1
|
Budniok S, Callaerts-Vegh Z, Bakermans-Kranenburg M, Bosmans G, D'Hooge R. Oxytocin enhances acquisition in a social trust task in mice, whereas both oxytocin and its antagonist block trust violation learning. Neuropharmacology 2025; 271:110389. [PMID: 40021083 DOI: 10.1016/j.neuropharm.2025.110389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The complex effects of the neurohormone oxytocin (OT) on socio-cognitive phenomena have recently been proposed to be complementary with safety learning, where a stimulus acquires safety-predicting properties when it predicts non-occurrence of an aversive event. OT may enhance salience of safety stimuli and promote positive social behavior, such as trust, by reducing anxiety and stress. Complementary, OT may reduce the ability to modulate previously learned behaviors based on new, contradicting information. This occurs through its attenuation of prediction error (PE)-the discrepancy between expectations and actual outcomes. In the current study, we modulated OT receptor (OTR) activity by administering an agonist (OT) and antagonist (cligosiban, CL), and subjected male and female mice to our social transmission of food preference (STFP) protocol to assess social safety learning. STFP is based on the observation that food neophobia of rodents is attenuated when a conspecific signals the safety of the food. We used safe food preference as putative murine homologue of human trust acquisition, and modeled trust violation (PE) using lithium chloride (LiCl)-induced food aversion after social interaction. In males, results revealed that OT enhanced trust acquisition, whereas both OT and its antagonist CL similarly blocked trust violation learning. None of the manipulations affected female behavior. Our findings highlight the complexities of OT's role in social behavior, emphasizing caution in therapeutic manipulations of this system.
Collapse
Affiliation(s)
- Samuel Budniok
- Laboratory of Biological Psychology, University of Leuven, Tiensestraat 102, Leuven, Belgium; Learn2Trust Research Group, University of Leuven, Tiensestraat 102, Leuven, Belgium.
| | | | - Marian Bakermans-Kranenburg
- William James Center for Research, ISPA - University Institute of Psychological, Social and Life Sciences, Lisbon, Portugal; Facultad de Psicología y Humanidades, Universidad San Sebastián, Chile
| | - Guy Bosmans
- Learn2Trust Research Group, University of Leuven, Tiensestraat 102, Leuven, Belgium
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, University of Leuven, Tiensestraat 102, Leuven, Belgium
| |
Collapse
|
2
|
Zanola D, Czaczkes TJ, Josens R. Toxic bait abandonment by an invasive ant is driven by aversive memories. Commun Biol 2025; 8:486. [PMID: 40128336 PMCID: PMC11933468 DOI: 10.1038/s42003-025-07818-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
Social insects such as ants possess a battery of behavioural mechanisms protecting their colonies against pathogens and toxins. Recently, active abandonment of poisoned food was described in the invasive ant Linepithema humile. During this abandonment, foraging declines by 80% within 6-8 h after baits become toxic-a reduction not due to satiety, diminished motivation, or mortality. Here we explore the mechanisms behind this behaviour, testing two hypotheses: (1) the presence of 'no entry' pheromones near toxic food, and (2) the formation of aversive memories linked to the toxic food site. In field trials, we placed bridges leading to sucrose, nothing, or poisoned sucrose on an active trail. Within hours, 80% of ants abandoned poisoned bait bridges. By swapping bridges strategically, we confirmed that aversive memories formed at toxic bait sites, while no evidence of a 'no entry' pheromone was found. Then, in the laboratory, we asked how ants may be sensing the toxicity of the bait, hypothesising poison-induced malaise. Motility, used as a proxy for malaise, was 29% lower in toxicant-exposed ants after 3 h, linking malaise to abandonment. Developing toxicants with delayed malaise, not just delayed mortality, may improve toxic bait control protocols.
Collapse
Affiliation(s)
- Daniel Zanola
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE, CONICET, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentine
| | - Tomer J Czaczkes
- Animal Comparative Economics laboratory, Faculty of Biology and Preclinical Medicine, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Roxana Josens
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE, CONICET, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentine.
| |
Collapse
|
3
|
Zaki Y, Pennington ZT, Morales-Rodriguez D, Bacon ME, Ko B, Francisco TR, LaBanca AR, Sompolpong P, Dong Z, Lamsifer S, Chen HT, Carrillo Segura S, Christenson Wick Z, Silva AJ, Rajan K, van der Meer M, Fenton A, Shuman T, Cai DJ. Offline ensemble co-reactivation links memories across days. Nature 2025; 637:145-155. [PMID: 39506117 PMCID: PMC11666460 DOI: 10.1038/s41586-024-08168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
Memories are encoded in neural ensembles during learning1-6 and are stabilized by post-learning reactivation7-17. Integrating recent experiences into existing memories ensures that memories contain the most recently available information, but how the brain accomplishes this critical process remains unclear. Here we show that in mice, a strong aversive experience drives offline ensemble reactivation of not only the recent aversive memory but also a neutral memory formed 2 days before, linking fear of the recent aversive memory to the previous neutral memory. Fear specifically links retrospectively, but not prospectively, to neutral memories across days. Consistent with previous studies, we find that the recent aversive memory ensemble is reactivated during the offline period after learning. However, a strong aversive experience also increases co-reactivation of the aversive and neutral memory ensembles during the offline period. Ensemble co-reactivation occurs more during wake than during sleep. Finally, the expression of fear in the neutral context is associated with reactivation of the shared ensemble between the aversive and neutral memories. Collectively, these results demonstrate that offline ensemble co-reactivation is a neural mechanism by which memories are integrated across days.
Collapse
Affiliation(s)
- Yosif Zaki
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zachary T Pennington
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Madeline E Bacon
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - BumJin Ko
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Taylor R Francisco
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexa R LaBanca
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patlapa Sompolpong
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhe Dong
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sophia Lamsifer
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hung-Tu Chen
- Department of Psychological & Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Simón Carrillo Segura
- Graduate Program in Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, USA
| | - Zoé Christenson Wick
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alcino J Silva
- Department of Neurobiology, Psychiatry & Biobehavioral Sciences and Psychology, Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kanaka Rajan
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - André Fenton
- Center for Neural Science, New York University, New York, NY, USA
- Neuroscience Institute at the NYU Langone Medical Center, New York, NY, USA
| | - Tristan Shuman
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Denise J Cai
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Curtis AR, Tan SY, Boltong A, Cohen J, Kiss N. The influence of pediatric cancer treatment on taste perception and food hedonics: a systematic review. Nutr Rev 2024; 82:1741-1755. [PMID: 38204363 PMCID: PMC11551449 DOI: 10.1093/nutrit/nuad162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
CONTEXT Children with cancer are at risk of poor nutritional status during treatment and into survivorship. Objectively measured taste perception and self-reported food hedonics are 2 factors that may influence food intake. OBJECTIVE This 2-armed systematic review examined whether chemotherapy and radiotherapy affect (1) taste perception and (2) hedonic experiences of children and survivors of childhood cancer. DATA SOURCE A 2-armed systematic literature search was conducted in the Medline, CINAHL, Embase, and PsychInfo database until June 2022. The effects of cancer treatment on objective taste perception or food hedonics (ie, food liking or aversion and appetite) were examined. DATA EXTRACTION Peer-reviewed articles published in English of studies that included children (aged <18 years) or survivors of childhood cancer (any age) were reviewed. Risk of bias was determined using the Evidence Analysis Library by the Academy of Nutrition and Dietetics. DATA ANALYSIS A total of 1417 articles in the taste search arm and 3862 articles in the hedonics search arm were identified. Of these, 9 and 4 articles were eligible for review, respectively. Cancer treatment had highly variable effects on taste perception during treatment and into survivorship. Learned food aversions were experienced by children receiving chemotherapy treatment and liking of meats and salty foods by children with cancer was affected. The impact of treatment on appetite varied. CONCLUSIONS Cancer treatment did not uniformly affect taste perception. Food liking may be negatively affected, and learned food aversions may develop during cancer treatment. To establish the clinical relevance of childhood cancer treatment on taste perception and food hedonics, more research is required. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no.CRD42020207127.
Collapse
Affiliation(s)
- Annie R Curtis
- Institute for Physical Activity and Nutrition, Deakin University, Geelong, Victoria, Australia
| | - Sze Yen Tan
- Institute for Physical Activity and Nutrition, Deakin University, Geelong, Victoria, Australia
| | - Anna Boltong
- Cancer Australia, Surry Hills, New South Wales, Australia
- Kirby Institute, University of New South Wales (UNSW) Medicine, UNSW, Kensington, New South Wales, Australia
| | - Jennifer Cohen
- Discipline of Paediatrics and Child Health, UNSW Medicine & Health, Randwick Clinical Campus, UNSW Sydney, Sydney, New South Wales, Australia
- Canteen Australia, Sydney, New South Wales, Australia
| | - Nicole Kiss
- Institute for Physical Activity and Nutrition, Deakin University, Geelong, Victoria, Australia
- Allied Health Department, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Katsumata R, Kaburagi T, Hosokawa T, Manabe N, Ishii M, Ishii K, Tanikawa T, Urata N, Ayaki M, Nishino K, Murao T, Suehiro M, Fujita M, Kawanaka M, Haruma K, Kawamoto H, Takao T, Kamada T. Different Food Preferences in Patients with Gastrointestinal Disorders. Intern Med 2024; 63:3149-3155. [PMID: 38599865 PMCID: PMC11671186 DOI: 10.2169/internalmedicine.3433-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/27/2024] [Indexed: 04/12/2024] Open
Abstract
Objective Gastrointestinal (GI) disorders such as functional dyspepsia (FD), irritable bowel syndrome (IBS), gastroesophageal reflux disease (GERD), and inflammatory bowel disease (IBD) can exhibit overlapping GI symptoms, including abdominal pain and alterations in bowel habits. The symptoms of GI disorders are commonly considered to be triggered and exacerbated by fatty food intake. Therefore, this study aimed to compare the food preferences of patients with GI disorders. Methods Forty food images (including fatty and light foods) and 20 animal images were selected to evaluate food preferences. The preference score was assessed using a visual analog scale ranging from 1 to 100. GI symptoms were evaluated using the GI Symptom Rating Scale (GSRS), and correlations between the GSRS and preference scores were investigated. Results Overall, 22 healthy controls and 23, 29, 27, and 20 patients with FD, IBS, GERD, and IBD, respectively, were enrolled. The preference score for all foods in patients with FD was significantly lower than that in healthy controls and those with IBS, GERD, and IBD (52.9 vs. 66.5 vs. 68.5 vs. 69.1 vs. 70.7, p<0.01). The score of fatty foods was lower in patients with FD than in healthy controls and those with IBS, GERD, and IBD (43.8 vs. 72.3 vs. 77.5 vs. 77.4 vs. 80.7, p<0.01), whereas that of light foods and animal images was not different among the groups. No significant correlation was found between the preference score and symptom severity. Conclusion Patients with FD had a negative preference for foods, particularly fatty foods, independent of the severity of GI symptoms.
Collapse
Affiliation(s)
- Ryo Katsumata
- Department of Health Care Medicine, Kawasaki Medical School General Medical Center, Japan
| | - Tomoka Kaburagi
- Department of Health Care Medicine, Kawasaki Medical School General Medical Center, Japan
| | - Takayuki Hosokawa
- Department of Orthoptics, Faculty of Rehabilitation, Kawasaki University of Medical Welfare, Japan
| | - Noriaki Manabe
- Department of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School General Medical Center, Japan
| | - Manabu Ishii
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, Japan
| | - Katsunori Ishii
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, Japan
| | - Tomohiro Tanikawa
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, Japan
| | - Noriyo Urata
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, Japan
| | - Maki Ayaki
- Department of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School General Medical Center, Japan
| | - Ken Nishino
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, Japan
| | - Takahisa Murao
- Department of Health Care Medicine, Kawasaki Medical School General Medical Center, Japan
| | - Mitsuhiko Suehiro
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, Japan
| | - Minoru Fujita
- Department of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School General Medical Center, Japan
| | - Miwa Kawanaka
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, Japan
| | - Ken Haruma
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, Japan
| | - Hirofumi Kawamoto
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, Japan
| | - Toshihiro Takao
- Department of Health Care Medicine, Kawasaki Medical School, Japan
| | - Tomoari Kamada
- Department of Health Care Medicine, Kawasaki Medical School General Medical Center, Japan
| |
Collapse
|
6
|
Harris CI, Nasar B, Finnerty CC. Nutritional Implications of Mast Cell Diseases. J Acad Nutr Diet 2024; 124:1387-1396. [PMID: 38754765 DOI: 10.1016/j.jand.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Affiliation(s)
| | | | - Celeste C Finnerty
- Division of Surgical Sciences, Department of Surgery, University of Texas Medical Branch, Galveston, Texas; The Mast Cell Disease Society, Inc., Sterling, Massachusetts
| |
Collapse
|
7
|
Nakamura Y, Koike S. Daily fat intake is associated with basolateral amygdala response to high-calorie food cues and appetite for high-calorie food. Nutr Neurosci 2024; 27:809-817. [PMID: 37731332 DOI: 10.1080/1028415x.2023.2260585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
OBJECTIVES Animal studies have indicated that fat intake mediates amygdala activation, which in turn promotes fat intake, while amygdala activation increases the preference for fat and leads to increased fat intake. However, the association among fat intake, amygdala activation, and appetite for high-calorie foods in humans remains unclear. Thus, to examine this association, we conducted a functional magnetic resonance imaging (fMRI) experiment. METHODS Fifty healthy-weight adults (18 females; mean age: 22.9 ± 3.02 years) were included. Participants were shown images of high-calorie and low-calorie foods and were instructed to rate their desire to eat the food items during fMRI. All participants provided information on their daily fat intake using a self-reported questionnaire. Associations among fat intake, the desire to eat high-calorie or low-calorie food items, and amygdala responses to food items were examined. RESULTS The basolateral amygdala (BLA) response was positively associated with fat intake ([x, y, z] = [24, -6, -16], z = 3.91, pFWE-corrected = 0.007) and the desire to eat high-calorie food items ([26, -4, -16], z = 3.75, pFWE-corrected = 0.010). Structural equation modeling showed that the desire for high-calorie food items was predicted by BLA response to high-calorie food items (p = 0.013, β = 3.176), and BLA response was predicted by fat intake (p < 0.001, β = 0.026). DISCUSSION Fat intake influences BLA response to high-fat food, which in turn increases the desire to eat palatable high-fat food. This may lead to additional fat intake and increase the risk of weight gain.
Collapse
Affiliation(s)
- Yuko Nakamura
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, the University of Tokyo, Meguro-ku, Japan
- University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Meguro-ku, Japan
| | - Shinsuke Koike
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, the University of Tokyo, Meguro-ku, Japan
- University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Meguro-ku, Japan
- The International Research Center for Neurointelligence (WPI-IRCN), Institutes for Advanced Study (UTIAS), University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
8
|
Wilde J, Slack E, Foster KR. Host control of the microbiome: Mechanisms, evolution, and disease. Science 2024; 385:eadi3338. [PMID: 39024451 DOI: 10.1126/science.adi3338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
Many species, including humans, host communities of symbiotic microbes. There is a vast literature on the ways these microbiomes affect hosts, but here we argue for an increased focus on how hosts affect their microbiomes. Hosts exert control over their symbionts through diverse mechanisms, including immunity, barrier function, physiological homeostasis, and transit. These mechanisms enable hosts to shape the ecology and evolution of microbiomes and generate natural selection for microbial traits that benefit the host. Our microbiomes result from a perpetual tension between host control and symbiont evolution, and we can leverage the host's evolved abilities to regulate the microbiota to prevent and treat disease. The study of host control will be central to our ability to both understand and manipulate microbiotas for better health.
Collapse
Affiliation(s)
- Jacob Wilde
- Department of Biology, University of Oxford, Oxford, UK
| | - Emma Slack
- Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Basel Institute for Child Health, Basel, Switzerland
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Guarino A, Pignata P, Lovisari F, Asth L, Simonato M, Soukupova M. Cognitive comorbidities in the rat pilocarpine model of epilepsy. Front Neurol 2024; 15:1392977. [PMID: 38872822 PMCID: PMC11171745 DOI: 10.3389/fneur.2024.1392977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024] Open
Abstract
Patients with epilepsy are prone to cognitive decline, depression, anxiety and other behavioral disorders. Cognitive comorbidities are particularly common and well-characterized in people with temporal lobe epilepsy, while inconsistently addressed in epileptic animals. Therefore, the aim of this study was to ascertain whether there is good evidence of cognitive comorbidities in animal models of epilepsy, in particular in the rat pilocarpine model of temporal lobe epilepsy. We searched the literature published between 1990 and 2023. The association of spontaneous recurrent seizures induced by pilocarpine with cognitive alterations has been evaluated by using various tests: contextual fear conditioning (CFC), novel object recognition (NOR), radial and T-maze, Morris water maze (MWM) and their variants. Combination of results was difficult because of differences in methodological standards, in number of animals employed, and in outcome measures. Taken together, however, the analysis confirmed that pilocarpine-induced epilepsy has an effect on cognition in rats, and supports the notion that this is a valid model for assessment of cognitive temporal lobe epilepsy comorbidities in preclinical research.
Collapse
Affiliation(s)
- Annunziata Guarino
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Paola Pignata
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Francesca Lovisari
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Laila Asth
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Michele Simonato
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marie Soukupova
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
10
|
Dornellas APS, Thiele TE, Navarro M. Chemogenetic inhibition of locus coeruleus to rostromedial tegmental nucleus noradrenergic pathway increases light cycle ethanol drinking in male and female mice and blunts ethanol-induced CTA. Neuropharmacology 2024; 244:109809. [PMID: 38048984 PMCID: PMC10829485 DOI: 10.1016/j.neuropharm.2023.109809] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
We recently showed that chemogenetic activation of the locus coeruleus (LC) to the rostromedial tegmental nucleus (RMTg) noradrenergic (NE) pathway significantly blunted binge-like ethanol drinking and induced aversive-like behaviors in mice. The aim of the present study is to determine if silencing this TH + LC → RMTg noradrenergic pathway promotes increased levels of binge-like ethanol intake and reduced ethanol-induced conditioned taste aversion (CTA). To this end, both male and female TH-ires-cre mice on a C57BL/6 J background were cannulated in the RMTg and injected in the LC with rAVV viruses that encode cre-dependent Gi-expressing designer receptor exclusively activated by designer drugs (DREADDs), or its control, to directly control the activity of NE neurons. Inhibition of the LC to RMTg pathway had no effect on the binge-ethanol drinking in a "drinking-in-the-dark" (DID) paradigm. However, when using this paradigm during the light cycle, silencing of this circuit significantly increased ethanol intake without altering sucrose drinking. Moreover, we found that inhibition of this circuit significantly attenuated an ethanol-induced CTA. In addition, when compared to control animals, pairing RMTg-directed Clozapine N-oxide (CNO) with an i.p. injection of 1.5 g/kg ethanol reduced c-Fos activation in the LC, and increased c-Fos expression in the ventral tegmental area (VTA) in Gi-expressing mice. Our data show that inhibition of the TH + LC to the RMTg pathway significantly increased ethanol drinking as well as attenuated ethanol-induced CTA, supporting the involvement of the LC to RMTg noradrenergic circuit as an important protective mechanism against excessive ethanol consumption.
Collapse
Affiliation(s)
- Ana Paula S Dornellas
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, NC, 27599-3270, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, NC, 27599-7178, USA
| | - Todd E Thiele
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, NC, 27599-3270, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, NC, 27599-7178, USA
| | - Montserrat Navarro
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, NC, 27599-3270, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, NC, 27599-7178, USA.
| |
Collapse
|
11
|
Huo L, Ye Z, Liu M, He Z, Huang M, Li D, Wu Q, Wang Q, Wang X, Cao P, Dong J, Shang C. Brain circuits for retching-like behavior. Natl Sci Rev 2024; 11:nwad256. [PMID: 38288368 PMCID: PMC10824557 DOI: 10.1093/nsr/nwad256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/06/2023] [Accepted: 09/24/2023] [Indexed: 01/31/2024] Open
Abstract
Nausea and vomiting are important defensive responses to cope with pathogens and toxins that invade the body. The nucleus of the solitary tract (NTS) is important for initiating these responses. However, the molecular heterogeneities and cellular diversities of the NTS occlude a better understanding of these defensive responses. Here, we constructed the single-nucleus transcriptomic atlas of NTS cells and found multiple populations of NTS neurons that may be involved in these defensive responses. Among these, we identified Calbindin1-positive (Calb1+) NTS neurons that are molecularly distinct from Tac1+ neurons. These Calb1+ neurons are critical for nausea and retching induced by cereulide; an emetic toxin secreted by Bacillus Cereus. Strikingly, we found that cereulide can directly modulate vagal sensory neurons that innervate Calb1+ NTS neurons, a novel mechanism distinct from that for nausea and retching induced by Staphylococcal enterotoxin A. Together, our transcriptomic atlas of NTS neurons and the functional analyses revealed the neural mechanism for cereulide-induced retching-like behavior. These results demonstrate the molecular and cellular complexities in the brain that underlie defensive responses to the diversities of pathogens and toxins.
Collapse
Affiliation(s)
- Lifang Huo
- School of Basic Medical Sciences, Guangzhou National Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510799, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| | - Zhimin Ye
- School of Basic Medical Sciences, Guangzhou National Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510799, China
| | - Meiling Liu
- School of Basic Medical Sciences, Guangzhou National Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510799, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| | - Ziqing He
- School of Basic Medical Sciences, Guangzhou National Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510799, China
| | - Meizhu Huang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| | - Dapeng Li
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qian Wang
- Changping Life Science Laboratory, Beijing 102299, China
| | - Xiaoqun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Peng Cao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Ji Dong
- School of Basic Medical Sciences, Guangzhou National Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510799, China
| | - Congping Shang
- School of Basic Medical Sciences, Guangzhou National Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510799, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| |
Collapse
|
12
|
Kagan D, Hollings J, Batabyal A, Lukowiak K. Five-minute exposure to a novel appetitive food substance is sufficient time for a microRNA-dependent long-term memory to form. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:83-90. [PMID: 37382606 DOI: 10.1007/s00359-023-01650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
The Garcia effect is a unique form of conditioned taste aversion which requires that a novel food stimulus be followed sometime later by a sickness state associated with the novel food stimulus. The long-lasting associative memory resulting from the Garcia effect ensures that organisms avoid toxic foods in their environment. Considering its ecological relevance, we sought to investigate whether a brief encounter (5 min) with a novel, appetitive food stimulus can cause a persisting long-term memory (LTM) to form that would in turn block the Garcia effect in Lymnaea stagnalis. Furthermore, we wanted to explore whether that persisting LTM could be modified by the alteration of microRNAs via an injection of poly-L-lysine (PLL), an inhibitor of Dicer-mediated microRNA biogenesis. The Garcia effect procedure involved two observations of feeding behavior in carrot separated by a heat stress (30 °C for 1 h). Exposing snails to carrot for 5 min caused a LTM to form and persist for 1 week, effectively preventing the Garcia effect in snails. In contrast, PLL injection following the 5-min carrot exposure impaired LTM formation, allowing the Garcia effect to occur. These results provide more insight into LTM formation and the Garcia effect, an important survival mechanism.
Collapse
Affiliation(s)
- Diana Kagan
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| | - Jasper Hollings
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Anuradha Batabyal
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
- Department of Physical and Natural Sciences, FLAME University, Pune, India
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
13
|
Katsumata R, Hosokawa T, Manabe N, Mori H, Wani K, Ishii K, Tanikawa T, Urata N, Ayaki M, Nishino K, Murao T, Suehiro M, Fujita M, Kawanaka M, Haruma K, Kawamoto H, Takao T, Kamada T. Brain activity in response to food images in patients with irritable bowel syndrome and functional dyspepsia. J Gastroenterol 2023; 58:1178-1187. [PMID: 37572136 PMCID: PMC10657794 DOI: 10.1007/s00535-023-02031-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/29/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Functional dyspepsia (FD) and irritable bowel syndrome (IBS) are caused and exacerbated by consumption of fatty foods. However, no study has evaluated brain activity in response to food images in patients with disorders of gut-brain interaction (DGBI). This study aimed to compare food preference and brain activity when viewing food images between patients with DGBI and healthy controls. METHODS FD and IBS were diagnosed using the ROME IV criteria. Food preference was assessed using a visual analog scale (VAS). Brain activity in the prefrontal cortex (PFC) in response to food images was investigated using functional near-infrared spectroscopy (fNIRS). RESULTS Forty-one patients were enrolled, including 25 with DGBI. The mean VAS scores for all foods (controls vs. FD vs. IBS: 69.1 ± 3.3 vs. 54.8 ± 3.8 vs. 62.8 ± 3.7, p = 0.02), including fatty foods (78.1 ± 5.4 vs. 43.4 ± 6.3 vs. 64.7 ± 6.1, p < 0.01), were the lowest in patients with FD among all groups. Patients with FD had significantly higher brain activity in the left PFC than those with IBS and healthy controls (mean z-scores in controls vs. FD vs. IBS: - 0.077 ± 0.03 vs. 0.125 ± 0.04 vs. - 0.002 ± 0.03, p < 0.001). CONCLUSIONS Patients with DGBI, particularly those with FD, disliked fatty foods. The brain activity in patients with DGBI differed from that in healthy controls. Increased activity in the PFC of patients with FD was confirmed.
Collapse
Affiliation(s)
- Ryo Katsumata
- Department of Health Care Medicine, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan.
| | - Takayuki Hosokawa
- Department of Orthoptics, Faculty of Rehabilitation, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, Okayama, 701-0193, Japan
| | - Noriaki Manabe
- Department of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| | - Hitoshi Mori
- Department of Neurology, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| | - Katsunori Ishii
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| | - Tomohiro Tanikawa
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| | - Noriyo Urata
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| | - Maki Ayaki
- Department of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| | - Ken Nishino
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| | - Takahisa Murao
- Department of Health Care Medicine, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| | - Mitsuhiko Suehiro
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| | - Minoru Fujita
- Department of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| | - Miwa Kawanaka
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| | - Ken Haruma
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| | - Hirofumi Kawamoto
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| | - Toshihiro Takao
- Department of Health Care Medicine, Kawasaki Medical School, 577, Matsushima, Kurashiki, 701-0192, Japan
| | - Tomoari Kamada
- Department of Health Care Medicine, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| |
Collapse
|
14
|
Zhang FX, Xie XH, Guo ZX, Wang HD, Li H, Wu KLK, Chan YS, Li YQ. Evaluating proxies for motion sickness in rodent. IBRO Neurosci Rep 2023; 15:107-115. [PMID: 38204574 PMCID: PMC10776324 DOI: 10.1016/j.ibneur.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/29/2023] [Indexed: 01/12/2024] Open
Abstract
Motions sickness (MS) occurs when the brain receives conflicting sensory signals from vestibular, visual and proprioceptive systems about a person's ongoing position and/or motion in relation to space. MS is typified by symptoms such as nausea and emesis and implicates complex physiological aspects of sensations and sensorimotor reflexes. Use of animal models has been integral to unraveling the physiological causality of MS. The commonly used rodents (rat and mouse), albeit lacking vomiting reflex, reliably display phenotypic behaviors of pica (eating of non-nutritive substance) and conditioned taste aversion (CTAver) or avoidance (CTAvoi) which utilize neural substrates with pathways that cause gastrointestinal malaise akin to nausea/emesis. As such, rodent pica and CTAver/CTAvoi have been widely used as proxies for nausea/emesis in studies dealing with neural mechanisms of nausea/emesis and MS, as well as for evaluating therapeutics. This review presents the rationale and experimental evidence that support the use of pica and CTAver/CTAvoi as indices for nausea and emesis. Key experimental steps and cautions required when using rodent MS models are also discussed. Finally, future directions are suggested for studying MS with rodent pica and CTAver/CTAvoi models.
Collapse
Affiliation(s)
- Fu-Xing Zhang
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi’an, PR China
| | - Xiao-Hang Xie
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi’an, PR China
| | - Zi-Xin Guo
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi’an, PR China
| | - Hao-Dong Wang
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi’an, PR China
| | - Hui Li
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi’an, PR China
| | - Kenneth Lap Kei Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Yun-Qing Li
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi’an, PR China
| |
Collapse
|
15
|
Nieto A, Livovsky DM, Azpiroz F. Reversal of Conditioned Food Aversion Using a Cognitive Intervention: A Sham-Controlled, Randomized, Parallel Study. Nutrients 2023; 15:4962. [PMID: 38068820 PMCID: PMC10708304 DOI: 10.3390/nu15234962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Aversive conditioning weakens the gratifying value of a comfort meal. The aim was to determine the effect of a cognitive intervention to reverse aversive conditioning and restore hedonic postprandial response. METHODS This was a randomized, sham-controlled, single-blind, parallel study that was conducted on 12 healthy women (n = 6 in each group). The reward value of a comfort meal was measured on different days: at initial exposure, after aversive conditioning (administration of the same meal with a masked fat overload on the previous day) and after a cognitive intervention (disclosing the aversive conditioning paradigm in the test group vs. no explanation in the control group). The primary outcome, digestive wellbeing, was determined using graded scales at regular intervals before and after ingestion. RESULTS At initial exposure, the comfort meal produced a rewarding experience that was impaired using aversive conditioning; upon re-exposure to the original meal, the cognitive intervention increased meal wanting and liking; improved digestive wellbeing and mood; tended to reduce postprandial satiety, bloating/fullness; and abolished discomfort/pain, thereby restoring the hedonic value of the comfort meal. By contrast, sham intervention had no effects, and the postprandial sensations remained like the responses to the offending meal. CONCLUSION In this proof-of-concept study, we demonstrate that in healthy women, a mild, short-term acquired aversion to a comfort meal can be reversed using a cognitive intervention. CLINICALTRIALS gov ID: NCT05897411.
Collapse
Affiliation(s)
- Adoracion Nieto
- Digestive System Research Unit, University Hospital Vall d’Hebron, 08035 Barcelona, Spain (D.M.L.)
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Dan M. Livovsky
- Digestive System Research Unit, University Hospital Vall d’Hebron, 08035 Barcelona, Spain (D.M.L.)
- Digestive Diseases Institute, Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9103102, Israel
| | - Fernando Azpiroz
- Digestive System Research Unit, University Hospital Vall d’Hebron, 08035 Barcelona, Spain (D.M.L.)
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
16
|
Zaki Y, Pennington ZT, Morales-Rodriguez D, Francisco TR, LaBanca AR, Dong Z, Lamsifer S, Segura SC, Chen HT, Wick ZC, Silva AJ, van der Meer M, Shuman T, Fenton A, Rajan K, Cai DJ. Aversive experience drives offline ensemble reactivation to link memories across days. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532469. [PMID: 36993254 PMCID: PMC10054942 DOI: 10.1101/2023.03.13.532469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Memories are encoded in neural ensembles during learning and stabilized by post-learning reactivation. Integrating recent experiences into existing memories ensures that memories contain the most recently available information, but how the brain accomplishes this critical process remains unknown. Here we show that in mice, a strong aversive experience drives the offline ensemble reactivation of not only the recent aversive memory but also a neutral memory formed two days prior, linking the fear from the recent aversive memory to the previous neutral memory. We find that fear specifically links retrospectively, but not prospectively, to neutral memories across days. Consistent with prior studies, we find reactivation of the recent aversive memory ensemble during the offline period following learning. However, a strong aversive experience also increases co-reactivation of the aversive and neutral memory ensembles during the offline period. Finally, the expression of fear in the neutral context is associated with reactivation of the shared ensemble between the aversive and neutral memories. Taken together, these results demonstrate that strong aversive experience can drive retrospective memory-linking through the offline co-reactivation of recent memory ensembles with memory ensembles formed days prior, providing a neural mechanism by which memories can be integrated across days.
Collapse
Affiliation(s)
- Yosif Zaki
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Zachary T. Pennington
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | | | - Taylor R. Francisco
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Alexa R. LaBanca
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Zhe Dong
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Sophia Lamsifer
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Simón Carrillo Segura
- Graduate Program in Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201
| | - Hung-Tu Chen
- Department of Psychological & Brain Sciences, Dartmouth College, Hanover, NH, 03755
| | - Zoé Christenson Wick
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Alcino J. Silva
- Department of Neurobiology, Psychiatry & Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, Brain Research Institute, UCLA, Los Angeles, CA 90095
| | | | - Tristan Shuman
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - André Fenton
- Center for Neural Science, New York University, New York, NY, 10003
- Neuroscience Institute at the NYU Langone Medical Center, New York, NY, 10016
| | - Kanaka Rajan
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Denise J. Cai
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| |
Collapse
|
17
|
Nieto A, Livovsky DM, Azpiroz F. Conditioning by a Previous Experience Impairs the Rewarding Value of a Comfort Meal. Nutrients 2023; 15:nu15102247. [PMID: 37242129 DOI: 10.3390/nu15102247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/16/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Meal ingestion induces a postprandial experience that involves homeostatic and hedonic sensations. Our aim was to determine the effect of aversive conditioning on the postprandial reward of a comfort meal. METHODS A sham-controlled, randomised, parallel, single-blind study was performed on 12 healthy women (6 per group). A comfort meal was tested before and after coupling the meal with an aversive sensation (conditioning intervention), induced by infusion of lipids via a thin naso-duodenal catheter; in the pre- and post-conditioning tests and in the control group, a sham infusion was performed. Participants were instructed that two recipes of a tasty humus would be tested; however, the same meal was administered with a colour additive in the conditioning and post-conditioning tests. Digestive well-being (primary outcome) was measured every 10 min before and 60 min after ingestion using graded scales. RESULTS In the aversive conditioning group, the comfort meal in the pre-conditioning test induced a pleasant postprandial experience, which was significantly lower in the post-conditioning test; the effect of aversive conditioning (change from pre- to post-conditioning) was significant as compared to sham conditioning in the control group, which showed no differences between study days. CONCLUSION The hedonic postprandial response to a comfort meal in healthy women is impaired by aversive conditioning. CLINICALTRIALS gov ID: NCT04938934.
Collapse
Affiliation(s)
- Adoracion Nieto
- Digestive System Research Unit, University Hospital Vall d'Hebron, 08035 Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Dan M Livovsky
- Digestive System Research Unit, University Hospital Vall d'Hebron, 08035 Barcelona, Spain
- Digestive Diseases Institute, Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9103102, Israel
| | - Fernando Azpiroz
- Digestive System Research Unit, University Hospital Vall d'Hebron, 08035 Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
18
|
Xie Z, Zhang X, Zhao M, Huo L, Huang M, Li D, Zhang S, Cheng X, Gu H, Zhang C, Zhan C, Wang F, Shang C, Cao P. The gut-to-brain axis for toxin-induced defensive responses. Cell 2022; 185:4298-4316.e21. [PMID: 36323317 DOI: 10.1016/j.cell.2022.10.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/16/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022]
Abstract
After ingestion of toxin-contaminated food, the brain initiates a series of defensive responses (e.g., nausea, retching, and vomiting). How the brain detects ingested toxin and coordinates diverse defensive responses remains poorly understood. Here, we developed a mouse-based paradigm to study defensive responses induced by bacterial toxins. Using this paradigm, we identified a set of molecularly defined gut-to-brain and brain circuits that jointly mediate toxin-induced defensive responses. The gut-to-brain circuit consists of a subset of Htr3a+ vagal sensory neurons that transmit toxin-related signals from intestinal enterochromaffin cells to Tac1+ neurons in the dorsal vagal complex (DVC). Tac1+ DVC neurons drive retching-like behavior and conditioned flavor avoidance via divergent projections to the rostral ventral respiratory group and lateral parabrachial nucleus, respectively. Manipulating these circuits also interferes with defensive responses induced by the chemotherapeutic drug doxorubicin. These results suggest that food poisoning and chemotherapy recruit similar circuit modules to initiate defensive responses.
Collapse
Affiliation(s)
- Zhiyong Xie
- National Institute of Biological Sciences, Beijing, China; Department of Psychological Medicine, Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Xianying Zhang
- National Institute of Biological Sciences, Beijing, China; College of Life Sciences, Beijing Normal University, Beijing, China
| | - Miao Zhao
- National Institute of Biological Sciences, Beijing, China
| | - Lifang Huo
- Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Meizhu Huang
- National Institute of Biological Sciences, Beijing, China; Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Dapeng Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | | | - Xinyu Cheng
- National Institute of Biological Sciences, Beijing, China
| | - Huating Gu
- National Institute of Biological Sciences, Beijing, China
| | - Chen Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Cheng Zhan
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| | - Congping Shang
- Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| | - Peng Cao
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
19
|
Cootes TA, Bhattacharyya ND, Huang SS, Daniel L, Bell-Anderson KS, Stifter SA, Chew T, Solon-Biet SM, Saraiva LR, Cai Y, Chen X, Simpson SJ, Feng CG. The quality of energy- and macronutrient-balanced diets regulates host susceptibility to influenza in mice. Cell Rep 2022; 41:111638. [DOI: 10.1016/j.celrep.2022.111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 08/28/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
|
20
|
Palmer RK. Why Taste Is Pharmacology. Handb Exp Pharmacol 2022; 275:1-31. [PMID: 35461405 DOI: 10.1007/164_2022_589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The chapter presents an argument supporting the view that taste, defined as the receptor-mediated signaling of taste cells and consequent sensory events, is proper subject matter for the field of pharmacology. The argument develops through a consideration of how the field of pharmacology itself is to be defined. Though its application toward the discovery and development of therapeutics is of obvious value, pharmacology nevertheless is a basic science committed to examining biological phenomena controlled by the selective interactions between chemicals - regardless of their sources or uses - and receptors. The basic science of pharmacology is founded on the theory of receptor occupancy, detailed here in the context of taste. The discussion then will turn to consideration of the measurement of human taste and how well the results agree with the predictions of receptor theory.
Collapse
|
21
|
Bernanke A, Burnette E, Murphy J, Hernandez N, Zimmerman S, Walker QD, Wander R, Sette S, Reavis Z, Francis R, Armstrong C, Risher ML, Kuhn C. Behavior and Fos activation reveal that male and female rats differentially assess affective valence during CTA learning and expression. PLoS One 2021; 16:e0260577. [PMID: 34898621 PMCID: PMC8668140 DOI: 10.1371/journal.pone.0260577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 12/02/2022] Open
Abstract
Females are more affected by psychiatric illnesses including eating disorders, depression, and post-traumatic stress disorder than males. However, the neural mechanisms mediating these sex differences are poorly understood. Animal models can be useful in exploring such neural mechanisms. Conditioned taste aversion (CTA) is a behavioral task that assesses how animals process the competition between associated reinforcing and aversive stimuli in subsequent task performance, a process critical to healthy behavior in many domains. The purpose of the present study was to identify sex differences in this behavior and associated neural responses. We hypothesized that females would value the rewarding stimulus (Boost®) relative to the aversive stimulus (LiCl) more than males in performing CTA. We evaluated behavior (Boost® intake, LiCl-induced behaviors, ultrasonic vocalizations (USVs), CTA performance) and Fos activation in relevant brain regions after the acute stimuli [acute Boost® (AB), acute LiCl (AL)] and the context-only task control (COT), Boost® only task (BOT) and Boost®-LiCl task (BLT). Acutely, females drank more Boost® than males but showed similar aversive behaviors after LiCl. Females and males performed CTA similarly. Both sexes produced 55 kHz USVs anticipating BOT and inhibited these calls in the BLT. However, more females emitted both 22 kHz and 55 kHz USVs in the BLT than males: the latter correlated with less CTA. Estrous cycle stage also influenced 55 kHz USVs. Fos responses were similar in males and females after AB or AL. Females engaged the gustatory cortex and ventral tegmental area (VTA) more than males during the BOT and males engaged the amygdala more than females in both the BOT and BLT. Network analysis of correlated Fos responses across brain regions identified two unique networks characterizing the BOT and BLT, in both of which the VTA played a central role. In situ hybridization with RNAscope identified a population of D1-receptor expressing cells in the CeA that responded to Boost® and D2 receptor-expressing cells that responded to LiCl. The present study suggests that males and females differentially process the affective valence of a stimulus to produce the same goal-directed behavior.
Collapse
Affiliation(s)
- Alyssa Bernanke
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Elizabeth Burnette
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Justine Murphy
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Nathaniel Hernandez
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Sara Zimmerman
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Q. David Walker
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Rylee Wander
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Samantha Sette
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Zackery Reavis
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Reynold Francis
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Christopher Armstrong
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Mary-Louise Risher
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| | - Cynthia Kuhn
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
22
|
Zheng Y, Chen ZY, Ma WJ, Wang QZ, Liang H, Ma AG. B Vitamins Supplementation Can Improve Cognitive Functions and May Relate to the Enhancement of Transketolase Activity in A Rat Model of Cognitive Impairment Associated with High-fat Diets. Curr Med Sci 2021; 41:847-856. [PMID: 34652631 DOI: 10.1007/s11596-021-2456-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/05/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine whether B vitamin treatment was sufficient to reduce cognitive impairment associated with high-fat diets in rats and to modulate transketolase (TK) expression and activity. METHODS To test this, we separated 50 rats into five groups that were either fed a standard chow diet (controls) or a high-fat diet (experimental groups H0, H1, H2, and H3). H0 group animals received no additional dietary supplementation, while H1 group animals were administered 100 mg/kg body weight (BW) thiamine, 100 mg/kg BW riboflavin, and 250 mg/kg BW niacin each day, and group H2 animals received daily doses of 100 mg/kg BW pyridoxine, 100 mg/kg BW cobalamin, and 5 mg/kg BW folate. Animals in the H3 group received the B vitamin regimens administered to both H1 and H2 each day. RESULTS Over time, group H0 exhibited greater increases in BW and fat mass relative to other groups. When spatial and memory capabilities in these animals were evaluated via conditioned taste aversion (CTA) and Morris Water Maze (MWM), we found B vitamin treatment was associated with significant improvements relative to untreated H0 controls. Similarly, B vitamin supplementation was associated with elevated TK expression in erythrocytes and hypothalamus of treated animals relative to those in H0 (P<0.05). CONCLUSION Together, these findings suggest B vitamin can modulate hypothalamic TK activity to reduce the severity of cognitive deficits in a rat model of obesity. As such, B vitamin supplementation may be a beneficial method for reducing cognitive dysfunction in clinical settings associated with high-fat diets.
Collapse
Affiliation(s)
- Ying Zheng
- Department of Nutrition, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zhi-Yong Chen
- Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, China
| | - Wen-Jun Ma
- Department of Nutrition, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Qiu-Zhen Wang
- Institute of Nutrition and Health, Medical College of Qingdao University, Qingdao, 266021, China
| | - Hui Liang
- Institute of Nutrition and Health, Medical College of Qingdao University, Qingdao, 266021, China
| | - Ai-Guo Ma
- Institute of Nutrition and Health, Medical College of Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
23
|
Berthoud HR, Morrison CD, Ackroff K, Sclafani A. Learning of food preferences: mechanisms and implications for obesity & metabolic diseases. Int J Obes (Lond) 2021; 45:2156-2168. [PMID: 34230576 PMCID: PMC8455326 DOI: 10.1038/s41366-021-00894-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
Omnivores, including rodents and humans, compose their diets from a wide variety of potential foods. Beyond the guidance of a few basic orosensory biases such as attraction to sweet and avoidance of bitter, they have limited innate dietary knowledge and must learn to prefer foods based on their flavors and postoral effects. This review focuses on postoral nutrient sensing and signaling as an essential part of the reward system that shapes preferences for the associated flavors of foods. We discuss the extensive array of sensors in the gastrointestinal system and the vagal pathways conveying information about ingested nutrients to the brain. Earlier studies of vagal contributions were limited by nonselective methods that could not easily distinguish the contributions of subsets of vagal afferents. Recent advances in technique have generated substantial new details on sugar- and fat-responsive signaling pathways. We explain methods for conditioning flavor preferences and their use in evaluating gut-brain communication. The SGLT1 intestinal sugar sensor is important in sugar conditioning; the critical sensors for fat are less certain, though GPR40 and 120 fatty acid sensors have been implicated. Ongoing work points to particular vagal pathways to brain reward areas. An implication for obesity treatment is that bariatric surgery may alter vagal function.
Collapse
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | - Christopher D Morrison
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Karen Ackroff
- Psychology Department, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - Anthony Sclafani
- Psychology Department, Brooklyn College of the City University of New York, Brooklyn, NY, USA.
| |
Collapse
|
24
|
Rivi V, Benatti C, Lukowiak K, Colliva C, Alboni S, Tascedda F, Blom JM. What can we teach Lymnaea and what can Lymnaea teach us? Biol Rev Camb Philos Soc 2021; 96:1590-1602. [PMID: 33821539 PMCID: PMC9545797 DOI: 10.1111/brv.12716] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 01/20/2023]
Abstract
This review describes the advantages of adopting a molluscan complementary model, the freshwater snail Lymnaea stagnalis, to study the neural basis of learning and memory in appetitive and avoidance classical conditioning; as well as operant conditioning of its aerial respiratory and escape behaviour. We firstly explored 'what we can teach Lymnaea' by discussing a variety of sensitive, solid, easily reproducible and simple behavioural tests that have been used to uncover the memory abilities of this model system. Answering this question will allow us to open new frontiers in neuroscience and behavioural research to enhance our understanding of how the nervous system mediates learning and memory. In fact, from a translational perspective, Lymnaea and its nervous system can help to understand the neural transformation pathways from behavioural output to sensory coding in more complex systems like the mammalian brain. Moving on to the second question: 'what can Lymnaea teach us?', it is now known that Lymnaea shares important associative learning characteristics with vertebrates, including stimulus generalization, generalization of extinction and discriminative learning, opening the possibility to use snails as animal models for neuroscience translational research.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
| | - Cristina Benatti
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
- Centre of Neuroscience and NeurotechnologyUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of MedicineUniversity of Calgary3330 Hospital Dr NWCalgaryABT2N 4N1Canada
| | - Chiara Colliva
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
- Centre of Neuroscience and NeurotechnologyUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
| | - Silvia Alboni
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
- Centre of Neuroscience and NeurotechnologyUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
| | - Fabio Tascedda
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
- Centre of Neuroscience and NeurotechnologyUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
- CIB, Consorzio Interuniversitario BiotecnologieTriesteItaly
| | - Johanna M.C. Blom
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
- Centre of Neuroscience and NeurotechnologyUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
| |
Collapse
|
25
|
Rivi V, Batabyal A, Juego K, Kakadiya M, Benatti C, Blom JMC, Lukowiak K. To eat or not to eat: a Garcia effect in pond snails (Lymnaea stagnalis). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:479-495. [PMID: 34052874 DOI: 10.1007/s00359-021-01491-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/15/2021] [Accepted: 05/20/2021] [Indexed: 01/10/2023]
Abstract
Taste aversion learning is universal. In animals, a single presentation of a novel food substance followed hours later by visceral illness causes animals to avoid that taste. This is known as bait-shyness or the Garcia effect. Humans demonstrate this by avoiding a certain food following the development of nausea after ingesting that food ('Sauce Bearnaise effect'). Here, we show that the pond snail Lymnaea stagnalis is capable of the Garcia effect. A single 'pairing' of a novel taste, a carrot slurry followed hours later by a heat shock stressor (HS) is sufficient to suppress feeding response elicited by carrot for at least 24 h. Other food tastes are not suppressed. If snails had previously been exposed to carrot as their food source, the Garcia-like effect does not occur when carrot is 'paired' with the HS. The HS up-regulates two heat shock proteins (HSPs), HSP70 and HSP40. Blocking the up-regulation of the HSPs by a flavonoid, quercetin, before the heat shock, prevented the Garcia effect in the snails. Finally, we found that snails exhibit Garcia effect following a period of food deprivation but the long-term memory (LTM) phenotype can be observed only if the animals are tested in a food satiated state.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anuradha Batabyal
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Karla Juego
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Mili Kakadiya
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Johanna M C Blom
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
26
|
Another Example of Conditioned Taste Aversion: Case of Snails. BIOLOGY 2020; 9:biology9120422. [PMID: 33256267 PMCID: PMC7760351 DOI: 10.3390/biology9120422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
Simple Summary It is important to decide what to eat and what not to eat in the life. Children are likely to reject new foods. When eating a new food results in a negative experience, the child will avoid that specific food in the future. This phenomenon is called ‘conditioned taste aversion’ in mammals, and it is considered necessary for survival by preventing subsequent ingestion of sickening foods. Many researchers study the same kind of phenomenon in invertebrates, too. For example, the formation of conditioned taste aversion was found in the pond snail, Lymnaea stagnalis, with the selective associability between a sweet sucrose solution and a bitter KCl solution. A sweet food attracts many kinds of animals, resulting in the feeding response, whereas a KCl solution is an aversive stimulus, inducing a withdrawal response in snails. After repeated temporally-contingent presentations of these two stimuli, the sucrose solution no longer elicits a feeding response, and this phenomenon persists for a long term. In the present review, we first outline the mechanisms of conditioned taste aversion in mammals, then introduce the conditioned taste aversion in snails, and compare them. Furthermore, the molecular events in snails are discussed, suggesting the general mechanism in conditioned taste aversion. Abstract Conditioned taste aversion (CTA) in mammals has several specific characteristics: (1) emergence of a negative symptom in subjects due to selective association with a taste-related stimulus, (2) robust long-term memory that is resistant to extinction induced by repeated presentation of the conditioned stimulus (CS), (3) a very-long-delay presentation of the unconditioned stimulus (US), and (4) single-trial learning. The pond snail, Lymnaea stagnalis, can also form a CTA. Although the negative symptoms, like nausea, in humans cannot be easily observed in invertebrate animal models of CTA, all the other characteristics of CTA seem to be present in snails. Selective associability was confirmed using a sweet sucrose solution and a bitter KCl solution. Once snails form a CTA, repeated presentation of the CS does not extinguish the CTA. A long interstimulus interval between the CS and US, like in trace conditioning, still results in the formation of a CTA in snails. Lastly, even single-trial learning has been demonstrated with a certain probability. In the present review, we compare, in detail, CTA in mammals and snails, and discuss the possible molecular events in CTA.
Collapse
|
27
|
Muscarinic receptor signaling in the amygdala is required for conditioned taste aversion. Neurosci Lett 2020; 740:135466. [PMID: 33152457 DOI: 10.1016/j.neulet.2020.135466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 11/22/2022]
Abstract
The sense of taste provides information regarding the nutrient content, safety or potential toxicity of an edible. This is accomplished via a combination of innate and learned taste preferences. In conditioned taste aversion (CTA), rats learn to avoid ingesting a taste that has previously been paired with gastric malaise. Recent evidence points to a role of cholinergic muscarinic signaling in the amygdala for the learning and storage of emotional memories. The present study tested the participation of muscarinic receptors in the amygdala during the formation of CTA by infusing the non-specific antagonist scopolamine into the basolateral or central subnuclei before or after conditioning, as well as before retrieval. Our data show that regardless of the site of infusion, pre-conditioning administration of scopolamine impaired CTA acquisition whereas post-conditioning infusion did not affect its storage. Also, infusions into the basolateral but not in the central amygdala before retrieval test partially reduced the expression of CTA. Our results indicate that muscarinic receptors activity is required for acquisition but not consolidation of CTA. In addition, our data add to recent evidence pointing to a role of cholinergic signaling in peri-hippocampal structures in the process of memory retrieval.
Collapse
|
28
|
Angulo R, Bustamante J, Arévalo-Romero CA. Age, sex and pre-exposure effects on acquisition and generalization of conditioned taste aversion in rats. Behav Brain Res 2020; 394:112813. [PMID: 32712137 DOI: 10.1016/j.bbr.2020.112813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/26/2020] [Accepted: 07/15/2020] [Indexed: 12/31/2022]
Abstract
The main aim of the present study was to assess the effect of sex and aging in two pre-exposure learning effects, latent inhibition (LI) and perceptual learning (PL), with a conditioned taste aversion paradigm. Young adult (90 days) and aged (more than 18 months) males and females received 8 pre-exposure trials either with stimulus AX (LI conditions) or BX (PL conditions). Then, all animals received a conditioning trial with AX and two test trials, one with AX and other with BX. The level of generalization between AX and BX was assessed by means of the absolute level of consumption of BX and by the difference in consumption between both stimuli. The results showed an attenuation of latent inhibition as well a stronger generalization of conditioned taste aversion in females when generalization is inferred from the BX consumption. A facilitation of conditioning for the aged animals was also found regardless of the pre-exposed stimulus. Pre-exposures to BX resulted in little generalization, but pre-exposures to AX resulted in a very similar consumption of both compounds, indicating a strong generalization between them. Overall, the study provided novel evidence about the effect of sex and aging on taste aversion, raising at the same time some relevant questions about perceptual learning and how such pre-exposure effect has been typically assessed.
Collapse
|
29
|
Features of behavioral changes underlying conditioned taste aversion in the pond snail Lymnaea stagnalis. INVERTEBRATE NEUROSCIENCE 2020; 20:8. [DOI: 10.1007/s10158-020-00241-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/25/2020] [Indexed: 12/11/2022]
|
30
|
Zeleny JR, Volkert VM, Ibañez VF, Crowley JG, Kirkwood CA, Piazza CC. Food preferences before and during treatment for a pediatric feeding disorder. J Appl Behav Anal 2019; 53:875-888. [PMID: 31456232 DOI: 10.1002/jaba.625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 11/10/2022]
Abstract
Little is known about the food preferences of children with a feeding disorder and medical diagnoses. Therefore, we conducted repeated paired-stimulus-preference assessments with foods to which we either exposed or did not expose 3 children with a feeding disorder and medical diagnoses during clinical treatment. Responding was relatively equivalent for exposure and nonexposure foods throughout the preference assessments, suggesting that preferences for foods did not change due to exposure during treatment.
Collapse
Affiliation(s)
- Jason R Zeleny
- University of Nebraska Medical Center's Munroe-Meyer Institute
| | | | - Vivian F Ibañez
- University of Nebraska Medical Center's Munroe-Meyer Institute
| | - Jaime G Crowley
- University of Nebraska Medical Center's Munroe-Meyer Institute
| | | | | |
Collapse
|