1
|
Massé S, St-Pierre J, Delisle T, Vézina FA, Iorio-Morin C, Couillard S. Neuromodulation of dyspnea - A literature review. Respir Med 2025; 243:108129. [PMID: 40306331 DOI: 10.1016/j.rmed.2025.108129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 04/17/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
Dyspnea is a complex sensation resulting from the interplay between neural, biochemical, and mechanical pathways. Because dyspnea is a perception created and interpreted by the central nervous system, it could theoretically be targeted by neuromodulation approaches. This technique is used in pain to modulate the function of neuronal circuits. However, a safe surgical and/or non-invasive modus operandi is not established for refractory dyspnea. Nevertheless, the following literature review will discuss different neuromodulation techniques that may treat refractory dyspnea, even though the understanding of its pathophysiology is limited. More precisely, the diaphragm and its phrenic control, the ventral respiratory complexes (such as Kolliker-Fuse complex and the pre-Bötzinger complex), the vagal nerve, the periaqueductal gray, the insula, the cingular cortex, and the thalamus appear to play an important role in the pathophysiology of breathlessness. Consequently, deep brain stimulation, trigeminal nerve, spinal and vagal nerve stimulations are potentially effective approaches to diminish dyspnea. The discovery of useful dyspnea-reducing neuromodulation techniques could replace or be added to actual treatments like pulmonary rehabilitation, facial ventilators, oxygen, and opioids could be replaced, consequently enhancing the quality of life of dyspneic individuals.
Collapse
Affiliation(s)
- Sandrine Massé
- Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, 3001 12(e) Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Joël St-Pierre
- Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, 3001 12(e) Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Tommy Delisle
- Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, 3001 12(e) Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Félix-Antoine Vézina
- Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, 3001 12(e) Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Christian Iorio-Morin
- Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, 3001 12(e) Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Simon Couillard
- Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, 3001 12(e) Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada.
| |
Collapse
|
2
|
Sozer A, Yaman ME, Emmez H, Kale A, Guner E, Ozguven HD, Savas A. Staged cingulotomy and capsulotomy for trigeminal neuropathic pain: A case report. Exp Ther Med 2025; 29:120. [PMID: 40297617 PMCID: PMC12035795 DOI: 10.3892/etm.2025.12870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/03/2025] [Indexed: 04/30/2025] Open
Abstract
Central lesioning techniques, such as cingulotomy and capsulotomy, have demonstrated efficacy in managing chronic pain, particularly in complex cases. These procedures are particularly useful for patients who are non-responsive to conventional treatments. The current study presents, to the best of our knowledge, the first case of a patient received combined stereotactic radiofrequency (RF) cingulotomy and GammaKnife capsulotomy (GKC), and who achieved good pain control after. The patient initially presented with severe, continuous left-sided facial pain unresponsive to medication and subsequently underwent a bilateral stereotactic RF cingulotomy. Pain levels were monitored using the Numeric Rating Scale. Patient satisfaction, as well as neurological and cognitive functions, were evaluated over a 2-year period. At 1-month post-cingulotomy, the patient's pain reduced from the initial score of 9/10 to 1/10, and the patient remained pain-free for the subsequent 3 months. Upon recurrence, the conducted GKC resulted in a more sustained reduction of pain to 2-3/10 at 1-year post-procedure. The patient reported high satisfaction with no observed neurological or cognitive deficits. Magnetic resonance imaging scans confirmed the presence of capsulotomy lesions in addition to the existing cingulotomy lesions. The combined cingulotomy and capsulotomy approach provided significant and sustained pain relief in the patient, indicating the potential of these techniques as advanced treatment options for refractory trigeminal neuropathic pain. This case is the first documented instance of the combined use of cingulotomy and capsulotomy, suggesting their viability for patients requiring higher-tier pain management strategies.
Collapse
Affiliation(s)
- Alperen Sozer
- Department of Neurosurgery, Gazi University Faculty of Medicine, 06560 Ankara, Türkiye
| | - Mesut Emre Yaman
- Department of Neurosurgery, Gazi University Faculty of Medicine, 06560 Ankara, Türkiye
| | - Hakan Emmez
- Department of Neurosurgery, Guven Hospital, 06540 Ankara, Türkiye
| | - Aydemir Kale
- Department of Neurosurgery, Gazi University Faculty of Medicine, 06560 Ankara, Türkiye
| | - Efe Guner
- Department of Neurosurgery, Ankara University School of Medicine, 06230 Ankara, Türkiye
| | | | - Ali Savas
- Department of Neurosurgery, Ankara University School of Medicine, 06230 Ankara, Türkiye
| |
Collapse
|
3
|
Fontaine D, Leplus A, Donnet A, Darmon N, Balossier A, Giordana B, Simonet B, Isan P, Regis J, Lanteri-Minet M. Safety and feasibility of deep brain stimulation of the anterior cingulate and thalamus in chronic refractory neuropathic pain: a pilot and randomized study. J Headache Pain 2025; 26:35. [PMID: 39962366 PMCID: PMC11834684 DOI: 10.1186/s10194-025-01967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 01/28/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Deep Brain Stimulation (DBS) of the anterior cingulum has been recently proposed to treat refractory chronic pain but its safety and its efficacy have not been evaluated in controlled conditions. Our objective was to evaluate the respective feasibility and safety of sensory thalamus (Thal-DBS) combined with anterior cingulate (ACC-DBS) DBS in patients suffering from chronic neuropathic pain. METHODS We conducted a bicentric study (clinicaltrials.gov NCT03399942) in patients suffering from medically-refractory chronic unilateral neuropathic pain surgically implanted with both unilateral Thal-DBS and bilateral ACC-DBS, to evaluate successively: Thal-DBS only; combined Thal-DBS and ACC-DBS; ACC-DBS "on" and "off" stimulation periods in randomized cross-over double-blinded conditions; and a 1-year open phase. Safety and efficacy were evaluated by repeated neurological examination, psychiatric assessment, comprehensive assessment of cognitive and affective functioning. Changes on pain intensity (Visual Analogic Scale) and quality of life (EQ-5D scale) were used to evaluate DBS efficacy. RESULTS All the patients (2 women, 6 men, mean age 52,1) completed the study. Adverse events were: epileptic seizure (2), transient motor or attention (2), persistent gait disturbances (1), sleep disturbances (1). No patient displayed significant cognitive or affective change. Compared to baseline, the quality of life (EQ-5D utility score) was significantly improved during the ACC-DBS "On" stimulation period (p = 0,039) and at the end of the study (p = 0,034). CONCLUSION This pilot study confirmed the safety of anterior cingulate DBS alone or in combination with thalamic stimulation and suggested that it might improve quality of life of patients with chronic refractory neuropathic pain. TRIAL REGISTRATION The study has been registered on 20,180,117 (clinicaltrials.gov NCT03399942).
Collapse
Affiliation(s)
- Denys Fontaine
- Department of Neurosurgery, Université Côte d'Azur, CHU de Nice, Nice, France.
- Université Côte d'Azur, UR2CA, Nice, France.
- FHU INOVPAIN, CHU de Nice, Nice, France.
| | - Aurélie Leplus
- Department of Neurosurgery, Université Côte d'Azur, CHU de Nice, Nice, France
- Université Côte d'Azur, UR2CA, Nice, France
- FHU INOVPAIN, CHU de Nice, Nice, France
| | - Anne Donnet
- FHU INOVPAIN, CHU de Nice, Nice, France
- Pain Clinic, Hopital La Timone, APHM, Marseille, France
- INSERM U1107 Migraine and Trigeminal Pain, Université Clermont-Auvergne, Clermont-Ferrand, France
| | - Nelly Darmon
- Université Côte d'Azur, UR2CA, Nice, France
- Department of Psychiatry, Université Côte d'Azur, CHU de Nice, Nice, France
| | - Anne Balossier
- INSERM (INS) UMR1106, Department of Functional Neurosurgery & Radiosurgery, Aix Marseille University, Marseille, France
| | - Bruno Giordana
- Université Côte d'Azur, UR2CA, Nice, France
- Department of Psychiatry, Université Côte d'Azur, CHU de Nice, Nice, France
| | - Benoit Simonet
- Department of Neurosurgery, Université Côte d'Azur, CHU de Nice, Nice, France
- Université Côte d'Azur, UR2CA, Nice, France
- FHU INOVPAIN, CHU de Nice, Nice, France
| | - Petru Isan
- Department of Neurosurgery, Université Côte d'Azur, CHU de Nice, Nice, France
- Université Côte d'Azur, UR2CA, Nice, France
- FHU INOVPAIN, CHU de Nice, Nice, France
| | - Jean Regis
- INSERM (INS) UMR1106, Department of Functional Neurosurgery & Radiosurgery, Aix Marseille University, Marseille, France
| | - Michel Lanteri-Minet
- Université Côte d'Azur, UR2CA, Nice, France
- FHU INOVPAIN, CHU de Nice, Nice, France
- INSERM U1107 Migraine and Trigeminal Pain, Université Clermont-Auvergne, Clermont-Ferrand, France
- Université Côte d'Azur, CHU de Nice, Pain Clinic, Nice, France
| |
Collapse
|
4
|
Kollenburg L, Arnts H, Green A, Strauss I, Vinke S, Kurt E. The cingulum: anatomy, connectivity and what goes beyond. Brain Commun 2025; 7:fcaf048. [PMID: 39949403 PMCID: PMC11824423 DOI: 10.1093/braincomms/fcaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 01/12/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
For over half a century, the cingulum has been the subject of neuroanatomical and therapeutic investigations owing to its wide range of functions and involvement in various neurological and psychiatric diseases. Recent clinical studies investigating neurosurgical techniques targeting the cingulum, like deep brain stimulation of the anterior cingulate cortex and cingulotomy, have further boosted interests in this central 'hub' as a target for chronic intractable pain. Proper targeting within the cingulum is essential to achieve sufficient pain relief. Despite the cingulum being the centre of research for over a century, its structural and functional organization remains a subject to debate, consequently complicating neurosurgical targeting of this area. This study aims to review anatomical and connectivity data of the cingulum from a clinical perspective in order to improve understanding of its role in pain. For the current study, a systematic literature search was performed to assess the anatomy and functional and structural connectivity of the cingulate bundle and cortex. These outcomes focus on MRI and PET data. Articles were searched within the PubMed database, and additional articles were found manually through reviews or references cited within the articles. After exclusion, 70 articles remained included in this analysis, with 50, 29 and 10 studies describing human, monkey and rat subjects, respectively. Outcomes of this analysis show the presence of various anatomical models, each describing other subdivisions within the cingulum. Moreover, connectivity data suggest that the cingulate bundle consists of three distinct fibre projections, including the thalamocortical, cingulate gyrus and anterior frontal and posterior parietal projections. Further, the cingulum is responsible for a variety of functions involved in chronic pain, like sensory processing, memory, spatial functioning, reward, cognition, emotion, visceromotor and endocrine control. Based on the current outcomes, it can be concluded that the cingulum is a central 'hub' for pain processing, because it is a melting pot for memory, cognition and affect that are involved in the complex phenomenon of pain experience, memory, spatial functioning, reward, cognition, emotion, visceromotor and endocrine control. Variability in anatomical and connectivity models complicate proper and standardized neurosurgical targeting, consequently leading to clinicians often being reluctant on stimulation and/or lesioning of the cingulum. Hence, future research should be dedicated to the standardization of these models, to allow for optimal targeting and management of patients with chronic intractable pain.
Collapse
Affiliation(s)
- Linda Kollenburg
- Department of Neurosurgery, Functional Neurosurgery Unit, Radboud University Medical Center, Nijmegen 6525 GA,Netherlands
| | - Hisse Arnts
- Department of Neurosurgery, Functional Neurosurgery Unit, Radboud University Medical Center, Nijmegen 6525 GA,Netherlands
| | - Alexander Green
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Department of Clinical Neuroscience and Surgery, University of Oxford, Oxford OX39DU, UK
| | - Ido Strauss
- Department of Neurosurgery, Functional Neurosurgery Unit, Tel Aviv Medical Center, Tel Aviv 6801298, Israel
| | - Saman Vinke
- Department of Neurosurgery, Functional Neurosurgery Unit, Radboud University Medical Center, Nijmegen 6525 GA,Netherlands
| | - Erkan Kurt
- Department of Neurosurgery, Functional Neurosurgery Unit, Radboud University Medical Center, Nijmegen 6525 GA,Netherlands
- Department of Pain & Palliative Care, Radboud University Medical Center, Nijmegen 6525 GA,Netherlands
| |
Collapse
|
5
|
Riis TS, Feldman DA, Losser AJ, Okifuji A, Kubanek J. Noninvasive targeted modulation of pain circuits with focused ultrasonic waves. Pain 2024; 165:2829-2839. [PMID: 39073370 PMCID: PMC11562753 DOI: 10.1097/j.pain.0000000000003322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 07/30/2024]
Abstract
ABSTRACT Direct interventions into deep brain circuits constitute promising treatment modalities for chronic pain. Cingulotomy and deep brain stimulation targeting the anterior cingulate cortex have shown notable improvements in the unpleasantness of pain, but these interventions require brain surgeries. In this study, we have developed an approach that can modulate this deep brain affective hub entirely noninvasively, using low-intensity transcranial-focused ultrasound. Twenty patients with chronic pain received two 40-minute active or sham stimulation protocols and were monitored for one week in a randomized crossover trial. Sixty percent of subjects experienced a clinically meaningful reduction of pain on day 1 and on day 7 following the active stimulation, while sham stimulation provided such benefits only to 15% and 20% of subjects, respectively. On average, active stimulation reduced pain by 60.0% immediately following the intervention and by 43.0% and 33.0% on days 1 and 7 following the intervention. The corresponding sham levels were 14.4%, 12.3%, and 6.6%. The stimulation was well tolerated, and no adverse events were detected. Side effects were generally mild and resolved within 24 hours. Together, the direct, ultrasonic stimulation of the anterior cingulate cortex offers rapid, clinically meaningful, and durable improvements in pain severity.
Collapse
Affiliation(s)
- Thomas S. Riis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Daniel A. Feldman
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Department of Radiology, University of Utah, Salt Lake City, UT, United States
| | - Adam J. Losser
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Akiko Okifuji
- Division of Pain Medicine, Department of Anesthesiology, University of Utah, Salt Lake City, UT, United States
| | - Jan Kubanek
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
6
|
Huang Y, Sadeghzadeh S, Li AHY, Schonfeld E, Ramayya AG, Buch VP. Rates and Predictors of Pain Reduction With Intracranial Stimulation for Intractable Pain Disorders. Neurosurgery 2024; 95:1245-1262. [PMID: 38836613 DOI: 10.1227/neu.0000000000003006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/01/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Intracranial modulation paradigms, namely deep brain stimulation (DBS) and motor cortex stimulation (MCS), have been used to treat intractable pain disorders. However, treatment efficacy remains heterogeneous, and factors associated with pain reduction are not completely understood. METHODS We performed an individual patient review of pain outcomes (visual analog scale, quality-of-life measures, complications, pulse generator implant rate, cessation of stimulation) after implantation of DBS or MCS devices. We evaluated 663 patients from 36 study groups and stratified outcomes by pain etiology and implantation targets. RESULTS Included studies comprised primarily retrospective cohort studies. MCS patients had a similar externalized trial success rate compared with DBS patients (86% vs 81%; P = .16), whereas patients with peripheral pain had a higher trial success rate compared with patients with central pain (88% vs 79%; P = .004). Complication rates were similar for MCS and DBS patients (12% vs 15%; P = .79). Patients with peripheral pain had lower likelihood of device cessation compared with those with central pain (5.7% vs 10%; P = .03). Of all implanted patients, mean pain reduction at last follow-up was 45.8% (95% CI: 40.3-51.2) with a 31.2% (95% CI: 12.4-50.1) improvement in quality of life. No difference was seen between MCS patients (43.8%; 95% CI: 36.7-58.2) and DBS patients (48.6%; 95% CI: 39.2-58) or central (41.5%; 95% CI: 34.8-48.2) and peripheral (46.7%; 95% CI: 38.9-54.5) etiologies. Multivariate analysis identified the anterior cingulate cortex target to be associated with worse pain reduction, while postherpetic neuralgia was a positive prognostic factor. CONCLUSION Both DBS and MCS have similar efficacy and complication rates in the treatment of intractable pain. Patients with central pain disorders tended to have lower trial success and higher rates of device cessation. Additional prognostic factors include anterior cingulate cortex targeting and postherpetic neuralgia diagnosis. These findings underscore intracranial neurostimulation as an important modality for treatment of intractable pain disorders.
Collapse
Affiliation(s)
- Yuhao Huang
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto , California , USA
| | - Sina Sadeghzadeh
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto , California , USA
| | - Alice Huai-Yu Li
- Department of Anesthesia, Stanford University School of Medicine, Palo Alto , California , USA
| | - Ethan Schonfeld
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto , California , USA
| | - Ashwin G Ramayya
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto , California , USA
| | - Vivek P Buch
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto , California , USA
| |
Collapse
|
7
|
Liu D, Mi Y, Li M, Nigri A, Grisoli M, Kendrick KM, Becker B, Ferraro S. Identifying brain targets for real-time fMRI neurofeedback in chronic pain: insights from functional neurosurgery. PSYCHORADIOLOGY 2024; 4:kkae026. [PMID: 39737084 PMCID: PMC11683833 DOI: 10.1093/psyrad/kkae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 01/01/2025]
Abstract
Background The lack of clearly defined neuromodulation targets has contributed to the inconsistent results of real-time fMRI-based neurofeedback (rt-fMRI-NF) for the treatment of chronic pain. Functional neurosurgery (funcSurg) approaches have shown more consistent effects in reducing pain in patients with severe chronic pain. Objective This study aims to redefine rt-fMRI-NF targets for chronic pain management informed by funcSurg studies. Methods Based on independent systematic reviews, we identified the neuromodulation targets of the rt-fMRI-NF (in acute and chronic pain) and funcSurg (in chronic pain) studies. We then characterized the underlying functional networks using a subsample of the 7 T resting-state fMRI dataset from the Human Connectome Project. Principal component analyses (PCA) were used to identify dominant patterns (accounting for a cumulative explained variance >80%) within the obtained functional maps, and the overlap between these PCA maps and canonical intrinsic brain networks (default, salience, and sensorimotor) was calculated using a null map approach. Results The anatomical targets used in rt-fMRI-NF and funcSurg approaches are largely distinct, with the middle cingulate cortex as a common target. Within the investigated canonical rs-fMRI networks, these approaches exhibit both divergent and overlapping functional connectivity patterns. Specifically, rt-fMRI-NF approaches primarily target the default mode network (P value range 0.001-0.002) and the salience network (P = 0.002), whereas funcSurg approaches predominantly target the salience network (P = 0.001) and the sensorimotor network (P value range 0.001-0.023). Conclusion Key hubs of the salience and sensorimotor networks may represent promising targets for the therapeutic application of rt-fMRI-NF in chronic pain.
Collapse
Affiliation(s)
- Dan Liu
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu 610054, China
| | - Yiqi Mi
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu 610054, China
| | - Menghan Li
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu 610054, China
| | - Anna Nigri
- Neuroradiology Department, Neurological Institute Carlo Besta, 20133 Milan, Italy
| | - Marina Grisoli
- Neuroradiology Department, Neurological Institute Carlo Besta, 20133 Milan, Italy
| | - Keith M Kendrick
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu 610054, China
| | - Benjamin Becker
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, 999077 Hong Kong, China
- Department of Psychology, The University of Hong Kong, 999077 Hong Kong, China
| | - Stefania Ferraro
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu 610054, China
| |
Collapse
|
8
|
da Cunha PHM, Lapa JDDS, Hosomi K, de Andrade DC. Neuromodulation for neuropathic pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:471-502. [PMID: 39580221 DOI: 10.1016/bs.irn.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
The treatment of neuropathic pain (NeP) often leads to partial or incomplete pain relief, with up to 40 % of patients being pharmaco-resistant. In this chapter the efficacy of neuromodulation techniques in treating NeP is reviewed. It presents a detailed evaluation of the mechanisms of action and evidence supporting the clinical use of the most common approaches like transcutaneous electrical nerve stimulation (TENS), transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), deep brain stimulation (DBS), invasive motor cortex stimulation (iMCS), spinal cord stimulation (SCS), dorsal root ganglion stimulation (DRG-S), and peripheral nerve stimulation (PNS). Current literature suggests that motor cortex rTMS is effective for peripheral and central NeP, and TENS for peripheral NeP. Evidence for tDCS is inconclusive. DBS is reserved for research settings due to heterogeneous results, while iMSC has shown efficacy in a small randomized trial in neuropathic pain due to stroke and brachial plexus avulsion. SCS has moderate evidence for painful diabetic neuropathy and failed back surgery syndrome, but trials were not controlled with sham. DRG-S and PNS have shown positive results for complex regional pain syndrome and post-surgical neuropathic pain, respectively. Adverse effects vary, with non-invasive techniques showing local discomfort, dizziness and headache, and DBS and SCS hardware-related issues. To date, non-invasive techniques have been more extensively studied and some are included in international guidelines, while the evidence level for invasive techniques are less robust, potentially suggesting their use in a case-by-case indication considering patient´s preferences, costs and expected benefits.
Collapse
Affiliation(s)
| | | | - Koichi Hosomi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daniel Ciampi de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
9
|
Kollenburg L, Arnts H, Green A, Strauss I, Vissers K, Vinke S, Kurt E. The cingulum: a central hotspot for the battle against chronic intractable pain? Brain Commun 2024; 6:fcae368. [PMID: 39479369 PMCID: PMC11522883 DOI: 10.1093/braincomms/fcae368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/28/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
Chronic pain causes a major burden on patient's lives, in part due to its profound socioeconomic impact. Despite the development of various pharmacological approaches and (minor) invasive treatments, a subset of patients remain refractory, hence why alternative targeted neurosurgical interventions like cingulotomy and deep brain stimulation of the anterior cingulate cortex should be considered in the last resort. Despite clinical evidence supporting the potential of these treatments in the management of chronic intractable pain, physicians remain reluctant on its clinical implementation. This can be partially attributed to the lack of clear overviews summarizing existent data. Hence, this article aims to evaluate the current status of cingulotomy and deep brain stimulation of the anterior cingulate cortex in the treatment of chronic intractable pain, to provide insight in whether these neurosurgical approaches and its target should be reconsidered in the current era. In the current study, a literature searches was performed using the PubMed database. Additional articles were searched manually through reviews or references cited within the articles. After exclusion, 24 and 5 articles remained included in the analysis of cingulotomy and deep brain stimulation of the anterior cingulate cortex, respectively. Results indicate that various surgical techniques have been described for cingulotomy and deep brain stimulation of the anterior cingulate cortex. Cingulotomy is shown to be effective 51-53% and 43-64% of patients with neoplastic and non-neoplastic pain at ≤6 months follow-up, and 82% (9/11) and 76% (90/118) at ≥ 12months follow-up, respectively. With regard to deep brain stimulation of the anterior cingulate cortex, no data on neoplastic pain was reported, however, 59% (10/17) and 57% (8/14) of patients with non-neoplastic pain were considered responders at ≤ 6 months and ≥ 12months follow-up, respectively. The most reported adverse events include change in affect (>6.9%, >29/420) and confusion (>4.8%, >20/420) for cingulotomy, and infection (12.8%, 6/47), seizures (8.5%, 4/47) and decline in semantic fluency (6.4%, 3/47) for deep brain stimulation of the anterior cingulate cortex. It can be concluded that cingulotomy and deep brain stimulation of the anterior cingulate cortex are effective last resort strategies for patients with refractory non-neoplastic and neoplastic pain, especially in case of an affective emotional component. Future research should be performed on the cingulum as a neurosurgical target as it allows for further exploration of promising treatment options for chronic intractable pain.
Collapse
Affiliation(s)
- Linda Kollenburg
- Radboud University Medical Center, Department of Neurosurgery, Functional Neurosurgery Unit, Nijmegen, 6525 GA, Netherlands
| | - Hisse Arnts
- Radboud University Medical Center, Department of Neurosurgery, Functional Neurosurgery Unit, Nijmegen, 6525 GA, Netherlands
| | - Alexander Green
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Department of Clinical Neuroscience and Surgery, University of Oxford, Oxford OX39DU, UK
| | - Ido Strauss
- Tel Aviv Medical Center, Department of Neurosurgery, Functional Neurosurgery Unit, Tel Aviv 6801298, Israel
| | - Kris Vissers
- Radboud University Medical Center, Department of Pain and Palliative Care, Nijmegen, 6525 GA, Netherlands
| | - Saman Vinke
- Radboud University Medical Center, Department of Neurosurgery, Functional Neurosurgery Unit, Nijmegen, 6525 GA, Netherlands
| | - Erkan Kurt
- Radboud University Medical Center, Department of Neurosurgery, Functional Neurosurgery Unit, Nijmegen, 6525 GA, Netherlands
- Radboud University Medical Center, Department of Pain and Palliative Care, Nijmegen, 6525 GA, Netherlands
| |
Collapse
|
10
|
Shirvalkar P. Neuromodulation for Neuropathic Pain Syndromes. Continuum (Minneap Minn) 2024; 30:1475-1500. [PMID: 39445930 DOI: 10.1212/con.0000000000001485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
OBJECTIVE This article reviews the principles, applications, and emerging trends of neuromodulation as a therapeutic approach for managing painful neuropathic diseases. By parsing evidence for possible mechanisms of action and clinical trial outcomes for various diseases, this article focuses on five common therapy modalities: cutaneous, peripheral nerve, spinal cord, and brain stimulation, and intrathecal drug delivery. LATEST DEVELOPMENTS Recent advances in both invasive and noninvasive neuromodulation for pain have introduced personalized and closed-loop techniques, integrating real-time feedback mechanisms and combining therapies to improve physical and psychosocial function. Novel stimulation waveforms may influence distinct neural tissues to rectify pathologic pain signaling. ESSENTIAL POINTS With appropriate patient selection, peripheral nerve stimulation or epidural stimulation of the spinal cord can provide enduring relief for a variety of chronic pain syndromes. Newer technology using high frequencies, unique waveforms, or closed-loop stimulation may have selective advantages, but our current understanding of therapy mechanisms is very poor. For certain diagnoses and patients who meet clinical criteria, neuromodulation can provide profound, long-lasting relief that significantly improves quality of life. While many therapies are supported by data from large clinical trials, there is a risk of bias as most clinical studies were funded by device manufacturers or insurance companies, which increases the importance of real-world data analysis. Emerging methods like invasive or noninvasive brain stimulation may help us dissect basic mechanisms of pain processing and hold promise for personalized therapies for refractory pain syndromes. Finally, intrathecal delivery of drugs directly to segments of the spinal cord can also modify pain signaling to provide therapy for severe pain syndromes.
Collapse
|
11
|
You B, Wen H, Jackson T. Resting-state brain activity as a biomarker of chronic pain impairment and a mediator of its association with pain resilience. Hum Brain Mapp 2024; 45:e26780. [PMID: 38984446 PMCID: PMC11234141 DOI: 10.1002/hbm.26780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 06/02/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Past cross-sectional chronic pain studies have revealed aberrant resting-state brain activity in regions involved in pain processing and affect regulation. However, there is a paucity of longitudinal research examining links of resting-state activity and pain resilience with changes in chronic pain outcomes over time. In this prospective study, we assessed the status of baseline (T1) resting-state brain activity as a biomarker of later impairment from chronic pain and a mediator of the relation between pain resilience and impairment at follow-up. One hundred forty-two adults with chronic musculoskeletal pain completed a T1 assessment comprising a resting-state functional magnetic resonance imaging scan based on regional homogeneity (ReHo) and self-report measures of demographics, pain characteristics, psychological status, pain resilience, pain severity, and pain impairment. Subsequently, pain impairment was reassessed at a 6-month follow-up (T2). Hierarchical multiple regression and mediation analyses assessed relations of T1 ReHo and pain resilience scores with changes in pain impairment. Higher T1 ReHo values in the right caudate nucleus were associated with increased pain impairment at T2, after controlling for all other statistically significant self-report measures. ReHo also partially mediated associations of T1 pain resilience dimensions with T2 pain impairment. T1 right caudate nucleus ReHo emerged as a possible biomarker of later impairment from chronic musculoskeletal pain and a neural mechanism that may help to explain why pain resilience is related to lower levels of later chronic pain impairment. Findings provide empirical foundations for prospective extensions that assess the status of ReHo activity and self-reported pain resilience as markers for later impairment from chronic pain and targets for interventions to reduce impairment. PRACTITIONER POINTS: Resting-state markers of impairment: Higher baseline (T1) regional homogeneity (ReHo) values, localized in the right caudate nucleus, were associated with exacerbations in impairment from chronic musculoskeletal pain at a 6-month follow-up, independent of T1 demographics, pain experiences, and psychological factors. Mediating role of ReHo values: ReHo values in the right caudate nucleus also mediated the relationship between baseline pain resilience levels and later pain impairment among participants. Therapeutic implications: Findings provide empirical foundations for research extensions that evaluate (1) the use of resting-state activity in assessment to identify people at risk for later impairment from pain and (2) changes in resting-state activity as biomarkers for the efficacy of treatments designed to improve resilience and reduce impairment among those in need.
Collapse
Affiliation(s)
- Beibei You
- School of NursingGuizhou Medical UniversityGuian New DistrictChina
| | - Hongwei Wen
- Key Laboratory of Cognition and Personality (Ministry of Education), Faculty of PsychologySouthwest UniversityChongqingChina
| | - Todd Jackson
- Department of PsychologyUniversity of MacauTaipaMacau, SARChina
| |
Collapse
|
12
|
In A, Strohman A, Payne B, Legon W. Low-intensity focused ultrasound to the posterior insula reduces temporal summation of pain. Brain Stimul 2024; 17:911-924. [PMID: 39089647 PMCID: PMC11452899 DOI: 10.1016/j.brs.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The insula and dorsal anterior cingulate cortex (dACC) are core brain regions involved in pain processing and central sensitization, a shared mechanism across various chronic pain conditions. Methods to modulate these regions may serve to reduce central sensitization, though it is unclear which target may be most efficacious for different measures of central sensitization. OBJECTIVE/HYPOTHESIS Investigate the effect of low-intensity focused ultrasound (LIFU) to the anterior insula (AI), posterior insula (PI), or dACC on conditioned pain modulation (CPM) and temporal summation of pain (TSP). METHODS N = 16 volunteers underwent TSP and CPM pain tasks pre/post a 10 min LIFU intervention to either the AI, PI, dACC or Sham stimulation. Pain ratings were collected pre/post LIFU. RESULTS Only LIFU to the PI significantly attenuated pain ratings during the TSP protocol. No effects were found for the CPM task for any of the LIFU targets. LIFU pressure modulated group means but did not affect overall group differences. CONCLUSIONS LIFU to the PI reduced temporal summation of pain. This may, in part, be due to dosing (pressure) of LIFU. Inhibition of the PI with LIFU may be a future potential therapy in chronic pain populations demonstrating central sensitization. The minimal effective dose of LIFU for efficacious neuromodulation will help to translate LIFU for therapeutic options.
Collapse
Affiliation(s)
- Alexander In
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
| | - Andrew Strohman
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA
| | - Brighton Payne
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| | - Wynn Legon
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA; Center for Human Neuroscience Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24016, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA; Department of Neurosurgery, Carilion Clinic, Roanoke, VA, 24016, USA.
| |
Collapse
|
13
|
Villalba-Martinez G, Castaño JR. How Does Neuromodulation for Neuropathic Pain Affect Euthanasia Requests? A Forethought on the Current Situation in Spain Is Needed. Neuromodulation 2024; 27:944-945. [PMID: 38971584 DOI: 10.1016/j.neurom.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 07/08/2024]
Affiliation(s)
- Gloria Villalba-Martinez
- Department of Neurosurgery, Hospital del Mar, Barcelona, Spain; System Neurologic and Neurotherapeutics group, Research Institut Hospital del Mar, Barcelona, Spain; Department of Health Science, Pompeu Fabra University, Barcelona, Spain.
| | | |
Collapse
|
14
|
da Cunha PHM, de Andrade DC. The deep and the deeper: Spinal cord and deep brain stimulation for neuropathic pain. Presse Med 2024; 53:104231. [PMID: 38636785 DOI: 10.1016/j.lpm.2024.104231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
Neuropathic pain occurs in people experiencing lesion or disease affecting the somatosensorial system. It is present in 7 % of the general population and may not fully respond to first- and second-line treatments in up to 40 % of cases. Neuromodulation approaches are often proposed for those not tolerating or not responding to usual pharmacological management. These approaches can be delivered surgically (invasively) or non-invasively. Invasive neuromodulation techniques were the first to be employed in neuropathic pain. Among them is spinal cord stimulation (SCS), which consists of the implantation of epidural electrodes over the spinal cord. It is recommended in some guidelines for peripheral neuropathic pain. While recent studies have called into question its efficacy, others have provided promising data, driven by advances in techniques, battery capabilities, programming algorithms and software developments. Deep brain stimulation (DBS) is another well-stablished neuromodulation therapy routinely used for movement disorders; however, its role in pain management remains limited to specific research centers. This is not only due to variable results in the literature contesting its efficacy, but also because several different brain targets have been explored in small trials, compromising comparisons between these studies. Structures such as the periaqueductal grey, posterior thalamus, anterior cingulate cortex, ventral striatum/anterior limb of the internal capsule and the insula are the main targets described to date in literature. SCS and DBS present diverse rationales for use, mechanistic backgrounds, and varying levels of support from experimental studies. The present review aims to present their methodological details, main mechanisms of action for analgesia and their place in the current body of evidence in the management of patients with neuropathic pain, as well their particularities, effectiveness, safety and limitations.
Collapse
Affiliation(s)
| | - Daniel Ciampi de Andrade
- Center for Neuroplasticity and Pain, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
15
|
Runge J, Nagel JM, Blahak C, Kinfe TM, Heissler HE, Schrader C, Wolf ME, Saryyeva A, Krauss JK. Does Temporary Externalization of Electrodes After Deep Brain Stimulation Surgery Result in a Higher Risk of Infection? Neuromodulation 2024; 27:565-571. [PMID: 37804281 DOI: 10.1016/j.neurom.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 10/09/2023]
Abstract
OBJECTIVES Deep brain stimulation (DBS) is a well-established surgical therapy for movement disorders that comprises implantation of stimulation electrodes and a pacemaker. These procedures can be performed separately, leaving the possibility of externalizing the electrodes for local field potential recording or testing multiple targets for therapeutic efficacy. It is still debated whether the temporary externalization of DBS electrodes leads to an increased risk of infection. We therefore aimed to assess the risk of infection during and after lead externalization in DBS surgery. MATERIALS AND METHODS In this retrospective study, we analyzed a consecutive series of 624 DBS surgeries, including 266 instances with temporary externalization of DBS electrodes for a mean of 6.1 days. Patients were available for follow-up of at least one year, except in 15 instances. In 14 patients with negative test stimulation, electrodes were removed. All kinds of infections related to implantation of the neurostimulation system were accounted for. RESULTS Overall, infections occurred in 22 of 624 surgeries (3.5%). Without externalization of electrodes, infections were noted after 7 of 358 surgeries (2.0%), whereas with externalization, 15 of 252 infections were found (6.0%). This difference was significant (p = 0.01), but it did not reach statistical significance when comparing groups within different diagnoses. The rate of infection with externalized electrodes was highest in psychiatric disorders (9.1%), followed by Parkinson's disease (7.3%), pain (5.7%), and dystonia (5.5%). The duration of the externalization of the DBS electrodes was comparable in patients who developed an infection (6.1 ± 3.1 days) with duration in those who did not (6.0 ± 3.5 days). CONCLUSIONS Although infection rates were relatively low in our study, there was a slightly higher infection rate when DBS electrodes were externalized. On the basis of our results, the indication for electrode externalization should be carefully considered, and patients should be informed about the possibility of a higher infection risk when externalization of DBS electrodes is planned.
Collapse
Affiliation(s)
- Joachim Runge
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany.
| | - Johanna M Nagel
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | | | - Thomas M Kinfe
- Division of Functional Neurosurgery, Friedrich-Alexander University, Erlangen-Nürnberg, Germany
| | - Hans E Heissler
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | | | - Marc E Wolf
- Department of Neurology, Katharinenhospital Stuttgart, Stuttgart, Germany
| | - Assel Saryyeva
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
16
|
Sivanesan E, North RB, Russo MA, Levy RM, Linderoth B, Hayek SM, Eldabe S, Lempka SF. A Definition of Neuromodulation and Classification of Implantable Electrical Modulation for Chronic Pain. Neuromodulation 2024; 27:1-12. [PMID: 37952135 DOI: 10.1016/j.neurom.2023.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/24/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
OBJECTIVES Neuromodulation therapies use a variety of treatment modalities (eg, electrical stimulation) to treat chronic pain. These therapies have experienced rapid growth that has coincided with escalating confusion regarding the nomenclature surrounding these neuromodulation technologies. Furthermore, studies are often published without a complete description of the effective stimulation dose, making it impossible to replicate the findings. To improve clinical care and facilitate dissemination among the public, payors, research groups, and regulatory bodies, there is a clear need for a standardization of terms. APPROACH We formed an international group of authors comprising basic scientists, anesthesiologists, neurosurgeons, and engineers with expertise in neuromodulation. Because the field of neuromodulation is extensive, we chose to focus on creating a taxonomy and standardized definitions for implantable electrical modulation of chronic pain. RESULTS We first present a consensus definition of neuromodulation. We then describe a classification scheme based on the 1) intended use (the site of modulation and its indications) and 2) physical properties (waveforms and dose) of a neuromodulation therapy. CONCLUSIONS This framework will help guide future high-quality studies of implantable neuromodulatory treatments and improve reporting of their findings. Standardization with this classification scheme and clear definitions will help physicians, researchers, payors, and patients better understand the applications of implantable electrical modulation for pain and guide informed treatment decisions.
Collapse
Affiliation(s)
- Eellan Sivanesan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Richard B North
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Marc A Russo
- Hunter Pain Specialists, Broadmeadow, New South Wales, Australia
| | - Robert M Levy
- Neurosurgical Services, Clinical Research, Anesthesia Pain Care Consultants, Tamarac, FL, USA
| | - Bengt Linderoth
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Salim M Hayek
- Division of Pain Medicine, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Sam Eldabe
- Department of Pain Medicine, The James Cook University Hospital, Middlesbrough, UK
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Widge AS. Closing the loop in psychiatric deep brain stimulation: physiology, psychometrics, and plasticity. Neuropsychopharmacology 2024; 49:138-149. [PMID: 37415081 PMCID: PMC10700701 DOI: 10.1038/s41386-023-01643-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/28/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023]
Abstract
Deep brain stimulation (DBS) is an invasive approach to precise modulation of psychiatrically relevant circuits. Although it has impressive results in open-label psychiatric trials, DBS has also struggled to scale to and pass through multi-center randomized trials. This contrasts with Parkinson disease, where DBS is an established therapy treating thousands of patients annually. The core difference between these clinical applications is the difficulty of proving target engagement, and of leveraging the wide range of possible settings (parameters) that can be programmed in a given patient's DBS. In Parkinson's, patients' symptoms change rapidly and visibly when the stimulator is tuned to the correct parameters. In psychiatry, those same changes take days to weeks, limiting a clinician's ability to explore parameter space and identify patient-specific optimal settings. I review new approaches to psychiatric target engagement, with an emphasis on major depressive disorder (MDD). Specifically, I argue that better engagement may come by focusing on the root causes of psychiatric illness: dysfunction in specific, measurable cognitive functions and in the connectivity and synchrony of distributed brain circuits. I overview recent progress in both those domains, and how it may relate to other technologies discussed in companion articles in this issue.
Collapse
Affiliation(s)
- Alik S Widge
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
18
|
Wang D, Lu Y, Han Y, Zhang X, Dong S, Zhang H, Wang G, Wang G, Wang JJ. The Influence of Etiology and Stimulation Target on the Outcome of Deep Brain Stimulation for Chronic Neuropathic Pain: A Systematic Review and Meta-Analysis. Neuromodulation 2024; 27:83-94. [PMID: 36697341 DOI: 10.1016/j.neurom.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/12/2022] [Accepted: 12/01/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Deep brain stimulation (DBS) to treat chronic neuropathic pain has shown variable outcomes. Variations in pain etiologies and DBS targets are considered the main contributing factors, which are, however, underexplored owing to a paucity of patient data in individual studies. An updated meta-analysis to quantitatively assess the influence of these factors on the outcome of DBS for chronic neuropathic pain is warranted, especially considering that the anterior cingulate cortex (ACC) has emerged recently as a new DBS target. MATERIALS AND METHODS A comprehensive literature review was performed in PubMed, Embase, and Cochrane data bases to identify studies reporting quantitative outcomes of DBS for chronic neuropathic pain. Pain and quality of life (QoL) outcomes, grouped by etiology and DBS target, were extracted and analyzed (α = 0.05). RESULTS Twenty-five studies were included for analysis. Patients with peripheral neuropathic pain (PNP) had a significantly greater initial stimulation success rate than did patients with central neuropathic pain (CNP). Both patients with CNP and patients with PNP with definitive implant, regardless of targets, gained significant follow-up pain reduction. Patients with PNP had greater long-term pain relief than did patients with CNP. Patients with CNP with ACC DBS gained less long-term pain relief than did those with conventional targets. Significant short-term QoL improvement was reported in selected patients with CNP after ACC DBS. However, selective reporting bias was expected, and the improvement decreased in the long term. CONCLUSIONS Although DBS to treat chronic neuropathic pain is generally effective, patients with PNP are the preferred population over patients with CNP. Current data suggest that ACC DBS deserves further investigation as a potential way to treat the affective component of chronic neuropathic pain.
Collapse
Affiliation(s)
- Dengyu Wang
- School of Medicine, Tsinghua University, Beijing, China; Institute for Precision Medicine, Tsinghua University, Beijing, China
| | - Yang Lu
- Institute for Precision Medicine, Tsinghua University, Beijing, China; Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yan Han
- School of Medicine, Tsinghua University, Beijing, China; Institute for Precision Medicine, Tsinghua University, Beijing, China
| | - Xiaolei Zhang
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Sheng Dong
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Huifang Zhang
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Guoqin Wang
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Guihuai Wang
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - James Jin Wang
- Institute for Precision Medicine, Tsinghua University, Beijing, China; Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
19
|
Shaheen N, Shaheen A, Elgendy A, Bezchlibnyk YB, Zesiewicz T, Dalm B, Jain J, Green AL, Aziz TZ, Flouty O. Deep brain stimulation for chronic pain: a systematic review and meta-analysis. Front Hum Neurosci 2023; 17:1297894. [PMID: 38098761 PMCID: PMC10719838 DOI: 10.3389/fnhum.2023.1297894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
Background Deep brain stimulation (DBS) has shown promise in effectively treating chronic pain. This study aimed to assess the efficacy of DBS in this context. Methods We conducted a systematic literature search using PubMed, Scopus, and Web of Science, following the PRISMA guidelines. A well-constructed search strategy was utilized. Our literature search identified two groups of subjects: one group underwent DBS specifically for chronic pain treatment (DBS-P), while the second group received DBS for other indications (DBS-O), such as Parkinson's disease or dystonia, with pain perception investigated as a secondary outcome in this population. Meta-analysis was performed using R version 4.2.3 software. Heterogeneity was assessed using the tau^2 and I^2 indices, and Cochran's Q-test was conducted. Results The analysis included 966 patients in 43 original research studies with chronic pain who underwent DBS (340 for DBS-P and 625 for DBS-O). Subgroup analysis revealed that DBS-P exhibited a significant effect on chronic pain relief, with a standardized mean difference (SMD) of 1.65 and a 95% confidence interval (CI) of [1.31; 2.00]. Significant heterogeneity was observed among the studies, with an I^2 value of 85.8%. However, no significant difference was found between DBS-P and DBS-O subgroups. Subgroup analyses based on study design, age, pain diseases, and brain targets demonstrated varying levels of evidence for the effectiveness of DBS across different subgroups. Additionally, meta-regression analyses showed no significant relationship between age or pain duration and DBS effectiveness for chronic pain. Conclusion These findings significantly contribute to the expanding body of knowledge regarding the utility of DBS in the management of chronic pain. The study underscores the importance of conducting further research to enhance treatment outcomes and elucidate patient-specific factors that are associated with treatment response. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=428442, identifier CRD42023428442.
Collapse
Affiliation(s)
- Nour Shaheen
- Alexandria Faculty of Medicine, Alexandria, Egypt
| | | | | | - Yarema B. Bezchlibnyk
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Theresa Zesiewicz
- Department of Neurology, University of South Florida, Tampa, FL, United States
| | - Brian Dalm
- Department of Neurosurgery, The Ohio State University, Columbus, OH, United States
| | - Jennifer Jain
- Department of Neurology, University of South Florida, Tampa, FL, United States
| | - Alexander L. Green
- Oxford Functional Neurosurgery, Department of Neurosurgery, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Tipu Z. Aziz
- Oxford Functional Neurosurgery, Department of Neurosurgery, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Oliver Flouty
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| |
Collapse
|
20
|
Staudt MD, Yaghi NK, Mazur-Hart DJ, Shirvalkar P. Editorial: Advancements in deep brain stimulation for chronic pain control. FRONTIERS IN PAIN RESEARCH 2023; 4:1293919. [PMID: 37936962 PMCID: PMC10627217 DOI: 10.3389/fpain.2023.1293919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023] Open
Affiliation(s)
- Michael D. Staudt
- Department of Neurosurgery, Beaumont Neuroscience Center, Royal Oak, MI, United States
- Department of Neurosurgery, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Nasser K. Yaghi
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, United States
| | - David J. Mazur-Hart
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Prasad Shirvalkar
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
- Department of Anesthesiology and Perioperative Care, Division of Pain Medicine, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
21
|
Shin DH, Son S, Kim EY. Low-Energy Transcranial Navigation-Guided Focused Ultrasound for Neuropathic Pain: An Exploratory Study. Brain Sci 2023; 13:1433. [PMID: 37891801 PMCID: PMC10605299 DOI: 10.3390/brainsci13101433] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Neuromodulation using high-energy focused ultrasound (FUS) has recently been developed for various neurological disorders, including tremors, epilepsy, and neuropathic pain. We investigated the safety and efficacy of low-energy FUS for patients with chronic neuropathic pain. We conducted a prospective single-arm trial with 3-month follow-up using new transcranial, navigation-guided, focused ultrasound (tcNgFUS) technology to stimulate the anterior cingulate cortex. Eleven patients underwent FUS with a frequency of 250 kHz and spatial-peak temporal-average intensity of 0.72 W/cm2. A clinical survey based on the visual analog scale of pain and a brief pain inventory (BPI) was performed during the study period. The average age was 60.55 ± 13.18 years-old with a male-to-female ratio of 6:5. The median current pain decreased from 10.0 to 7.0 (p = 0.021), median average pain decreased from 8.5 to 6.0 (p = 0.027), and median maximum pain decreased from 10.0 to 8.0 (p = 0.008) at 4 weeks after treatment. Additionally, the sum of daily life interference based on BPI was improved from 59.00 ± 11.66 to 51.91 ± 9.18 (p = 0.021). There were no side effects such as burns, headaches, or seizures, and no significant changes in follow-up brain magnetic resonance imaging. Low-energy tcNgFUS could be a safe and noninvasive neuromodulation technique for the treatment of chronic neuropathic pain.
Collapse
Affiliation(s)
- Dong Hoon Shin
- Department of Neurology, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea;
| | - Seong Son
- Department of Neurosurgery, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea;
| | - Eun Young Kim
- Department of Neurosurgery, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea;
| |
Collapse
|
22
|
de Andrade DC, García-Larrea L. Beyond trial-and-error: Individualizing therapeutic transcranial neuromodulation for chronic pain. Eur J Pain 2023; 27:1065-1083. [PMID: 37596980 PMCID: PMC7616049 DOI: 10.1002/ejp.2164] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND AND OBJECTIVE Repetitive transcranial magnetic stimulation (rTMS) applied to the motor cortex provides supplementary relief for some individuals with chronic pain who are refractory to pharmacological treatment. As rTMS slowly enters treatment guidelines for pain relief, its starts to be confronted with challenges long known to pharmacological approaches: efficacy at the group-level does not grant pain relief for a particular patient. In this review, we present and discuss a series of ongoing attempts to overcome this therapeutic challenge in a personalized medicine framework. DATABASES AND DATA TREATMENT Relevant scientific publications published in main databases such as PubMed and EMBASE from inception until March 2023 were systematically assessed, as well as a wide number of studies dedicated to the exploration of the mechanistic grounds of rTMS analgesic effects in humans, primates and rodents. RESULTS The main strategies reported to personalize cortical neuromodulation are: (i) the use of rTMS to predict individual response to implanted motor cortex stimulation; (ii) modifications of motor cortex stimulation patterns; (iii) stimulation of extra-motor targets; (iv) assessment of individual cortical networks and rhythms to personalize treatment; (v) deep sensory phenotyping; (vi) personalization of location, precision and intensity of motor rTMS. All approaches except (i) have so far low or moderate levels of evidence. CONCLUSIONS Although current evidence for most strategies under study remains at best moderate, the multiple mechanisms set up by cortical stimulation are an advantage over single-target 'clean' drugs, as they can influence multiple pathophysiologic paths and offer multiple possibilities of individualization. SIGNIFICANCE Non-invasive neuromodulation is on the verge of personalised medicine. Strategies ranging from integration of detailed clinical phenotyping into treatment design to advanced patient neurophysiological characterisation are being actively explored and creating a framework for actual individualisation of care.
Collapse
Affiliation(s)
- Daniel Ciampi de Andrade
- Department of Health Science and Technology, Faculty of Medicine, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| | - Luís García-Larrea
- University Hospital Pain Center (CETD), Neurological Hospital P. Wertheimer, Hospices Civils de Lyon, Lyon, France
- NeuroPain Lab, INSERM U1028, UMR5292, Lyon Neuroscience Research Center, CNRS, University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
23
|
Pelliccia V, Del Vecchio M, Avanzini P, Revay M, Sartori I, Caruana F. 70 Years of Human Cingulate Cortex Stimulation. Functions and Dysfunctions Through the Lens of Electrical Stimulation. J Clin Neurophysiol 2023; 40:491-500. [PMID: 36007014 DOI: 10.1097/wnp.0000000000000961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
SUMMARY In this review, we retrace the results of 70 years of human cingulate cortex (CC) intracerebral electrical stimulation and discuss its contribution to our understanding of the anatomofunctional and clinical aspects of this wide cortical region. The review is divided into three main sections. In the first section, we report the results obtained by the stimulation of the anterior, middle, and posterior CC, in 30 studies conducted on approximately 1,000 patients from the 1950s to the present day. These studies show that specific manifestations can be reliably associated with specific cingulate subfields, with autonomic, interoceptive, and emotional manifestations clustered in the anterior cingulate, goal-oriented motor behaviors elicited from the anterior midcingulate and a variety of sensory symptoms characterizing the posterior cingulate regions. In the second section, we compare the effect of CC intracerebral electrical stimulation with signs and manifestations characterizing cingulate epilepsy, showing that the stimulation mapping of CC subfields provides precious information for understanding cingulate epileptic manifestations. The last section tackles the issue of the discrepancy emerging when comparing the results of clinical (electrical stimulation, epilepsy) studies-revealing the quintessential affective and motor nature of the CC-with that reported by neuroimaging studies-which focus on high-level cognitive functions. Particular attention will be paid to the hypothesis that CC hosts a "Pain Matrix" specifically involved in pain perception, which we will discuss in the light of the fact that the stimulation of CC (as well as cingulate epileptic seizures) does not induce nociceptive effects.
Collapse
Affiliation(s)
- Veronica Pelliccia
- "Claudio Munari" Epilepsy Surgery Center, ASST GOM Niguarda, Milano, Italy; and
| | - Maria Del Vecchio
- Institute of Neuroscience, National Research Council of Italy (CNR), Parma, Italy
| | - Pietro Avanzini
- Institute of Neuroscience, National Research Council of Italy (CNR), Parma, Italy
| | - Martina Revay
- "Claudio Munari" Epilepsy Surgery Center, ASST GOM Niguarda, Milano, Italy; and
| | - Ivana Sartori
- "Claudio Munari" Epilepsy Surgery Center, ASST GOM Niguarda, Milano, Italy; and
| | - Fausto Caruana
- Institute of Neuroscience, National Research Council of Italy (CNR), Parma, Italy
| |
Collapse
|
24
|
Yang JX, Zhao WN, Jiang YY, Ma Y, Chen DD, Lin ZH, Yin MB, Ren KP. Caveolin-1 is essential for the increased release of glutamate in the anterior cingulate cortex in neuropathic pain mice. J Neuropathol Exp Neurol 2023; 82:806-813. [PMID: 37478479 DOI: 10.1093/jnen/nlad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023] Open
Abstract
Neuropathic pain has a complex pathogenesis. Here, we examined the role of caveolin-1 (Cav-1) in the anterior cingulate cortex (ACC) in a chronic constriction injury (CCI) mouse model for the enhancement of presynaptic glutamate release in chronic neuropathic pain. Cav-1 was localized in glutamatergic neurons and showed higher expression in the ACC of CCI versus sham mice. Moreover, the release of glutamate from the ACC of the CCI mice was greater than that of the sham mice. Inhibition of Cav-1 by siRNAs greatly reduced the release of glutamate of ACC, while its overexpression (induced by injecting Lenti-Cav-1) reversed this process. The chemogenetics method was then used to activate or inhibit glutamatergic neurons in the ACC area. After 21 days of injection of AAV-hM3Dq in the sham mice, the release of glutamate was increased, the paw withdrawal latency was shortened, and expression of Cav-1 in the ACC was upregulated after intraperitoneal injection of 2 mg/kg clozapine N-oxide. Injection of AAV-hM4Di in the ACC of CCI mice led to the opposite effects. Furthermore, decreasing Cav-1 in the ACC in sham mice injected with rAAV-hM3DGq did not increase glutamate release. These findings suggest that Cav-1 in the ACC is essential for enhancing glutamate release in neuropathic pain.
Collapse
Affiliation(s)
- Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Wei-Nan Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yan-Yu Jiang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yu Ma
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Dan-Dan Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Zhi-Hua Lin
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Meng-Bing Yin
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Kun-Peng Ren
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
25
|
Mohanan AT, Nithya S, Nomier Y, Hassan DA, Jali AM, Qadri M, Machanchery S. Stroke-Induced Central Pain: Overview of the Mechanisms, Management, and Emerging Targets of Central Post-Stroke Pain. Pharmaceuticals (Basel) 2023; 16:1103. [PMID: 37631018 PMCID: PMC10459894 DOI: 10.3390/ph16081103] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/27/2023] Open
Abstract
The incidence of stroke plays the foremost role in the genesis of central neuropathic pain. Central post-stroke pain (CPSP) is a central pain arising from a vascular lesion in the central nervous system that elicits somatosensory deficits, often contralateral to stroke lesions. It is expressed as continuous or intermittent pain accompanied by sensory abnormalities like dysesthesia and allodynia. CPSP remains de-emphasized due to the variation in onset and diversity in symptoms, besides the difficulty of distinguishing it from other post-stroke pains, often referred to as a diagnosis of exclusion. Spinothalamic dysfunction, disinhibition of the medial thalamus, and neuronal hyperexcitability combined with deafferentation in thalamocortical regions are the mechanisms underlying central pain, which play a significant role in the pathogenesis of CPSP. The treatment regimen for CPSP seems to be perplexed in nature; however, based on available studies, amitriptyline and lamotrigine are denoted as first-line medications and non-pharmacological choices may be accounted for cases intractable to pharmacotherapy. This review attempts to provide an overview of the mechanisms, existing management approaches, and emerging targets of CPSP. A profound understanding of CPSP aids in optimizing the quality of life among stroke sufferers and facilitates further research to develop newer therapeutic agents for managing CPSP.
Collapse
Affiliation(s)
- Anugeetha Thacheril Mohanan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Sermugapandian Nithya
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, Tamilnadu, India
| | - Yousra Nomier
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Dalin A. Hassan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Abdulmajeed M. Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Marwa Qadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Inflammation Pharmacology and Drug Discovery Unit, Medical Research Center (MRC), Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Shamna Machanchery
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| |
Collapse
|
26
|
Motzkin JC, Kanungo I, D’Esposito M, Shirvalkar P. Network targets for therapeutic brain stimulation: towards personalized therapy for pain. FRONTIERS IN PAIN RESEARCH 2023; 4:1156108. [PMID: 37363755 PMCID: PMC10286871 DOI: 10.3389/fpain.2023.1156108] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Precision neuromodulation of central brain circuits is a promising emerging therapeutic modality for a variety of neuropsychiatric disorders. Reliably identifying in whom, where, and in what context to provide brain stimulation for optimal pain relief are fundamental challenges limiting the widespread implementation of central neuromodulation treatments for chronic pain. Current approaches to brain stimulation target empirically derived regions of interest to the disorder or targets with strong connections to these regions. However, complex, multidimensional experiences like chronic pain are more closely linked to patterns of coordinated activity across distributed large-scale functional networks. Recent advances in precision network neuroscience indicate that these networks are highly variable in their neuroanatomical organization across individuals. Here we review accumulating evidence that variable central representations of pain will likely pose a major barrier to implementation of population-derived analgesic brain stimulation targets. We propose network-level estimates as a more valid, robust, and reliable way to stratify personalized candidate regions. Finally, we review key background, methods, and implications for developing network topology-informed brain stimulation targets for chronic pain.
Collapse
Affiliation(s)
- Julian C. Motzkin
- Departments of Neurology and Anesthesia and Perioperative Care (Pain Management), University of California, San Francisco, San Francisco, CA, United States
| | - Ishan Kanungo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Mark D’Esposito
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Prasad Shirvalkar
- Departments of Neurology and Anesthesia and Perioperative Care (Pain Management), University of California, San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
27
|
Shirvalkar P, Prosky J, Chin G, Ahmadipour P, Sani OG, Desai M, Schmitgen A, Dawes H, Shanechi MM, Starr PA, Chang EF. First-in-human prediction of chronic pain state using intracranial neural biomarkers. Nat Neurosci 2023; 26:1090-1099. [PMID: 37217725 PMCID: PMC10330878 DOI: 10.1038/s41593-023-01338-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
Chronic pain syndromes are often refractory to treatment and cause substantial suffering and disability. Pain severity is often measured through subjective report, while objective biomarkers that may guide diagnosis and treatment are lacking. Also, which brain activity underlies chronic pain on clinically relevant timescales, or how this relates to acute pain, remains unclear. Here four individuals with refractory neuropathic pain were implanted with chronic intracranial electrodes in the anterior cingulate cortex and orbitofrontal cortex (OFC). Participants reported pain metrics coincident with ambulatory, direct neural recordings obtained multiple times daily over months. We successfully predicted intraindividual chronic pain severity scores from neural activity with high sensitivity using machine learning methods. Chronic pain decoding relied on sustained power changes from the OFC, which tended to differ from transient patterns of activity associated with acute, evoked pain states during a task. Thus, intracranial OFC signals can be used to predict spontaneous, chronic pain state in patients.
Collapse
Affiliation(s)
- Prasad Shirvalkar
- UCSF Department of Anesthesiology and Perioperative Care, Division of Pain Medicine, University of California San Francisco, San Francisco, CA, USA.
- UCSF Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
- UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
| | - Jordan Prosky
- UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Gregory Chin
- UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Parima Ahmadipour
- Departments of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Omid G Sani
- Departments of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Maansi Desai
- Department of Speech, Language, and Hearing Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Ashlyn Schmitgen
- UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Heather Dawes
- UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Maryam M Shanechi
- Departments of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Philip A Starr
- UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- UCSF Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Edward F Chang
- UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- UCSF Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
28
|
Caragher SP, Khouri KS, Raasveld FV, Winograd JM, Valerio IL, Gfrerer L, Eberlin KR. The Peripheral Nerve Surgeon's Role in the Management of Neuropathic Pain. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2023; 11:e5005. [PMID: 37360238 PMCID: PMC10287132 DOI: 10.1097/gox.0000000000005005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/29/2023] [Indexed: 06/28/2023]
Abstract
Neuropathic pain (NP) underlies significant morbidity and disability worldwide. Although pharmacologic and functional therapies attempt to address this issue, they remain incompletely effective for many patients. Peripheral nerve surgeons have a range of techniques for intervening on NP. The aim of this review is to enable practitioners to identify patients with NP who might benefit from surgical intervention. The workup for NP includes patient history and specific physical examination maneuvers, as well as imaging and diagnostic nerve blocks. Once diagnosed, there is a range of options surgeons can utilize based on specific causes of NP. These techniques include nerve decompression, nerve reconstruction, nerve ablative techniques, and implantable nerve-modulating devices. In addition, there is an emerging role for preoperative involvement of peripheral nerve surgeons for cases known to carry a high risk of inducing postoperative NP. Lastly, we describe the ongoing work that will enable surgeons to expand their armamentarium to better serve patients with NP.
Collapse
Affiliation(s)
| | - Kimberly S. Khouri
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hosptial, Boston, Mass
| | - Floris V. Raasveld
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hosptial, Boston, Mass
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jonathan M. Winograd
- From the Harvard Medical School, Boston, Mass
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hosptial, Boston, Mass
| | - Ian L. Valerio
- From the Harvard Medical School, Boston, Mass
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hosptial, Boston, Mass
| | - Lisa Gfrerer
- Division of Plastic and Reconstructive Surgery, Weill Cornell Medicine, New York, N.Y
| | - Kyle R. Eberlin
- From the Harvard Medical School, Boston, Mass
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hosptial, Boston, Mass
| |
Collapse
|
29
|
Caston RM, Smith EH, Davis TS, Singh H, Rahimpour S, Rolston JD. Psychophysical pain encoding in the cingulate cortex predicts responsiveness of electrical stimulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.18.23287266. [PMID: 36993429 PMCID: PMC10055607 DOI: 10.1101/2023.03.18.23287266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background The anterior cingulate cortex (ACC) plays an important role in the cognitive and emotional processing of pain. Prior studies have used deep brain stimulation (DBS) to treat chronic pain, but results have been inconsistent. This may be due to network adaptation over time and variable causes of chronic pain. Identifying patient-specific pain network features may be necessary to determine patient candidacy for DBS. Hypothesis Cingulate stimulation would increase patients' hot pain thresholds if non-stimulation 70-150 Hz activity encoded psychophysical pain responses. Methods In this study, four patients who underwent intracranial monitoring for epilepsy monitoring participated in a pain task. They placed their hand on a device capable of eliciting thermal pain for five seconds and rated their pain. We used these results to determine the individual's thermal pain threshold with and without electrical stimulation. Two different types of generalized linear mixed-effects models (GLME) were employed to assess the neural representations underlying binary and graded pain psychophysics. Results The pain threshold for each patient was determined from the psychometric probability density function. Two patients had a higher pain threshold with stimulation than without, while the other two patients had no difference. We also evaluated the relationship between neural activity and pain responses. We found that patients who responded to stimulation had specific time windows where high-frequency activity was associated with increased pain ratings. Conclusion Stimulation of cingulate regions with increased pain-related neural activity was more effective at modulating pain perception than stimulating non-responsive areas. Personalized evaluation of neural activity biomarkers could help identify the best target for stimulation and predict its effectiveness in future studies evaluating DBS.
Collapse
Affiliation(s)
- Rose M Caston
- University of Utah Department of Biomedical Engineering
- University of Utah Department of Neurosurgery
| | - Elliot H Smith
- University of Utah Department of Neurosurgery
- University of Utah Interdepartmental Program in Neuroscience
| | | | - Hargunbir Singh
- Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School
| | - Shervin Rahimpour
- University of Utah Department of Biomedical Engineering
- University of Utah Department of Neurosurgery
| | - John D Rolston
- University of Utah Department of Biomedical Engineering
- Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School
| |
Collapse
|
30
|
Saha N, Millward JM, Herrmann CJJ, Rahimi F, Han H, Lacour P, Blaschke F, Niendorf T. High-Fidelity 3D Stray Magnetic Field Mapping of Smartphones to Address Safety Considerations with Active Implantable Electronic Medical Devices. SENSORS (BASEL, SWITZERLAND) 2023; 23:1209. [PMID: 36772249 PMCID: PMC9919430 DOI: 10.3390/s23031209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Case reports indicate that magnets in smartphones could be a source of electromagnetic interference (EMI) for active implantable medical devices (AIMD), which could lead to device malfunction, compromising patient safety. Recognizing this challenge, we implemented a high-fidelity 3D magnetic field mapping (spatial resolution 1 mm) setup using a three-axis Hall probe and teslameter, controlled by a robot (COSI Measure). With this setup, we examined the stray magnetic field of an iPhone 13 Pro, iPhone 12, and MagSafe charger to identify sources of magnetic fields for the accurate risk assessment of potential interferences with AIMDs. Our measurements revealed that the stray fields of the annular array of magnets, the wide-angle camera, and the speaker of the smartphones exceeded the 1 mT limit defined by ISO 14117:2019. Our data-driven safety recommendation is that an iPhone 13 Pro should be kept at least 25 mm away from an AIMD to protect it from unwanted EMI interactions. Our study addresses safety concerns due to potential device-device interactions between smartphones and AIMDs and will help to define data-driven safety guidelines. We encourage vendors of electronic consumer products (ECP) to provide information on the magnetic fields of their products and advocate for the inclusion of smartphones in the risk assessment of EMI with AIMDs.
Collapse
Affiliation(s)
- Nandita Saha
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
- Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Jason M. Millward
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
- Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Carl J. J. Herrmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
- Department of Physics, Humboldt University of Berlin, 10117 Berlin, Germany
| | - Faezeh Rahimi
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
- Chair of Medical Engineering, Technische Universität Berlin, 10623 Berlin, Germany
| | - Haopeng Han
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
| | - Philipp Lacour
- Department of Cardiology, Charité—Universitätsmedizin Berlin, Campus Virchow-Klinikum, 13353 Berlin, Germany
| | - Florian Blaschke
- Department of Cardiology, Charité—Universitätsmedizin Berlin, Campus Virchow-Klinikum, 13353 Berlin, Germany
| | - Thoralf Niendorf
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
- Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| |
Collapse
|
31
|
Pagano RL, Dale CS, Campos ACP, Hamani C. Translational aspects of deep brain stimulation for chronic pain. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2023; 3:1084701. [PMID: 36713643 PMCID: PMC9874335 DOI: 10.3389/fpain.2022.1084701] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023]
Abstract
The use of deep brain stimulation (DBS) for the treatment of chronic pain was one of the first applications of this technique in functional neurosurgery. Established brain targets in the clinic include the periaqueductal (PAG)/periventricular gray matter (PVG) and sensory thalamic nuclei. More recently, the anterior cingulum (ACC) and the ventral striatum/anterior limb of the internal capsule (VS/ALIC) have been investigated for the treatment of emotional components of pain. In the clinic, most studies showed a response in 20%-70% of patients. In various applications of DBS, animal models either provided the rationale for the development of clinical trials or were utilized as a tool to study potential mechanisms of stimulation responses. Despite the complex nature of pain and the fact that animal models cannot reliably reflect the subjective nature of this condition, multiple preparations have emerged over the years. Overall, DBS was shown to produce an antinociceptive effect in rodents when delivered to targets known to induce analgesic effects in humans, suggesting a good predictive validity. Compared to the relatively high number of clinical trials in the field, however, the number of animal studies has been somewhat limited. Additional investigation using modern neuroscience techniques could unravel the mechanisms and neurocircuitry involved in the analgesic effects of DBS and help to optimize this therapy.
Collapse
Affiliation(s)
- Rosana L. Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Camila S. Dale
- Laboratory of Neuromodulation and Experimental Pain, Department of Anatomy, University of São Paulo, São Paulo, Brazil
| | | | - Clement Hamani
- Sunnybrook Research Institute, Hurvitz Brain Sciences Centre, Toronto, ON, Canada,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada,Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada,Correspondence: Clement Hamani
| |
Collapse
|
32
|
Xiong HY, Cao YQ, Du SH, Yang QH, He SY, Wang XQ. Effects of High-Definition Transcranial Direct Current Stimulation Targeting the Anterior Cingulate Cortex on the Pain Thresholds: A Randomized Controlled Trial. PAIN MEDICINE 2023; 24:89-98. [PMID: 36066447 DOI: 10.1093/pm/pnac135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND The majority of existing clinical studies used active transcranial direct current stimulation (tDCS) over superficial areas of the pain neuromatrix to regulate pain, with conflicting results. Few studies have investigated the effect of tDCS on pain thresholds by focusing on targets in deep parts of the pain neuromatrix. METHODS This study applied a single session of high-definition tDCS (HD-tDCS) targeting the anterior cingulate cortex (ACC) and used a parallel and sham-controlled design to compare the antinociceptive effects in healthy individuals by assessing changes in pain thresholds. Sixty-six female individuals (mean age, 20.5 ± 2.4 years) were randomly allocated into the anodal, cathodal, or sham HD-tDCS groups. The primary outcome of the study was pain thresholds (pressure pain threshold, heat pain threshold, and cold pain threshold), which were evaluated before and after stimulation through the use of quantitative sensory tests. RESULTS Only cathodal HD-tDCS targeting the ACC significantly increased heat pain threshold (P < 0.05) and pressure pain threshold (P < 0.01) in healthy individuals compared with sham stimulation. Neither anodal nor cathodal HD-tDCS showed significant analgesic effects on cold pain threshold. Furthermore, no statistically significant difference was found in pain thresholds between anodal and sham HD-tDCS (P > 0.38). Independent of HD-tDCS protocols, the positive and negative affective schedule scores were decreased immediately after stimulation compared with baseline. CONCLUSIONS The present study has found that cathodal HD-tDCS targeting the ACC provided a strong antinociceptive effect (increase in pain threshold), demonstrating a positive biological effect of HD-tDCS.
Collapse
Affiliation(s)
- Huan-Yu Xiong
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yin-Quan Cao
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Shu-Hao Du
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Qi-Hao Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Si-Yi He
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Deep brain stimulation (DBS) for chronic pain has been controversial. Despite the discouraging outcomes from multicenter clinical trial in the twentieth century, there is sustained interest in optimizing its use to improve patient outcomes. Here we provide a concise overview of DBS for chronic pain as a reference for clinicians. RECENT FINDINGS Recently published data lends tentative support for DBS as a means of treating chronic pain. Still, high level-of-evidence data remain elusive. There are a handful of ongoing and prospective clinical trials exploring DBS for pain in the context of closed-loop neuromodulation, invasive electroencephalography monitoring, stimulation parameters, and novel intracranial targets. DBS is a potentially viable method of treating chronic pain. Procedure success is dependent on a number of factors including proper patient and intracranial target selection. Outcomes for ongoing and future clinical trials will help clinicians refine DBS use for this clinical indication.
Collapse
|
34
|
Sola RG, Pulido P. Neurosurgical Treatment of Pain. Brain Sci 2022; 12:1584. [PMID: 36421909 PMCID: PMC9688870 DOI: 10.3390/brainsci12111584] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 12/01/2023] Open
Abstract
The aim of this review is to draw attention to neurosurgical approaches for treating chronic and opioid-resistant pain. In a first chapter, an up-to-date overview of the main pathophysiological mechanisms of pain has been carried out, with special emphasis on the details in which the surgical treatment is based. In a second part, the principal indications and results of different surgical approaches are reviewed. Cordotomy, Myelotomy, DREZ lesions, Trigeminal Nucleotomy, Mesencephalotomy, and Cingulotomy are revisited. Ablative procedures have a limited role in the management of chronic non-cancer pain, but they continues to help patients with refractory cancer-related pain. Another ablation lesion has been named and excluded, due to lack of current relevance. Peripheral Nerve, Spine Cord, and the principal possibilities of Deep Brain and Motor Cortex Stimulation are also revisited. Regarding electrical neuromodulation, patient selection remains a challenge.
Collapse
Affiliation(s)
- Rafael G. Sola
- Innovation in Neurosurgery, Department of Surgery, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Paloma Pulido
- Department of Surgery, Autonomous University of Madrid, 28049 Madrid, Spain
| |
Collapse
|
35
|
Treatment of Chronic Refractory Pain by Combined Deep Brain Stimulation of the Anterior Cingulum and Sensory Thalamus (EMOPAIN Study): Rationale and Protocol of a Feasibility and Safety Study. Brain Sci 2022; 12:brainsci12091116. [PMID: 36138852 PMCID: PMC9496880 DOI: 10.3390/brainsci12091116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Deep Brain Stimulation (DBS) of the sensory thalamus has been proposed for 40 years to treat medically refractory neuropathic pain, but its efficacy remains partial and unpredictable. Recent pilot studies of DBS targeting the ACC, a brain region involved in the integration of the affective, emotional, and cognitive aspects of pain, may improve patients suffering from refractory chronic pain. ACC-DBS could be complementary to thalamic DBS to treat both the sensory-discriminative and the affective components of chronic pain, but the safety of combined DBS, especially on cognition and affects, has not been studied. Methods: We propose a prospective, randomized, double-blind, and bicentric study to evaluate the feasibility and safety of bilateral ACC-DBS combined with unilateral thalamic DBS in adult patients suffering from chronic unilateral neuropathic pain, refractory to medical treatment. After a study period of six months, there is a cross-over randomized phase to compare the efficacy (evaluated by pain intensity and quality of life) and safety (evaluated by repeated neurological examination, psychiatric assessment, cognitive assessment, and assessment of affective functions) of combined ACC-thalamic DBS and thalamic DBS only, respectively. Discussion: The EMOPAIN study will show if ACC-DBS is a safe and effective therapy for patients suffering from chronic unilateral neuropathic pain, refractory to medical treatment. The design of the study will, for the first time, assess the efficacy of ACC-DBS combined with thalamic DBS in a blinded way.
Collapse
|
36
|
Pang D, Ashkan K. Deep brain stimulation for phantom limb pain. Eur J Paediatr Neurol 2022; 39:96-102. [PMID: 35728428 DOI: 10.1016/j.ejpn.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 03/25/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022]
Abstract
Phantom limb pain is a rare cause of chronic pain in children but it is associated with extremely refractory pain and disability. The reason for limb amputation is often due to treatment for cancer or trauma and it has a lower incidence compared to adults. The mechanism of why phantom pain exists remains uncertain and may be a result of cortical reorganisation as well as ectopic peripheral input. Treatment is aimed at reducing both symptoms as well as managing pain related disability and functional restoration. Neuromodulatory approaches using deep brain stimulation for phantom limb pain is reserved for only the most refractory cases. The targets for brain stimulation include the thalamic nuclei and motor cortex. Novel targets such as the anterior cingulate cortex remain experimental as cases of serious adverse effects such as seziures have limited their widespread uptake. A multidisciplinary approach is crucial to successful rehabilitation using a biopsychosocial pain management approach.
Collapse
Affiliation(s)
- David Pang
- Consultant in Pain Management, Pain Management Centre, INPUT St Thomas Hospital, London, SE1 7EH, UK.
| | - Keyoumars Ashkan
- Department of Neurosurgery, Kins's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
37
|
Isagulyan ED, Makashova ES, Myasnikova LK, Sergeenko EV, Aslakhanova KS, Tomskiy AA, Voloshin AG, Kashcheev AA. Psychogenic (nociplastic) pain: Current state of diagnosis, treatment options, and potentials of neurosurgical management. PROGRESS IN BRAIN RESEARCH 2022; 272:105-123. [PMID: 35667797 DOI: 10.1016/bs.pbr.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Classification of pain syndromes is quite multifaceted. However, pathogenetic classification by which chronic pain syndromes are usually divided into nociceptive, neuropathic and psychogenic, is crucial in choosing treatment tactics. In modern classifications, psychogenic pain is distinguished from nociceptive pain (associated with direct tissue injury or damage) and neuropathic pain (in which lesion can only be determined morphologically). Mental disorders play a leading role in psychogenic pain. Here, somatic/neurological disorders, if any, are of no pathogenetic significance in the dynamics of pain syndrome. There are certain algorithms (though not yet fully developed) and even guidelines for diagnosing and treating nociceptive and neuropathic pain, whereas psychogenic pain has been and still is almost out of sight for a long time. Despite its considerable prevalence, attitude towards it is still uncertain. Until now, it has no single classification, nor any strategy with regards to diagnosis, treatment and prevention.
Collapse
Affiliation(s)
- Emil D Isagulyan
- Department of Functional Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation.
| | - Elizaveta S Makashova
- Department of Functional Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation
| | | | - Elizaveta V Sergeenko
- Department of Functional Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation
| | - Karina S Aslakhanova
- Department of Functional Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation
| | - Alexey A Tomskiy
- Department of Functional Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation
| | - Alexey G Voloshin
- Pain Clinic, Center of Endosurgery and Lithotripsy, Moscow, Russian Federation
| | - Alexey A Kashcheev
- Department of Neurosurgery, Research Center of Neurology, Moscow, Russian Federation
| |
Collapse
|
38
|
Nüssel M, Zhao Y, Knorr C, Regensburger M, Stadlbauer A, Buchfelder M, Del Vecchio A, Kinfe T. Deep Brain Stimulation, Stereotactic Radiosurgery and High-Intensity Focused Ultrasound Targeting the Limbic Pain Matrix: A Comprehensive Review. Pain Ther 2022; 11:459-476. [PMID: 35471626 PMCID: PMC9098763 DOI: 10.1007/s40122-022-00381-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/24/2022] [Indexed: 11/04/2022] Open
Abstract
Chronic pain (CP) represents a socio-economic burden for affected patients along with therapeutic challenges for currently available therapies. When conventional therapies fail, modulation of the affective pain matrix using reversible deep brain stimulation (DBS) or targeted irreversible thalamotomy by stereotactic radiosurgery (SRS) and magnetic resonance (MR)-guided focused ultrasound (MRgFUS) appear to be considerable treatment options. We performed a literature search for clinical trials targeting the affective pain circuits (thalamus, anterior cingulate cortex [ACC], ventral striatum [VS]/internal capsule [IC]). PubMed, Ovid, MEDLINE and Scopus were searched (1990-2021) using the terms "chronic pain", "deep brain stimulation", "stereotactic radiosurgery", "radioneuromodulation", "MR-guided focused ultrasound", "affective pain modulation", "pain attention". In patients with CP treated with DBS, SRS or MRgFUS the somatosensory thalamus and periventricular/periaquaeductal grey was the target of choice in most treated subjects, while affective pain transmission was targeted in a considerably lower number (DBS, SRS) consisting of the following nodi of the limbic pain matrix: the anterior cingulate cortex; centromedian-parafascicularis of the thalamus, pars posterior of the central lateral nucleus and internal capsule/ventral striatum. Although DBS, SRS and MRgFUS promoted a meaningful and sustained pain relief, an effective, evidence-based comparative analysis is biased by heterogeneity of the observation period varying between 3 months and 5 years with different stimulation patterns (monopolar/bipolar contact configuration; frequency 10-130 Hz; intensity 0.8-5 V; amplitude 90-330 μs), source and occurrence of lesioning (radiation versus ultrasound) and chronic pain ethology (poststroke pain, plexus injury, facial pain, phantom limb pain, back pain). The advancement of neurotherapeutics (MRgFUS) and novel DBS targets (ACC, IC/VS), along with established and effective stereotactic therapies (DBS-SRS), increases therapeutic options to impact CP by modulating affective, pain-attentional neural transmission. Differences in trial concept, outcome measures, targets and applied technique promote conflicting findings and limited evidence. Hence, we advocate to raise awareness of the potential therapeutic usefulness of each approach covering their advantages and disadvantages, including such parameters as invasiveness, risk-benefit ratio, reversibility and responsiveness.
Collapse
Affiliation(s)
- Martin Nüssel
- Department of Neurosurgery, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Yining Zhao
- Department of Neurosurgery, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Constantin Knorr
- Medical Faculty, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Regensburger
- Molecular Neurology, Department of Neurology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Stadlbauer
- Institute of Medical Radiology, University Clinic St. Pölten, Karl Landsteiner University of Health Sciences, St. Pölten, Austria
| | - Michael Buchfelder
- Department of Neurosurgery, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Alessandro Del Vecchio
- Department of Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Kinfe
- Division of Functional Neurosurgery and Stereotaxy, Department of Neurosurgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany.
| |
Collapse
|
39
|
Deep Brain Stimulation for Chronic Pain. Neurosurg Clin N Am 2022; 33:311-321. [DOI: 10.1016/j.nec.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
De Ridder D, Vanneste S, Smith M, Adhia D. Pain and the Triple Network Model. Front Neurol 2022; 13:757241. [PMID: 35321511 PMCID: PMC8934778 DOI: 10.3389/fneur.2022.757241] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/28/2022] [Indexed: 12/15/2022] Open
Abstract
Acute pain is a physiological response that causes an unpleasant sensory and emotional experience in the presence of actual or potential tissue injury. Anatomically and symptomatically, chronic pathological pain can be divided into three distinct but interconnected pathways, a lateral “painfulness” pathway, a medial “suffering” pathway and a descending pain inhibitory circuit. Pain (fullness) can exist without suffering and suffering can exist without pain (fullness). The triple network model is offering a generic unifying framework that may be used to understand a variety of neuropsychiatric illnesses. It claims that brain disorders are caused by aberrant interactions within and between three cardinal brain networks: the self-representational default mode network, the behavioral relevance encoding salience network and the goal oriented central executive network. A painful stimulus usually leads to a negative cognitive, emotional, and autonomic response, phenomenologically expressed as pain related suffering, processed by the medial pathway. This anatomically overlaps with the salience network, which encodes behavioral relevance of the painful stimuli and the central sympathetic control network. When pain lasts longer than the healing time and becomes chronic, the pain- associated somatosensory cortex activity may become functionally connected to the self-representational default mode network, i.e., it becomes an intrinsic part of the self-percept. This is most likely an evolutionary adaptation to save energy, by separating pain from sympathetic energy-consuming action. By interacting with the frontoparietal central executive network, this can eventually lead to functional impairment. In conclusion, the three well-known pain pathways can be combined into the triple network model explaining the whole range of pain related co-morbidities. This paves the path for the creation of new customized and personalized treatment methods.
Collapse
Affiliation(s)
- Dirk De Ridder
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- *Correspondence: Dirk De Ridder
| | - Sven Vanneste
- School of Psychology, Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Mark Smith
- Neurofeedbackservices of New York, New York, NY, United States
| | - Divya Adhia
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
41
|
Lubejko ST, Graham RD, Livrizzi G, Schaefer R, Banghart MR, Creed MC. The role of endogenous opioid neuropeptides in neurostimulation-driven analgesia. Front Syst Neurosci 2022; 16:1044686. [PMID: 36591324 PMCID: PMC9794630 DOI: 10.3389/fnsys.2022.1044686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Due to the prevalence of chronic pain worldwide, there is an urgent need to improve pain management strategies. While opioid drugs have long been used to treat chronic pain, their use is severely limited by adverse effects and abuse liability. Neurostimulation techniques have emerged as a promising option for chronic pain that is refractory to other treatments. While different neurostimulation strategies have been applied to many neural structures implicated in pain processing, there is variability in efficacy between patients, underscoring the need to optimize neurostimulation techniques for use in pain management. This optimization requires a deeper understanding of the mechanisms underlying neurostimulation-induced pain relief. Here, we discuss the most commonly used neurostimulation techniques for treating chronic pain. We present evidence that neurostimulation-induced analgesia is in part driven by the release of endogenous opioids and that this endogenous opioid release is a common endpoint between different methods of neurostimulation. Finally, we introduce technological and clinical innovations that are being explored to optimize neurostimulation techniques for the treatment of pain, including multidisciplinary efforts between neuroscience research and clinical treatment that may refine the efficacy of neurostimulation based on its underlying mechanisms.
Collapse
Affiliation(s)
- Susan T. Lubejko
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert D. Graham
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Giulia Livrizzi
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert Schaefer
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Matthew R. Banghart
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Matthew R. Banghart,
| | - Meaghan C. Creed
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
- Meaghan C. Creed,
| |
Collapse
|
42
|
Camacho‐Conde JA, Gonzalez‐Bermudez MDR, Carretero‐Rey M, Khan ZU. Brain stimulation: a therapeutic approach for the treatment of neurological disorders. CNS Neurosci Ther 2022; 28:5-18. [PMID: 34859593 PMCID: PMC8673710 DOI: 10.1111/cns.13769] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 01/14/2023] Open
Abstract
Brain stimulation has become one of the most acceptable therapeutic approaches in recent years and a powerful tool in the remedy against neurological diseases. Brain stimulation is achieved through the application of electric currents using non-invasive as well as invasive techniques. Recent technological advancements have evolved into the development of precise devices with capacity to produce well-controlled and effective brain stimulation. Currently, most used non-invasive techniques are repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), whereas the most common invasive technique is deep brain stimulation (DBS). In last decade, application of these brain stimulation techniques has not only exploded but also expanded to wide variety of neurological disorders. Therefore, in the current review, we will provide an overview of the potential of both non-invasive (rTMS and tDCS) and invasive (DBS) brain stimulation techniques in the treatment of such brain diseases.
Collapse
Affiliation(s)
- Jose Antonio Camacho‐Conde
- Laboratory of NeurobiologyCIMESUniversity of MalagaMalagaSpain
- Department of MedicineFaculty of MedicineUniversity of MalagaMalagaSpain
| | | | - Marta Carretero‐Rey
- Laboratory of NeurobiologyCIMESUniversity of MalagaMalagaSpain
- Department of MedicineFaculty of MedicineUniversity of MalagaMalagaSpain
| | - Zafar U. Khan
- Laboratory of NeurobiologyCIMESUniversity of MalagaMalagaSpain
- Department of MedicineFaculty of MedicineUniversity of MalagaMalagaSpain
- CIBERNEDInstitute of Health Carlos IIIMadridSpain
| |
Collapse
|
43
|
Luo H, Huang Y, Green AL, Aziz TZ, Xiao X, Wang S. Neurophysiological characteristics in the periventricular/periaqueductal gray correlate with pain perception, sensation, and affect in neuropathic pain patients. NEUROIMAGE-CLINICAL 2021; 32:102876. [PMID: 34775163 PMCID: PMC8604717 DOI: 10.1016/j.nicl.2021.102876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/09/2021] [Accepted: 11/03/2021] [Indexed: 12/31/2022]
Abstract
The PAG/PVG carries out its biology function by oscillatory network. Three distinct local networks of oscillations involved in pain perception, sensory and affective. The delta oscillation is a key hub for coding pain perception. The high-gamma oscillation is a key hub for coding sensory pain.
The periventricular/periaqueductal gray (PAG/PVG) is critical for pain perception and is associated with the emotional feelings caused by pain. However, the electrophysiological characteristics of the PAG/PVG have been little investigated in humans with chronic pain. The present study analyzed the oscillatory characteristics of local field potentials (LFPs) in the PAG/PVG of eighteen neuropathic pain patients. Power spectrum analysis and neural state analysis were applied to the PAG/PVG LFPs. Neural state analysis is based on a dynamic neural state identification approach and discriminates the LFPs into different neural states, including a single neural state based on one oscillation and a combinational neural state based on two paired oscillations. The durations and occurrence rates were used to quantify the dynamic features of the neural state. The results show that the combined neural state forms three local networks based on neural oscillations that are responsible for the perceptive, sensory, and affective components of pain. The first network is formed by the interaction of the delta oscillation with other oscillations and is responsible for the coding of pain perception. The second network is responsible for the coding of sensory pain information, uses high gamma as the main node, and is widely connected with other neural oscillations. The third network is responsible for the coding of affective pain information, and beta oscillations play an important role in it. This study suggested that the combination of two neural oscillations in the PAG/PVG is essential for encoding perceptive, sensory, and affective measures of pain.
Collapse
Affiliation(s)
- Huichun Luo
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Yongzhi Huang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Alexander L Green
- Nuffield Department of Surgical Sciences and University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Tipu Z Aziz
- Nuffield Department of Surgical Sciences and University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Xiao Xiao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China; Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, China.
| |
Collapse
|
44
|
Liu CC, Moosa S, Quigg M, Elias WJ. Anterior insula stimulation increases pain threshold in humans: a pilot study. J Neurosurg 2021; 135:1487-1492. [PMID: 33799301 DOI: 10.3171/2020.10.jns203323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/05/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Chronic pain results in an enormous societal and financial burden. Opioids are the mainstay of treatment, but opioid abuse has led to an epidemic in the United States. Nonpharmacological treatment strategies like deep brain stimulation could be applied to refractory chronic pain if safe and effective brain targets are identified. The anterior insula is a putative mediator of pain-related affective-motivational and cognitive-evaluative cerebral processing. However, the effect of anterior insula stimulation on pain perception is still unknown. Here, the authors provide behavioral and neurophysiological evidence for stimulating the anterior insula as a means of potential therapeutic intervention for patients with chronic pain. METHODS Six patients with epilepsy in whom intracerebral electrodes had been implanted for seizure localization were recruited to the study. The direct anterior insula stimulations were performed in the inpatient epilepsy monitoring unit while subjects were fully awake, comfortable, and without sedating medications. The effects of anterior insula stimulation were assessed with quantitative sensory testing for heat pain threshold, nociceptive-specific cutaneous laser-evoked potentials, and intracranial electroencephalogram (EEG) recordings. Control stimulation of noninsular brain regions was performed to test stimulation specificity. Sham stimulations, in which no current was delivered, were also performed to control for potential placebo effects. The safety of these stimulations was evaluated by bedside physicians, real-time intracranial EEG monitoring, and electrocardiogram recordings. RESULTS Following anterior insula stimulations, the heat pain threshold of each patient significantly increased from baseline (p < 0.001) and correlated with stimulation intensity (regression analysis: β = 0.5712, standard error 0.070, p < 0.001). Significant changes in ongoing intracranial EEG frequency band powers (p < 0.001), reduction in laser pain intensity, and attenuated laser-evoked potentials were also observed following stimulations. Furthermore, the observed behavioral and neurophysiological effects persisted beyond the stimulations. Subjects were not aware of the stimulations, and there were no cardiovascular or untoward effects. CONCLUSIONS Additional, nonpharmacological therapies are imperative for the future management of chronic pain conditions and to mitigate the ongoing opioid crisis. This study suggests that direct stimulation of the anterior insula can safely alter cerebral pain processing in humans. Further investigation of the anterior insula as a potential target for therapeutic neuromodulation is underway.
Collapse
Affiliation(s)
| | | | - Mark Quigg
- 2Neurology, University of Virginia School of Medicine, Charlottesville, Virginia
| | | |
Collapse
|
45
|
De Ridder D, Adhia D, Vanneste S. The anatomy of pain and suffering in the brain and its clinical implications. Neurosci Biobehav Rev 2021; 130:125-146. [PMID: 34411559 DOI: 10.1016/j.neubiorev.2021.08.013] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 02/08/2023]
Abstract
Pain is an unpleasant sensory and emotional experience associated with actual or potential tissue damage. Chronic pain, with a prevalence of 20-30 % is the major cause of human suffering worldwide, because effective, specific and safe therapies have yet to be developed. It is unevenly distributed among sexes, with women experiencing more pain and suffering. Chronic pain can be anatomically and phenomenologically dissected into three separable but interacting pathways, a lateral 'painfulness' pathway, a medial 'suffering' pathway and a descending pain inhibitory pathway. One may have pain(fullness) without suffering and suffering without pain(fullness). Pain sensation leads to suffering via a cognitive, emotional and autonomic processing, and is expressed as anger, fear, frustration, anxiety and depression. The medial pathway overlaps with the salience and stress networks, explaining that behavioural relevance or meaning determines the suffering associated with painfulness. Genetic and epigenetic influences trigger chronic neuroinflammatory changes which are involved in transitioning from acute to chronic pain. Based on the concept of the Bayesian brain, pain (and suffering) can be regarded as the consequence of an imbalance between the two ascending and the descending pain inhibitory pathways under control of the reward system. The therapeutic clinical implications of this simple pain model are obvious. After categorizing the working mechanisms of each of the available treatments (pain killers, psychopharmacology, psychotherapy, neuromodulation, psychosurgery, spinal cord stimulation) to 1 or more of the 3 pathways, a rational combination can be proposed of activating the descending pain inhibitory pathway in combination with inhibition of the medial and lateral pathway, so as to rebalance the pain (and suffering) pathways.
Collapse
Affiliation(s)
- Dirk De Ridder
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| | - Divya Adhia
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sven Vanneste
- Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
46
|
Yamamoto K, Elias GJB, Beyn ME, Zemmar A, Loh A, Sarica C, Germann J, Parmar R, Wong EHY, Boutet A, Kalia S, Hodaie M, Lozano AM. Neuromodulation for Pain: A Comprehensive Survey and Systematic Review of Clinical Trials and Connectomic Analysis of Brain Targets. Stereotact Funct Neurosurg 2021; 100:14-25. [PMID: 34380132 DOI: 10.1159/000517873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/28/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Chronic pain is a debilitating condition that imposes a tremendous burden on health-care systems around the world. While frontline treatments for chronic pain involve pharmacological and psychological approaches, neuromodulation can be considered for treatment-resistant cases. Neuromodulatory approaches for pain are diverse in both modality and target and their mechanism of action is incompletely understood. OBJECTIVES The objectives of this study were to (i) understand the current landscape of pain neuromodulation research through a comprehensive survey of past and current registered clinical trials (ii) investigate the network underpinnings of these neuromodulatory treatments by performing a connectomic mapping analysis of cortical and subcortical brain targets that have been stimulated for pain relief. METHODS A search for clinical trials involving pain neuromodulation was conducted using 2 major trial databases (ClinicalTrials.gov and the International Clinical Trials Registry Platform). Trials were categorized by variables and analyzed to gain an overview of the contemporary research landscape. Additionally, a connectomic mapping analysis was performed to investigate the network connectivity patterns of analgesic brain stimulation targets using a normative connectome based on a functional magnetic resonance imaging dataset. RESULTS In total, 487 relevant clinical trials were identified. Noninvasive cortical stimulation and spinal cord stimulation trials represented 49.3 and 43.7% of this count, respectively, while deep brain stimulation trials accounted for <3%. The mapping analysis revealed that superficial target connectomics overlapped with deep target connectomics, suggesting a common pain network across the targets. CONCLUSIONS Research for pain neuromodulation is a rapidly growing field. Our connectomic network analysis reinforced existing knowledge of the pain matrix, identifying both well-described hubs and more obscure structures. Further studies are needed to decode the circuits underlying pain relief and determine the most effective targets for neuromodulatory treatment.
Collapse
Affiliation(s)
- Kazuaki Yamamoto
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada,
| | - Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Michelle E Beyn
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Ajmal Zemmar
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
- Department of Neurosurgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan University People's Hospital, Henan University School of Medicine, Zhengzhou, China
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Can Sarica
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Roohie Parmar
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Emily H Y Wong
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Suneil Kalia
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Mojgan Hodaie
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Osborne NR, Anastakis DJ, Kim JA, El-Sayed R, Cheng JC, Rogachov A, Hemington KS, Bosma RL, Fauchon C, Davis KD. Sex-Specific Abnormalities and Treatment-Related Plasticity of Subgenual Anterior Cingulate Cortex Functional Connectivity in Chronic Pain. FRONTIERS IN PAIN RESEARCH 2021; 2:673538. [PMID: 35295450 PMCID: PMC8915549 DOI: 10.3389/fpain.2021.673538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
The subgenual anterior cingulate cortex (sgACC) is a key node of the descending antinociceptive system with sex differences in its functional connectivity (FC). We previously reported that, in a male-prevalent chronic pain condition, sgACC FC is abnormal in women but not in men. This raises the possibility that, within a sex, sgACC FC may be either protective or represent a vulnerability to develop a sex-dominant chronic pain condition. The aim of this study was to characterize sgACC FC in a female-dominant chronic pain condition, carpal tunnel syndrome (CTS), to investigate whether sgACC abnormalities are a common feature in women with chronic pain or unique to individuals with pain conditions that are more prevalent in the opposite sex. We used fMRI to determine the resting state FC of the sgACC in healthy controls (HCs, n = 25, 18 women; 7 men) and people with CTS before (n = 25, 18 women; 7 men) and after (n = 17, 13 women; 4 men) successful surgical treatment. We found reduced sgACC FC with the medial pre-frontal cortex (mPFC) and temporal lobe in CTS compared with HCs. The group-level sgACC-mPFC FC abnormality was driven by men with CTS, while women with CTS did not have sgACC FC abnormalities compared with healthy women. We also found that age and sex influenced sgACC FC in both CTS and HCs, with women showing greater FC with bilateral frontal poles and men showing greater FC with the parietal operculum. After surgery, there was reduced sgACC FC with the orbitofrontal cortex, striatum, and premotor areas and increased FC with the posterior insula and precuneus compared with pre-op scans. Abnormally reduced sgACC-mPFC FC in men but not women with a female-prevalent chronic pain condition suggests pain-related sgACC abnormalities may not be specific to women but rather to individuals who develop chronic pain conditions that are more dominant in the opposite sex. Our data suggest the sgACC plays a role in chronic pain in a sex-specific manner, and its communication with other regions of the dynamic pain connectome undergoes plasticity following pain-relieving treatment, supporting it as a potential therapeutic target for neuromodulation in chronic pain.
Collapse
Affiliation(s)
- Natalie R. Osborne
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Dimitri J. Anastakis
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Junseok Andrew Kim
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rima El-Sayed
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Joshua C. Cheng
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Anton Rogachov
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Kasey S. Hemington
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rachael L. Bosma
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Camille Fauchon
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Karen D. Davis
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- *Correspondence: Karen D. Davis
| |
Collapse
|
48
|
Permezel F. Brain MRI-guided focused ultrasound conceptualised as a tool for brain network intervention. J Clin Neurosci 2021; 90:370-379. [PMID: 34275578 DOI: 10.1016/j.jocn.2021.05.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 05/02/2021] [Accepted: 05/27/2021] [Indexed: 11/25/2022]
Abstract
Magnetic resonance imaging guided high intensity focused ultrasound (HIFU) has emerged as a tool offering incisionless intervention on brain tissue. The low risk and rapid recovery from this procedure, in addition to the ability to assess for clinical benefit and adverse events intraprocedurally, makes it an ideal tool for intervention upon brain networks both for clinical and research applications. This review article proposes that conceptualising brain focused ultrasound as a tool for brain network intervention and adoption of methodology to complement this approach may result in better clinical outcomes, fewer adverse events and may unveil or allow treatment opportunities not otherwise possible. A brief introduction to network neuroscience is discussed before a description of pathological brain networks is provided for a number of conditions for which MRI-guided brain HIFU intervention has been implemented. Essential Tremor is discussed as the most advanced example of MRI-guided brain HIFU intervention adoption along with the issues that present with this treatment modality compared to alternatives. The brain network intervention paradigm is proposed to overcome these issues and a number of examples of implementation of this are discussed. The ability of low intensity MRI guided focussed ultrasound to neuromoduate brain tissue without lesioning is introduced. This tool is discussed with regards to its potential clinical application as well as its potential to further our understanding of network neuroscience via its ability to interrogate brain networks without damaging tissue. Finally, a number of current clinical trials utilising brain focused ultrasound are discussed, along with the additional applications available from the utilisation of low intensity focused ultrasound.
Collapse
Affiliation(s)
- Fiona Permezel
- Austin Hospital, Heidelberg, Victoria, Australia; The University of Melbourne, Parkville, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Austin Hospital, Victoria, Australia.
| |
Collapse
|
49
|
Price JB, Rusheen AE, Barath AS, Rojas Cabrera JM, Shin H, Chang SY, Kimble CJ, Bennet KE, Blaha CD, Lee KH, Oh Y. Clinical applications of neurochemical and electrophysiological measurements for closed-loop neurostimulation. Neurosurg Focus 2021; 49:E6. [PMID: 32610297 DOI: 10.3171/2020.4.focus20167] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022]
Abstract
The development of closed-loop deep brain stimulation (DBS) systems represents a significant opportunity for innovation in the clinical application of neurostimulation therapies. Despite the highly dynamic nature of neurological diseases, open-loop DBS applications are incapable of modifying parameters in real time to react to fluctuations in disease states. Thus, current practice for the designation of stimulation parameters, such as duration, amplitude, and pulse frequency, is an algorithmic process. Ideal stimulation parameters are highly individualized and must reflect both the specific disease presentation and the unique pathophysiology presented by the individual. Stimulation parameters currently require a lengthy trial-and-error process to achieve the maximal therapeutic effect and can only be modified during clinical visits. The major impediment to the development of automated, adaptive closed-loop systems involves the selection of highly specific disease-related biomarkers to provide feedback for the stimulation platform. This review explores the disease relevance of neurochemical and electrophysiological biomarkers for the development of closed-loop neurostimulation technologies. Electrophysiological biomarkers, such as local field potentials, have been used to monitor disease states. Real-time measurement of neurochemical substances may be similarly useful for disease characterization. Thus, the introduction of measurable neurochemical analytes has significantly expanded biomarker options for feedback-sensitive neuromodulation systems. The potential use of biomarker monitoring to advance neurostimulation approaches for treatment of Parkinson's disease, essential tremor, epilepsy, Tourette syndrome, obsessive-compulsive disorder, chronic pain, and depression is examined. Further, challenges and advances in the development of closed-loop neurostimulation technology are reviewed, as well as opportunities for next-generation closed-loop platforms.
Collapse
Affiliation(s)
| | - Aaron E Rusheen
- 1Department of Neurologic Surgery.,2Medical Scientist Training Program
| | | | | | | | | | | | - Kevin E Bennet
- 1Department of Neurologic Surgery.,3Division of Engineering, and
| | | | - Kendall H Lee
- 1Department of Neurologic Surgery.,4Department of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Yoonbae Oh
- 1Department of Neurologic Surgery.,4Department of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
50
|
Kashanian A, DiCesare JAT, Rohatgi P, Albano L, Krahl SE, Bari A, De Salles A, Pouratian N. Case Series: Deep Brain Stimulation for Facial Pain. Oper Neurosurg (Hagerstown) 2021; 19:510-517. [PMID: 32542398 DOI: 10.1093/ons/opaa170] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/13/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) has been used for chronic pain for decades, but its use is limited due to a lack of reliable data about its efficacy for specific indications. OBJECTIVE To report on 9 patients who underwent DBS for facial pain, with a focus on differences in outcomes between distinct etiologies. METHODS We retrospectively reviewed 9 patients with facial pain who were treated with DBS of the ventral posteromedial nucleus of the thalamus and periventricular gray. We report on characteristics including facial pain etiology, complications, changes in pain scores using the visual analog scale (VAS), and willingness to undergo DBS again. RESULTS Nine patients underwent DBS for either poststroke, post-traumatic, postherpetic, or atypical facial pain. Eight patients (89%) were permanently implanted. Seven patients had sufficient follow-up (mean 40.3 mo). Of these 7 patients, average VAS scores decreased from 9.4 to 6.1 after DBS. The average decrease in VAS was 55% for post-traumatic facial pain (2 patients), 45% for poststroke (2 patients), 15% for postherpetic neuralgia (2 patients), and 0% for atypical facial pain (1 patient). Three of the 8 implanted patients (38%) had complications which required removal of hardware. Only 2 of 7 (29%) patients met classical criteria for responders (50% decrease in pain scores). However, among 4 patients who were asked about willingness to undergo DBS again, all expressed that they would repeat the procedure. CONCLUSION There is a trend towards improvement in pain scores following DBS for facial pain, most prominently with post-traumatic pain.
Collapse
Affiliation(s)
- Alon Kashanian
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jasmine A T DiCesare
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Pratik Rohatgi
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Luigi Albano
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Neurosurgery, Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Milan, Italy
| | - Scott E Krahl
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California.,VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Ausaf Bari
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California.,VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Antonio De Salles
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Nader Pouratian
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|