16/2024] [Indexed: 05/17/2025]
Abstract
ABSTRACTFood waste digestate (FWD), which contains significant levels of ammonium, organic matter, and salinity, can interfere with treatment performance of the anammox process. In this study, a two-stage partial nitritation/anammox (PN/A) process was established to investigate nitrogen removal and microbial response in treating FWD at a nitrogen loading rate (NLR) of 0.27 ± 0.02 gN/L/d. High concentrations of free ammonia (58 mg/L) and free nitrous acid (0.3 mg/L) facilitated the initiation of the partial nitritation (PN) process, achieving an average NO2-/NH4+ ratio of 1.28 ± 0.08. For the anammox process, a nitrogen removal rate (NRR) of 0.72 ± 0.13 gN/L/d was achieved. Free ammonia (NH3) stripping, Anammox pathway, and denitrification pathway contributed 4.1 ± 0.3%, 5.1 ± 0.2%, and 84.0 ± 1.5% of the total nitrogen removal, respectively. Nitrosomonas, a salt-tolerant ammonia-oxidizing bacteria (AOB), was enriched to 1.0%, while Nitrospira, a nitrite-oxidizing bacteria (NOB), was effectively suppressed to 0.003%. The salt-tolerant anammox genera unclassified_f__Brocadiaceae (13.9%) and Candidatus_Kuenenia (4.8%) dominated the nitrogen removal pathway. The high enrichment of unclassified_f__Brocadiaceae ensured stable operation of the anammox process at 0.62 ± 0.11% salinity, even with a high initial FA inhibition concentration of 40 mg/L. Additionally, norank_f_A4b (1.34%) and norank_f_norank_o_SBR1031 (52.1%) facilitated the hydrolysis of refractory organic matter. Denitrifying bacteria, including Hyphomicrobium, Truepera, and unclassified_c__Alphaproteobacteria, played significant roles in nitrate removal, with a CODconsumed/NO3-removed ratio of 2.7 ± 0.2. This study highlights the application of a two-stage PN/A process for rapid startup and effective nitrogen removal from FWD.
Collapse
Affiliation(s)
- Yunzhi Qian
- State Key Laboratory of Petroleum Pollution Control, Beijing, People's Republic of China
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, People's Republic of China
| | - Wenkang Zhang
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, People's Republic of China
| | - Yilin Wang
- State Key Laboratory of Petroleum Pollution Control, Beijing, People's Republic of China
| | - Xueying Yang
- State Key Laboratory of Petroleum Pollution Control, Beijing, People's Republic of China
| | - Jiaxun Guo
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, People's Republic of China
| | - Shilong He
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, People's Republic of China
| |
Collapse
|
4
|
Han H, Chen P, Zhao W, Li S, Zhang K. Acclimation Time Enhances Adaptation of Heterotrophic Nitrifying-Aerobic Denitrifying Microflora to Linear Anionic Surfactant Stress. Microorganisms 2025; 13:1031. [PMID: 40431204 PMCID: PMC12114585 DOI: 10.3390/microorganisms13051031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Linear anionic surfactants (LAS) pose significant stress to microbial denitrification in wastewater treatment. This study investigated the performance and adaptation mechanisms of heterotrophic nitrification-aerobic denitrification (HN-AD) microbial consortia under LAS exposure after short-term (SCM, 2 months) and long-term (LCM, 6 months) acclimation. Results showed a dose-dependent inhibition of total nitrogen (TN) removal, with LCM achieving 97.40% TN removal under 300 mg/L LAS, which was 16.89% higher than SCM. Biochemical assays indicated that LCM exhibited lower reactive oxygen species (ROS) levels, a higher ATP content, and reduced LDH release, suggesting enhanced oxidative stress resistance and membrane stability. EPS secretion also increased in LCM, contributing to environmental tolerance. Metagenomic analysis revealed that long-term acclimation enriched key genera including Pseudomonas, Aeromonas, and Stutzerimonas, which maintained higher expression of denitrification (e.g., nosZ, nirS) and ammonium assimilation genes (glnA, gltB). Although high LAS concentrations reduced overall community diversity and led to convergence between SCM and LCM structures, LCM retained greater functional capacity and stress resistance. These findings underscore the importance of acclimation in sustaining denitrification performance under surfactant pressure and offer valuable insights for engineering robust microbial consortia in complex wastewater environments.
Collapse
Affiliation(s)
- Huihui Han
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (H.H.); (W.Z.)
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Peizhen Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (H.H.); (W.Z.)
| | - Wenjie Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (H.H.); (W.Z.)
| | - Shaopeng Li
- College of Agriculture & Resources and Environment, Tianjin Agricultural University, Tianjin 300392, China;
| | - Keyu Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (H.H.); (W.Z.)
| |
Collapse
|
5
|
Wei R, Tang Z, Wu S, Yang R, Yu H, Chen J, Jiang J, Jiang J, Kong Z, Wei Y, Elsayed AEA, Chen H. Enhancing single-stage partial nitritation-anammox process with airlift inner-circulation and oxygen partition: A novel strategy for treating high-strength ammonium wastewater. ENVIRONMENTAL RESEARCH 2025; 270:120968. [PMID: 39880116 DOI: 10.1016/j.envres.2025.120968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/01/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
In the single-stage partial nitritation-anammox process for high-ammonium wastewater treatment, the presence of sufficient biomass with high activity is essential. This study developed an innovative airlift inner-circulation partition bioreactor (AIPBR) with a dual-cylinder structure. During the 362 days' operation, the AIPBR exhibited robust and stable nitrogen removal performance under diverse influent ammonium spanning from 300 to 1800 mg N/L. Notably, when the influent ammonium was 1820 ± 34 mg N/L, the nitrogen removal rate reached 3.194 ± 0.074 kg N/m³/d, accompanied by removal efficiency of 87.6 ± 1.5%. The unique design of the reactor enabled the formation of dissolved oxygen gradient, which improved the synergy of functional microorganisms by facilitating mass transfer within the sludge. Additionally, it maintained appropriate hydraulic shear in the inner cylinder to support granule formation and simultaneously reduced excessive flow in the outer cylinder to prevent sludge loss. Through the cyclic granulation, the system fostered a symbiotic consortium of flocculent and granular sludge with particle size predominantly distributed within the range of 200-400 μm, which enhanced the activity of microorganisms. These findings highlight the potential of AIPBR as a novel and effective strategy for high-ammonium wastewater treatment.
Collapse
Affiliation(s)
- Runchu Wei
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China
| | - Zhigang Tang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China
| | - Sha Wu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China
| | - Risen Yang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China
| | - Hanbo Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China
| | - Jing Chen
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China
| | - Jingyi Jiang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China
| | - Jianhong Jiang
- China Machinery International Engineering Design & Research Institute Co., Ltd, Changsha, 410007, China
| | - Zhe Kong
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yanxiao Wei
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Ali E A Elsayed
- Agricultural Engineering Research Institute (AEnRI), Agricultural Research Center (ARC), Dokki, Giza, 256, Egypt
| | - Hong Chen
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China.
| |
Collapse
|
6
|
Wei Y, Xia W, Qian Y, Rong C, Ye M, Chen Y, Kikuchi J, Li YY. Revealing microbial compatibility of partial nitritation/Anammox biofilm from sidestream to mainstream applications: Origins, dynamics, and interrelationships. BIORESOURCE TECHNOLOGY 2025; 418:131963. [PMID: 39653175 DOI: 10.1016/j.biortech.2024.131963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/14/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Biofilms offer a solution to the challenge of low biomass retention faced in mainstream partial nitritation/Anammox (PN/A) applications. In this study, a one-stage PN/A reactor derived from initial granular sludge was successfully transformed into a biofilm system using shedding carriers. Environmental stressors, such as ammonium nitrogen concentration and organic matter, significantly affected the competitive dynamics and dominant species composition between Ca. Kuenenia and Ca. Brocadia. Under approximately 500 mg/L NH4+-N, Ca. Brocadia emerged as the dominant anammox bacteria species, but was subsequently replaced by Ca. Kuenenia in the presence of approximately 54 mg COD/L CH3COONa. Moreover, Chloroflexi species on the original biofilm exhibited an associated relationship with the growth of Ca. Kuenenia in new biofilm. The biofilm assembly and microbial community migration uniquely reveal the microbial niche dynamics. This study provides valuable insights for PN/A biofilm applications facing diverse challenges of environmental stresses in the transition from sidestream to mainstream.
Collapse
Affiliation(s)
- Yanxiao Wei
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Weizhe Xia
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yunzhi Qian
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou 221116, China
| | - Chao Rong
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Min Ye
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yujie Chen
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
7
|
Li H, Huo L, Zhang R, Gu X, Chen G, Yuan Y, Tan W, Hui K, Jiang Y. Effect of soil-groundwater system on migration and transformation of organochlorine pesticides: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117564. [PMID: 39700769 DOI: 10.1016/j.ecoenv.2024.117564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/01/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Soil is the place where human beings, plants, and animals depend on for their survival and the link between the various ecological layers. Groundwater is an important component of water resources and is one of the most important sources of water for irrigated agriculture, industry, mining and cities because of its stable quantity and quality. Soil and groundwater are important strategic resources highly valued by countries around the world. However, in recent years, the deterioration of the ecological environment of soil-groundwater caused by industrial, domestic, and agricultural pollution sources has continued to threaten human health and ecological security. Among them, organochlorine pesticides (OCPs), as typical organic pollutants, cause very serious pollution of soil and groundwater environment. However, most studies on the pollution of OCPs have focused on the aboveground or surface water environment, and little consideration has been given to the pollution and hazards of OCPs to the deep soil and groundwater environment, especially the effects of different environmental factors on the transport and transformation of OCPs in soil-groundwater. Moreover, in addition to the influence of a single factor on it, the interactions that arise between different factors cannot be ignored. This paper focuses on two major sources of OCPs in soil and groundwater environments, compiles and summarizes the effects of environmental factors such as pH, microbial communities and enzyme activities on the transport and transformation of OCPs in soil and groundwater systems, discusses the synergistic effects of individual environmental factors and others, and comprehensively analyses the effects of synergistic effects of various environmental factors on the transport and transformation of OCPs. In the context of ecological civilization construction, it provides the scientific basis and theoretical foundation for the prevention and treatment of OCPs-contaminated soil and groundwater, and puts forward new ideas and suggestions for the research and development of green, eco-friendly remediation and treatment technologies for OCPs-contaminated sites.
Collapse
Affiliation(s)
- Haohao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Xi'an Key Laboratory of Low-carbon Utilization for High-carbon Resources, Xi'an Shiyou University, Xi'an 710065, China
| | - Lin Huo
- Swiss Federal Institute of Technology (ETH) Zurich, Universitaetstrasse 16, Zurich 8092, Switzerland
| | - Rui Zhang
- Guizhou Shale Gas Exploration and Development Co., Zunyi, Guizhou 563499, China
| | - Xuefan Gu
- Xi'an Key Laboratory of Low-carbon Utilization for High-carbon Resources, Xi'an Shiyou University, Xi'an 710065, China
| | - Gang Chen
- Xi'an Key Laboratory of Low-carbon Utilization for High-carbon Resources, Xi'an Shiyou University, Xi'an 710065, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Xi'an Key Laboratory of Low-carbon Utilization for High-carbon Resources, Xi'an Shiyou University, Xi'an 710065, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Xi'an Key Laboratory of Low-carbon Utilization for High-carbon Resources, Xi'an Shiyou University, Xi'an 710065, China
| | - Kunlong Hui
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Xi'an Key Laboratory of Low-carbon Utilization for High-carbon Resources, Xi'an Shiyou University, Xi'an 710065, China.
| | - Yu Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
8
|
Yang JH, Han NN, Hu JB, Jiang Y, Fan NS, Jin RC. Microbial regulation of interspecific interaction and metabolism in anammox process to achieve coadaptation to artificial sweeteners. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136654. [PMID: 39591786 DOI: 10.1016/j.jhazmat.2024.136654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 11/28/2024]
Abstract
Artificial sweeteners (ASs) were frequently detectable in wastewater, which pose high risks to human health and ecological security. The feasibility of anaerobic ammonium oxidation (anammox) process for treatment of ASs-containing wastewater was evaluated in this study. The 86-d continuous flow experiment results showed that 0-30 μg L-1 cyclamate and acesulfame did not significantly affect the nitrogen removal efficiency (NRE) of anammox processes, which were 94.5 ± 3.0 % and 96.6 ± 2.5 %, respectively. Simultaneously, specific anammox activity (SAA) was inhibited by 15 μg L-1 ASs. Fortunately, anammox consortia adapted to the ASs stress by secreting extracellular polymeric substance (EPS). The relative abundances of Candidatus Kuenenia slightly decreased by 0.2 % and 2.3 % under stress of two ASs, and the microbial diversity increased. In addition, the anammox consortia regulated metabolites expression by cell energy allocation. The dominant metabolic pathways were amino acid metabolism, lipid metabolism and nucleotide metabolism. Particularly, the abundances of 5-hydroxylysinonorleucine and L-hypoglycin A significantly increased with ASs concentrations, which were crucial for bacterial proliferation. The co-metabolism between different bacteria might contribute to the biodegradation of ASs. This work demonstrates the feasibility of anammox process to treat the ASs-containing wastewater and reveals the regulation and adaptation mechanism of anammox microbiota, which further drives the implementation and development of anammox process.
Collapse
Affiliation(s)
- Jia-Hui Yang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Na-Na Han
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jin-Bao Hu
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuan Jiang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Nian-Si Fan
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Ren-Cun Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
9
|
Yang M, Liu Z, Wang A, Nopens I, Hu H, Chen H. High biomass yields of Chlorella protinosa with efficient nitrogen removal from secondary effluent in a membrane photobioreactor. J Environ Sci (China) 2024; 146:272-282. [PMID: 38969455 DOI: 10.1016/j.jes.2023.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 07/07/2024]
Abstract
Further treatment of secondary effluents before their discharge into the receiving water bodies could alleviate water eutrophication. In this study, the Chlorella proteinosa was cultured in a membrane photobioreactor to further remove nitrogen from the secondary effluents. The effect of hydraulic retention time (HRT) on microalgae biomass yields and nutrient removal was studied. The results showed that soluble algal products concentration reduced in the suspension at low HRT, thereby alleviating microalgal growth inhibition. In addition, the lower HRT reduced the nitrogen limitation for Chlorella proteinosa's growth through the phase-out of nitrogen-related functional bacteria. As a result, the productivity for Chlorella proteinosa increased from 6.12 mg/L/day at an HRT of 24 hr to 20.18 mg/L/day at an HRT of 8 hr. The highest removal rates of 19.7 mg/L/day, 23.8 mg/L/day, and 105.4 mg/L/day were achieved at an HRT of 8 hr for total nitrogen (TN), ammonia, and chemical oxygen demand (COD), respectively. However, in terms of removal rate, TN and COD were the largest when HRT is 24 hr, which were 74.5% and 82.6% respectively. The maximum removal rate of ammonia nitrogen was 99.2% when HRT was 8 hr.
Collapse
Affiliation(s)
- Min Yang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China; BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Gent B 9000, Belgium
| | - Zhen Liu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Aijie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ingmar Nopens
- BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Gent B 9000, Belgium
| | - Hairong Hu
- School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Hong Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China.
| |
Collapse
|
10
|
Xu H, Zhang L, Li Z, Chen Y, Yang B, Zhou Y. Activation of iron oxides through organic matter-induced dissolved oxygen penetration depth dynamics enhances iron-cycling driven ammonium oxidation in microaerobic granular sludge. WATER RESEARCH 2024; 266:122400. [PMID: 39260195 DOI: 10.1016/j.watres.2024.122400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
The iron redox cycle can enhance anammox in treating low-strength ammonia wastewater. However, maintaining an effective iron redox cycle and suppressing nitrite-oxidizing bacteria in a one-stage partial nitritation and anammox (PN/A) process poses challenges during long-term aeration. We proposed a novel and simple strategy to achieve an efficient iron redox cycle in an iron-mediated anoxic-microaerobic (A/O) process by controlling organic matter (OM) at medium-strength levels (30-110 mg COD/L) in microaerobic granular sludge (MGS)-dominated reactor. The developed A/O process consistently achieved >90 % OM removal and >75 % nitrogen removal. Medium-strength OM varied the penetration depths of dissolved oxygen (DO) in MGS, regulating redox conditions and promoting redox reactions across MGS layers, thus activating accumulated inert iron oxides. Ammonia-oxidizing bacteria (Nitrosomonas), iron-reducing bacteria (e.g., Ignavibacterium, Geobacter), and anammox bacteria (Ca. Kuenenia) coexisted harmoniously in MGS. This coexistence ensured high anammox and Feammox rates along with a robust iron redox cycle, thereby mitigating the adverse impacts of fluctuating DO and OM on one-stage PN/A process stability. The identification of iron reduction-associated genes within Ca. Kuenenia, Ignavibacterium, and Geobacter suggests their potential roles in supporting Feammox coupled in one-stage PN/A process. This study introduces an iron-cycle-driven A/O process as an energy-efficient alternative for simultaneous carbon and nitrogen removal from low-strength wastewater.
Collapse
Affiliation(s)
- Hui Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Liang Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zong Li
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Yun Chen
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Bo Yang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yan Zhou
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
11
|
Zhang Y, Li J, Chen Y, Yang J, Chen Z, Wang X. Rapid start-up and stable operation of pilot scale denitrification-partial nitritation/anammox process for treating electroplating tail wastewater. BIORESOURCE TECHNOLOGY 2024; 409:131192. [PMID: 39094960 DOI: 10.1016/j.biortech.2024.131192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
This study explored a novel economical and efficient process for treating actual low-ammonia nitrogen electroplating tail wastewater. A pilot scale system of denitrification-partial nitrification/anaerobic ammonium oxidation (DN-PN/A) was constructed and operated for 190 days. The partial nitrification (PN) reactor, filled with zeolite, increased free ammonia concentration beyond the nitrite oxidizing bacteria threshold and successfully supplied NO2--N, with nitrite accumulation rate exceeding 90 %. Over 109 days, the total nitrogen removal rate achieved was 80.2 ± 7.41 %, and the chemical oxygen demand removal rate reached 79.68 ± 9.53 %. The dominant functional bacteria were Nitrosomonas (5.45 %) and Candidatus Anammoxoglobus (28.84 %) in PN reactor and anaerobic ammonium oxidation (Anammox) reactor. This process, characterized by rapid start-up, strong shock resistance, and low cost, alleviates the pressure of ammonium pollution control, promotes the sustainable development of the electroplating industry and has the potential for application in the treatment of other industrial wastewater.
Collapse
Affiliation(s)
- Yu Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, 510006, China
| | - Jiayi Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, 510006, China
| | - Yongxing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, 510006, China
| | - Junfeng Yang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, 510006, China
| | - Zhenguo Chen
- School of Environment, South China Normal University, Guangzhou 510006, China; Hua An Biotech Co., Ltd., Foshan 528300, China
| | - Xiaojun Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, 510006, China.
| |
Collapse
|
12
|
Park J, Song M, Hwang K, Bae H. Start-up strategy of single-stage partial nitrification-anammox process for anaerobic digestion effluent. BIORESOURCE TECHNOLOGY 2024; 408:131213. [PMID: 39098357 DOI: 10.1016/j.biortech.2024.131213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
The objective of this study was to improve the nitrogen removal efficiency and reduce the start-up period of a single-stage partial nitritation-anammox (SPNA) system using iron particle-integrated anammox granules (IP-IAGs). Anammox granules were enriched in sequencing batch and expanded granular sludge bed (EGSB) reactors. The EGSB reactor produced larger and more uniform granules with higher specific anammox activity. IP-IAGs were then inoculated into a two-stage partial nitritation-anammox reactor treating anaerobic digestion (AD) effluent, followed by an internal recirculation strategy to acclimate the granules to oxygen exposure for SPNA. Finally, the SPNA process operated to treat real AD effluent under optimal conditions of 0.05 L/min aeration intensity (0.01 vvm) and 24 h of hydraulic retention time, achieving TNRE of 86.01 ± 2.64 % and nitrogen removal rate of 0.74 ± 0.04 kg-N/m3·d for 101 d.
Collapse
Affiliation(s)
- Jihye Park
- Department of Civil and Environmental Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Minsu Song
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Kwanghyun Hwang
- RIF Tech, Environment Solution Research Team, GS E&C, GRAN SEOUL, 33 Jong-ro, Jongno-gu, Seoul 03159, Republic of Korea
| | - Hyokwan Bae
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea.
| |
Collapse
|
13
|
Wei Y, Xia W, Ye M, Chen F, Qian Y, Li YY. Optimizing hydraulic retention time of high-rate activated sludge designed for potential integration with partial nitritation/anammox in municipal wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 401:130710. [PMID: 38636880 DOI: 10.1016/j.biortech.2024.130710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
The integration of high-rate activated sludge (HRAS), an effective carbon redirection technology, with partial nitritation/anammox (PN/A) is a novel AB treatment process for municipal wastewater. In this study, an airlift HRAS reactor was operated in the continuous inflow mode for 200 d at a wastewater treatment plant. The balance between potential PN/A system stability and peak HRAS performance under decreasing hydraulic retention time (HRT) was optimized. Energy consumption and recovery and CO2 emissions were calculated. The results showed that the optimal HRT suitable with the PN/A process was 3 h, achieving 2-3 g/L mixed liquor volatile suspended solid, 67.8 % chemical oxygen demand (COD) recovery, 81 % total COD removal efficiency, 2.27 ± 1.03 g COD/L/d organic loading rate, 62 % aeration reduction, and 0.24 kWh/m3 power recovery potential. Such findings hold practical value and contribute to the development of the optimal AB process capable of achieving energy autonomy and carbon neutrality.
Collapse
Affiliation(s)
- Yanxiao Wei
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Weizhe Xia
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Min Ye
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Fuqiang Chen
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yunzhi Qian
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou 221116, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
14
|
Wei Y, Ye M, Chen Y, Li YY. Competitive bio-augmentation overcoming unusual direct inhibitor inefficacy in mainstream nitrite-oxidizing bacteria suppression: Unveiling the underpinnings in microbial and nitrogen metabolism aspects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171900. [PMID: 38527552 DOI: 10.1016/j.scitotenv.2024.171900] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
The long-stabilized mainstream partial nitritation/Anammox (PN/A) process continues to encounter significant challenges from nitrite-oxidizing bacteria (NOB). Therefore, this study aimed to determine an efficient, rapid, and easily implementable strategy for inhibiting NOB. A laboratory-scale reactor was operated continuously for 325 days, experiencing NOB outbreak in mainstream and recovery with simulated sidestream support. The results show that direct inhibitory strategies including intermittent aeration and approximately 35 mg/L free ammonia had unusual weak inhibitory effects on NOB activity. Subsequently, the exogenous Anammox from sidestream employed as a competitive bio-augmentation approach rapidly inhibited NOB dynamics. Evidence suggests that the damaged hydroxyapatite granules under low pH conditions might have contributed to NOB dominance by diminishing Anammox bacteria activity, thereby creating a substrate-rich environment favoring NOB survival. In contrast, the introduction of exogenous Candidatus Kuenenia facilitated the nitrogen removal efficiency from 32.5 % to over 80 %. This coincided with a decrease in the relative abundance of Nitrospira from 16.5 % to 2.7 % and NOB activity from 0.34 to 0.07 g N/(g mixed liquor volatile suspended solid)/d. Metagenomic analysis reveals a decrease in the functional potential of most nitrite transport proteins, coupled with a significant increase in eukaryotic-like serine/threonine-protein kinase involved in cellular regulation, during the Anammox activity recovery. This study's findings reveal the feasibility of the bio-augmentation based on substrate competition, wherein sidestream processes support the mainstream PN/A integration, offering significant potential for practical applications.
Collapse
Affiliation(s)
- Yanxiao Wei
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Min Ye
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yujie Chen
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
15
|
Wei Y, Chen Y, Xia W, Ye M, Li YY. Dynamic pulse approach to enhancing mainstream Anammox process stability: Integrating sidestream support and tackling nitrite-oxidizing bacteria challenges. BIORESOURCE TECHNOLOGY 2024; 395:130327. [PMID: 38242244 DOI: 10.1016/j.biortech.2024.130327] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/21/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Nitrite-oxidizing bacteria (NOB) seriously threaten the partial nitritation and Anammox (PN/A) process, hindering its mainstream application. Herein, a one-stage PN/A reactor was continuously operated for 245 days under nitrogen loading rate lifted from 0.4 g N/L/d to 0.6 g N/L/d and 0.8 g N/L/d with the nitrogen removal efficiency of 71 %, 64 %, and 41 %, respectively. Furthermore, the NOB species over time was identified as Nitrospira_sp._OLB3, exhibiting an increase of the relative abundance from 0.9 % to 4.3 %. The hydroxyapatite (HAP) granules gradually lost their microbiological function of Anammox bacteria then aged, leading to NOB dominance. Therefore, one "pulse therapy" was introduced and combined with "continuous enhancement" of Anammox sludge supported by sidestream to competitively limit the NOB dynamics. The treatment's effect persisted for around two months. The strategy that returning at least 50 % of the impaired HAP granular sludge to the sidestream for recultivation could fulfill the bottlenecks of mainstream PN/A.
Collapse
Affiliation(s)
- Yanxiao Wei
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yujie Chen
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Weizhe Xia
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Min Ye
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
16
|
Wang H, Liu X, Hua Y, Xu H, Chen Y, Yang D, Dai X. Formation of autotrophic nitrogen removal granular sludge driven by the dual-partition airlift internal circulation: Insights from performance assessment, community succession, and metabolic mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120158. [PMID: 38271883 DOI: 10.1016/j.jenvman.2024.120158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/24/2023] [Accepted: 01/20/2024] [Indexed: 01/27/2024]
Abstract
Granular sludge has been recognized as an effective method for the application and industrialization of the anammox-based process due to its good biomass retention capacity and environmental tolerance. In this study, a one-stage autotrophic nitrogen removal (ANR) dual-partition system with airlift internal circulation was implemented for 320 days. A high nitrogen removal efficiency of 84.6% was obtained, while the nitrogen removal rate reached 1.28 g-N/L/d. ANR granular sludge dominated by Nitrosomonas and Candidatus Brocadia was successfully cultivated. Results showed that activity and abundance of functional flora first increased with granulation process, but eventually declined slightly when particle size exceeded the optimal range. Total anammox activity was observed to be significantly correlated with protein content (R2 = 0.9623) and nitrogen removal performance (R2 = 0.8796). Correlation network revealed that AnAOB had complex interactions with other bacteria, both synergy for nitrogen removal and competition for substrate. Changes in abundances of genes encoding the Carbohydrate Metabolism, Energy Metabolism, and Membrane Transport suggested energy production and material transfer were possibly blocked with further sludge granulation. Formation of ANR granular sludge promoted the interactions and metabolism of functional microorganisms, and the complex nitrogen metabolic pathways improved the performance stability. These results validated the feasibility of granule formation in the airlift dual-partition system and revealed the response of the ANR system to sludge granulation.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaoguang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yu Hua
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Haolian Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yongdong Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Donghai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
17
|
Chen H, Zhang C, Al-Dhabi NA, Wu S, Liu Y, Wu L, Kong Z, Tang W, Chen J, Shi L, Luo G. Insights into the rapid start-up of an inoculated municipal sludge system: A high-height-to-diameter-ratio airlift inner-circulation partition bioreactor based on CFD analysis. ENVIRONMENTAL RESEARCH 2024; 243:117838. [PMID: 38056609 DOI: 10.1016/j.envres.2023.117838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
The utilization of municipal sludge as a seed sludge for initiating the autotrophic nitrogen removal (ANR) process presents a challenge due to the negligible abundance of anaerobic ammonia-oxidizing bacteria (AnAOB). Here, a computational fluid dynamics model was used to simulate sludge volume fraction and sludge particle velocity. A high-height-to-diameter-ratio airlift inner-circulation partition bioreactor (HHAIPBR) was operated for 175 d to enrich AnAOB from municipal sludge, and the performance of the ANR process was investigated. The start-up period of HHAIPBR inoculated with municipal sludge required approximately 69 d. A high nitrogen removal performance, with a mean total nitrogen removal efficiency of 82.1%, was obtained for 1 month. The simulation results validated the presence of sludge circulation and revealed the distribution characteristics of dissolved oxygen inside the reactor, further supporting the promotion of sludge granulation via the high height-to-diameter ratio. Nitrosomonas (3.31%) of Proteobacteria and Candidatus Brocadia (6.56%) of Planctomycetota were dominant in the HHAIPBR. This study presents a viable approach for the industrial cultivation of anammox sludge and the rapid start-up of the partial nitritation-anammox system.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Institute of Eco-environment, Changsha University of Science & Technology, Changsha, 410114, China; Fujian Strait Graphene Industrial Technology Research Institute, Jinjiang, 362200, China
| | - Chengfeng Zhang
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Institute of Eco-environment, Changsha University of Science & Technology, Changsha, 410114, China
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sha Wu
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Institute of Eco-environment, Changsha University of Science & Technology, Changsha, 410114, China
| | - Yangkai Liu
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Lvzhou Wu
- Fujian Strait Graphene Industrial Technology Research Institute, Jinjiang, 362200, China
| | - Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Jing Chen
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Institute of Eco-environment, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Lixiu Shi
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Institute of Eco-environment, Changsha University of Science & Technology, Changsha, 410114, China
| | - Guina Luo
- Fujian Strait Graphene Industrial Technology Research Institute, Jinjiang, 362200, China
| |
Collapse
|
18
|
Qian Y, He S, Chen F, Shen J, Guo Y, Qin Y, Li YY. Coupled systems of pre-denitrification and partial nitritation/anammox improved functional microbial structure and nitrogen removal in treating swine manure digestate. BIORESOURCE TECHNOLOGY 2023; 386:129494. [PMID: 37460018 DOI: 10.1016/j.biortech.2023.129494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
This study evaluated the functional activity and microbial structure of a pre-denitrification and single-stage partial nitritation/anammox process (DB-SNAP) coupled system for effectively treating swine manure digestate (SMD). At influent ammonium concentrations of (1000 to 1500) mg/L, the pre-denitrification reactor increased the nitrogen removal efficiency (NRE) by 5%, resulting in an average NRE of 96%. The DB-SNAP and nitrogen-limited strategy facilitated the rapid adoption of anammox bacteria (AnAOB) in the SMD, maintaining a high specific rate of 0.3gN/gVSS/d. A high secretion of tightly bound extracellular polymeric substances (76 mg/gVSS to 102 mg/gVSS) promoted micro-granule aggregation and stability. Moreover, Ca. Kuenenia, an AnAOB genus, was highly enriched from 21% to (27 to 30) %, whereas Nitrospira, a nitrite-oxidizing bacteria, was significantly suppressed to (0 to 0.05) %. These findings will provide valuable guidance in implementing the anammox process in swine wastewater treatment.
Collapse
Affiliation(s)
- Yunzhi Qian
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou 221116, China; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Shilong He
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou 221116, China
| | - Fuqiang Chen
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Junhao Shen
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yan Guo
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yu Qin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|